
Undoing Code Transformations in an Independent Order†

Chyi-Ren Dow Mary Lou Soffa Shi-Kuo Chang
dow@cs.pitt.edu soffa@cs.pitt.edu chang@cs.pitt.edu

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260

Abstract -- A transformation applied to optimize or
parallelize a program may be found to be ineffective, or
may be made invalid by code changes. In this paper, we
present a technique to remove such transformations. The
order of undoing the transformations is independent of
the application order. The technique uses post conditions
of a transformation to determine whether the transforma-
tion can be immediately removed. Transformations that
affect the immediate removal of a transformation must be
identified and removed. Other transformations made
invalid by the removal of a transformation must also be
undone. The technique employs inverse primitive actions,
making the technique transformation independent. The
enabling and disabling interactions of transformations
are used to drive the process, thereby reducing redundant
analysis when undoing transformations.

1. Introduction
Parallel architectures use various forms of parallel-

ism for increased computational power. Programmers,
eager to speed up sequential code on parallel machines,
depend on parallelizing compilers to enhance or expose
parallelism in sequential programs and to generate highly
parallelized code. Code transformations are important
components in parallelizing compilers and are used to res-
tructure code to enable the exploitation of parallelism in
programs.

Applying a transformation does not always guaran-
tee a time or space benefit. Also, the application of a
transformation may invalidate conditions for another
transformation which may be more beneficial [20]. Due
to the interaction between schedulers and transformations,
the application of a transformation may produce a worst
schedule than before the transformation was applied [19].
Because it is not clear whether or not a transformation
will be effective when it is applied, it may be necessary to
remove it if it is not beneficial to parallelism.
hhhhhhhhhhhhhhh
† Partially supported by NSF under Grants CCR-9109089
and IRI-9002180 to the University of Pittsburgh

An undo feature has been presented [5] that allows
users to undo code transformations in the reverse applica-
tion order. The user may also want to undo transforma-
tions in an independent order in order to remove inap-
propriate transformations while maintaining beneficial
ones. Due to transformation interactions, a transforma-
tion may enable the application of a transformation or dis-
able a transformation. Therefore to remove a transforma-
tion, it may be necessary to first remove affecting
transformations. After a transformation has been
removed, disabled transformations would have to be
removed also. When a program is modified by edits, the
safety conditions of a transformation can be altered such
that the transformation is no longer applicable without
possibly affecting the program semantics. This kind of
transformation is defined to be unsafe and needs to be
removed. However, all other transformations may be
unaffected and should remain in the code. In order to
reduce the redundant analysis that is performed for redo-
ing all transformations in response to program edits, only
unsafe transformations should be identified and removed.
Thus, techniques for undoing transformations in an order
independent of application order become valuable when
undoing transformations at the user’s directive or when a
program is modified by edits.

In this paper, we present a technique for undoing
code transformations in an order independent of applica-
tion order. The technique employs inverse primitive
actions to undo transformations, making it transformation
independent. A two-level program representation is
developed that allows the application of both traditional
optimizations and parallelizing transformations. It also
supports the reversal of transformations by maintaining
information about applied transformations. Pre and post
conditions of transformations are utilized to determine
whether an applied transformation remains safe and
whether it is immediately reversible. The remainder of
this paper is organized as follows. In Section 2, we dis-
cuss schemes developed to reverse traditional optimiza-
tions and to undo code transformations in reverse order.
Section 3 describes a two-level program representation

- 2 -

used in our scheme. The reversing transformation
scheme is presented in Section 4, followed by an algo-
rithm and an example for undoing transformations in Sec-
tion 5. Finally, conclusions are drawn in Section 6.

2. Background
Interactions of code transformations may occur by

one transformation enabling the application of another
transformation that previously could not be applied, or
one transformation disabling conditions that exist for
another transformation [13, 20]. If conditions of a
transformation tj are enabled or disabled by another
transformation ti, ti is defined to be an affecting transfor-
mation to tj and tj is defined as an affected transformation
by ti. Enabling interactions among transformations occur
when performing a transformation enables conditions for
other transformations to become applicable. Since depen-
dencies established by chains of enabling interactions
yield similar chains of disabling interactions when a
transformation is destroyed, rippling effects occur in that
removing a transformation destroys the safety of other
transformations that must also be removed.

A definition of Undo might be to restore a user’s
program or application to a previous state [10]. Recovery
features to do this have been built in many systems such
as editors [23] and database systems [17]. Although
numerous parallelizing compilers and parallelization sys-
tems, such as PTRAN [4], ParaScope Editor [8], and
Parafrase II [14] have been designed and implemented, no
undo facility, a very important facility in interactive
environments, is supported in these systems.

In an approach to incremental reoptimization of
programs, a scheme has been developed to remove tradi-
tional optimizations when a program is modified by edits
[13]. It works on intermediate-level program representa-
tions, namely a control flow graph and dag representation,
with history information of optimizations placed on dag
nodes. These annotations represent code that has been
eliminated, relocated, or replaced by optimizations.
Algorithms are given for determining which optimiza-
tions are no longer safe after a program change. The
representation is incrementally updated to reflect the
current optimizations in the program. The annotations to
the intermediate representation are dependent on the par-
ticular transformation applied. When undoing transfor-
mations, actions are guided by the enabling and disabling
interactions of transformations. Problems in extending
this scheme for parallelizing transformations include (1)
the need of a representation that can support the applica-
tion of scalar and parallelizing transformations to code
elements in different levels such as loops, statements, and
operand expressions, (2) the need for different informa-

tion stored not only for eliminated, relocated, and
replaced statements but also for restructured loop struc-
tures and duplicated statements, and (3) the desire of a
transformation independent technique since new transfor-
mations may be developed and incorporated into the sys-
tem.

iii
Action Inverse Actionii

Delete (a) Add (orig_location, -, a)iii
Copy (a, location, c) Delete (c)iii
Move (a, location) Move (a, orig_location)iii
Add (location, description, a) Delete (a)iii
Modify (exp(a), new_exp) Modify (new_exp(a), exp)iiic

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

Table 1. Actions and inverse actions.

Approaches to performing transformations and
undoing transformations in reverse order of application
by using primitive actions have been presented in [5, 20].
For undo in order, the first time the undo command is
issued, the last transformation is undone. Consecutive
repetitions of the undo command continue to reverse ear-
lier transformations. Each transformation is undone by
applying its inverse actions. The five primitive actions
used in the scheme as well as their inverse actions are
listed in Table 1. With appropriate transformation history
maintained (e.g., the original locations of moved and
deleted statements), the reversal of transformations in
order can be performed immediately by the corresponding
inverse actions. Due to the complexity of transformation
interactions (transformation enabling and disabling), the
reversal of transformations in an independent order may
not be applicable or safe by directly performing the
inverse actions of the transformations.

3. Program Representations
A program representation is used to display the

relevant information needed for analyzing and generating
the code for the program. Various program representa-
tions have been used in optimizing and parallelizing com-
pilers, such as the Abstract Syntax Tree (AST), the Con-
trol Flow Graph (CFG) [1], the Data Dependence Graph
(DDG) [9], the Program Dependence Graph (PDG) [7],
and the Dependence Flow Graph (DFG) [11]. Different
representations may have different effects on the design,
analysis and implementation of code transformations.
Traditional optimizations typically work on low-level
program representations such as the dag representation of
basic blocks. A dag for an expression represents the data
dependences in the expression. The statements in a basic
block can be represented by a dag to show how the value
computed at one statement is used in subsequent state-

- 3 -

1
2
3
4
5
6
7
8

1
2
4

6
7
8

5
3

+

+

APDG

ADAG

D = E + F
C = 1
do i= 1,100

do j= 1,50
A(j)= B(j)+C
R(i,j)= E+F

enddo
enddo

D = E + F
C = 1

do i= 1,100

do j= 1,50
A(j)= B(j)+1

R(i,j)= D
enddo

enddo

D C j

i

E F

D

1

= C

B(j) C

A

R

R(i,j)
A(j)

Source

cse(1)
ctp(2)
inx(3)
icm(4)

md3

md3

md1A

md1: D

md2: 1

mv4
md2

+

E F

Figure 1. A two-level program representation.

ments. Parallelizing transformations typically work on
high-level program representations such as the PDG. The
PDG is recognized as a useful representation in paralleliz-
ing techniques for a vector or parallel machine. It is a pro-
gram representation that makes explicit both the data and
control dependences in a program and explicitly shows
what statements can be executed in parallel. The nodes in
the PDG are statements, predicate expressions, and region
nodes. The edges in the PDG represent control depen-
dences and various data dependences.

Parallelizing compilers apply both parallelizing
(high-level) transformations and traditional (low-level)
optimizations to exploit parallelism in sequential pro-
grams. Many of these compilers use two different pro-
gram representations, a high level one for parallelization
and a low level one for scalar optimizations. Without
integrating the high-level and low-level representations,
the compilation requires two stages for parallelization and
scalar optimization and these two phases can not be freely
intermixed. Due to the interactions between scalar optim-
ization and parallelization, integrating scalar and parallel-
izing transformations can improve the use of parallelism
and memory hierarchy [16]. Our two-level representation
integrates two program representations, a high level one -
PDG and a low-level one - DAG, to allow the application
of both parallelizing transformations and traditional
optimizations. Advantages of using this model include

(1) Optimizing and parallelizing transformations can be
freely intermixed.

(2) Transformations can use both high/low level informa-
tion (e.g., data dependence/ data flow).

(3) Code generation and code scheduling for architectures
with different granularity can be supported by the two-

level representation.

(4) With appropriate information annotated on the
representation (see Section 4.1), an undo facility for both
optimizing and parallelizing transformations can be sup-
ported.

Figure 1 shows an example of two-level program
representation for a program segment that is restructured
by the common subexpression elimination (cse), constant
propagation (ctp), loop interchanging (inx), and invariant
code motion (icm) optimizations. The common subex-
pression evaluation E+F is replaced by the value of D at
labeled statement 6. The reference to variable C at state-
ment 5 is replaced by the constant 1. The tightly nested
loops (labeled statements 3 and 4) are interchanged and
the invariant statement 5 is moved out of loop at state-
ment 3. In Figure 1, annotations on the program
representation, such as md3, are used for reversing
transformations and are discussed in the next section.

4. Reversing Transformation Scheme
A scheme for reversing transformations using the

two-level program representation is discussed in this sec-
tion. First of all, information to be stored for the reversal
of transformations is presented. Secondly, pre and post
conditions of transformations used to determine whether a
transformation remains safe and whether it is immediately
reversible are presented. Thirdly, interactions of code
transformations are discussed. Finally, an event driven
regional undo approach is discussed.

4.1. Information to be Stored
In order to allow the reversal of transformations,

sufficient information must be recorded to keep a history
of all existing transformations. Information is required to
ensure correct detection and removal of invalidated
transformations. Our approach is to store information
about code patterns before and after the application of a
transformation as well as a sequence of primitive actions
that accomplishes the transformation. The history of
applied transformations is maintained on the program
representation by transformation independent annotations.
A pre_pattern notation is used to determine whether the
transformation remains safe and a post_pattern is used to
determine whether the transformation is immediately
reversible as discussed in the following sections.

Table 2 shows the pre_patterns, primitive actions,
and post_patterns for a set of transformations. For exam-
ple, the pre_pattern for DCE is a pointer to the statement
to be deleted, the primitive action is a Delete operation,
and the post_pattern is a pointer to the deleted code and a
pointer to the original location of the dead code which is
saved for possible later restoration. It should be noted

- 4 -

iii
Transformation Pre_pattern Primitive Actions Post_patternii
Dead Code
Elimination (DCE)

Stmt Si; /*dead code*/ Delete(Si); Del_stmt Si;
ptr orig_loc;iii

Constant Propagation
(CTP)

Stmt Si: type(opr_2) == const;
Stmt Sj: opr(pos) == Si.opr_2;

Modify(opr(Sj,pos),
Si.opr_2);

Stmt Si:
opr(pos)== Si.opr_2;iii

Common Subexpression
Elimination (CSE)

Stmt Si: A= B op C;
Stmt Sj: D= B op C;

Modify(exp(Sj,B op C), A); Stmt Sj: D= A;
iii
Invariant Code
Motion (ICM)

Loop L1;
Stmt Si;

Move(Si,L1.prev); Stmt Si;
ptr orig_location;iii

Loop Interchanging
(INX)

Tight Loops (L1, L2); Copy(L1, Ltmp);
Modify(L1, L2);
Modify(L2, Ltmp);

Tight Loops (L2, L1);

iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2. Information to be stored.

that the information of the pre_pattern and primitive
actions of a transformation can be obtained automatically
if the approach taken in the development of a code
transformation is to specify the transformation using
primitive transformations and let the transformation gen-
erator automatically generate the transformation from the
specification [5, 21]. Intuitively, the post pattern can be
obtained automatically given the pre_pattern and primi-
tive actions of a transformation since the post_pattern
results from applying the primitive actions on the
pre_pattern.

In order to maintain a complete snapshot of existing
transformations, adequate to determine when a transfor-
mation becomes unsafe or whether it is immediately
reversible, appropriate transformation history is annotated
on our program representation. The two level program
representation becomes an Augmented DAG (ADAG)
and an Augmented PDG (APDG). Since it is desirable to
have transformation independent annotations, our annota-
tions of a transformation on the representations are based
on the primitive actions and an order stamp (t) associated
with the transformation. The order stamp is used to link
the primitive action with the transformation that caused it
and is used to determine whether a transformation may be
affected when undoing a transformation in an indepen-
dent order as discussed in Section 4.2. Figure 2 shows the
transformation annotations for the transformations applied
in which md, mv, and del are abbreviation of modify,
move, and delete.

As shown in Figure 1, information of the four
applied transformations is retained and annotated on the
program representation. In the high level representation
APDG, modified and moved code elements are annotated
with its corresponding history of applied primitive
actions. In the low level representation ADAG, a global
common subexpression elimination (statement 6: E+F) is
represented by the original subexpression tree with the
root annotated with modified variable D. A constant pro-
pagated operand in statement 5 is represented by its origi-

INXt

i

j

j

i

j

i

i
SMIt

mdt

mdt

addt

mdt

i
ICMt

i

mvtDCEt

delt

si

sisi

si
CTPt

si
mdt

C C

mdt: const

mdt

CSEt

BB CCC

A D
D
mdt: A

B

si sj sj

Figure 2. Annotations based on primitive actions.

nal operand with the annotation of the propagated con-
stant value.

4.2. Pre and Post Conditions of Transforma-
tions

Pre-conditions of a transformation are conditions
that must exist before the application of the transforma-
tion. The satisfaction of pre-conditions determines
whether the transformation is safe to apply. Post condi-
tions are conditions that result from applying the transfor-
mation. The existence of post-conditions determines
whether the transformation remains safe. Post conditions
of a transformation can be altered by applying and remov-
ing transformations. Two kinds of post conditions of
transformations are discussed in this section. One is the
safety condition that is used to determine whether an
applied transformation remains safe. The other is the
reversibility condition that considers whether a transfor-
mation is immediately reversible by directly performing
its inverse actions.

(1) Safety: A transformation is safe if it preserves the
meaning of a source program. The safety conditions of a

- 5 -

iii
Transformation Disabling Conditions of Safety Disabling Conditions of Reversibilityii
Dead
Code
Elimination
(DCE)

Pre-conditions:
Si /\ Sl ⊃−−−−−−−−− (Si δ= Sl).

1) Sl ⊃−−−−−−−−− (Si δ Sl):
g Add a statement Sl that uses value comput-
ed by Si.
g Modify a statement Sl that uses value com-
puted by Si.
g Move a statement Sl on the path so that Si

reaches. †

1) The original location of Si cannot be deter-
mined:
g Delete context of the location. (e.g., delete
the loop it belongs to)
g Copy context of the location. (e.g., copy the
loop it belongs to by LUR)

iiicc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Table 3. Disabling Conditions of Safety and Reversibility.

ii
DCE CSE CTP CPP CFO ICM LUR SMI FUS INXii

DCE x x - x - x - - x xii
CSE - x - x - - - - x -ii
CTP x x - - x x - x x xii
ICM - x - - - x - - x xii
INX - - - - - x - - x xiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 4. Perform-create (reverse-destroy) interactions.

transformation ti can be altered when a transformation tj,
applied before ti, is reversed. Removing a transformation
may destroy the safety of another transformation but per-
forming a transformation can never destroy the safety of
already applied transformations because a transformation
is never performed on the premise that another transfor-
mation will be reversed to make it safe [13]. Therefore,
given a sequence of transformations, T = {t1, t2, ..., tn },
the safety of transformation ti can be disabled by the
reversal of a preceding transformation tj, where 1 <= j < i.
Table 3 gives pre-conditions, safety-disabling conditions,
and reversibility-disabling conditions for DCE. Condi-
tions for other transformations are described in [6]. The
safety-disabling conditions of a transformation are deter-
mined by negating the pre-condition of a transformation.
The pre-condition information can be obtained automati-
cally if the specification approach using primitive
transformations is taken in the development of transfor-
mations.

Safety-disabling actions that possibly disable the
post-condition of a transformation are also given in Table
3 for each disabling condition. The following explanation
describes how the safety-disabling conditions/ actions for
DCE that are given in Table 3 are determined. The disa-
bling condition to the pre-conditions " Si", " Si", is
ignored since the deletion of Si does not affect the optim-
ized code. The disabling condition, " Sl ⊃−−−−−−−−− (Si δ Sl)," is
obtained by negating the pre-condition " Sl ⊃−−−−−−−−− (Si δ Sl)."
DCE could be disabled by the insertion of a use Sl. The
insertion of Sl can be accomplished by adding a new
statement, by modifying an existing statement, or by mov-
ing a statement onto a path. Since a legal optimization
that preserves the semantics of the original program can-

not interfere or sever definition-use chains or alter the
order in which data is input or output by I/O devices [20],
actions that violate the rule for legal transformations are
due to changes to the program code by edits and are
denoted by † in Table 3. For the DCE example, the
movement of Sl on the path so that Si reaches is due to
edits but not the reversal of a legal transformation since
the application of a transformation by moving Sl off the
path would never occur (it would sever the def-use
chain).

(2) Reversibility: In our approach to performing and
removing a transformation by primitive actions, a
transformation, ti, is reversible if the inverse actions of ti

can be immediately performed. The stored history infor-
mation, post_pattern, is used to determine whether the
inverse actions can be performed. If the post_pattern of a
transformation, ti, is invalidated, there exist subsequent
transformations of ti that changed ti’s post_pattern and
made it irreversible. These transformations are called
affecting transformations to ti. Therefore, given a
sequence of transformations, T = {t1, t2, ..., tn }, the rever-
sibility conditions of transformation ti can be disabled by
its posterior transformations, tj, where i < j <= n.

Primitive actions that disable the conditions of
reversibility are identified in Table 3. The following
explanation describes how the reversibility-disabling
actions for DCE are determined. The primitive action for
the application of DCE is Delete(Si) and its inverse action
is Add(Si, orig_loc). The post_pattern of DCE in Table 2
consists of finding the deleted statement Si and its original
location. If the post-pattern is validated, the inverse
action of DCE can be correctly performed. We know the

- 6 -

deleted statement Si can be recovered since it is saved for
restoration. If the original location can not be deter-
mined, there must be some actions caused by affecting
transformations that make the original location of Si

undeterminable. For example, if the context of the origi-
nal location is deleted or copied by subsequent transfor-
mations of DCE, the inverse action, Add(Si, orig_loc) can
not be correctly performed. Therefore, the affecting
transformations should be reversed first in order to make
DCE reversible.

4.3. Interactions of Code Transformations
The application of one transformation may enable

or disable other transformations [13, 20]. Table 4 shows
the enabling interactions of a set of code transformations,
which include traditional optimizations and parallelizing
transformations. A "x" entry in a particular row and
column denotes that the transformation in that row
enables the transformation in that column. Interactions of
code transformations may occur by one transformation
enabling the application of another transformation that
previously could not be applied. Thus, enabling interac-
tions are perform-create dependencies. Since dependen-
cies established by chains of creations yield similar chains
of destruction when a transformation is destroyed, the
reverse-destroy dependencies exactly replicate the
perform-create dependencies [13]. Thus, the reverse-
destroy table can be used in a heuristic to reverse code
transformations. When a transformation is reversed, only
transformations with a mark "x" in the reverse-destroy
table are considered as possibly affected transformations.

4.4. An Event Driven Regional Undo
When a transformation is to be removed, subse-

quently applied transformations need to be checked to see
whether they are affecting, affected, or unrelated (unaf-
fected/ unaffecting) transformations. One approach is to
examine all the following transformations but this may be
too time consuming due to the redundant analysis of unre-
lated transformations if the number of transformations is
large. Our approach is to employ an event driven
regional undo technique to detect transformations only in
affected regions. Thus, our approach is based not only on
the order coordinate (transformation ordering) but also on
the space coordinate (affected regions).

An affected region is defined as the region of a pro-
gram with code changes (e.g., code reordering or
modification) or data flow or data/ control dependence
changes. In our two level program representation, an
affected region in the low level representation is defined
as a basic block with expression or data flow changes and
an affected region in the high level representation is

Do i = 1, N

i i

S4S3S2S1
d3

d3

d2

d2

d1

d1

A= B+ 1

C(i+1)= C(i)* D(i)+ X

Enddo

Enddo

Do i = 1, N

E= F(i)+ W

D(i)= E* E

S1

S2

S3

S4

R1

...

...

......

Figure 3. Summary of data dependences on region nodes.

defined as a region node as well as nodes dependent on it
with code, data dependence, or control dependence
changes. Various techniques for data dependence sum-
maries such as the hierarchical dependence graphs [18]
and the intrablock and interblock data dependences [2]
can be used to improve the data dependence verification
process. In order to ease the determination of affected
regions on the PDG for parallelizing transformations, data
dependence summaries are annotated on the region nodes.
We define the least common region node, denoted by
LCR(si, sj), as a region node and the least common con-
trol ancestor of nodes si and sj in the control dependence
tree of the PDG [3, 7]. Each data dependence on the least
common region node of the source and sink of that depen-
dence is annotated. As shown in Figure 3, each data
dependence is summarized on the least common region
node of the source and the sink of the dependence. The
summary of data dependences on region nodes can be
used not only to determine affected regions with depen-
dence changes but also to determine applicable transfor-
mations without visiting all nodes under the region nodes.
For example, it can be determined whether the two loops
in Figure 3 can be fused by checking only the inter-region
data dependence (i.e. d2) on R1. If d2 is not a loop fusion
(FUS) prevented dependence, FUS can be applied directly
without visiting all nodes under the two loops. Data flow
and data dependence updates can be performed incremen-
tally using various techniques including incremental data
flow analysis using the CFG [1, 12], the DDG [22], and
the PDG [7] and the incremental data dependence
analysis [15].

5. Undo Algorithm and Example
For undo in an independent order, the undo com-

mand can be issued to any transformation and only invali-
dating and invalidated transformations need to be undone.
This section presents an algorithm and an example of
undoing transformations in an independent order.

- 7 -

1 Procedure UNDO(ti)
2 /* undo a transformation ti from a sequence of applied

transformations, T = { t1, t2, ..., tn } */
3 BEGIN
4 while(post_pattern(ti) is invalidated)
5 THEN BEGIN
6 /* Undoing affecting transformations */
7 Determine a disabling condition of reversibility for ti;
8 Determine a primitive action that causes the condition;
9 Determine the transformation, tj, that causes the action;

10 UNDO(tj);
11 END {WHILE}
12 Perform inverse actions of ti;
13 Dependence_and_data_flow_update;
14 /* Undoing affected transformations */
15 Determine affected region due to code, data flow,

and data dependence changes;
16 For any transformation tk in the affected region
17 DO BEGIN
18 IF (k > i) /* only subsequent transformations */
19 THEN BEGIN /* may be affected */
20 IF ([ti,tk] is marked "x" in the reverse-destroy table)
21 THEN BEGIN
22 Determine safety conditions of tk, given the events

of inverse actions of ti;
23 IF !safety(tk)
24 THEN BEGIN
25 UNDO(tk);
26 END {THEN}
27 END {THEN}
28 END {THEN}
29 END {DO}
30 END

Figure 4. An undo transformation algorithm.

5.1. Undoing Transformation Algorithm
As discussed in previous sections, when undoing a

transformation, affecting transformations that disable the
reversibility of the transformation are reversed first, fol-
lowed by the reversal of the transformation. Then, the
affected transformations are reversed. The interactions of
transformations are used as a heuristic and an event
driven regional undo approach is used to reduce the
redundant analysis. Figure 4 shows an algorithm for
undoing transformations in an independent order. The
first step in the algorithm (lines 4-11) is to detect and
reverse affecting transformations. The post_pattern of
transformation ti is examined to see whether it is invali-
dated. If the post_pattern of ti is invalidated, there must
exist some transformations after ti that change the
post_pattern of ti and create a condition (as listed in Table
3) that disables the reversibility of ti (line 7). Annotations
of applied actions on the program representation are used
to determine which actions cause the condition (line 8).

The order stamp associated with each primitive action is
used to determine the applied transformation (line 9) and
the affecting transformation is then reversed to make ti

reversible (line 10). After the reversal of affecting
transformations, transformation ti is reversed by perform-
ing its inverse primitive actions (line 12). Next, data flow
and data dependence analyses are performed (line 13).
Then, the affected transformations are detected and
reversed (lines 15-29). Transformations in the affected
region due to code changes, data flow changes, and data/
control dependence changes are considered as possibly
affected transformations (line 15). Line 18 shows that
only transformations after ti (k>i) may be affected. The
interactions of transformations are used as a heuristic to
reduce the redundant analysis. For each entry "x" of the
reverse-destroy row in Table 4, detection of those condi-
tions that cause rippling effects is included in line 20.
The disabling conditions of safety are checked for the
determination of affected transformations (line 22). If tk

is not safe due to the removal of ti, tk must also be undone
(line 25).

5.2. An Example
Figure 1 is an example of a program segment res-

tructured by four transformations in the order of CSE,
CTP, INX, and ICM. Since the post_patterns of CSE and
CTP exist and the original common subexpression, E+F,
and the original constant use, C, are retained on the
representation, CSE and CTP can be reversed immedi-
ately by deleting their annotations on the program
representation [13]. Also, the reversal of ICM can be
immediately applied by performing its inverse actions
since it is the last transformation applied. To undo INX,
the post_pattern of INX, Tight Loops (Lj, Li), is invali-
dated due to the movement of statement 5 in between the
tightly nested loops. The action mv4 that moves state-
ment 5 results from the fourth transformation, ICM.
Therefore, both transformations must be undone with
undoing ICM first in order to undo the loop interchanging.

6. Conclusions
This paper describes a technique to undo transfor-

mations in an order independent of application order. An
integrated high-level and low-level representation is
presented that allows the application of both traditional
optimizations and parallelizing transformations. Pre and
post conditions of transformations are utilized to deter-
mine whether an applied transformation remains safe and
whether it is immediately reversible. Affecting transfor-
mations that disable the reversibility of the transformation
are reversed first. Then, the affected transformations
determined by checking the safety conditions of transfor-
mations are reversed.

- 8 -

The technique of undoing code transformations in
an independent order is currently being implemented in a
visualization system for parallelizing programs [5]. With
the undo facility supported in our system, the user can try
different alternatives and undo unpromising transforma-
tions. The next step in this research will be to perform
experimental studies for undoing transformations.
Another step will be to investigate techniques to automat-
ically generate code for the detection of the disabling
actions of the safety and reversibility conditions of
transformations from the transformation specifications.

References

1. A. Aho, R. Sethi, and J. Ullman, in Compilers Principles,
Techniques, and Tools, Addison-Wesley Publishing Co. ,
Reading, MA, 1986.

2. D. Bernstein and M. Rodeh, ‘‘Global Instruction
Scheduling for Superscalar Machines,’’ in Proceedings of
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 241-255, June 1991.

3. R. Cytron, J. Ferrante, and V. Sarkar, ‘‘Experiences
Using Control Dependence in PTRAN,’’ in Languages
and Compilers for Parallel Computing, ed. D. Gelernter,
A. Nicolau, and D. Padua, pp. 186-212, The MIT Press,
1990.

4. R. Cytron, J. Ferrante, and V. Sarkar, ‘‘Experiences
Using Control Dependences in PTRAN,’’ in Languages
and Compilers for Parallel Computing, ed. D. Gelernter,
A. Nicolau, and D. Padua, The MIT Press, 1990.

5. C. R. Dow, S. K. Chang, and M. L. Soffa, ‘‘A Visualiza-
tion System for Parallelizing Programs,’’ in Proceedings
of Supercomputing ’92, pp. 194-203, Minneopolis, MN ,
November 1992.

6. C. R. Dow, ‘‘PIVOT: A Program Parallelization and
Visualization Environment,’’ Ph.D. Thesis, Department
of Computer Science, University of Pittsburgh, Technical
Report 94-22, June 1994.

7. J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The Pro-
gram Dependence Graph and its Use in Optimization,’’
ACM TOPLAS, vol. 9, no. 3, pp. 319-349, July 1987.

8. K. Kennedy, K. McKinley, and C.-W. Tseng, ‘‘Interac-
tive Parallel Programming Using the ParaScope Editor,’’
IEEE Trans. on Parallel and Distributed Systems, vol. 2,
no. 3, pp. 329-341, July 1991.

9. D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M.
Wolfe, ‘‘Dependence Graphs and Compiler Optimiza-
tions,’’ in Proceedings of the 8th ACM Symposium on
Principles of Programming Languages (POPL), pp. 207-
218, Williamsburgh, VA, January 1981.

10. G. B. Leeman, Jr., ‘‘A Formal Approach to Undo Opera-
tions in Programming Languages,’’ ACM Transactions
on Programming Languages and Systems, vol. 8, no. 1,
pp. 50-87, January 1986.

11. K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P.
Stodghill, ‘‘Dependence Flow Graphs: An Algebraic
Approach to Program Dependencies,’’ in Proceedings of
the 18th ACM Symposium on Principles of Programming

Languages, pp. 67-78, January 1991.

12. L. L. Pollock and M. L. Soffa, ‘‘An Incremental Version
of Interactive Data Flow Analysis,’’ IEEE Trans. on
Software Engineering, vol. 15, no. 11, pp. 1537-1549,
December 1989.

13. L. L. Pollock and M. L. Soffa, ‘‘Incremental Global
Reoptimization of Programs,’’ ACM Trans. on Program-
ming Languages and Systems, vol. 14, no. 2, pp. 173-200,
April 1992.

14. D. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee,
B. Leung, and D. Schouten, ‘‘Parafrase-2: An Environ-
ment for Parallelizing, Partitioning, Synchronizing, and
Scheduling Programs on Multiprocessors,’’ in Proceed-
ings of 1989 International Conference on Parallel Pro-
cessing, pp. 39-48, St. Charles, Illinois, 1989.

15. C. M. Rosene, ‘‘Incremental Dependence Analysis,’’
Rice COMP TR90-112, Ph.D. Dissertation, Department
of Computer Science, Rice University, Houston, TX,
March 1990.

16. S. W. Tjiang, M. Wolf, M. Lam, K. Pieper, and J. Hen-
nessy, ‘‘Integrating Scalar Optimization and Paralleliza-
tion,’’ in Fourth International Workshop on Languages
and Compilers for Parallel Computing, pp. 137-151,
Santa Clara, CA, August 1991.

17. J. S. M. Verhofstad, ‘‘Recovery Techniques for Database
Systems,’’ ACM Comput. Surv., vol. 10, no. 2, pp. 167-
196, June 1978.

18. J. Warren, ‘‘A Hierarchical Basis for Reordering
Transformations,’’ Conference Record of 11th Annual
ACM Symposium on Principles of Programming
Languages, pp. 272-282, ACM, New York, Salt Lake
City, UT, January 1984.

19. T. Watts, R. Gupta, and M. L. Soffa, ‘‘Techniques for
Integrating Parallelizing Transformations and Compiler
Based Scheduling Methods,’’ in Proceedings of Super-
computing ’92, pp. 830-839, Minneapolis, MI, November
1992.

20. D. Whitfield and M. L. Soffa, ‘‘An Approach to Ordering
Optimizing Transformations,’’ in Proceedings of the
Second ACM SIGPLAN Symposium on Principles &
Practices of Parallel Programming, pp. 137-146, March
1990.

21. D. Whitfield and M. L. Soffa, ‘‘Automatic Generation of
Global Optimizations,’’ in Proceedings of ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pp. 120-129, June 1991.

22. M. Wolfe and U. Banerjee, ‘‘Data Dependence and its
Application to Parallel Processing,’’ International Jour-
nal of Parallel Programming, vol. 16, no. 2, pp. 137-178,
1987.

23. Y. Yang, ‘‘Anatomy of the design of an undo support
facility,’’ Int. J. Man-Machine Studies, vol. 36, pp. 81-95,
1992.

