
Efficient Computation of Interprocedural
Definition-Use Chains

MARY JEAN HARROLD

Clemson University

and

MARY LOU SOFFA

University of Pittsburgh

The dependencies that exist among definitions and uses of variables in a program are required

by many language-processing tools. This paper considers the computation of definition-use and
use-definition chains that extend across procedure boundaries at call and return sites. Intrapro-

cedural definition and use information is abstracted for each procedure and is used to construct
an interprocedural flow graph. This intraprocedural data-flow information is then propagated
throughout the program via the interprocedural flow graph to obtain sets of reaching deilnitions
and/or reachable uses for each interprocedural control point, including procedure entry, exit,
call, and return. Interprocedural definition-use and/or use-definition chains are computed from
this reaching information. The technique handles the interprocedural effects of the data flow

caused by both reference parameters and global variables, while preserving the calling context of

called procedures. Additionally, recursion, aliasing, and separate compilation are handled. The

technique has been implemented using a Sun-4 Workstation and incorporated into an interproce-
dural data-flow tester. Results from experiments indicate the practicality of the technique, both
in terms of the size of the interprocedural flow graph and the size of the data-flow sets.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging;
D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming Lan-
guages]: Processors—compilers; optimization

General Terms: Algorithms, Design

Additional Key Words and Phrases: Data-flow testing, interprocedural data-flow analysis, inter-
procedural definition-use chains, interprocedural reachable uses, interprocedural reaching defi-

nitions

This work was partially supported by the National Science Foundation under GrantCCR-9I109531

to Clemson University and Grant CCR-9109O89 to the University of Pittsburgh. An earlier
version of this paper appeared in abridged form in Proceedings of the ZnternatZonal Conference

on Computer Langua:es 1990. @ Copyright 1987 and 1989, Free Software Foundation, Inc., 675
Mass. Avenue, Cambridge, MA 02139.
Authors’ addresses: M. J. Harrold, Department of Computer Science, Clemson University,
Clemson, SC 29634-1906; M. L. Soffa, Department of Computer Science, University of Pitts-
burgh, Pittsburgh, PA 15260.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01994 ACM 0164-0925/94/0300-0175 $3.50

ACM ‘rransactmn. on Programming Languages and Systems, Vol. 16, No 2, March 1994, Pages 175-204

176 . M. J. Harrold and M. L Soffa

1. INTRODUCTION

An important component of compilation is data-flow analysis that computes

information about the potential flow of data throughout a program. Although

data-flow analysis is traditionally used in the last two phases of a compiler,

namely, code optimization and code generation, it has also become an integral

part of other language-processing tools, such as editors, parallelizers, debug-

gers, anomaly checkers, and testers. Irztraprocedural data-flow analysis con-

siders the flow of data within a procedure, while assuming some approxima-

tion about definitions and about uses of reference parameters and global

variables at call sites. Inter procedural data-flow analysis computes informa-

tion about the flow of data across procedure boundaries caused by reference

parameters and global variables.
Although interprocedural data-flow analysis techniques do exist [Banning

1979; Barth 1978; Burke 1990; Callahan 1988; Cooper et al. 1986a; Horwitz

et al. 1990; Meyers 1981], they are insufficient for computing the locations of

definition-use pairs that extend across procedure boundaries. One such appli-

cation that requires this information is data-flow testing [Frankl and Weyuker

1988; Harrold and Soffa 1991; Laski and Korel 1983; Ntafos 1984] in which

test-data adequacy criteria are used to select particular definition-use pairs

as the test-case requirements for the program. For example, the “all-uses”

criterion requires that each definition be tested on some path to each of its

uses. A technique that performs data-flow testing for a program with many

procedures requires both intraprocedural and interprocedural definition-use

pairs. After the definition-use pairs are identified, test cases are generated

that satisfy the requirements when used in the program’s execution. A test

case is said to satisfy a definition-use pair if the execution of the program

with the test case traverses a path from the definition to the use without any

intervening redefinition of the variable. To determine particular defhition-use

pairs, data-flow testing requires either definition-use chains or use-definition

chains.

Analysis techniques for computing definition-use (use-definition) chains for

individual procedures [Aho et al. 1986, pp. 632–633] are well known and have

been used in various tools, including data-flow testers [F’rankl and Weyuker

1985; Harrold and Soffa 1989; Korel and Laski 1985; Taha et al. 1989]. To

provide the necessary data-flow information to test interprocedural defini-

tions and uses, interprocedural definition-use chains are required. An inter-

procedural definition-use chain for a definition in some procedure P consists

of the locations of all uses of the definition, taking into account uses in

procedures that are reachable from P along both call and return sequences.
The computation of interprocedural definition-use chains requires tracking

the uses of global variables and formal and actual reference parameters that

can be reached across call and return sites (i.e., interprocedural reachable

uses). Interprocedural use-definition chains are defined analogously in terms

of interprocedural reaching definitions.

In this paper we present an efficient interprocedural analysis algorithm

that computes interprocedural definition-use and use-definition chains. Our

approach is modeled after the iterative computation of intraprocedural data-

ACM Transactions on Programmmg Languages and Systems, Vol 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 177

flow chains. We first analyze individual procedures in a program in an,y order

to abstract intraprocedural information, which is used to construct an inter-

procedural flow graph (IFG). For interprocedural definition-use chains, we

propagate intraprocedural use information throughout the program via the

IFG to obtain the interprocedural reachable uses for procedure control points

in the program, while taking into account the calling context of called

procedures. We compute the interprocedural definition-use chains using local

definition information at each node in the IFG along with the propagated

reachable use information. Interprocedural use-definitions chains are com-

puted similarly, except that interprocedural reaching definitions are propa-

gated throughout the program. To be applicable to large programs [~Cooper

et al. 1986b], the data-flow analysis technique supports separate compilation,

since procedures are analyzed in isolation of one another. The interprocedural

data-flow analysis technique computes interprocedural definition-use (use-

definition) chains for recursive procedures, making its use applicable to a

wider range of programs. The technique can also incorporate previously

determined alias information to compute safe interprocedural definition-use

(use-definition) chains. We have implemented a prototype of our systelm in C

and have performed experiments to determine the size of both the IFG and

the data-flow sets. Our experiments show that, in practice, the IFG is linear

in the size of the program and that the size of the data-flow sets is small

compared to the number of statements in the program.

In the remainder of this paper, we present our algorithms for computing

interprocedural definition-use and use-definition chains. The problems of

gathering interprocedural definition and use information are discussed in

Section 2. Next, we focus on our technique for computing definition-use and

use-definition chains for reference parameters and global variables in an

alias-free environment, since the propagation algorithms are the same when

aliasing is present. Section 3 discusses our interprocedural program represen-

tation. Section 4 presents the details of our algorithm for computing defini-

tion-use chains for reference parameters and then for global variables. We

first detail our algorithm for computing interprocedural definition-use (chains

and then present the analogous technique for computing interprocedural

use-definition chains. In Section 5 we discuss our technique for incorporating

alias information into our program representation and computing safe inter-

procedural definition-use (use-definition) chains in the presence of ali asing.

Our experimental results are given in Section 6, related work is discussed in

Section 7, and concluding remarks are given in Section 8.

2. COMPUTING INTERPROCEDURAL DEFINITION-USE CHAINS

The problems involved in computing interprocedural data-flow chains ineludt

accommodating separate compilation of procedures, handling programs with

recursive procedures, ensuring that data-flow chains reflect all, and only,

definition and use pairings for possible control paths in the program, and
providing safe information in the presence of aliases. The program in Figure
1 illustrates some of these difficulties. To assist the reader in tracking

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994.

178 . M, J, Harrold and M. L. Soffa

program Main procedurePI(Y) prwedure P2(Z)
read(X); if Y<lOthen Y:= Y+4; if Z>lOthen Z:= Z+2;
Pi(x); P2(Y); end P2;
if X>20 then X:=X+6 if Y<25then Y := Y + 5;
P2(x); endPl;
write(X);

endMare;

Main

B,

T

read(X)

‘J -3~–––––
B2 1 PI(X) 1

L–––,–––.
IaB3 X>20?

X:=X+6

BS I P2(x) 1
L––-–––J

B8

B,,

PI

aB, Y<lo?

Y:=Y+4

Bg I P2(Y) ~
L-––– –-J

d

BIO Y<25?

Y:=Y+5

P2

---eB,2 z> 1o?

Z:= Z+21

‘--u

Fig 1. Example program Main and Its control flow graphs.

interprocedural definition-use dependencies, each procedure’s control flow

graph [Aho et al. 1986, p. 532] is depicted beneath its code. A node in a

control flow graph represents a basic block in the program, consisting of

statements that execute sequentially, and an edge represents the flow of

control between basic blocks. To simplify the interprocedural analysis, we

represent a call site by a single basic block, shown as a dashed box in Fig-

ure 1.

In Figure 1 information about the interprocedural data flow in procedures

P1 and P2 is required to determine that the definition of variable X in BI may

be preserved [Lomet 1977] over the call to procedure PI in Bz and conse-

quently reaches the use of X in B~. The analysis for providing this informa-
tion must also consider the call to procedure P2 from procedure PI. In this

case, interprocedural information is being used to determine the local effects

of the procedure call on the calling procedure. Gathering this information

requires that either (1) the information about called procedures be incorpo-

rated at call sites during the analysis of the calling procedure or (2) an

estimate of the information about called procedures be used during initial

analysis of the calling procedure and that this information be updated when

more accurate data-flow information is determined. The problem with the

first method is that, if procedures are processed in any order or are recursive,

ACM Transactions cm Programmmg Languages and Systems, Vol 16. No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 179

incomplete information’ may be available about called procedures at call sites.

Thus, in this paper we use the second method. We process each prc)cedure

individually to abstract the intraprocedural information, and we use an

estimate of the definition and use information at call sites. This initial

estimate is updated by propagating information about other procedures to

obtain the interprocedural data-flow information.

Tracking the definition of X in BI in Figure 1 over procedure calls and

returns is required to determine that this definition of X reaches the uses of Y

in By, B~, BIO, and Bll of P1 and the uses of Z in Blz and Bl~ in P2. In this

case, interprocedural information is being used to determine the interproce-

dural definition and use dependencies in the called procedures. Tracking

requires that data-flow information be propagated across procedure calls and

returns throughout the program.

Preserving the calling context of called procedures is important during the

computation of data-flow chains. To preserve the calling context, onljy those

paths through the program that agree with the call sequence for some

possible control path should be traversed when tracking data-flow pairs over

returns from procedures. Thus, either the call sequence must be “remem-

bered or the technique for propagation must account for actual call se-

quences. Consider the definition of X in B1 that reaches the call to procedure

P2 in B~. Since there is a path through procedure P2 on which Z is not

defined, the definition of X in BA can reach the end of procedure P2. However,

since there are two calls to P2, there are two return paths from procedure P2:

one that returns directly to Main and the other that returns indirectly

through PI. Ignoring the call sequence suggests that the definition in BA has

uses in B~, BA, and BG. However, closer inspection of control paths through

the program reveals that this definition in Bd reaches the end of P2, and

subsequently back into Main, only when it is called directly from Main. Thus,

this definition can only reach the use of X in BG. The calling context must be

considered in order to obtain more precise definition-use chains.

The program in Figure 2 illustrates one difficulty in computing lprecise

interprocedural data-flow chains when aliasing is present. An alias is, intro-

duced at the call site in S2 since actual parameter X is passed in two

locations in the parameter list. Thus, on this call to PI, formal parameters Y

and Z are aliases of each other. Then, in s5, this alias is propagated to P2

since Y and Z are passed as parameters, causing A and B to be aliased (cmthis

call to P2. Without considering the effects of aliasing, the only definition in

P2 that reaches the use of Y in S6 is the definition of A in s8. More precise

analysis reveals that, when Y and Z are aliased, the definition of B in S9 also

reaches the use of Y in s6. To provide safe data-flow chains, the interprocedu-

ral analysis algorithms must consider the effects of aliasing.

3. THE IFG

We represent a program, composed of a number of procedures, by an inter.

procedural flow graph (IFG), which is based on the program summary graph

[Callahan 1988]. Like the program summary graph, an IFG contains one

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994

180 . M. J. Harrold and M. L. Soffa

program Marn procedureP1(Y,Z) procedure P2(A,B)
sl: read(X); $4: if Y<10
$2: Pl(x, x);

s7: ifB>O
S5: then P2(Y,Z);

$3: write(x);
s8: then A:=A+B

J6: write(y); S9: elseB:= A-B;
end Mairx

Main

B,

T

read(X)

i.~__––_
B2 (P(X,X) ~

L______J

B3
&

write(X)

end PI;

P1

c

Bd Y<lo?

~––- -–7
B~ I P2(Y,Z) I F

L––––––J

BG write(Y)

end P2;

P2

B7 B~?

B8 A:=A+B Bg B:= A-B

BIO

Fig. 2. Example program and its control flow graphs, illustrating one of the problems in

computing data-flow chains in the presence of abasing.

subgraph for each procedure. Each IFG subgraph represents local informa-

tion about the procedure that is abstracted from intraprocedural analysis and

includes information about formal parameters in the procedure and actual

parameters at call sites in the procedure. Information about the interaction

among procedures is used to connect the subgraphs to get the IFG for the

program. The IFG is constructed by considering binding information about
formal and actual parameters and control information that can be deter-

mined about a procedure and abstracted to its call sites.

The four types of nodes in a program summary graph, entry, exit, call, and

return, are also nodes in an IFG and correspond to control points before and

after regions of code in the associated procedure. An entry node represents

the point prior to entry into the procedure, and an exit node represents the

point after the end of the procedure. A call node represents the point prior to

the procedure call whereas a return node represents the point after the

return from the procedure call. A call node and a return node are created for

each actual parameter at a call site, and an entry node and an exit node are

created for each formal parameter in a procedure. Intraprocedural, or local,

information is computed about definitions of formal and actual parameters

that reach, and uses of formal and actual parameters that can be reached

from, these control points and is attached to the appropriate nodes in the
sub graph. At entry and exit points of a procedure, local definition and use

information is abstracted for formal parameters, while at call and return

sites, local definition and use information is abstracted about actual parame-

ters involved in the call.

Reaching edges from both entry and return nodes to call and exit nodes
abstract the control information from the procedure by indicating that a

definition that reaches the source of the edge also reaches the sink of the

edge. For example, a reaching edge from an entry node to a call node
indicates that a definition of the formal parameter that reaches the beginning

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 2, March 1994,

Computation of Interprocedural Definition-Use Chains . 181

of the procedure also reaches the call site where it is used as an actual

parameter. A reaching edge is strictly intraprocedural since it is computed
without incorporating the control structure of the called procedure at a call

site. The computation treats each call node as a use of its actual parameter

and each return node as a definition, with no definitions between the call and

return nodes.

While nodes and reaching edges in the IFG subgraphs are identical to those

in the program summary graph, each IFG contains interreaching edges and

additional definition and use information about each procedure. We compute

sets of definitions of formal and actual parameters that reach interprocedural

control points and sets of uses of formal and actual parameters that can be

reached from interprocedural control points, and attach them to nodes in the

IFG subgraphs. Our algorithm propagates these sets throughout the program

using the IFG to obtain interprocedural reaching definitions and reachable

uses. Computing the sets of definitions of formal and actual parameters in a

procedure that reach the ends of the appropriate regions of code represented

by nodes in the IFG, designated the DEF sets for the nodes, is similar to

computing generated definition sets for basic blocks in intraprocedural data-

flow analysis. The definitions of an actual parameter that reach a call site

constitute the DEF set for the call node associated with that actual parame-

ter at the call site, while definitions of a formal parameter that reach t he end

of the procedure become the DEF set for the exit node associated with that

formal parameter at the end of the procedure. A similar situation exists for

reachable uses. Information about uses of formal parameters that can be

reached from the beginning of a procedure and of actual parameters that can

be reached from the return of a procedure is gathered at entry and exit nodes,

respectively. Computing the sets of uses, UPEXP, that can be reached from

the beginning of the regions of code represented by entry and return nc]des in

the IFG is similar to computing the upward exposed sets of uses for basic

blocks in intraprocedural data-flow analysis. The UPEXP set at an entry node

for a formal parameter is the set of uses of that formal parameter that can be

reached from the start of the procedure. Likewise, the UPEXP set at a return

node for an actual parameter is the set of uses of that actual parameter that

can be reached from the return from a procedure call. The DEF sets for entry

and return nodes and the UPEXP sets for call and exit nodes have no

meaning intraprocedurally and are given a null value to facilitate propagat-

ing the data-flow information. For example, any definitions of actual parame-

ters that can reach the beginning of the procedure must be computed from

interprocedural analysis and, thus, are not known during the construction of

the subgraphs.

In an IFG, procedure entry and procedure exit are denoted by entryj and

exit ~ nodes, respectively, and both nodes are created for every formal param-

eter f of every procedure P. Procedure invocation and procedure return are

p - Q nodes, respectively, and both nodesrepresented by call;+ Q and return,

are created for every actual parameter x of every call from procedure P to
procedure Q. Since each node represents a single variable, the DEF and

UPEXP sets at a node correspond to a single formal or actual parameter.

ACM Transactions on Programming Languages and Systems,Vol. 16, No. 2, March 1994.

182 . M. J. Harrold and M. L, Soffa

algorithm ComputeChains(G. P)
/“ restricted to definition-use chains for reference parameters”/

input G: an IFG
P: a collection of procedures

declare G,: an IFG subgraph
NODESET set of nodes to process

EDGESET set of edges to process

DUC: army of definition-use chains

begin

/* Step 1: subgraph construction for each procedure “/
for each P, ~ P do /* process eachprocedure’/

for each formal f do create entry?. exi~

for each actual x at P->Q do create call~-’Q, retum~-m
Perform intraproceduml data flow analysis on P,

Using the intraprocedural data flow information

Create reaching edges for P,
Extract DEF[k] and UPEXP[k], k e GP,

endfor

/* Step 2: construction of the IFG */
Create the binding edges among the GP,

Determine may-be-preserved information for each entry node

Create interreaching edges

/“ Step 3: IFG propagation to obtain global information “/
for each node n in G do /* initialization */

INIT,C[n] = UPEXP[n]

OUTu,.[n] = @
endfor

NODESET := {entry, call, return nodes in G } I* phase 1 *I
EDGESET:= {all edges in G }
Propagate(NODESET, EDGESET)
NODESET := {all nodes in G } /“ phase 2 *J
EDGESET := {return binding, reaching, interreaching edges in G }

Propagate(NODESET. EDGESET)

/* Step4: imeqxocedural definition-use chains computation’/
for each Pi = P do

for each interprocedural definition d in PI do

DUC[d] :=@

if d e DEF[czdl~-’O] then DUC [d] :=DUC[d] u OUTu,e [call~-a]

if d e DEF[exh~] then DUC[cl] := DUC[d] u OUTU,C[exi$]

end for
end for

end ComputeChains

Fig. 3. Algorithm for computing interprocedural definition-use chains for reference parameters.

ACM Transactions on Pro~amming Languages and Systems. Vol 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 183

The interaction among the procedures is used to connect the IF’G sub-

graphs. Binding edges in the IFG from call nodes to entry nodes and from exit
nodes to return nodes correspond to the bindings of the formal and. actual

parameters. Interreaching edges from call nodes to return nodes abstract the
control information about the called procedures at call sites. Th k edge

indicates that a definition that reaches the procedure call may be preserved

after the return from the procedure. The interreaching edges allow the calling

context of the called procedures to be preserved during propagation.

4. INTEREPROCEDURAL DEFINITION-USE CHAINS

We now present our algorithm for constructing the IFG and for computing

interprocedural definition-use chains for a program. We model our algorithm

after the iterative data-flow analysis technique used at the intraprocedural

level: (1) Local information about definitions and uses is gathered at points in

the program before and after regions of code that correspond to nodes in the

graph representation of the program, (2) iterative techniques are used to

solve data-flow equations for reaching definitions and reachable uses by

propagating the local information throughout the graph, and (3) data-flow

chains are computed by associating the local information gathered in (1) with

the propagated information determined in (2). At the intraprocedurall level,

the regions of code are basic blocks, the definition and use information is

gathered at points before and after these blocks, and the graph is a control

flow graph. At the inter procedural level, the regions represent parts of the

program that are of interest interprocedurally (e.g., the regions between

procedure calls), the definition and use information is gathered at points

before and after these regions (i.e., the procedure control points), and the

graph is an interprocedural flow graph. We present our algorithm for comput-

ing interprocedural data-flow chains by first detailing the computation of

interprocedural definition-use chains for reference parameters. Our algo-

rithm Compute Chains, which computes the four steps for the interprocedural

definition-use chains for reference parameters, is given in Figure 3. Analo-

gous computation of interprocedural use-definition chains is discussed in

Section 4.5, and a technique that handles global variables is discussed in

Section 4.6.

4.1 Step 1: Construct the IFG Subgraphs

In the first step, we process each procedure P once and construct its IFG

subgraph. Intraprocedural data-flow analysis is performed on P, and local

information is abstracted to the IFG subgraphs. The local information con-

sists of the DEF and UPEXP sets for regions of code in P, along with the

control information about P. The DEF and UPEXP sets are attached to nodes

in the IFG subgraph, and the control information is used to construct the

reaching edges. To compute the DEF and UPEXP sets, basic blocks are added
at the beginning (i.e., the initial block) and at the end (i.e., the final block) of

the control flow graph for P. During the intraprocedural data-flow analysis of

P, reaching information is gathered at these basic blocks.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994.

184 . M J, Harrold and M. L. Soffa

The DEF and UPEXP sets are defined as follows, where x represents an

actual parameter and f represents a formal parameter:

[

definitions of x in P that if n is call: + Q,

reach P + Q

DEF[n] c definitions off in P that if n is exit:,

reach the end of P

+ otherwise;

[

uses off in P reachable from if n is entry;,

the beginning of P

UPEXP[n] = uses of x in P reachable from if n is return; 4 Q,

the return from P + Q

4 otherwise.

To compute the control information for P, dummy definitions of the formal

parameters are added to the initial block, and dummy uses of the formal

parameters are added to the final block. Dummy definitions and uses of

actual parameters are also added to the basic blocks, containing the call sites.

These dummy definitions and uses facilitate the gathering of the reaching

information during the intraprocedural analysis of P. For example, if a

dummy definition of formal parameter f in the initial block reaches the

beginning of the final block, a reaching edge is constructed that connects the

entry node for f with the exit node for f in the IFG subgraph for P.

Consider the program given in Fig-are 4 which differs from the program in

Figure 1 in that the statements are numbered and the points corresponding

to nodes in the IFG are marked. Statements are numbered consecutively

throughout the program, and program points corresponding to nodes in the

graph are indicated. In the IFG subgraphs, circles represent call and return

nodes, doubled circles represent entry and exit nodes, and dashed lines

represent reaching edges. The subgraphs (i), (ii), and (iii) are constructed for

program Main and procedures PI and P2, respectively. Consider subgraph

(ii), representing procedure Pl, where nodes 3, 4, 5, and 6 are created for the

call to P2, the return from P2, the entry to Pl, and the exit from PI,

respectively. Since a definition of an actual parameter associated with formal

parameter Y that reaches the beginning of procedure P1 also reaches the call

to procedure P2 where it is used as a parameter, reaching edge (5,3) is
created. For node 3, inspection of the data flow in PI reveals that the

definition of Y in S6 is the only local definition that reaches the call site, and

thus, DEF[3] is {Y in s6}. For simplicity, we use only {s6} to denote this set

unambiguously.

Next, consider node 6. Since it is assumed that, during construction of the

IFG subgraphs, definitions are not preserved over procedure calls, the only

definition reaching the end of procedure PI that can be determined intrapro-

cedurally is the definition of Y in s8. Note that, since the associated formal

parameter Z may be preserved over a call to procedure P2, the definition in

ACM Transactions on Programmmg Languages and Systems, Vol 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 185

program Main procedurePI(Y) {node5)
S1: read(X); S6 if Y-dOthen Y:= Y +4
s2: PI(X); {nodes9, 10] SZ P2(Y); {nodes3,4)
s3: if X>20 then X=X%, $& ~ Y-d5 then Y:= Y +5;
S4 P2(X); {nodes7, 8) end Pl; {node6)
St write(X);

endMaim,

program Main

9

0x
7

f’

1’ 0x1’
1’

(1
8

x

10

...........................

(i)

procedure PI procedure P2

\
‘, 3

0
Y

(3Y
‘4/’

~
Y

6

1

1

1
1
1

2

(ii) (iii)

procedureP2(Z) {node1)
S9 ifZ> 10then Z:= Z+2;

end P2 (node2)

de DEF UIWXP

1 {s9}
2 {$} @
3 {s6]
44 {:8]
5 (s15)
6 ($] @
7 {s3]
8 {:;]
9 (:)
10 @ (:3)

o calVretum nodes

o
entrylexit no(ies

- ->
reaching edges

Fig. 4. Example program Main and its interprocedural flow graph’s subgra~hs (z), (ii), amd (iii).

The DEF and UPEXP sets attached to nodes in the subgraphs are also ~hown.

s 6 also reaches the end of procedure PI. This information cannot be computed

intraprocedurally and, thus, is not part of the DEF set, but is obtained during

the propagation step. The use of Y in S6 is reachable from the beginning of

the procedure, and thus, S6 is in UPEXP[5]. The use of Y in S8 is reachable

from the return from procedure P2, and thus, Y in S8 is in UPEXP[4].

Finally, the reaching edge (4, 6) indicates that there is a path from the return

from procedure P2 in s 7 to the end of procedure PI, along which Y is not

defined.

4.2 Step 2: Construct the IFG

After all procedures have been processed, the appropriate binding edges

among actual and formal parameters in the procedures are added in the

construction of the IFG. The last step is to add the interreaching edges
by processing the partially constructed IFG using an iterative algorithm

[Callahan 19881 to determine whether, for each entry:, f may be preserved.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994.

186 . M. J. Harrold and M. L. Soffa

program Main procedure PI procedure P2
.

5 1

.

(i) (ii] (lit)

o call/return nodes

o
entry/exit nodes

– -> reaching edges

+ binding edges

~ interreaching edges

propagated data flow information

node INU.. o~use ‘D.f ou’r~ef

1 {S-? ,s5,s8,s9) {s3,s5,s8s9] {s1 ,s3,s6,s8,s9) {s1 ,s3,s6,s8,s9]

2 {s3,s5,s8,s9}
j {s3,s5,s8,s9}
4 {s3,s5,s8,s9}
5 {s3,.s5,s6,s8.s9]
6 {s3,s5,s9}
7 {s5,s9}
8 {s.5}
9 {s3,s5,s6,s8s9}
10 {s3,s5,s9}

{s3,s5,s8,s9}
{s3,s5,s8,s9}

{s3,s5s9}
{s3,s5s8s9]

{s3,s5,s9}
{s5,s9)

{S~ ,s5,s:,s8,s9}

{s1>s3,s6,s8,s9} {s1,s3,s6,s8,s9}
{s1] {s1,s6}

{s1,s6,s9} {S] ,s6s9}
{s1] {s1}

{s1,s6,s9} {s1 ,s6,s8,s9}
{s1.s6,s8,s9} {S1 ,s3,s6,s8.s9}

{s1,s.J,s6,s8,s9} {s1,s3,s6,s8,s9}

o {s1}

{s5,s9} {s1,s6,s8s9} {s1,s6s8,s9}

Fig 5. Interprocedural flow graph forprog-am Main in Figure2

The iterative algorithm to compute the may-be-preserved information uses a

worklist to keep track of the nodes that are to be processed. Initially, the
may-be-preserved value for each of the exit nodes is initialized to true, while

at all other nodes, it is initialized to false. The algorithm propagates the

may-be-preserved information backward throughout the partially constructed

IFG as far as it can reach; the may-be-preserved values for those nodes that

are reachable from the exit nodes are changed. Interreaching edges are

created for each call-return pair whose associated entry node’s may-be-pre-

served value is true. This step completes the construction of the IFG.

To illustrate the results of Step 2, consider Figure 5, where the subgraphs

of Figure 4 are connected. Step 2 connects subgraphs (i), (ii), and (iii) by

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 187

adding the binding edges to connect formal and actual parameters. Edges

(3, 1) and (2,4) indicate the binding of actual parameter Y in procedure P1 to
formal parameter Z in procedure P2. Additional binding edges added during

Step 2 are edges (9,5) and (6, 10), representing the call to procedure P1 in

Main, and edges (7, 1) and (2, 8), representing the call to procedure P2 in

Main. An iterative algorithm [Callahan 1988] is used to compute the may-be-

preserved information for formal parameters Z and Y, represented by nodes 1

and 5, respectively, in the graph. Since the results of this analysis indicate

that information reaching the entry nodes may also reach the exit nodes, the

associated formal parameters may be preserved over calls to the procedures.

Thus, interreaching edges are created at the corresponding call sites: inter-

reaching edge (9, 10) at the call to procedure P1 in Main, interreaching edge

(7, 8) at the call to procedure P2 in Main, and interreaching edge (3,4) at the

call to procedure P2 in procedure PI. The addition of t,he binding and

interreaching edges completes the construction of the IFG.

4.3 Step 3: Propagate the Local Information to Obtain Interprocedural Information

After the first two steps are completed, the IFG, with local information

attached to its nodes, is available. The next step is to propagate the local

information throughout the IFG to obtain interprocedural reachable use sets

for each node in the graph. Interprocedural reachable use sets represent the

upward exposed uses of nonlocal variables located in other procedures that

can be reached from the beginning and end of each region of code represented

by nodes in the graph. These interprocedural reachable uses are computed by

propagating the UPEXP[n] sets backward throughout the graph as far as
they can be reached, while taking into account the calling context of the

called procedures.

INU,Q and OUTU,, for nodes in the IFG are computed in two phases to

preserve the calling context of called procedures. Consider the propagation of

the UPEXP for node 10 in Figure 5, where UPEXP[10] consists of the use of

X in s3. If UPEXP[10] is propagated backward in the IFG, it would reach,

among others, nodes 6, 4, 2, 1, and 7, meaning that s 3 is reachable from the

call site to P2 in s4. However, there is no control path through the program

for which statement S3 can be reached from this call site. The problem occurs

when this use is propagated over the call binding edge (7, 1), since this edge

does not match the return context. However, the use must be propagi~ted to

nodes 3, 5, and 9, since this path does match the return context. To solve this

problem, the propagation is performed in two phases. In the first phase,

information propagating to the exit node is not computed, but all other

information is allowed to flow across the call binding edges. In the second

phase, information reaching the exit node is further propagated using the

interreaching edge, but no information is propagated over the call b,inding

edges. This two-phase propagation preserves the calling context of called

procedures and ensures that only possible control paths in the program are

considered. Therefore, we first process only the entry, call, and return nodes,
and propagate the uses that can be reached in called procedures over the call

binding edges, the reaching edges, and the interreaching edges. Next, we

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994.

188 . M. J. Harrold and M. L. Soffa

propagate the uses that can be reached in calling procedures over the return

binding edges, the reaching edges, and the interreaching edges. Propagation

must be restricted to these edges to prevent traversal of paths through the

IFG that do not represent control paths through the program. Since we saw

in the above example that propagation over the call binding edges is a

problem, the interreaching edges facilitate the propagation of the uses to the

call and entry nodes without traversing the call binding edges.

The interprocedural reachable use problem is formulated as a simple

distributive data-flow problem [Kildall 1973] whose lattice of solution is “can

be reached.” A use can be reached from a point in the program if there is a

path in the IFG, over return binding, reaching, and interreaching edges, from

the node representing the point to the node where UPEXP[n] contains the

use. The greatest fixed point of the following data-flow equations captures

this fact. In phase one of the propagation, successors of a node n consist of the

immediate successors of n that are entry, call, or return nodes. Thus, only the

entry, call, and return nodes are processed in phase one. In phase two,

successors of a node n consist of the immediate successors of n over all edges

except the call binding edges. Thus, processing includes all nodes, but no

information is propagated over the call binding edges.
The following sets of data-flow equations are used to compute the INuJnl

and OUTUJn] sets:

OUTu,.[n] = OUTu~,[n] U ~INu,.[s], successors s of n,

INu,~[n] = OUTU,, [n] U UPEXP[n].

To incorporate the results of phase one’s computation during phase two, the

OUTuJn] computed in phase one is required in computing the new

OUTUJn]. The equations are solved using procedure Propagate given in

Figure 6. The parameters to Propagate, N and E, indicate which nodes and

edges, respectively, are considered in the propagation.

Consider again the example in Figure 5. During the third step in the

algorithm, the UPEXP sets are propagated throughout the IFG to get the

interprocedural reachable uses. We use INU,, and OUTU~~ to denote the

interprocedural uses that are reachable before and after the control points,

respectively, and we attach these sets to the nodes in the IFG. Consider node

3 in procedure PI, which represents the call to procedure P2. The uses of

variables that are bound to Y and can be reached from this point in the

program consist of the uses of X in S3 and s5, the use of Y in s 8, and the uses
of Z in s9. The use in S8 is reached over the interreaching edge since Y is

preserved over the call to procedure Z, the uses in S9 are reached over the

call to procedure P2, and the uses in s 3 and S5 are reached over returns to

Main. Likewise, our algorithm propagates the DEF sets throughout the IFG

to get the interprocedural reaching definitions that are attached to nodes in

the IFG. We use IN ~,f and OUT ~,~ to denote these interprocedural reaching

definitions. The table included in Figure 5 gives the INU,, and OUTU,, sets,

along with the IN~, ~ and the OUT Def sets, that are computed during the
propagation step.

ACM Transactions on Pro~ammmg Languages and Systems, Vol. 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains ,, 189

procedurePropagate(N,E)
input N setof nodetypesto beprocessed

E: setof edgetypesto beprocessed
begin

wbiie dataflow changesdo
for eachnoden of typeN do

for eaeh nodes that is a successor over E of n do
OUTu,.[n] = OUTu,e[n]u lNuSe[s]
INu,o[n]= OUTu,Jn] u UPEXP[n]

endfor
eudfor

endwbile
end Propagate

Fig. 6. Procedure for propagating data-flow information.

Procedure Propagate iterates over the subset of the nodes and edges in the

IFG that are specified in the call until the data-flow sets stabilize. Cycles can

occur in an IFG within a subgraph or among subgraphs. In particular, cycles

occur (1) within individual subgraphs due to loops in a procedure, (2) in the

interconnections of subgraphs because the return from one procedure reaches

the call to another, and (3) in programs with recursive procedures. Cycles of

types (1) and (3) in an IFG also produce cycles in the subset of the IF(2 nodes

and edges processed by procedure Propagate and, thus, require iteration.

Cycles of type (2) require no iteration since the subset of IFG nodes and edges

processed by procedure Propagate contains no cycles.
A cycle of type (1) occurs within a subgraph for a procedure if a call site is

contained in a loop in the procedure and if there is also an interreachi.ng edge

connecting the call and return nodes. This type of cycle consists of call and

return nodes, and reaching and interreaching edges, contained entirely within

the subgraph. A subset of nodes for the IFG in either phase one or phase two

of ComputeChains can contain a cycle. Thus, iteration over the nodes in the

IFG is required by procedure Propagate to compute the data sets. An

example of this type of cycle is given in Figure 7, where a program segment

and its associated IFG nodes are shown. In the example, the for loop contains

calls to both procedures A and B, where variable X is passed as an actual

parameter. Nodes 1 and 2 represent the call to and return from procedure A,

respectively, while nodes 3 and 4 represent the call to and return from

procedure B, respectively. To demonstrate this type of cycle, we assume that

the parameters associated with X in procedures A and B maybe preserved by
calls to the procedures, which accounts for the interreaching edges (1, 2) and

(3, 4) connecting the call and return nodes. Reaching edge (2,3) indicates that

any definitions of variable X that reach the return from lprocedure A also

reach the call to procedure B. Likewise, reaching edge (4, 1) indicates that

any definition of variable X reaching the return from procedure B also

reaches the call to procedure A.

Cycles of type (2) can occur in the interconnections of subgraphs when the
return from one procedure reaches the call to another but is not contained in

a loop in the procedure. This type of IFG results in a reaching edge from the

ACM Transactions on Programming Languagesand Systems,Vol. 16,No, 2, March 1994

190 . M. J. Harrold and M. L Soffa

xx1 3

/
/’ /’

Fig. 7. Example of a cycle of type (1), forl:=l tondo ‘ /

(’A(X); , “
B(X); !, 2 ‘ 4

endfor
L––––--. J

return node to the call node. Although there is a cycle in the IFG, the subset

of IFG nodes and edges processed by procedure Propagate in either phase one

or phase two is cycle free. To illustrate this type of cycle, consider the

program and its IFG given in Figure 5. The path in the IFG through nodes

7, 1,2,4,6, 10, 7 is an example of a cycle of this type. However, phase one does

not include nodes 2 or 6 or edges (2, 4), (4, 6) or (6, 10), and consequently, no

cycle is processed by procedure Propagate. Since edge (7, 1) is not included in

the processing in phase two, no cycle exists among the subset of nodes and

edges, and thus, no iteration is required for Propagate.

The presence of recursive procedures may cause cycles of type (3). To

illustrate, consider the program and its IFG given in Figure 8, which differs

from the program in Figure 1 in that procedure P2 calls procedure Pl,

causing procedures P1 and P2 to be mutually recursive. Note the additional

nodes representing the call to and return from procedure PI (i.e., 11 and 12),

the binding edges (i.e., (11, 5) and (6, 12)), the reaching edges (i.e., (1, 11) and

(12, 2)), and the interreaching edge (i.e., (11, 12)). The path through nodes
5,3, 1, 11,5 is a cycle in the IFG that is processed by procedure Propagate

during phase one of ComputeChains. Thus, iteration is required in the

procedure Propagate to compute the data sets.

4.4 Step 4: Compute the Definition-Use Chains

The reachable use information that is computed for the IFG is used with local

DEF sets to compute the interprocedural definition-use chains. Interprocedu-

ral definition-use chains are computed by considering DEF sets for call and

exit nodes associated with each procedure. If d is a definition in DEF[n],

where n is either a call or return node, then the interprocedural definition-use

chain of d consists of the elements in OUTU~,[n]. If d is in DEF[n] for more

than one n associated with the procedure, then the interprocedural defini-

tion-use chain is the union of the OUTu~, sets for all n where DEF[n]

contains d.
Again, refer to our running example whose completed IFG is shown in

Figure 5. We compute the definition-use chains of each interprocedural

definition in the program. For example, the interprocedural definition-use

chain of the definition of Y in S6 is the set of uses that can be reached from

node 3 or {s3, s5, s8, s9}.

4.5 Computation of Use-Definition Chains

An analogous technique for propagation allows our algorithm to be modified

and then used to compute the interprocedural use-definition chains. The

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains , 191

program Mam procedure PI(Y) {node 5} procedure P2(Z) {node 1)
,!/ read(,X): S6 if Y<]() then Y := Y +4; ,$9 if Z <10 then Pi(Z):

.s2 Pi(x): [I]odcs9, 10} .f7 P2(Y): [nndes 3, 4} (nodes 11, 12}
s.{ if X>20 then X:=X+6, J8 if Y<25 then Y := Y + 5; s](I if Z>lOthen Z:= Z+2;
,A4 P?(X); {nodes 7, X} end PI; {node (i} end P2; {node 2)
s.$ write(X):

end Mm:

program Mam procedure P1 procedure P2

9

7

f
1’

1’

;

{’

1’

10

6

0
0

—+-

calllretum nodes

entrylexit nodes

reachin,gedges

binding edges

interreaching edges

(1) (ii) (iii)

Fig. 8. Recursive program and its interprocedural flow graph.

computation of interprocedural use-definition chains requires changes to

Steps 3 and 4 of the ComputeChains algorithm. Additionally, procedure

Propagate is also changed to reflect the different data-flow informaticm being

computed. Steps 3 and 4 for computing the use-definition chains are slhown in

Figure 9. Here, interprocedural reaching definitions are obtained by propa-

gating the local definition information (i.e., the DEF sets) throughout the

program using the IFG. The propagation of the definitions is in the forward

direction throughout the IFG, taking into account the calling context of called

procedures. Thus, propagation Step 3 in algorithm ComputeChains is altered

to reflect the node sets required to preserve the calling context of called

procedures, while procedure Propagate is altered to reflect the forward

direction of the data flow. Like the INu~~ and OUTu~, sets used to compute

the reachable use information, IN~Jnl and OUTD.f[n] refer to the reaching

definition sets associated with node n. In order to preserve the calling context
when the data-flow equations represent a backward problem, the exit node in

the first phase and the call binding edge in the second phase are not

considered. Similarly, to preserve the calling context, when the data-flow

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994.

192 . M. J. Harrold and M. L. Soffa

declart UDC: array of use-definition chains

/’ Step 3: IFG propagation to obtain global information’/
for each node n in G do /* initialization*/

Ndnl = @
OUT~.~ [n] = DEF[n]

end for
NODESET := {call, return, exit nodes in G] 1“ phase 1 “1
EDGESET := {all edges in G}
Propagate(NODESET, EDGESET)

NODESET := {all nodes in G] 1’ phase 2‘/
EDGESET:= {call binding, reaching, interreaching edges in G }

Propagate(NODESET, EDGESET)

/* Step 4: interprmedural definition-use chains computation”/
for each P, = P do

for each interprccedural use u in P, do

UDC[U] :=@

if u c UPEXP[retum~–@] then UDC [u] :=UDC[U] u IN~c~[return~->Q]

if u e UPEXP[entr~] then UDC[d] := UDC[d] u lND,~[entry~]
endfor

endfor

Fig. 9. Partial interprocedural use-definition chains algorlthm.

equations represent a forward problem, the entry node in the first phase and

the return binding edge in the second phase are not considered. Thus, in

phase one of the propagation, call, return, and exit nodes and all edges are

considered, while in phase two, all nodes are considered, but edges are

restricted to call binding, reaching, and interreaching. The data-flow equa-

tions for reaching definitions are

IN~~~[n] = IN~,~[n] U ,OUTJp], where p is a predecessor of n,

OUT~,~[n] = IN~,~[n] U DEF[n].

Procedure Propagate is changed to reflect the change in data-flow equations.

After the reaching definitions are computed, analogous to Step 4 of the

algorithm, the use-definition chains are found by considering the UPEXP at

each node in the IFG and the definitions that reach that node.

Consider the effects of Step 4 on the example in Figure 4 where we
compute interprocedural definition-use chains. For example, the interproce-

dural use-definition chain of the use of Y in S6 is the set of definitions that

reach node 5 or {s1}.

4.6 Handling Global Variables

Since the names of global variables do not change within a program, only a

single node is required at each entry, exit, call, and return point of a

procedure to represent information about the global variables in that proce-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 193

procedure Propagate’ (N, E)

input N set of node types to be processed

E set of edge types to be processed

begin
while data flow changes do

for each node n of type N do

for each node p that is a predecessor over E?of n do

~rj.f[n] = ~Def [n] up O~D.f[P]

OUTDef[n] = lN~.f[n] U DEF[nl – ~L[nl.
endfor

endfor

endwhile

end Propagate’

Fig. 10. Procedure for propagating global reaching definition information.

dure [Callahan 1988]. DEF and UPEXP sets are computed for global vari-

ables and attached to the appropriate global nodes. We create reaching and

interreaching edges in the usual way to abstract possible control information

in the program that is related to the global variables. A bit vector is attached

to each of these edges indicating which global variables maybe preserved by

execution through the associated regions of code in the program. Unlike the

nodes representing reference parameters in the IFG, global nodes represent

more than one variable. Thus, a KILL set, indicating which global variables

are not preserved on execution through the region represented by the node, is

required for the propagation phase in much the same way that a KILIL set is
attached to each basic block in the intraprocedural flow graph. For reaching

definitions, IND,~ and OUTD,~ sets are computed at each node in the IFG.

These sets are also computed in two phases to preserve the calling context of

called procedures, as is done for reaching definitions of parameters. In phase

one of the propagation, predecessors must be call, return, or exit nodes, and

all edges are considered. In phase two of the propagation, all nocles are

considered, but only call binding, reaching, and interreaching edges are

considered. The data-flow equations for reaching definitions of global vari-

ables are

IND,~[n] = IND,~[n] LJ ~OUTDef[P], where p is a predecessor clf n,

OUTD.f[n] = IND,f[n] u DEF[n] – KILL[n].

Procedure Propagate’, given in Figure 10, reflects the required changes in

the data-flow equations.

4.7 Complexity Analysis

In this section we analyze both the space complexity of the IFG and the time
complexity of the ComputeChains algorithm. The size of the IFG can be

expressed in terms of the parameters given in the Table I.

ACM Transactions on Programming Languages and Systems,Vol. 16, No. 2, March 1994.

194 . M. J. Harrold and M. L, Soffa

Table I Parameters Expressing the Size of the Interprocedural Flow Graph

c Number of call sites per procedure

G Number of global variables in the program

P Number of procedures in the program

F Number of formal parameters per procedure

A Number of actual parameters per call site

Ac Total number of actual parameters per procedure

Our analysis shows that the size of an IFG is polynomial in the size of the

program when we consider both formal parameters and global variables. We

discuss our analysis in two parts. First we describe our analysis per proce-

dure for an IFG subgraph containing only formal parameters. Then, we

present a similar analysis for global variables.

For each procedure, the IFG subgraph restricted to formal parameters

contains 2F + 2AC nodes, an entry \exit pair for each formal parameter, and

a call\ return pair for each actual parameter at each call site. Since there are

two binding edges for each actual parameter at each call site, and a maxi-

mum of one interreaching edge for each actual parameter at each call site,

the number of binding edges is 2AC + AC. At worst, there are reaching edges

from entry nodes to exit nodes for each formal parameter, edges from entry

node to call node for each actual parameter at the call site, an edge from

return to exit for each formal parameter and edges from each call site to each

other call site for each actual parameter at the destination call sites. Thus,

the number of reaching edges is given by F + AC + FC + AC(C – 1). The

total number of edges is the sum of the binding edges and the reaching edges,

which simplifies to AC(C + 3) + F(C + 1). An IFG subgraph is the sum of its

nodes and edges, or AC(C) + C(5A + F) + 3F, which is O(AC* C), since AC is

Ac, the total number of actual parameters per procedure, and F is a small

constant per procedure [Cooper and Kennedy 1988].

Although the size of an IFG subgraph with respect to formal parameters is

quadratic in the size of the procedure, we do not expect this to be the case in

practice. Our experimental programs average 6.7 formal parameters per

procedure and 4.1 actual parameters per call site. In the worst case, where

each statement is a call site, an IFG subgraph would have 602 nodes and

44,527 edges. However, in practice, call sites are much less frequent. In our

experimental sample, call sites constitute only 3.9 percent of the statements.

Thus, we expect only 36 nodes and, at worst, 108 edges. Moreover, the

worst-case edge analysis assumes that edges reach from site to site in all
cases. In our experimental sample, each procedure had on average only 28.8

edges.

Next, consider the nodes and edges required in an IFG subgraph to

represent information on global variables for a procedure. Each procedure

has one entry/exit pair, and each call site has one caH/return pair. Thus, the
number of nodes for globals in an IFG subgraph is 2 + 2C. At each call site,

there is a call binding and a return binding edge, and there is a single

interreaching edge. There are also reaching edges to each call site from entry

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 2, March 1994

Computation of Interprocedural Definition-Use Chains . 195

and to exit nodes, from entry to exit, and at most one edge from every call site

to every other call site. Adding all edges and simplif~ng give C 2 + 4C + 1 or

O(C 2). Thus, the size of the IFG for globals is also quadratic in the size of the

procedure.

The time complexity of our ComputeChains algorithm is determined by

considering each of the four steps. In the first step, the creation of the graph

requires one visit to each of n nodes in the IFG. The last step in the algorithm

is performed by considering the definitions in each DEF set and combining

the appropriate OUTu~. sets to get the interprocedural definition-use chains.

This last step also requires one visit to each node during the computation. In

Step 2, the preserved information that is required for the interreaching edges

is computed. For programs with no recursion, this computation is linear in

the number of nodes in the IFG [Callahan 1988]. The propagation of the local

information throughout the graph is accomplished in Step 3. As with many

data-flow analysis problems, the propagation in Step 3 is 0(n2) in the worst

case. Although the ComputeChains algorithm is O(n2), it is a monotone,

distributive and rapid data-flow analysis framework [Kam and Unman, 1976].

Thus, the algorithm requires d + 3 visits to each of the n nodes, where d

indicates the loop connectedness for a depth-first ordering of the nodes in the

graph. As each node is visited, set operations are performed on sets repre-

senting information about the interprocedural definitions in the program.

Although the size of these sets is potentially as large as the number of

definitions in the entire program, we restrict members of the set to those

statements that actually define a value that is used in another procedure in

the program. In our experimental sample, we found that the maximum size of

the sets required was 149, while the average was much lower.

5. DEFINITION-USE CHAINS IN THE PRESENCE OF ALIASING

In Section 4 we have described our algorithms for finding interprocedural

data-flow chains for programs that are alias-free. In this section we present

two approaches for handling programs with aliasing due to reference parame-

ters and global variables. Our first approach uses a technique by Horwitz,

Reps, and Binkley [1990] to unalias a program, and then applies the Com-

puteChains algorithm to the unaliased version of the program. Their tech-

nique to unalias a program uses a program’s activation tree to create a new

copy of the procedure for each different alias configuration.. Unaliasing the

program in this way is potentially exponential in the number of parameters

passed to a procedure. However, data-flow chains computed with thk una-

liased version of the program are precise since the control flow of the

procedure is considered with each different alias configuration.

Program Main in Figure 11 illustrates this technique. Assume that Xl and

X2 are local to Main. At the first call to procedure P in s2, both Xl and X2

are passed as actual parameters, and no alias is introduced into P. However,

in the second call to procedure P in s4, Xl is passed in both actual parameter
positions, and thus, an alias is introduced at this call site. To unalias the

program, another version of procedure P (procedure P) is created that

ACM Transactions on Programming Languages and Systems,Vol. 16, No. 2, March 1994.

196 . M. J. Harrold and M. L. Soffa

program Ma,n procedure I)(Y,Z) {nodes7, 9}

SI read(X1. X2), sfJ if Y<l Othm Y =Y +4,

S2 P(X1, X2), {nodes 1,2,3,4} S7 else Z =Z +6,

S3 write(X 1, X21 end F>, {nodes 8, 10]

S4 P’(xl), (* P(XI, XI),*)

s5. write(Xl, X2).

end Mare,

program Main procedure P procedure P’

. ,...,,7,7. .,.,,,,.,.., .,.,,.,.,.,., .,.:
7

(

c

., ..,.. .,.,:.,..

procedure P’(YZ) [node 11}

M if YZ<1O then YZ = YZ. +4.

S9 else YZ ~ YZ + 6,

end P’, [node 12]

O enky/exitrrodes

~ ca*l-rmanmdcs

––> reaching edges

+ binding edges

= interreaching edges

(i) (ii) (iii)

Fig, 11. Example program and its interprocedural flow graph’s subgraphs illustrating computa-

tion of data-flow chains in an alias environment. Since the program is unaliased with this
technique, the data-flow chains are precise.

contains only one formal parameter, which we call XY. Then, all occurrences

of formal parameters X and Y are replaced with XY. In the original version of

procedure P, both formal parameters Y and Z are preserved on a path from

the entry of procedure P to its e~it. Thus, definitions of the corresponding

actual parameters Xl and X2 can reach over the call to P. However, on the

call to procedure P, there is no path on which formal parameter YZ is
preserved. With this additional colpy of procedure P, we get precise definition

and use information at the expense of the additional cost of the unaliased

version of the program.

Since unaliasing a program may be prohibitive due to the increase in code

size, we provide an alternative solution that provides safe but somewhat

imprecise data-flow chains in the presence of aliasing. We incorporate alias

information into the construction of the IFG by altering Steps 1 and 2 of

ACM Transactions on Programming Langaages and Systems, Vol. 16, No, 2, March 1994.

Computation of Interprocedural Definition-Use Chains . 197

ComputeChains. The last two phases of ComputeChains remain unchanged

since they are applied to the alias version of the IFG. We assume that alias

information has been computed for the program using an algorithm such as

the one by Cooper and Kermedy [1988] to compute alias pairs for global

variables and reference parameters. Then, when we construct the IFG sub-

graph for a procedure, we combine corresponding call nodes for actual param-

eters that are aliases of each other at that call site. We also combline the

corresponding return nodes for the aliased variables. By combining call and

return nodes where aliasing occurs, we introduce some imprecision into our

analysis and may get some spurious data-flow pairs. However, our technique

results in safe information since no valid data-flow pairs are missed.

To illustrate, consider the program in Figure 12, which is the same as the

program in Figure 11 except that, instead of unaliasing the program, we have

altered the IFG to account for the known alias pairs. At call site P(XI., Xl) in

s4, there is a call and return node for each actual parameter, and these

parameters are bound to formal parameters Y and Z in procedure P. How-

ever, since the call nodes represent a call site where an alias is introduced,

the nodes are combined to get a single node with two edges: one edge from the

combined node to each of the corresponding formal parameter nodea. Since

we already have the reaching edges computed in the alias-free environment,

there will be spurious definitions that reach the return from procedure P

represented by return node. In cases where the reaching information changes

as a result of aliased variables, imprecision in the form of extra data-flow

information results. Consider the definition of Xl in s 1. During propagation,

this definition reaches the combined return node 6–8, which indicates that

there is a definition-use pair from Xl in s 1 to the use of Xl in s5. However,

we can see by inspecting the program that the value of Xl is killed on either

path through procedure P when Y and Z are aliased and, thus, can never

reach the use in s5.

In an alias-free environment, global variables and formal parameters are

handled separately. However, if global variables are aliased to formal param-

eters, the information must be combined. Any global variable that is passed

as a parameter is treated as a parameter rather than a global. Thus, we

create entry and exit nodes for that global for each procedure entry, and we

create call and return nodes for that global at each call site. We also remove

information about this global from the global node. Unlike other techniques

that create nodes at each entry, exit, call, and return for each global variable

[Horwitz et al. 1990], we create these additional nodes only when the global is

aliased to a formal parameter.

6. EXPERIMENTAL RESULTS

We have implemented a prototype that incorporates our techniques for

computing interprocedural definition-use chains. Our proto~ype is written in
C and was developed using a Sun-4 Workstation. We augmented the Free

Software Foundation,” Inc., GNU C compiler to gather intraprocedural data-

flow information to enable both construction of the IFG and interprocedural

ACM TransactIons on Programming Languages and Systems, Vol 16, No. 2, March 1994

198 . M, J. Harrold and M. L. Soffa

program Mam procedure P(Y, Z) [nodes 9, 11]
s1: read(X1,X2), $6: if Y<1OthenY :=Y +4:
s2: p(X1. X2); {nodes 1,2, 3,4} ST else Z:= Z + 6:
s3: write(Xl, X2), end P; {nodes lo, 12}

s4: Mxl. Xl); (nodes 5,6,7,8}

s5: write(Xl, X2):
. . .ena mn,

:.

(

program Mam procedure P

9

1

(’
/’

,’
/(c(“

!
1 I
I I
I
I 1
1 1
1
1 1
1 !
I 1

1
1

I 1
1

I 1
I
I
I

1 1
1

1 1
, 1
1 I

1
I

1 I
1

*
10..,.,.,,.,

0
0
–>
+

entry/exit nodes

cat-return nodes

reaching edges

bindasg edges

intesreachmg edges

(i) (u)

Fig. 12. Example program and its interprocedural flow graphs subgraph, illustrating handling
of an environment with aliasing. This technique produces safe data-flow chains.

analysis. Our prototype inputs the intraprocedural information for a group of

procedures, constructs an IFG, and performs interprocedural analysis. The
input to the prototype is a group of procedures that may not represent an

entire program. Thus, we handle incomplete programs and show only the

relationship among interacting procedures. Our ability to handle incomplete

programs facilitates interprocedural data-flow testing during the integration

phase of software development. We consider the effects of formal reference

parameters and global variables on interprocedural information.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 199

Table II. Experimental Sample Set of FORTRAN Programs

Number Number
of of

Program statements procedures Description

Mach_ params
Basic
561
Whetstone
Mem

Dlock

500

547

Slice

604
Inverse2
618

576
Dag

Mpower

534
522

525
684

686
606
683

527

624

623
541

524

586

88
134
197

201

226

366

403

503

561

593
603
607

696

753

754

853
923

1,401
1,672

1,697
1,781
2,115

2,524

2,526

2,580

3,922

4,431

6,876

6

7

16

7

6

8

3

4

7

11
14
12
8
4

7

7
6

18
24

25
25
28
33

37

41
29

129
99

Obtains machine-independent parameters
Interpreter for Basic-style math expressions
Heap procedures for use in table maintenance

Whetstone benchmark program
Simulates a variable partitioned
memory-management scheme

Implements Dijkstra’s Banker’s algorithm for

deadlock detection

Computes the minimization of unconstrained
multivariate functions

Routines for discrete cubic spline
interpolationlsmoothing
Computes the eigenvalues on an interval in a

tridiagonal matrix
Routines for calculation of an extremal polynomial
Solves a general N X N system of linear equations
Routines for estimating sparse Jacobian matrices

Computes the solution for ax = b
Computes the diagonalization of a complex
Hessenberg matrix

Computes several eigenpairs using the
power method
Stiff differential equations integrator
Congruence techniques to solve integer systems of

linear equations
Adaptive smooth curve fitting
C 1, C2 interpolation on triangles with quintics

and nonic
Updating QR
Interactive tree package
Exponential integral of complex argument

Implementation of the generalized
marching algorithm
Triangulation\interpretation of arbitrarily

distributed points in the plane
Interpolation on the face of a sphere
Computes the solution of separable elliptic partial

differential equations
Multiprecision arithmetic package

Package to solve large sparse linear
svstems /adaptive accelerated interactive methods

We experimented with a set of FORTRAN programs of varying sizes to

determine the sizes of both the IFGs and the propagated sets, relative to the

worst-case size complexity of the algorithms. Table II lists the FORTRAN

programs, the number of statements and procedures in each program, and a
brief description of each program; numbered programs were taken from the

Collected Algorithms of ACM Transactions on Mathematical Soflware.

ACM TransactIons on Programming Languages and Systems,Vol. 16, No. 2, March 1994.

200 . M. J. Harrold and M. L. Soffa

Table III. Sizes of the Interprocedural Flow Graphs (IFGs) for the Experimental Sample

Number Number Number

Number Number of of of

of of global formal actual Size of IFG/

Program statements procedures variables parameters parameters IFG statements

MacLparams
Basic
561
Whetstone
Mem
Dlock

500
547
Slice

604
Inverse2

618
576
Dag
Mpower

534
522

525
684
686
606

683
527
624
623

541
524
586

88
134
197
201
226
366
403
503
561
593
603
607
696
753
7’64
853
923

1,401
1,672
1,697
1,781
2,115
2,524
2>526
2,580
3,922
4,431
6,876

6
7

16

7
6
8
3
4
7

11
14

12
8
4

7
7
6

18

24
40
25

28
33
37
41

29
129

99

14
0
9
4

4
5
4
4

7
11

15

1
4

11
14

3
2

7
5
6
0

14

9
0
1

13
12
13

18
15
67
11
2

20
19
20

55
84

64

89
54
17

46
42

51

872
147
231
200
152

305
272
306

362
314
632

20
54

100

64
10
42
14
12

91
112
178

92
217

25

148
47
98

84
329
73’7

1,132

380

503
574
590

393
2,341
2,285

237
228
954

686
153
428
132
138

682
1,179

1,586

785
1,463

279
1,021

412
782

808
2,269
5>347
5,802

3,076

3,908
3,297
4>417

3,268
17,587
16,292

2.7
1.7
4.8

3,4

0.7
1.2
0.3
0.3

1,2
20
2.6

1.3
2.1
0.4
1.3

0.5
0.8
0.6
1.4

3.1
3.3
1,5

1.5
1.3
1.7

0,8

39
24

We instrumented each program to ascertain the actual number of nodes

and edges in the IFG for that procedure for both formal parameters and

global variables. This total gives the actual size of the IFG and these results

are given in Table III. For each program we list the number of statements,

procedures, global variables, formal and actual parameters, size of the IFG,

and ratio of the IFG to the number of statements. The size of the IFG shown
here includes nodes and edges for both global variables and formal parame-

ters. The ratios of the IFG to the number of statements range from less than

1 to almost 5 and are independent of the program size. For example, the

biggest ratio is for program 561, having 197 statements; whereas one of the

smallest ratios is for program 541, having 3922 statements. Another impor-

tant implication of our experimentation is that the relative sizes of the IFG

did not increase with program size. Thus, in practice, we expect the size of

the IFG to be proportional to the size of the pro~ram for both global variables

and formal parameters.

ACM Transactions on Programming Languages and Systems,Vol. 16, h“. 2, March 1994

Computation of Interprocedural Definition-Use Chains . 201

In addition to experimentation to find the expected size of an IFG, we also

wanted to determine the space requirements for the data-flow sets. We

instrumented the program to count interprocedural reaching definitions at

call sites and procedure exits. In the worst case, these sets can be as large as

the number of statements in the program, which may be prohibitive. How-

ever, for our experimental sample, we found that the maximum number of

interprocedural definitions that reached a call or exit site was 20 for program

604. This maximum is relatively small compared to the number of statements

in the program. We also found that the average number of interprocedural

definitions that reach a site was 1.95. Thus, we expect these sets to be small

in practice.

7. RELATED WORK

A number of data-flow analysis techniques have been developed that compute

interprocedural dependency information. None of these techniques efficiently

computes adequate information to solve the reaching definitions and reach-

able uses problems that we address. Some existing flow-insensitivel data-flow

analysis techniques [Banning 1979; Barth 1978; Cooper and Kenned:y 1988;

Lomet 1977] provide summary data-flow information for determining the

local effects of called procedures at call sites. These techniques do not provide

information about the locations of interprocedural definitions and uses in

other procedures in the program. A flow-sensitive technique that processes

nonrecursive procedures in reverse invocation order [Allen et al. 1987] incor-

porates the abstracted information about called procedures at call sites to

obtain the local reaching information. The technique requires that a proce-

dure be processed only after those that it calls have been processed, which

imposes an ordering on the procedure processing. This order restriction

results in a penalty when changes are made in a procedure, for it causes the

reanalysis of those procedures directly or indirectly dependent on the changed

procedure. Also, the technique does not compute the locations of the defini-

tion-use chains across procedure boundaries and cannot handle recursive

procedures with the ordering restriction.

The program summary graph developed by Callahan [1988] provides flow-

sensitive interprocedural data-flow information that solves the interprocedu-

ral KILL, MOD, and USE problems. For example, the KILL of each formal

parameter in a procedure is a Boolean that indicates whether the variable is

redefined along all paths by a call to the procedure. An iterative technique

uses the paths through the program summary graph to compute the ICILL for

the formal parameters in each procedure. Thus, for the program in Example

1, this technique will determine that neither variable Y in P1 nor variable Z

in P2 is KILLed by calls to those procedures. However, this technique cannot

be used to compute the interprocedural definition-use pairs, since the pro-

gram summary graph does not contain information about the locations of the

1InterProcedural data-flow information is flow-sensitive if the control flow of called procedures is
used in the computation.

ACM Transactions on Programming Languagesand Systems,Vol. 16,No. 2, March 1994.

202 . M. J, Harrold and M. L. Soffa

definitions and uses in the program. Furthermore, the structure of the graph

does not allow for the preservation of the calling context of called procedures.

A third related technique [Horwitz et al. 1990] provides interprocedural

slicing of nonrecursive programs using the system dependence graph, which

combines the dependence graphs for each procedure to provide a representa-

tion of the program. It also handles the problem of preserving the calling

context of called procedures in order to provide more precise slices. The

algorithm consists of two phases, each of which visits a subset of the nodes in

the entire graph. It is possible to find the required definition-use chains by

computing the forward slice for each interprocedural definition in the pro-

gram and then extracting the reachable uses from the information in the

slice. Clearly, this method requires that the slicing algorithm be run for each

interprocedural definition in the program. Our algorithm also consists of two

phases, each of which visits a subset of the nodes in the IFG. However, all of

the required data dependency information for procedures is computed by one

application of our algorithm, in contrast to the slicing algorithm, which

requires one repetition of the algorithm for each interprocedural definition in

the program.

Finally, use of the super graph [Myers 1981] or in-line substitution to

compute the interprocedural definition-use and use-definition chains is pro-

hibitive for large programs. In addition, separate compilation cannot be

supported since either the code or the flow graph of each procedure must be

available during the analysis. A further restriction of in-line substitution is

that recursive procedures cannot be analyzed.

8. CONCLUSIONS

In this paper we have presented techniques for computing interprocedural

definition-use chains. A graph structure that abstracts data-flow information

for each procedure has been utilized for the efficient propagation of the

definition-use information. A data-flow analysis algorithm has been devel-

oped to compute reaching definitions and reachable uses, and constructed in

two phases to preserve the calling context of called procedures. The data-flow

analysis is performed on a procedure’s code without requiring information

from other procedures, thus supporting separate compilation. The algorithm

also handles recursive procedures and alias pairs.

The technique was implemented in C on a Sun-4 workstation, and experi-

ments were conducted to determine the practicality of the technique. Results
from these experiments indicate that the ratio of the size of the IFG,

measured by the total number of nodes and edges, to the number of state-

ments in a program ranged from less than 1 to 5. The relative size of the IFG

did not increase with program size. Another important result indicated that

the sizes of the data-flow sets, which could be as large as the number of

statements in a program, had 20 elements as the maximum. Experiments

also indicate that the average number of interprocedural definitions that

reach a site was approximately 2. From these results, the interprocedural

technique developed in this paper is a viable technique for integration into

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 2, March 1994

Computation of Interprocedural Definition-Use Chains . 203

software tools. We are currently incorporating this facility in a testing tool

that will perform data-flow testing at both the intraprocedural and inlterprO-

cedural levels.

ACKNOWLEDGMENTS

We wish to thank Priyadarshan Kolte, who augmented the gcc compiler to

gather intraprocedural information; G. Regan Varenhorst, who implemented

both the IFG and related algorithms; and Gregg Rothermell, who performed

the experiments.

REFERENCES

AHo, A. V., SETHI, R., AND ULLW, J. D. 1986. Compilers, Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass.
ALLEN, F. E., BURRE, M.j CHARLES, P., CYTRON, R., AND FERRANTE, J. 1987. An overview of the

PTFL4N analysis system for multiprocessing. In Proceedings of Ist International Coq%rence on

Supercompwhng (June). Springer-Verlag, New York, 194-211.

BANNING, J. P. 1979. An efficient way to find the side effects of procedure calls and aliases of

variables. In Sixth Annual ACM Symposium on Principles of Programming Languages (Jan).

ACM, New York, 29-41.

BARTH, J. M. 1978. A practical interprocedural data flow analysis algorithm. Commwz. ACM

21, 9 (Sept.), 724-736.

BURKE, M. 1990. Au interval-based approach to exhaustive and incremental interprocedural

data-flow analysis. ACM Trans. Program. Lang. Syst. 12, 3 (July), 341-395.

CALLAHAN, D. 1988. The program summary graph and flow-sensitive interprocedural data
flow analysis. In Proceeding of SIGPLAN ’88 Conference on Programming Language Design

and Implementation (June). ACM SIGPLAN Not. 23, 7 (July).
COOPER,K., AND KRNNEDY, K. 1988. Interprocedural side-effect analysis in linear time. In

Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and Implemen-

tation. ACM SIGPLAN Not. 23, 7 (July).

COOPER, K., KENNEDY, K., AND TORCZAN, L. 1986a. The impact of interprocedural analysis and

optimization in the Rn programming environment. ACM Trans. Program. Lang. Syst. 8, 4,

491-523.

COOPER, K. D., KENNEDY, K., AND TORCZON, L. 1986b. Interprocedural optimization: Eliminat-

ing unnecessary recompilation. In Proceedings of SIGPLAN ’86 Symposium on Compiler

Construction. ACM SIGPLAN Not. 21, 7 (July).

FR.ANKL, P. G., AND WEYLKER, E. J, 1985. A data flow testing tool. In ACM Softfair Proceed-

ings (Dec.). ACM, New York, 46-53.

FRANKL, P. G., AND WEYORER, E. J. 1988. An applicable family of date flow testing criteria.

IEEE Trans. Softw. Eng. SE-14, 10 (Oct.), 1483-1498.

HARROLD, M. J., AND SOFFA, M. L. 1989. An incremental data flow testing tool. In Proceedings

of the 6th International Conference on Testing Computer Software (Washington D. C., May).

HARROLD, M. J., AND SOFFA, M. L. 1991. Selecting data for integration testing. IEEE Softw. 8,

2 (Mar.), 58-65.

HORWITZ, S., REPS) T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs.

ACM Trans. Program. Lang. Syst. 12, 1 (Jan.), 26-60.

KAM, J., AND ULLMAN, J. 1976. Global data flow analysis and iterative algorithms. J. ACM 23,

1 (Jan.), 158-171.

KILDALL, G. 1973. A unified approach to global program optimization. In ACM Symposium on

Prmclples of Programmmg Languages. ACM, New York, 194–206.
KOREL, B., ANII LASKI, J. 1985. A tool for data flow oriented program testing. In ACM Softfair

Proceedings. (Dec.). ACM, New York, 35-37.

ACM Transactions on Programming Langaages and Systems, Vol. 16, No. 2, March 1994.

204 . Id. J. Harrold and M. L. Soffa

LASKI, J. W., AND KOREL, B. 1983. A data flow oriented program testing strategy. IEEE Trans.

Softw. Eng. SE-9, 3 (May), 347-354.

LOMET, D. B. 1977. Data flow analysis in the presence of procedure calls, IBM J. Res. Dev. 21,

6 (Nov.), 559-571.

MYERS, E. W. 1981. A precise inter-procedural data flow algorithm. In Conference Record of

the 8th Annual ACM Symposium on Principles of Programming Languages (Williamsburg, Va.
Jan.). ACM, New York, 219-230.

NTAFOS, S. C. 1984. An evaluation of required element testing strategies. In Proceedings of

7th International Conference on Software Engineering (Mar.). IEEE, New York, 250-256.
TAHA, A. M., THEBUT, S. M., AND LIU, S. S. 1989. An approach to software fault localization

and revalidation based on incremental data flow analysis. In Proceedings of COMPSAC 89

(Sept.). IEEE, New York, 527-534.

Received July 1990; revised March 1993; accepted April 1993

ACM Transactions on Programming Languages and Systems, Vol 16, No 2, March 1994.

