
. ., ,. .
.)

--- -. .

Refining Data Flow Information Using Infeasible Paths*

Rastislav Bodfk, Rajiv Gupta, and Mary Lou Soffa

Dept. of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract. Experimental evidence indicates that large programs exhibit
significant amount of branch correlation amenable to compile-time de-
tection. Branch correlation gives rise to infeasible paths, which in turn
make data flow information overly conservative. For example, def-use
pairs that always span infeasible paths cannot be tested by any program
input, preventing 100% defuse, testing coverage. We present an algo-
rithm for identifying infeasible program paths and a data flow analysis
technique that improves the precision of traditional def-use pair analysis
by incorporating the information about infeasible paths into the analysis.
Infeasible paths are computed using branch correlation analysis, which
can be performed either intra- or inter-procedurally. The efficiency of
our technique is achieved through demand-driven formulation of both
the infeasible paths detection and the defuse pair analysis. Our experi-
ments indicate that even when a simple form of intraprocedural branch
correlation is considered, more than 2% of defuse pairs in the SPEC95
benchmark programs can be found infeasible.

1 Introduction

Static analysis is an integral component of many software engineering tools. Be-
cause static analysis is performed before execution, it is necessarily conservative
in its assumptions. One commonly made assumption is that every program path
is executable. However, some of the paths may be infeasible in that there is
no input for which the paths will be taken. Thus, the static analyzers produce
imprecise information.

Imprecision in the analysis information results in undesirable consequences
in software engineering applications, particularly in testing and debugging. In
path testing, paths may be selected for testing which are, in fact, infeasible. In
data flow testing, imprecision may lead to the selection of definition-use (def-we)
pairs which are impossible to test because they lie on infeasible paths. Consid-
erable effort may be wasted in trying to generate input data, either manually or
automatically, that traverses the infeasible paths [9].

Knowledge about infeasible paths can be used to improve the precision of
static analyzers because these paths can be excluded from consideration. Al-
though it is impossible to solve the general problem of identifying all infeasible

* Supported in part by Hewlett Packard, the National Science Foundation PYI Award
CC&9157371, and Grant CCR-9402226 to the Univ. of Pittsburgh.

I .
+ y*

4s

. \ b

b

1 0

I-

., \
G

i

)’

;

.
‘ 3

t

362

paths, some can be determined by detecting static branch correlation, A condi-
tional branch has static correlation along a path if its outcome can be determined
along the path from prior statements or branch outcomes at compile time. For
example, along a given path, the direction of a branch may be determined from
a constant assignment to the variable that is tested in the conditional, or from
the outcome of another branch. Experiments show that from 9 to 40 % of condi-
tionals in large programs exhibit correlation that is detectable at compile time
[2]. This implies that a significant number of infeasible program paths can be
detected prior to program execution.

Although the infeasible path information can be used to sharpen many tools
that are based on data flow analysis, it is particularly useful for software engi-
neering applications, including the following:

- The infeasible path information can be directly used by path testing. In path
testing, the algorithm for selecting paths to be tested can avoid paths found
infeasible due to branch correlation and thus reduce the effort to generate
test cases. Typically, such algorithms do not consider infeasible paths [7, 161.

- In def-use testing, def-use pairs that occur only along infeasible paths can
be eliminated from the set of requirements to be covered by test cases. Since
100% test coverage can rarely be achieved on real programs due to presence
of infeasible paths, reducing the number of infeasible def-use pairs increases
the confidence in regression testing [ll] and integration testing [4].

- By avoiding the consideration of infeasible paths during static slicing [lo,
14,171, fewer statements are added to the program slice, thus more precisely
identifying the potentially erroneous statements.

In this paper we present a static def-use pair analysis technique that avoids
identification of infeasible def-use pairs through detection of branch correlation.
The technique consists of two algorithms: (1) the detection of branch correla-
tion and identification of infeasible program subpaths, and (2) the def-use pair
analysis that excludes def-use pairs spanning the identified infeasible subpaths.
(In the remainder of the paper, the terms infeasible path and infeasible def-
use pair refer to paths and pairs, respectively, that are found infeasible by our
technique.) Both algorithms sre demand-driven, which guarantees good analyzer
performance because only nodes that may influence branch correlation or def-use
pair computation are visited. Since significantly more correlation can be detected
interprocedurally, we have developed both intra- and inter-procedural versions
of our analyses.

The algorithm for detection of interprocedural branch correlation was orig-
inally developed to support a compiler optimization for the elimination of re-
dundant conditional branches [2]. We extend the correlation detection algorithm
in this paper to identify shortest infeasible paths and to label the control flow
graph with these paths. Techniques for static branch correlation detection have
also been developed by other researchers [8, 151. While these techniques can de-
tect correlated branches, they do not identify the shape of infeasible paths, a
requirement for eliiinating infeasible def-use pairs. Furthermore, only correla-
tion between pairs of branches is detected, which is not sufficient for identifying

363

some infeasible paths that cross multiple conditionals. Finally, only correlation
along paths that do not cross procedure boundaries is considered in these tech-
niques.

Improving the precision of data flow analysis by reducing the impact of infea-
sible paths has also been considered by Holley and Rosen [13]. In their framework,
a data flow problem is solved by considering paths feasible under a given set of
assertions on variable values. Since this approach tracks the entire program state
that might determine the outcome of a conditional branch, it necessarily collects
assertions not contributing to the correlation. The size of the program state to
be maintained by the analysis makes this technique impractical for detection
of a meaningful class of static correlation. Our demand-driven approach exam-
ines only values that are relevant to the computation of the branch predicate.
Thus, in practice, our approach is more efficient and, in particular, more suitable
for use in a software engineering environment because, during maintenance, the
program change would drive the process of reanalysis.

The remainder of the paper is organized as follows. In Section 2 we present
the demand-driven analysis for identifying infeasible paths. In Section 3, the
infeasible path information is used to develop the improved def-use analysis. The
interprocedural def-use pair analysis algorithm is in Section 4. The experiments
are summarized in Section 5 and the conclusion is in Section 6.

2 Infeasible Paths

We first present the technique to identify infeasible paths and then show in the
next section how this information is used to compute more precise def-use pairs.
Infeasible paths analysis consists of two steps, each covered in the following two
subsections: a) detecting branch correlation and identifying infeasible paths, and
b) determining and labeling shortest infeasible paths.

2.1 Detection of branch correlation

A conditional branch exhibits correlation if along some paths its outcome is
implied by the outcome of other conditionals or by prior program statements,
such as assignments to the variable tested in the conditional. The correlation is
static if this dependence exists along the correlated path for any program input
and can be determined at compile time. In the presence of correlation, some
program paths are not executable because, along the correlated paths leading to
the conditional, control will always take either the true or the false direction.

Definition 1. Let b be a conditional branch with predicate expression p and c
be a path from the start of the program to the true (false) out-edge of the node
b. Path c is infeasible if the predicate p always evaluates to false (true) when
the control reaches node b along the path c.

The duality between infeasible and correlated paths allows us to determine
the shape and extent of infeasible paths using a branch correlation analysis. We

b
0

;I.
1

f?

. .

$*

.

F

‘I \
cr

i

---- ---- ---

6

j. ,,’

G

364

have recently developed such analysis to support the elimination of interprocedu-
rally redundant conditional branches [2]. Here we summarize its intraprocedural
version; please refer to [2] for details of the interprocedural correlation analysis,

The goal of the analysis is to find paths along which the outcome of branches
can be determined from assertions generated by other program statements. Our
algorithm determines~the infeasible paths by detecting correlation of each condi-
tional separately. Given a conditional b with predicate expression p (e.g., x>O),
we iind the infeasible paths in a demand-driven fashion by raising at b a query
containing the expression p and propagating it backwards in the flow graph until
the query is resolved along all paths. The query is resolved at nodes where the
value of the expression p carried within the query can be determined from the
assertions generated in the node. We identified four sources of useful assertions:

1. a constant assignment to a variable may imply a particular direction of the
conditional.

2. a prior conditional branch may subsume the branch predicate p. The prior
conditional generates on its out-edges assertions on the variable tested in its
predicate, and these assertions may suffice to evaluate p.

3. type conversion. For example, unsigned integers converted to signed integers
will always have non-negative values.

4. pointer dereferencing. The value of a pointer after it is used to access a
memory cell must be non-zero, otherwise an exception would have been
raised.

The query can be resolved to one of three answers. If the assertions generated at
a node are sufficient to evaluate the expression p, the query is answered to either
TRUE or FALSE. The query is resolved to UNDEF at a node that makes the
outcome of p unknown at compile time, such as at the procedure entry node or a
relevant read statement. If the query cannot be answered at a node, it is raised
at its predecessors. Propagating the query to predecessors may involve symbolic
query substitution due to an assignment to a variable from the expression p.

The paths along which the propagation of the query resulted in a TRUE
(FALSE) answer correspond to infeasible paths. These paths start at the nodes
where the query was resolved and end at the false (true) out-edge of the ana-
lyzed branch, respectively. We identify the shapes of these infeasible paths by
propagating forward the answers obtained at the resolution nodes. After forward
propagation of answers, each query raised at a node can obtain multiple answers,
each corresponding to a different set of paths.

In summary, the algorithm has two steps, shown in Fig. 1. The backward
query propagation algorithm of the first step is based on the demand-driven
analysis framework in [3]. The algorithm finds correlation for a single conditional
node b. Line 1 removes from Q[n] all queries raised during the previous invocation
of the algorithm. The initial query qb holds the branch predicate expression and
is raised at all predecessors of b at line 2. Starting from the predecessor of the
analyzed conditional node b, lines 3-10 process all nodes at which a query was
raised. The array A[n,q] stores the set of answers for a query q at a node n.

365

Step 1: Detect correlation of conditional branch b with predicate v < c

1 initialize Q[n] to {} at each node n; set worklist to {}
raise the initial query qb = (v < c) at each predecessor of b

2 for each m E Pred(b) do raise-query(m,substitute(b,qb))
3 while worklist not empty do
4 remove pair (node n, query q) from worklist

assume unknown outcome of b at procedure entry
5 if n is entry node of a procedure then A[n,q] := UNDEF

else - - attempt to answer q Gsing assertions generated at n
6 answer := resolve(n, q)
7 if answer E {TRUE, FALSE, UNDEF} then A[n, q] := (answer}
8 else for each m E Pred(n) do raise-query(m,substitute(n, q))
9 end if
10 end while

Procedure raise-query(node n, query q)
raise q at n unless previously raised there (terminate analysis of loops)

11 if Q @ Q[n] then add q to Q[n]; add pair (n,q) to worklist
end

Step 2: Identify correlated paths of conditional branch b

start from immed. succ. of nodes where any query was resolved in lines 5 or 7
12 worklist := {Succ(n) : n E R}, where R := {n : a query was resolved at node n}

raise the initial query at the analyzed branch, to collect final answers
13 add the initial query qb = (v < c) to Q[b]
14 while worklist not empty do
15 remove a node n from worklist

determine answers for each query that was not propagated backward
16 for each query q from Q[n] s.t. q was not resolved at node n do

collect all answers to query q from all predecessors of n
17 for each m E Pred(n) do add A[m,substitute(n, q)] to A[n, q]
18 if value of A[n,q] changed in line 17 then add Succ(n) to worklist
19 end for
20 end while

Fig. 1. Intraprocedural static correlation analysis.

A query raised at procedure entry node resolves to UNDEF because nothing
can be concluded about the outcome of the analyzed branch (lines 5). At any
other node n, the function resolve determines if assertions on n exist that
evaluate the predicate expression. If no answer can be concluded, the query is
propagated to predecessors, possibly modified by the call to substitute due
to symbolic substitution in the predicate expression. The algorithm terminates
when all queries are resolved. In Step 2, query answers are propagated forward
in lines 12-20.

.

3

.I

i
.- l ,�

/’
* ‘.J

. . .

-
. ‘.

:-
‘.,

a .I(

I

>.

I.

-
__I, < --

. , r: .I
_ ‘, __

_.
, :-:.

/

c ., ,, ..‘j.l
4 ! ..I

‘. /
-.

. .: ,.‘,
I

‘. I) = , -. .I ;/

-’ I -, ; _ ‘,

: . . . : .?b; $
J. 1
_-

5:

,

366

2.2 Marking shortest infeasible paths

To make the def-use pairs analysis aware of the detected infeasible paths, we
mark the paths on the flow graph. The marking can be compared to placing
finite-length threads on the graph, with the meaning that any program path
which fully includes any thread is infeasible. While we are not enumerating all
infeasible paths, all of them can be identified from the infeasible-path marlcings.

Labeling of the flow graph with an infeasible path is achieved through placing
of start, end, and present marks on flow graph edges. The three marks identify
the edges where a path begins, the edge where it ends, and all the edges the
path follows, respectively. The marks are implemented as unique integers; they
are stored on each control flow edge in three corresponding sets that identify the
start, end, and present marks of the infeasible paths that cross the edge.

The placement of marks is derived from the answers to queries collected dur-
ing identification of infeasible paths (Step 2 in Fig. 1). Along each infeasible path
in the graph there will be a sequence of queries with answers TRUE or FALSE
such that the queries were raised in response to one another starting from the
conditional. A pair (query, answer) can thus serve to uniquely identify an infea-
sible path from its start to the end. Each query-answer pair is assigned a unique
small integer to facilitate efficient bit-vector operations. This integer id identi-
fies the path using the start, end, and present sets maintained on graph edges,
Due to predicate expression symbolic substitution carried out by the correlation
analysis, while tracing the path it may be necessary to switch from (q, ansuer)
to (q’, answer) at a node where the query q was changed into q’.

Because the infeasible paths identified by the correlation detection extend
from the correlated branch all the way to the source of the correlation, they are
not the shortest infeasible paths. The start of each infeasible path can be delayed
in the forward direction, as specified by the definition below.

Definition 2. An infeasible path p = ei, .ei, . . . ei, is a shortest infeasible
path if the subpath ec . . . ei, is not infeasible.

Determining shortest infeasible paths maximizes the number of def-use pairs
that can be excluded during def-use analysis because more def-use pairs can span
shorter infeasible paths. The central idea behind placing the start mark is that, if
a query at a node n has a single answer, then the start of the corresponding path
can be delayed past n because only infeasible paths enter n. However, if a query
has multiple answers at n, the start must precede n because some feasible paths
may pass through n. Thus the start mark is placed at the edge where the query
has a single answer but the destination node of the edge has multiple answers
to the query. The marks for the shortest infeasible paths leading to branch b are
placed in Step 3 (Fig. 2). The end marks are always placed in the out-edges of
the conditional branch (lines 21-23). The present marks are placed at all nodes
where a query was raised (lines 28-29). Throughout the remainder of the paper,
the term infeasible path refers to the shortest infeasible path.

The algorithm we have presented can be used to exhaustively compute in-
feasible paths or to incrementally update infeasible path information. Following

367

Step 3: Label CFG with shortest infeasible paths that end at branch b

21
22
23
24
25
26
27
28
29

30

31
32
33

let et, ef be the true and false out-edges of b
if TRUE E A[b,qb] then end[et] := (qb,t)
if FALSE E A[b, qb] then end[ej] := (qb, f)
for each node n visited during correlation analysis (Step 1) do

for each query q E Q[n] do
!l ’ := substitute(n, q)
for each edge e = (m,n) do

if TRUE E A[m, q’] then add (q’, t) to present[e]
if FALSE E A[m, q’] then add (q’, f) to present[e]
shortest paths start where two different answers meet
if (A[m,q’J = {TRUE) or A[m, q’] = {FALSE))
and IA[n, q’]l> 1 then add (q’, A[m,q’]) to start[e]

end for
end for

end for

Fig. 2. Marking infeasible paths on the control flow graph.

a program change, the infeasible paths for only those branch exits that may be
affected by program changes need to be recomputed. Consider a statement n
at which the set of path marks present is not empty. Any modification to n or
insertion of new statements in n will require the infeasible paths included in the
present set to be recomputed.

The example in Fig. 3 shows the infeasible and shortest infeasible paths that
end at the true and false exits of the conditional node 7, and at the false exit of
the node 10. We use regular expression notation to denote the paths. A subpath
of the form [13] indicates that the subpath p is optionally included in the path,
while a subpath of the form (p)* indicates that p may be repeated zero or
more times. The variable names below each node number denote the predicate
expression from the query raised at that node. For example, w for the node 7
means that the query has the form (w = 5). Consider the computation of the
infeasible paths for node 7. Using the algorithm in Fig. 1 (Step l), node 3 is
identified as a constant definition that makes the false exit of node 7 impossible.
The infeasible paths that start at node 3 are 3 4 5 6 (14 10 11 13 S)* 7. After
path marking (Fig. 2, Step 3), the paths 4 5 6 (14 10 1113 6)*7 are identified as
the shortest infeasible paths. Thus no path going through the out-edge of node 4
can take the false exit of node 7. Also during the analysis of node 7, the copy
assignment in node 9 changes the query from (IJ = 5) to (IIJ = 5), with the result
that node 1 is identified as a node that makes the true exit of node 7 impossible.
The resulting infeasible paths from node 1 are 1 2 [3 41 5 6 7 8 9 (10 11 13 6
14)* 10 11 13 6 7. The shortest infeasible paths exclude 1 2 [3 43 because it is
guaranteed that at node 5, the value of w is still the constant 1. The infeasible
paths for the false exit of node 10 are also shown in the figure.

--I

?a
5’

:
t.’

. ,.

c ‘,
*

‘.

I

1 w:=l ’ I infeasible paths
2 y:=2 3 4 5 6 10 11 13 6)' 7 (14

VVITV vvvvv v
J

3 v:=5

+ '

shortest infeasible paths
4 5 6 (14 10 11 13 61* 7
PIlV vvvvv 11

4 x:=y+l

5

J’

pq

infeasible paths
1 2 13 41 5 6 7 8 9 (10 11 13 6 14). 10 11 13 6 7

6 lrw xw WlvIWV v v vv -? v v vvv

shortest infeasible paths
5 6 7 6 9 (10 11 13 6 14). 10 11 13 6 7
WWWIWI P v vv v v v vvv

infeasible paths

ovvv P v md10 v v vv v v
3 4 5 6 14 10 11 13 6 14 10

shortest infeasible paths
45 61410 ad 13 6 14 10
VVP v, v v-? v v

infeasible paths
12 13415676910
vv VV’VVVVW v

shortest infeasible paths
5676910
ww?rwv v

Fig. 3. An example of intraprocedural infeasible paths.

3 i Def-Use Analysis

The previous section described how infeasible paths are identified and marked
on the control flow graph. In this section we present a data flow analysis method
that provides refined data flow information by tracing the infeasible paths and
excluding def-use pairs that are formed exclusively along infeasible paths.

Def-use pairs are determined by solving the data flow problem of reaching
definitions. Given the set of definitions that reach a node, we can determine
def-use pairs for all of the uses in the node. Traditional data flow analysis con-
servatively assumes that all program paths are executable and computes the
data flow information as a meet operation along all paths. To refine the result of
the analysis, we strengthen the definition of a def-use pair: if all paths between a
definition and a use contain an infeasible path, then this def-use pair is infeasible
and is excluded from the set of def-use pairs found by the analysis.

_ -____ - ---~- - I ,.---. -- _ _:, _

369

Definition 3. Given a definition d and a use u of a variable v, (d, u) is a def-use
pair iff a path p& from d to u exists such that v is not redefined along p&, and
pdU does not contain any infeasible path.

To exclude infeasible reaching definitions, we associate with the data flow
information of each reaching definition (traditionally, a single bit in a data flow
vector) information about infeasible paths that have been encountered in the
propagation of the reaching definition. We call these paths infeasible paths in
progress. When the propagation of a reaching definition d encounters the start
mark of an infeasible path, we remember the path in the propagated data flow
information in order to trace the encountered path. When d reaches the end
mark of the path without previously leaving the path, we can remove d from
further consideration, as d has traversed an infeasible path. However, when d
leaves the infeasible path before its end mark is reached, the tracing information
about the path is removed from the data flow information because the path is
no longer in progress, and d is propagated further.

Reaching definitions can be computed either using an exhaustive data flow
algorithm (such as iterative) [l] or using a demand-driven algorithm [3]. In an
exhaustive algorithm, the reaching definitions are computed for all variables at all
nodes. In the demand-driven algorithm, the reaching deilnitions for each variable
used in a node are computed. Recent studies have demonstrated that demand-
driven algorithms take less time and space to compute reaching definitions than
exhaustive ones, even when the computation of all def-use pairs is required [4,12].

j We present in this paper the demand-driven version of def-use analysis.
The demand-driven algorithm is presented in Fig. 4. It computes def-use

pairs for a variable v used at a node u. Similar to the demand-driven algorithm
in Fig. 1, the algorithm raises a query at the use node u and propagates it
backward through the graph until a reaching definition of v is encountered or
until the query is discarded due to having followed an infeasible path. Removing
the query ensures that when a definition of v is encountered by a query, only
a feasible def-use pair is recorded. To determine when a query can be safely
discarded, a set of paths in progress are carried with each query and are updated
by the algorithm as the query traverses paths marks.

The initial query is formed and raised at lines 2-3. The query has a single
component, ipp, the set of infeasible paths in progress. Initially, this set is empty.
Note that, since the propagation proceeds in the opposite direction as in the
exhaustive analysis, the end mark is considered to be the start of the path. Line 6
considers each propagated query. Function resolve updates the ipp information
for the query and determines if a reaching definition has been encountered. Line 8
discards the query if an infeasible path in progress ends at the edge e. Lines 9
to 14 update the tracing information. Lines 15-19 record a new def-use pair and
terminate propagation of the query if a definition has been reached. Procedure
raise-query performs the meet data flow function for the ipp information. While
the problem of reaching definitions is a may-problem, the set ipp computes a
must-problem; a path in progress is preserved at a control flow meet point only
if it was in progress in each query that reached the meet point. As in every

7

6

Procedure DemandDrivenDef-UseAnalysis (var V, node U)

Q[n] = nil means no query for var v and use u was raised at n,
Q[n] # nil stores infeasible paths that are in progress for the quenJ

initialize Q[n] to nil at each node n; set worklist to {}
Initial query cam-es an empty set of paths in progress:

form the initial query qV,= = (0)
, for each edge e = (m,u) do raise-query(e,q,,,)

while worklist not empty do .
, remove pair (node n, query q) from worklist
i for each edge e = (m, n) do raise-query(e, q)
r end while

end

Function resolve(edge e = (m, n), query (ipp))

Terminate query propagation if query fol1ow.d an infeasible path:
3 if ipp n start[e] # {I then return nil

Remove paths in progress that are no longer followed:
2 ipp := ipp fl present[e]

Add paths in progress that are started at edge e:
LO ipp := ipp U end[e]

Rename paths in progress due to query substitution at node m:
11 for each q E ipp do
12 remove q from ipp
13 add substitute(m, q) to ipp
14 end for

Terminate propagation if m defines v:
15 if node m defines v then
16 add def-use pair (m,u) to DEF-USE
17 return nil
18 end if
19 return (ipp)

end

Procedure raise-query(edge e = (m, n), query q = (dpp))

20 q’ := resolve(e, q)
nil is returned when q not to be propagated across e

21 if q’ # nil then
22 if Q[m] = nil then Q[m] := ipp

Preserve only paths that are in progress along all merging paths:
23 else Q[m] := Q[m] n ipp

If merge in line 23 removed a path in progress, re-raise quer$
24 if Q[m] changed then add pair (m, (Q[m])) to worklist
25 end if

end

Fig. 4. Intraprocedural demand-driven def-use analysis.

371

distributive data flow problem, this conservative merge of data flow information
provides efficiency of the analysis but may prevent detection of some infeasible
def-use pairs when multiple infeasible paths contribute to the infeasibility of the
def-use pair. In the algorithm, the query is propagated further (in line 24) when
it is raised at the node for the first time (line 22) or when a path previously in
progress at node m has been removed at line 23.

For the example in Fig. 3, our analysis detects three less def-use pairs than
the traditional def-use analysis. In response to a query raised at the use of
z in node 8, our def-use analysis excludes the def-use pair (4,8) because the
propagated query is removed at the edge (4,5). This edge is the start of the
infeasible path that ends at the false exit of node 7. The def-use pair (4,12) on
variable z is excluded due to the first infeasible path leading to the false exit of
node 10. Finally, the def-use pair (2,12) on y is excluded due to the infeasible
path that leads to the true exit of node 7.

The demand-driven algorithm which finds the definitions reaching a given
use is also useful for determining more precise program slices [17]. By repeated
application of this algorithm, the data slice corresponding to a given statement
node can be easily computed. Due to the relined defuse analysis, this algorithm
computes smaller slices than traditional slicing algorithms.

Time complexity. The cost of ,our technique can be divided between the
infeasible paths analysis and the def-use analysis. The cost of the former is dom-
inated by Step 1 in Fig. 1. In our experiments, the pattern of analyzed condi-
tionals was restricted to branches that compare a variable with a constant (e.g.,
x(10) and the only statements on which we performed symbolic substitutions of
the propagated predicate expression were copy assignments (e.g., x:=y). Under
these restrictions, the cost to find infeasible paths leading to a single branch is
O(NV), where N is the number of nodes in the program CFG, and V is the
number of program variables. All infeasible paths can be found in O(N2V) steps.

The cost of finding all def-use pairs for a single use is bounded by O(NI),
where I is the maximum number of infeasible paths that cross a node. The value
of 1 bounds the number of times a query can be re-raised on a single node (line 24
in Fig. 4) because the value of Q[n] can be monotonically decreased at most I
times (line 23). All def-use pairs can thus be found in O(N21) steps. While in
the worst case I = O(N2V), we observed in our experiments, that I was never
higher than 75 and averaged below 2.01 (see Table 2, columns present).

4 Interprocedural Analysis

Both infeasible path analysis and def-use analysis can be extended to operate
across procedure boundaries. When implementing a practical defuse analyzer,
it is however not required to develop both techniques interprocedurally. Obvi-
ously, interprocedural def-use analysis can benefit from purely intraprocedural
infeasible paths. Combining interprocedural infeasible paths analysis with in-
traprocedural def-use pair analysis appears even more attractive: by examining
the calling context of each procedure, interprocedural correlation detection may

.

l

i

372

discover strictly intraprocedural infeasible paths, which will benefit intraproce-
dural def-use analysis, typically employed in def-use testing. In the remainder
of this section we describe the interprocedural versions of both infeasible path
analysis and the def-use analysis.

Detecting infeasible paths. The interprocedural version of infeasible path
analysis from Fig. 1 is based on the algorithm in [2]. The extension is based
on propagating queries between callers and callees and maintaining appropriate
procedure summary nodes. The infeasible path marking algorithm in Fig. 2 does
not require changes.

Interprocedural Reaching Definitions. The extension of the def-use
analysis requires the elimination of reaching definitions that occur exclusively
along infeasible interprocedural paths. This may affect not only interprocedural
but also intraprocedural def-use pairs. For example, at a call site node, a reach-
ing definition may be killed along one path through the called procedure but
may reach the procedure exit along the other possible path through the cdlee. If
the latter path is found infeasible by interprocedural analysis, this interprocedu-
ral exclusion, of the reaching definition may eliminate an intraprocedural def-use
pair in the calling procedure.

The extension involves the introduction of procedure summary nodes, which
are computed independently of the calling context. The summary node of a
procedure maps a variable and a specific set of infeasible paths in progress (ipp)
to the set of reaching definitions generated within the procedure. Due to the
many possible subsets of the ipp set, the amount of information to be stored in
the summary node is significant. However, since only a fraction of a summary
node will likely be referenced, we present in this section the demand-driven def-
use analysis based on [3], which achieves efficiency by computing only the needed
subset of each summary node.

In the context of query-based analysis, the purpose of summary node is to
cache for each query raised on the exit of a procedure the answers to the query
that were found within the procedure and its callees. In our reaching definitions
analysis, each query is associated with the analyzed variable v and the set of
infeasible paths ipp encountered during propagation of the query. Therefore, the
summary node maps a procedure exit node CC, a variable V, and the set of paths
ipp to: (1) RD, the set of reaching deflnitions from the procedure that are feasible
given the paths in ipp, (2) transp, the boolean variable indicating whether the
query propagated to the procedure entry (tramp is true if there is a feasible
path through the procedure with no definition of v), and (3) ipp’, the set of
paths that are in progress for the query at the procedure entry, if tramp = true.
The summary node entry Sflz,v, ipp] is thus a triple (RD, tramp, dpp).

The algorithm in Fig. 5 extends its intraprocedural counterpart with the
functionality to compute on demand the summary nodes. Whenever a query
is about to enter a procedure exit node, the summary node is looked up for a
previously cached result. If the lookup fails, the summary node entry is computed
by raising at the procedure exit an identical query, which is however marlced as a
special, summary node query. This query never leaves the scope of its procedure;

373

Procedure DemandDrivenDef-UseAnalysis (var V, node U)

1 initialize Q[n] to nil at each node n; set workZist to {}
2 form the initial query Q”+ = (0, nil)
3 for each edge e = (m,‘~c) do raise-query(e,q,,,)
4 while worklist not empty do
5 remove pair (node n, query q = (ipp, sn)) from worklist

case n is call site node:
let 2 be callee’s exit node and s be summary node entry SI@, V, +ipp]

6 if s = nil then
summary node (SN) lookup failed, create a new SN entry

7 3 := (0, f a& 0)
raise SN query to compute the new entry

8 r~se-query((~, 4, (im 4)
9 end if

use information cached in the SN entry
10 add s&D to DEF-USE
11 if s.transp then for each e = (m,n) raise-query(e, (s.ipp, +sn))

case n is procedure entry node:
record information into SN entry

12 if q is summary node query (ipp, s) then s.transp:=true; s.ipp:=ipp
13 for each call site m of the procedure do
14 if q is standard query or q E Q[m] then raise-query((m,n),q)
15 end for

otherwise :
16 for each edge e = (m, n) do raise-query(e, q)

end case
17 end while

end

Fig. 5. Interprocedural demand-driven def-use analysis.

its only task is to compute the cached summary node entry. To support both
standard and summary node queries, the algorithm represents a query with a
pair (ipp, sn), where sn is a pointer to the summary node entry that is being
computed by the query. The initial query is created at line 2, where the nil value
of the sn pointer signifies that this is a standard query (i.e., one that does not
compute a summary node). If the summary node lookup fails in line 6, a new
summary node entry S&r, 21, ipp] is created in line 7 and the computation of
the entry is initiated by raising the summary node query in line 8. The transp
and ipp fields of the entry are recorded in line 12. Line 14 raises the query in
all callers, restricting the scope of summary node queries to the procedure. The
procedures resolve and raise-query from Fig. 4 are unchanged, except that
line 16 may now add the reaching definitions to the RD set of the summary
node entry. An example of interprocedural infeasible paths is shown in Fig. 6.

r

.

1.>

:

.-

:

?

-7

_. . .

-’ __

;; .

,I ‘:
_ I

“-

374

shodcat infeariblcplhx

Fig. 6. An example of interprocedural infeasible paths.

5 Experimental Results

To measure the cost and benefit of our analysis technique, we implemented the
algorithms in our interprocedural compiler which is based on the ICC compiler
[S]. In this section, we compare the traditional intraprocedural def-use analysis
with tu~o configurations of our technique: the intruprocedural def-use analysis
utilizing a) intraprocedural and b) interprocedural infeasible paths analysis.

The experiments were performed on the integer benchmarks from the SPEC95
suite. All benchmarks are real application programs and, as Table 1 shows, are
of considerable size. The first three columns list the number of source lines, the
number of procedures defined in the program, and the number of external library,
procedures. Columns 4 and 5 list the total number of nodes in the interproce-
dural control flow graph of the program and the number of conditional nodes in
the graph.

In both the intra- ,and inter-procedural versions of our infeasible paths anal-
ysis, we considered only conditionals whose predicate expressions p was of the
form (V relop c), where 21 is a scalar variable and c is a constant. About 45%
of program conditionals were analyzable under this restricted pattern. Given a
predicate p of this form, we found those infeasible paths to p along which the
outcome of p can be determined from a prior constant assignment or a prior con-
ditional branch, which are the first two types of the static assertions described in
Section 2. Another implementation restriction was that the function substitute
used in Fig. 1 performed query substitution only on copy assignments of the form
21 -- .- w. Our infeasible path detection technique, however, supports the analysis
of arbitrary predicate expressions and is limited only by the capabilities of the
symbolic evaluation routines in the compiler.

The effectiveness of our branch correlation analysis is described in the last
group of columns in Table 1. The colump analyzable describes what percentage
of all conditionals in the graph were analyzed by the analysis, given the restric-
tions mentioned above. The columns con-P and con-1 give the number of con-
ditionals that have some correlation, detected using intra- and inter-procedural
infeasible paths analyses, respectively. For each conditional node with correla-

Table 1. The benchmarks: program size and amount of correlated branches.

147,;ortex II
-

--,I- 11 ---,----I----,. 281 0.511 iii1 1 2.01113 99615 25215 83611 93 2821 3 13513 389

Table 2. The costs and results of our def-use analysis.

tion, there is at least one infeasible path. The number of correlated conditionals
is given as a percentage of all conditional nodes.

The comparison of the traditional def-use analysis and our def-use analy-
sis is given in the last three columns of Table 2. Both analyses were restricted
to intraprocedural def-use pairs and each call site node was assumed to be a
definition of each global variable. Column tradit gives the number of defuse
pairs found by the traditional def-use analysis. The columns elim-P and elim-I
give the number of pairs that were eliminated by our def-use analysis, using the
intra- and inter-procedural infeasible paths analyses, respectively. With intrapro-
cedural infeasible paths, we are able to eliiate 2.2% of def-use pairs, on an
average, Some additional pairs can be removed when interprocedural infeasible
paths analysis is used. While thii may appear to be a small amount, knowing
these infeasible def-use pairs will significantly strengthen the confidence in the
testing level of a program. Assume that a def-use testing of a program achieved
97% testing coverage. After the infeasible def-use pairs are removed from consid-
eration, the testing coverage of the program will be over 99%, without expending
additional testing effort. We should also point out that, while using interproce-
dural infeasible paths enables eliiation of only a small additional amount of

4

-i

i : j

376

def-use pairs, these def-use pairs are extremely difficult to confirm as infeasible
manually because the calling context of procedures must be carefully examined,
as reported in [5].

Table 2 also presents the cost of our analysis. Since the set of infeasible
paths ipp is best implemented by a bit vector, we are interested in the maximum
and average size of the present marking sets, across all edges in the control
flow graph. These values are reported in the first four’columns, separately for
the intra- and inter-procedural infeasible paths. The low average values suggest
that many edges in the graph contain no infeasible paths markings. Note that
when the ipp set and all three mark sets are empty at lines 8-14 in Fig. 4, these
statements can be bypassed, resulting in query processing time that is equivalent
to that of the traditional def-use analysis. Next, we report the number of steps
performed by the considered demand-driven def-use analyses, measured in the
number of times a query was removed from the worklist at line 5 in Fig. 4, We
report the amount of work for the traditional def-use analysis (which was also
implemented as a demand-driven analyzer) and for the two versions of our def-
use analysis (columns 5 to 7). We can observe that infeasibility-aware analysis
does not require significantly more steps to terminate than the traditional def-use
analysis.

6 Conclusion and Future Work

We have presented a method for improving the accuracy of def-use pair analysis,
Our technique consists of two parts. First, program paths that are infeasible due
to branch correlation are detected and marked on the flow graph. Second, the
def-use analysis is modified to be aware of the infeasible paths, with the goal of
excluding def-use pairs that occur exclusively along such infeasible paths. The
infeasible path analysis uses assertions known at compile time from the program
text alone, e.g, from constant assignments.

To provide more precise def-use pairs and, consequently, slices during run-
time analysis and,debugging, our technique can take advantage of available dy-:
namic information and identify infeasible paths that are specific to a given pro-
gram execution. These dynamic infeasible paths can be detected if our analysis
is provided with a small amount of run-time information collected inexpensively
at user-defined breakpoints. It is sufficient to record at each breakpoint the value
of those variables that contribute to evaluation of branch predicates. This sub-
set of variables can be identified for each node by our analysis prior to program
execution.

In the future, we will extend the def-use data flow analysis to define a gen-
eral data flow framework in which other data flow problems can be computed
more accurately using the infeasible paths information. We will also perform
experiments to determine exactly what pattern of predicate expressions should
be considered to detect a large majority of statically detectable infeasible paths.

377

References

1. A.V. Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Techniques, and Tools,
Addison-Wesley, 1986.

2. R. Bodik, R. Gupta, and M.L. Soffa, “Interprocedural Conditional Branch Elimina-
tion,” Proceedings of the ACM SIGPLAN ‘97 Conference on Programming Language
Design and Implementation, June 1997.

3. E. Duesterwald, R. Gupta, and M.L. Soffa, “Interprocedural Data Flow Analysis on
Demand,” The 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 37-48, San Francisco, California, January 1995.

4. E. Duesterwaid, R. Gupta, and M.L. Soffa, ‘A Demand-Driven Analyzer for Data
Flow Testing at the Integration Level,” International Conference on Software Engi-
neering, Berlin, Germany, March 1996.

6. P.G. Frankl, E.J. Woyeker, ‘An Applicable Family of Data Flow Testing Crite-
ria,” IEEE nansactions on Software Engineering, pages 1483-1498, Vol. 14, No. 19,
October 1988.

6, C, Fraser and D. Hanson, A Retargetable C Compiler: Design and Implementation,
Benjamin/Cummings, 1995.

7. H.N. Gabow, S.N. Maheshwari, L.J. Osterweil, ‘On Two Problems in the Generation
of Program Test Paths,” IEEE nansactions on Software Engineering, Vol. SE2, No.
3, pages 227-231, September 1976.

8, R. Gupta and P. Gopinath, ‘Correlation Analysis Techniques for Refining Execution
Time Estimates of Real-Time Applications,” 11th IEEE Workshop on Real-Time
Operating Systems and Software, pages 5458, Seattle, Washington, May 1994.

9. R. Gupta and M.L. Soffa, “Employing Static Information in the Generation of Test
Cases,” Journal of Software Testing, Verification and Reliability, Vol. 3, No. 1, pages
29-48, December 1993.

10, R. Gupta and M.L. Soffa, ‘Hybrid Slicing: An Approach for Refining Static Slices
Using Dynamic Information,” ACM SIGSOFT Third Symposium on the Foundations
of Software Engineering, pages 29-40, Washington, DC, October 1995.

11. R. Gupta, M.J. Harrold, and M.L. Soffa, ‘An Approach to Regression Testing us-
ing Slicing,” Conference on Software Maintenance, pages 299-308, Orlando, Florida,
November 1992.

12. S. Horwitz, T. Reps, and M. Sagiv, “Demand Interprocedural Data Flow Analy-
sis,” ACM SIGSOFT Third Symposium on the Foundations of Software Engineering,
Washington, DC, October 1995.

13. L.H. Holley and B.K. Rosen, “Qualified Data Flow Problems,” IEEE Bansactions
on Software Engineering, Vol. SE7, NO.l, January 1981

14. J.R. Lyle and M. Weiser, “Automatic Program Bug Location by Program Slicing,”
Proc. Second IEEE Symposium on Computers and Applications, pages 877-883, June
1987.

15. F. Mueller and D.B. Whalley, ‘Avoiding conditional branches by code replication,”
Proceedings of the ACM SIGPLAN ‘95 Conference on Programming Language Design
and Implementation, SIGPLAN Notices, 30(6):56-66, June 1995.

16, H.S. Wang and S.R. Hsu, “A Generalized Optimal Path-Selection Model for Struc-
tural Program Testing,” The Journal of Systems and Software, Vol. 10, pages 55-63,
1989.

17. M. Weiser, “Program Slicing,” IEEE !Ransactions on Software Engineering, Vol.
SE-lo, No. 4, pages 352-357, July 1984.

.

