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Scheduling  DAG’ s for Asynchronous 
Mu ltiprocessor Execution  
Brian A. Malloy, Errol L. Lloyd, and Mary Lou Soffa 

Abstract-A new approach is given for scheduling a sequential 
instruction stream for execution ‘4n parallel” on asynchronous 
multiprocessors. The key idea in our approach is to exploit the 
fine grained parallelism present in the instruction stream. In 
this context, schedules are constructed by a careful balancing 
of execution and communicat ion costs at the level of individual 
instructions, and their data dependencies. Three methods are 
used to evaluate our approach. First, several existing methods 
are extended to the fine grained situation considered here. Our 
approach is then compared to these methods using both static 
schedule length analyses, and slmulated executions of the sched- 
uled code. In each instance, our method is found to provide 
significantly shorter schedules. Second, by varying, parameters 
such as the speed of the instruction set, and the speed/parallelism 
in the interconnection structure, simulation techniques are used to 
examine the effects of various architectural considerations on the 
executions of the schedules. These results show that our approach 
provides significant speedups in a wide-range of situations. Third, 
schedules produced by our approach are executed on a two- 
processor Data General shared memory multiprocessor system. 
These experiments show that there is a strong correlation between 
our simulation results (those parameterixed to “model” the Data 
General system), and these actual executions, and thereby serve 
to validate the slmulation studies. Together, our results establish 
that fine grained parallelism can be exploited in a substantial 
manner when scheduling a sequential instruction stream for 
execution “ln parallel” on asynchronous multiprocessors. 

Index Terms- Concurrency, parallelism, multiprocessor, line 
grained parallelism, schedule, asynchronous. 

I. INTRoDUC~~N 

0 VER the past decade  or so, changes  in technology have  
provided the possibility for vast increases in computa-  

tional speed  and  power  through the exploitation of parallelism 
in program execution. Indeed, within certain computat ional 
domains, these technological changes  have  permitted solutions 
to computat ion intensive problems such as  weather modeling, 
image processing, Monte Carlo simulations and  sparse matrix 
problems. An important part of this technology has  focused on  
two approaches to parallelizing a  sequential instruction stream: 

1) exploiting fine grained parallelism, such as  single state- 
ments, for VLIW machines, [8] and  

2) exploiting coarse grained parallelism, such as  loops 
and  procedures,  on  vectorizable machines and  on  asyn- 
chronous multiprocessors. 
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In the first approach,  VLIW machines support  the concurrent 
execut ion of multiple instruction streams and  perform many  
operat ions per  cycle. VLIW machines however,  also employ 
a  single control unit, thereby permitting only one  branch 
to be  executed per  cycle. Furthermore, while the VLIW 
architectures perform well on  programs deal ing with scientific 
applications, their per formance can degrade rapidly when  
faced with factors that decrease run-time predictability. [27] In 
particular, a l though general  purpose programs typically have  
an  abundance  of fine grained parallelism, it is difficult to 
exploit that parallelism on  a  VLIW machine because general  
purpose programs are much less predictable than scientific 
applications. In the second approach,  existing techniques for 
asynchronous mult iprocessors produce schedules at the coarse 
grained level. Due  to their multiple control units, asynchronous 
mult iprocessors have  greater flexibility than VLIW machines. 
Unfortunately, it is frequently the case that a  program segment  
may be  unable to support  coarse grained parallelism because it 
does  not contain any  loops, or because the data dependenc ies in 
its loops preclude such concurrentization. Thus, asynchronous 
multiprocessors, currently present in many  installations, are 
frequently underuti l ized due  to the absence of techniques to 
exploit fine grained parallelism in an  asynchronous manner.  

In this paper  we offer an  alternative approach to the exploita- 
tion of parallelism in programs by combining the fine grained 
approach of the VLIW with the flexibility of the asynchronous 
machine. In so  doing, we thereby provide a  mechanism by 
which parallelism may be  exploited in programs where factors 
are predictable (such as  scientific applications), as  well as  in 
programs with unpredictable factors (such as  general  purpose 
applications). 

Thus, we focus on  exploiting fine grained parallelism to 
schedule a  sequential instruction stream for execut ion on  an  
asynchronous mult iprocessor system. Recall the processors in 
an  asynchronous mult iprocessor execute independent ly and  
that communicat ion is performed explicitly through asyn- 
chronous communicat ion primitives. It follows that sched-  
uling for such systems will necessari ly involve packing to- 
gether fine grained operations, including synchronizat ion com- 
mands,  for execut ion on  the individual processors. The  dif- 
ficulty in such schedul ing lies in balancing the desire to 
utilize all of the processors, with the desire to minimize 
the amount  of synchronizat ion that is introduced by utilizing 
different processors for operat ions having data dependen-  
cies. 

W e  conclude this section by  noting that a l though our work 
is directed toward the parallelization of entire programs, the 
focus of this paper  is on  the parallelization of straight line 
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code such as  that found in a  basic block.’ Although early 
studies indicated that basic blocks of programs provide on  
average only two or three instructions that can  be  executed 
in parallel, [24] compiler techniques such as  loop unrolling, 
[7, 261  in-line substitution, [15] code  duplication, [ 121  and  
trace schedul ing [9] are now being employed resulting in a  
significant increase in the size of basic blocks (currently, up  
to 1000  instructions). These techniques have,  in turn, vastly 
increased the fine grained parallelism present in a  basic block. 
Throughout  the remainder of this paper  we focus exclusively 
on  schedul ing the instructions of a  single basic block for 
execut ion on  asynchronous tightly coupled multiprocessors. 

The  remainder of this paper  is organized as  follows. 
In the next section, we provide some specifics on  the 
computational/architectural model  that is assumed in this work, 
a long with a  precise discussion of schedul ing in this context. 
W e  investigate the complexity of comput ing a  fine grained 
schedule under  our  model  and  conclude that the problem is 
NP-complete. W e  then discuss how several existing coarse 
grained methods can be  extended to the fine grained situation 
considered here. In Section III, we  present our  approach,  the 
Preferred Path Selection algorithm (PPS), for fine grained 
schedul ing on  asynchronous multiprocessors. The  remainder 
of the paper  is devoted to evaluating our  approach.  In Section 
IV, we study the performance of our  approach in relation to 
the modif ied coarse grained methods descr ibed in Section II. 
Here, compar isons are made  using both static schedule length 
analyses, and  simulated execut ions of the scheduled code.  In 
each  instance, our  method is found to produce significantly 
shorter schedules. In addition, these results show explicitly that 
the approach scales to at least 16  processors when  the commu- 
nication structure provides sufficient parallelism. In Section 
V, further simulation techniques are used  to determine the 
performance of the PPS algorithm for varying communicat ion 
speeds and  interconnection structure bandwidths, including the 
model ing of the content ion in the communicat ion structure. 
W e  conclude that for fast or moderate communicat ion speeds 
and  bandwidths, the PPS algorithm can provide significant 
speedup  for dags  containing sufficient parallelism. Finally, in 
Section VI, schedules produced by our  approach are executed 
on  a  two-processor Data General  AViiON shared memory 
mult iprocessor system. [2] These experiments show that there 
is a  strong correlation between our simulation results ( those 
parameter ized to “model” the Data General  AViiON system), 
and  these actual executions, and  thereby serve to validate the 
simulation studies. 

Together,  the simulations and  actual execut ions establish 
that fine grained parallelism can indeed be  exploited in a  
substantial manner  when  schedul ing a  sequential instruction 
stream for execut ion “in parallel” on  asynchronous 
multiprocessors. 

II. MODELS, SCHEDULES AND RELATED WORK 

In this section, we provide some specifics on  the computa-  
tional/architectural model  that is assumed in this work, a long 
with a  precise discussion of schedul ing in this context. 

’ A basic block is a  sequence of instructions for which the only entrance is 
through the first statement of the block, and  the only exit is through the last 
statement of the block. 

A. The  ComputationaUArchitectural Model  
In order for us  to accurately evaluate the quality of the 

schedules that we produce,  it is necessary that we be  a  bit 
more precise about  certain aspects of the system that we 
utilize. In particular, we assume a  mult iprocessor system M 
that consists of p  asynchronous identical processors, shared 
global memory modules, and  a  communicat ion structure that 
allows processors to communicate with other processors or 
with the shared memory.  W e  assume that the mult iprocessor 
system includes the standard primitives send and  receive, 
which are used  for the synchronizat ion of processors. Because 
of the kind of synchronizat ion required here (i.e., based  on  
data dependencies) ,  we assume that the send operat ion does  
not require the invoker to wait until a  corresponding receive 
is executed. [6] 

In conjunction with the above  system, we employ three 
parameters that, together, descr ibe the “speed” of the ar- 
chitecture. The  first is a  function Fe(I) that returns the 
number  of cycles required to execute instruction I. The  second 
is a  function F, =  F, +  F,, that indicates the number  
of cycles needed  for communicat ion of values through the 
interconnection structure. By an  interconnecfion structure or 
communicat ion structure we mean  hardware support  such as  
memory channels,  [l] register channels [l l] or an  intercon- 
nect ion network [ 141  that provides support  for communicat ion 
of values. Here, the function F, is the access time needed  to 
traverse the communicat ion structure and  F, is the number  
of cycles a  processor waits (due to contention) before it 
can  access a  required value. The  third parameter,  BW, is 
the bandwidth of the communicat ion structure or the num- 
ber  of processors that can  simultaneously use  the structure. 
Content ion occurs when  the number  of processors vying to 
communicate during a  given cycle, exceeds BW. The  simulator 
used  to obtain a  variety of results descr ibed in Sections IV and  
V, takes the parameters F,, F,, and  BW as inputs. 

In a  port ion of what follows, we use an  idealized version 
of the above  model  to isolate the important issues involved 
in fine grained schedul ing. In this UECC or uniform execut ion 
and  communicat ion cost model, the following condit ions hold: 

1) Fe(l) =  1  for every instruction I, 
2) F, =  1, 
3) F, =  0, 
4) BW = p, 
5) synchronizat ion primitives Sdi and  Rvi can  execute in 

the same cycle. 
The  first condit ion provides for the execut ion of any  operat ion 
in one  cycle, and  the second and  third condit ions allow com- 
munication through the interconnection structure in one  cycle. 
The  fourth condit ion allows p  processors to communicate 
simultaneously without contention; such throughput might, for 
example, be  provided by  a  crossbar interconnection topology. 
The  fifth condit ion allows one  cycle for each  processor to 
execute a  communicat ion or synchronizat ion primitive. The  
communicat ion primitive Sdi indicates that node  i has  com- 
pleted execut ion and  the primitive Rvi requires the execut ing 
processor to wait until node  i has  completed execution. 

Finally, as  is standard practice, [3] we use a  directed 
acyclic graph (dag) G  = (V, E), to represent the computat ion 
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Fig. 1. A program segmentis pictured in the upper left hand corner with 
acorresponding expression dag to the right of the program segment.  To  the 
right of the expression dag is the corresponding task dag  consisting of 
nodescontaining numbers to represent the operations in the expressiondagand 
edges to indicate data dependencies between nodes. A scheduleforthe task dag  
is pictured at the bottom of the figure where nodes 1.3, 4  and  6  are assigned 
to list Pl and  nodes 2  and  5  are assignedtolist P2. 

performed in a  basic block. In such a  dag,  the nodes  correspond 
to computed values, and  the acrs indicate data dependenc ies 
between values. Thus, the children of a  node  are the values 
used  to compute the node.  In the discussions that follows, we 
view the dag  as  shown in Fig. 1, with the root node(s)  at the 
top of the figure. Levels in the dag  are numbered from the 
bottom up, with the bottom (lowest) level numbered level 1. 

B. Schedul ing Dags 
In this section we provide some general  information and  

background on  the schedul ing of dags  in the context of 
asynchronous machines. 

W e  use the following general  approach for schedul ing dags  
on  asynchronous machines. There are four phases.  First, each  
node  of the dag  is assigned to a  particular processor.  Second,  
for each  processor,  a  list is constructed of the nodes  assigned 
to that processor.  In these lists, nodes  appear  in reverse 
topological order (a node  must appear  in a  list before any  
of it’s parents). Furthermore, nodes  are inserted into the lists 
in the same order that they appear  in the program; thus, if 
statements 1, 2, and  5  are assigned to list Pl, then they appear  
in the list in that order. Third, these lists are modif ied by  
incorporating the required communicat ion primitives. Finally, 
these lists are used  to produce a  schedule. Of these four phases,  
phase  one,  the assignment of nodes  to processors is the main 
focus of this paper.  Phase 2  is straight-forward and  is not 
d iscussed here. The  remainder of this section is devoted to a  
discussion of phases  3  and  4. 

In phase  3, note that if two operat ions A and  B are 
connected with an  arc in the dag  (A being the parent of B), and  
they are assigned to different processors, then communicat ion 
primitives must be  inserted. In particular, a  send is inserted 
immediately after B, and  a  receive is inserted immediately 
before A. For example, in Fig. 1, node  3  is the parent of 
node  2  and  nodes  3  and  2  are assigned to different lists. 
Ultimately, when  producing a  schedule, a  send is inserted 
immediately after node  2  in list P2, and  a  receive is inserted 

Tlmc12345678 9 10 

PI 1 Rvl Rq 3 Sd, 4 4 Rvs Rv~ 6 

Pi? 2 Sd, m  fi3 5 w  

Fig. 2. A possible run-time schedule for the compile-t ime in Fig. 1. All 
receive primitives required 2  t ime units to execute in the run-time schedule 
while send primitives required 1  t ime unit. Also, operation 4  required 2  t ime 
units to execute in the run-time schedule, possibly due  to contention in the 
communicat ion structure. 

immediately before node  3  in list Pl. For the example in 
Fig. 1, both the send and  receive primitives are assigned to 
the same time slot, but this need  not necessari ly be  the case. 
Since the communicat ion primitives are asynchronous,  even  if 
the send operat ion occurs in a  time slot prior to the receive, 
the processor that executes the send operat ion may cont inue 
execution. Of course, if the receive operat ion occurs in a  time 
slot prior to the send operation, then the processor that issued 
the receive must wait until the send is issued. [6] 

In phase  4, a  compile-time schedule is p roduced from the 
lists of operat ions and  communicat ion primitives. This is, of 
course, a  schedule which is constructed at compile time. W e  
will also refer to a  run-time schedule, which is what occurs in 
an  actual execut ion of the compile-time schedule. These two 
kinds of schedules represent the distinction between what we 
can model/predict and  what actually occurs in a  real execution, 
respectively. 

Both kinds of schedules are obtained in the obvious fashion: 
the operat ions in list i are executed on  processor i, and  the 
jth operat ion in a  list executes only after the previous j-1 
operat ions of the list have  completed. Also, a  receive operat ion 
may execute no  earlier then its corresponding send operat ion 
(which is on  another processor).2 Clearly this means  that some 
idle time may exist on  the processor execut ing the receive. For 
example, processor P2 is idle during time slot 3  in the schedule 
shown in Fig. 1. In the compile-time schedule constructed 
under  the UECC model, each  operat ion requires one  time unit 
to complete, and  send and  receive operat ions can occur in the 
same time unit. The  length of schedule S is equal  to the latest 
time slot dur ing which a  node  of G  executes. For example, in 
Fig. 1, the length of the schedule is 7. In a  run-time schedule, 
the time to execute any  particular operat ion may vary due  to 
factors such as  content ion in the communicat ion structure and  
var iances in the actual processor speeds.  For example, in Fig. 
2, each  of the receive operat ions required two time units while 
the send operat ions required one  time unit, possibly due  to the 
particular implementation of the synchronizat ion operat ions 
by  the mult iprocessors. 

Clearly the most desirable approach to the code schedul ing 
problem is to produce an  assignment that results in an  optimal 
compile-time schedule. However,  we establish that producing 
such a  schedule for our  UECC model  that includes both 
execut ion and  communicat ion cost is NP-complete, even  if 
there are only 2  processors. Recall the UECC model  assumes 
a  mult iprocessor M with p  identical processors that execute 

‘In an  actual execution, this is not exactly what occurs. Rather, if the 
jth operation is a  receive, then that receive executes immediately after the 
complet ion of the j-1st operation. Further executions on  that processor are 
suspended until the corresponding send operation executes. This is equivalent 
with respect to t ime to the “no earlier than the send,” requirement. W e  use 
that requirement to simplify explanations in later sections. 
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each instruction in one  cycle and  that a  processor can commu- 
nicate with another processor in one  cycle. W e  assume that no  
processor has  to wait to communicate with another processor 
and  that the p  processors can communicate simultaneously. 
Input to M is a  dag  G  = (V, E) where edges  in the dag  
represent precedence constraints. Given nodes  {u, r~} E V and  
edge  (u, u) E E, the cost for schedul ing u  and  v on  different 
processors is one  unit since communicat ion in M is one  cycle. 
W e  assume a  cost of 0  if u  and  v are scheduled on  the same 
processor.  Formally, as  is the usual practice, the problem is 
stated as  a  decision problem: 
Asynchronous Processor Schedul ing (APS): 
Instance: A dag  and  a  value L. 
Question: Does there exist an  assignment of the nodes  

of a  dag  to 2  processors such that the length of 
the synchronized schedule does  not exceed L?  

Theorem: Asynchronous Processor Schedul ing (APS) is 
NP-complete. (The proof is in the appendix.)  

C. Adapting Existing Schedul ing Methods 
Since the Asynchronous Processor Schedul ing problem is 

NP-complete, we focus on  heuristics for finding “good” as- 
signments/schedules, rather than optimal ones.  Our  heuristic, 
the Preferred Path Selection algorithm (PPS) is presented in 
Section III. Sections IV and  V are devoted to evaluating 
the schedul ing method that we descr ibe in Section III. One  
aspect  of that evaluation is to compare our  method to earlier 
methods. Unfortunately, only the Early-Scheduling Method 
[20] is a imed at precisely the problem that we consider 
where communicat ion cost is included as  part of the problem. 
Nonetheless, it has  been  suggested that traditional task sched-  
uling techniques might be  extended in natural ways in order to 
exploit fine grained parallelism. Two promising techniques are: 

Critical Path, Most Immediate Successors First 
(CP/MISF) [ 131  
Internalization Prepass Approach [21] 
Since all three of the above  methods are a  variation of 

list schedul ing we begin with a  brief discussion of how list 
schedul ing can be  used to produce schedules in the situation 
that we study. W e  then descr ibe each  of the above  three 
methods and  how they may be  adapted to the fine grained 
schedul ing problem that we consider. 

Traditionally, list schedul ing has  been  used for schedul ing 
task systems on  synchronous mathines. The  idea is as  follows: 

Given a  priority List L  of the nodes  of G, the list schedule S 
that corresponds to L  can be  constructed using the following 
procedure:  

1) Iteratively assign the elements of S to a  processor,  
starting at time slot 1  such that dur ing the ith step, L  is 
scanned from left to right, and  the first ready node  not 
yet scheduled is chosen to be  executed during available 
time at slot i. 

2) If no  ready node  is found or there is no  available time 
at time slot i, then cont inue at time slot i +  1. 

In constructing list L, the first two phases  of our  method are 
accomplished, assignment of nodes  to a  processor and  con- 
struction of a  list of nodes  to be  executed by  each  processor.  
The  versions of list schedul ing algorithms can be  dist inguished 

by  the method in which L  is obtained. In critical path schedul-  
ing, nodes  at the lowest levels of the dag  (farthest from a  root 
node)  are inserted into L  first. Since there can be  more than 
one  node  at a  given level in the dag,  a  version of critical path 
schedul ing called CP/MISF [ 131  (critical path/most immediate 
successors first) attempts to establish a  hierarchy among  nodes  
at the same level by  assigning a  higher priority to those with 
more immediate successors.  

To  adapt  list schedul ing in general,  and  CP/MISF in par- 
ticular, to an  asynchronous model, communicat ion primitives 
must be  inserted in an  appropriate fashion to accomplish phase  
three of our  method. W e  view the “schedule” produced by 
a  list schedul ing algorithm (such as  CP/MISF) as  merely an  
assignment of operat ions to processors in a  particular order. 
Using these assignments, each  node  in S is examined to 
determine if its successor(s) in the dag  is scheduled on  the 
same processor.  If a  node  in S has  a  successor assigned 
to a  different processor,  then communicat ion primitives are 
inserted in the appropriate lists. 

The  Early-Scheduling Method [20] represents an  attempt 
to include communicat ion cost in the determination of the 
schedule. The  algorithm maintains a  list E containing unsched-  
uled nodes  that are ready for execut ion (eligible nodes),  and  
sequences  sr through sp. Sequence si contains the nodes  that 
are already assigned to processor P;. The  algorithm proceeds 
iteratively as  follows: 

1) For each  node  z E E and  each  processor Pi E P = 
{Pl,... , P,}, calculate the finish time of z on  Pi in- 
cluding insertion of communicat ion primitives if needed.  

2) Let f be  the earliest finish time of a  node  z from 
1). Create set A containing all possible assignments of 
eligible nodes  to processors having finish time f. 

3) Choose a  node  randomly from set A and  assign it to 
sequences  Si. 

After all of the nodes  in the dag  have  been  assigned to a  
sequence si, sequence si is mapped  to processor Pi. As in the 
other list schedul ing approaches,  communicat ion primitives are 
inserted into si to produce an  actual schedule. 

The  third method that we consider is the Internalization 
Prepass Approach, [21], [23] which processes program graphs 
which represent computat ion as  dataflow graphs. This ap-  
proach was not des igned for schedul ing dags  (graphs whose 
nodes  represent operat ions) but rather for graphs whose nodes  
represent structures contained in a  program written in a  func- 
tional language. W e  modify the Internalization Prepass Ap- 
proach so that the nodes  of the graph are operat ions and  
include it as  a  compar ison with the PPS approach.  The  Inter- 
nalization Prepass Approach attempts to minimize communi-  
cation cost by  internalizing (executing on  the same processor)  
nodes  along the critical path. [21] The  algorithm maintains 
a  list of blocks that initially contains 1  node  per block and  a  
table DeltaCPL [i, j] that represents the decrease in the critical 
path length obtained by  merging blocks i and  j. Blocks that 
will result in a  decrease in the critical path length are merged 
until further mergers cannot  reduce the critical path length. In 
comput ing the critical path length, all nodes  in the same block 
are sequential ized since they will be  assigned to the same 
processor.  After the internalization prepass,  the approach uses 
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Fig. 3. The Preferred Path Selection algorithm (PPS). 

a modified priority list scheduling algorithm to assign nodes to 
processors with the modification that when a node is assigned 
to a processor, all other nodes in the same block are assigned 
to the same processor. 

III. THE PREFERRED PATH SELECTION 
ALGORITHM-AN INTEGRATED APPROACH 

In this section, we describe our algorithm for the scheduling 
of program dags on an asynchronous multiprocessor. Actually, 
based on the discussion in the previous section, we limit the 
discussion here to “phase l”--that is, to the assignment of 
each node to some processor. Throughout this paper, we use 
the term PPS to refer both to the entire algorithm and more 
particularly, to this first step. Typically, the meaning will be 
clear from the context. 

As noted earlier, the key idea in assigning nodes to pro- 
cessors, is to exploit the fine grained parallelism present in 
the instruction stream by a careful balancing of execution and 
communication costs at the level of individual instructions, and 
in consideration of their data dependencies. Thus the algorithm 
that we present incorporates the dag sfructure, as well as 
communication costs in its computation of a schedule. In 
particular, the algorithm attempts to minimize communication 
costs by locating a path Li in the dag and assigning all of 
the nodes on the path to the same processor P. Such a path, 
by definition, represents a series of data dependencies, and by 
scheduling the entire path for execution on a single processor, 
the need for synchronization among the nodes on this path is 
eliminated. Further, we attempt to maximize these savings in 
communication costs, by insuring that in the construction of 
Li for execution on processor P: 1) that nodes with a parent 
unassigned or assigned to P, are preferred over those with 
a parent assigned to a processor other than P; and 2) that 
Li is maximal (i.e., it cannot be extended). The complete 
algorithm is given in Fig. 3; an input of a dag G = (V, E) 
and a multiprocessor with P processors is assumed. 

To illustrate the manner in which the PPS algorithm assigns 
nodes to processors, we use it to schedule the dag shown in 
Fig. 4 on two processors. Here, the initial value of Ic is 3, 
since node 1 is at level 3 and is unassigned. BestNode is also 
node 1 since it has no parent. In the first iteration of the inner 
While loop, node 1 is assigned to PI. In the next iteration of 
this inner While loop, a child of node 1, say node 2, is chosen 
as BestNode and is assigned to PI. In the next iteration of 

Turn 1 2 3 4 5 6 7 

PI 4 5 6 2 Bv, 3 1 

Pl 7 g*, 9 10 8 

Fig. 4. A sample dag and the corresponding schedule produced using the 
PP.5 algorithm. 

the inner loop, node 4 is assigned to PI and this inner loop 
terminates since all children of node 4 are assigned. Thus, 
path (1, 2,4) in the dag is assigned to PI. The PPS algorithm 
continues execution in the outer While loop by updating i to 2 
indicating that we are now assigning nodes to Pp,. The variable 
Ic is also updated to 2, since nodes 3 and 8 are unassigned. As 
execution continues at the top of the outer While loop, node 8 
becomes BestNode since it has no parent and it is assigned to 
P2. BestNode is then updated to 9, assigned to P2 in the inner 
While loop and the inner loop terminates with path (8, 9) in 
the dag assigned to P2. In the outer While loop i is updated to 
1 and execution continues at the top of the outer loop where 
Ic remains 2 and BestNode becomes 3 since its parent, node 
1, is also assigned to PI. BestNode is assigned to PI and is 
updated to a child of node 3, say node 6, in the inner loop and 
the inner loop terminates with path (3, 6) in the dag assigned 
to PI. The PPS algorithm continues until all nodes in the dag 
are assigned. The schedule resulting from this assignment is 
shown in Fig. 4. 

IV. PERFORMANCE EVALUATION USING THE 
COMPUTATIONALIARCHITECT~RAL MODEL 

In this section we compare the performance of our approach 
to the modified coarse grained methods described in Section 
II. In the first portion of this section, we compare the lengths 
of compile-time schedules produced by each of the methods. 
These comparisons use the UECC model for numbers of 
processors ranging from 2 through 16. These results show that 
the PPS algorithm performs significantly better than any of 
the other methods. Further, these results show that in absolute 
terms, the performance of the PPS approach is quite good. 
That is, for every number of processors in this range the 
PPS algorithm is able to produce schedules which utilize 
a significant amount of the parallelism provided by those 
processors. In particular, these results show explicitly that the 
approach scales to at least 16 processors, provided that the 
communication structure provides sufficient parallelism. In the 
second portion of this section we compare the performance 
of the various methods using simulated executions of the 
compile-time schedule. Recall from Section II that we refer 
to these as the run-time schedules. Unlike the compile-time 
schedule results, these simulations are not restricted to the 
UECC model. Once again, the PPS algorithm is found to 
provide significantly shorter schedules than the other methods. 
In conjunction with these evaluations, we provide extensive 
evaluations of the PPS approach under a range of architectural 
assumptions including the modeling of the contention in 
the communication structure. All of these results verify the 



MALLOY ef al.: SCHEDULING DAG’s 

TABLE I 
PERFORMANCE EVALUATION (p = 2 PROCESSORS) 

NC&S Headstics 
hdas CP/MISF[Early(Pqmss~Rmdm~PPS 

10 11 I 9 I 12 I 13 I 7 

Fig. 5. A  dag with a chain. 

compile-time schedule results-namely that the PPS algorithm 
is able to scale to 16  processors. 

A. Compile-Time Schedule Compar isons 
In this section, we compare the lengths of compile-time 

schedules produced by each  of the methods: CP/MISF, 
Early-Scheduling Method, Internalization Prepass and  PPS 
algorithms. In addition, a  Random assignment algorithm is 
included to serve as  a  “control” for the compar ison of the 
heuristics. This algorithm, assigns the nodes  of a  dag  to pro- 
cessors in a  random fashion. The  details of the implementation 
are straight-forward and  are left to the reader. 

Finally, we note that in this section, all of the compar isons 
were done  using the UECC model. Results were obtained for 
2,3,4,8, and  16  processors. In each  instance, the results show 
that the PPS algorithm performs significantly better than any  
of the other methods. 

The  results of the evaluations on  two processors are sum- 
marized in Table 1  (the results for 3, 4, 8, and  16  processors 
are similar and  may be  be  found in [16]). For example, 
Sample is a  program whose corresponding dag  contains 10  
nodes  as  shown in Fig. 4. Applying CP/MISF to Sample 
resulted in a  compile-time schedule of length 11, while Early, 
Prepass and  Random produce schedule lengths of 9, 12, and  13  
respectively. Applying the PPS algorithm to Sample resulted 
in a  schedule of length 7  as  shown in Fig. 4. 

To  fully evaluate the heuristics, their per formance was 
examined using a  variety of dags  as  input, including dags  
having long or wide topologies, duplication of similar patterns, 
those having theoretical interest as  well as  those of practical 
application. The  number  of nodes  in the dags  ranges from 
10  to 203.  In addit ion to program Sample discussed above,  
Table I contains seven other test programs. The  programs 
Fibonacci and  Mat Mult were obtained by  using loop unroll ing 
to compute the first ten Fibonacci numbers  and  to multiply 
two 3  x 3  matrices. The  program Pyramid is an  example 
of a  grid. [19] m is a  program whose dag  is a  complete 
binary tree and  Dual Dag  is a  program whose dag  contains 
duplicate components.  Finally, the whetstone program was 
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obtained by  unroll ing loops in four of the Whetstone modules 
and  Livermore is a  program containing the first 20  iterations 
of the first kernel of the Livemore loops. [ 181  

From Table I, it is clear that in almost every instance, 
our  PPS algorithm produces significantly shorter schedules 
than any  of the other methods. W e  believe that this superior 
per formance of the PPS algorithm can be  attributed primarily 
to its focus on  minimizing communicat ion costs, while the 
earlier algorithms (all based  on  list schedul ing) attempt to 
minimize processor idle time exclusively. To  accomplish this, 
the earlier algorithms focus primarily on  execut ing nodes  at the 
lowest level first. Unfortunately, this strategy can schedule on  
different processors, nodes  that are all connected to a  single 
successor.  Such a  situation obviously requires a  great deal 
of communicat ion and  therefore a  longer schedule. A further 
advantage of the PPS algorithm is that it incorporates the struc- 
ture of the dag  in comput ing the preferred path and  by  assign- 
ing the entire path to a  processor,  the PPS approach maintains a  
globaZview of the dag  in its computat ion of a  schedule. The  ear- 
lier list schedul ing algorithms utilize a  much more localview, 
in examining primarily, nodes  on  a  single level to decide which 
to schedule next. For example, the earlier algorithms may quite 
easily assign the nodes  of Fig. 4  in the following manner:  
nodes  4, 6, 9, 2, and  8  to processor 1  and  5, 7, 10, 3, and  1  to 
processor 2. By assigning nodes  4  and  5, 6, and  7, 9, and  10, 
and  2  and  3, to different processors, communicat ion between 
processors 1  and  2  is required, resulting in a  schedule of length 
11. For the PPS algorithm, nodes  along the longest path are 
assigned to the same processor (for example nodes  1, 2  and  
4) and  communicat ion is not required for any  of these nodes.  

The  Internalization Prepass Approach produces excellent 
results when  appl ied to graphs that result from functional 
programs, [21] since they typically produce long chains of 
computat ions. However,  the results in Table I indicate that the 
Internalization Prepass Approach does  not perform as well as  
the PPS algorithm when  appl ied to expression dags.  This is 
primarily due  to the fact that the Prepass algorithm is only 
able to internalize or merge a  low percentage of the nodes  that 
occur in expression dags,  in particular, those that lie a long a  
chain such as  nodes  1, 2, 3, and  4  in Fig. 5. To  demonstrate 
the merging of nodes,  recall that the algorithm utilizes a  table, 
DeltaCPL [i, j], that represents the decrease in critical path 
length that will result when  nodes  i and  j are merged.  [23] 
DeltaCPL can be  initialized with the loop, DeltaCPL [i, j] := 
or igCPL-newCPL, for all i #  j; the algoi-ithm then merges 
pairs of nodes  with a  positive DeltaCPL entry until all entries 
are negative. Since one  unit is required for node  execut ion and  
one  unit for communicat ion, the critical path in Fig. 5  is 1, 
2, 3, 4  with length 7. If nodes  1, 2, and  3  are merged,  the 
critical path length reduces to 5  since the path (i, 2, 3, 4) has 
length 5  and  the path (1, 2, 3, 5) also has  length 5, where 
nodes  2  and  3  must be  executed on  the same processor as  1. 
No further merging is possible. For the dags  in Table I, a  low 
percentage of nodes  were merged and  thus the Internalization 
Prepass Approach gave  results nearly identical to the other 
local-view algorithms. For example, the Prepass merged none  
of the nodes  in Whetstone. 

W e  conclude this section by  noting that the PPS algorithm 
is able to provide speedup,  not only for two processors (Table 
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SCALABI~ 

TABLE II 
OF THE PPs ALGOFCWHM 

Piboo& 20 1.30 1 1.00 1.00 
m  36 125 1 1.89 1.89 
M8tMllt 120 123 9 3.53 54s 
tGiz2te 107 137 lA2 1.43 13 2 2.74 1.98 3.26 1.98 

FFr 127 0.99 1 6.13 8.64 
Livamotc 203 1.30 20 634 9.67 

I), but also for numbers  of processors up  to 16  (Table II). 
Here, speedup  is the ratio of the number  of nodes  in the dag  
to the length of the compile-time schedule. When  the speedup  
is equal  to the number  of ass igned processors, then we say 
that the speedup  is linear. In the case of a  dag  containing 
10  nodes,  a  schedule must have  length 5  to provide linear 
speedup  for 2  processors. In our  evaluations, the PPS algorithm 
provided virtually linear speedup  for FFI and  Livermore on  
8  processors, and  was able to provide significant speedup  for 
programs containing sufficient parallelism. In particular, the 
Fibonacci and  Pyramid programs did not exper ience significant 
speedup  because their corresponding dags  contain a  large 
number  of data dependencies.  The  speedup  provided by  the 
PPS algorithm for the test cases is summarized in Table II for 
8  and  16  processors. 

The  results in Table II also indicate the factors that con- 
tribute to the degree of parallelism contained in a  dag.  These 
factors are: 

1) the number  of nodes  in the dag;  
2) the average indegree for each  node,  and  
3) the number  of connected components  in the dag.  

The  number  of nodes  in the dag  is important since, in the 
extreme, it is impossible for the dag  to support  l inear speedup  
when  the number  of ass igned processors is greater than the 
number  of nodes  in the dag.  

The  average indegree of a  dag  is the ratio of the total 
number  of edges  entering nodes  to the total number  of nodes,  

Avg Indegree = 
Number  of edges  entering a  node  

Total number  of nodes  ’ 
For example, in Fig. 4  nodes  2, 3, 8, and  1  have  indegree 2  
while nodes  4, 5, 6, 7, 9, and  10  have  indegree 0. The  average 
indegree of a  dag  indicates the number  of uses of computed 
values and  therefore indicates possible synchronizat ion points 
that can  increase the length of the computed schedule. Table 
II correlates the average indegree with the ability of the PPS 
algorithm to provide good  speedup.  As the average indegree 
increases from 1  to 2, the speedup  for 8  and  16  processors 
decreases so that for Whetstone and  Dual Dags the PPS 
algorithm did not scale for 8  processors and  performance did 
not improve when  the number  of processors was doubled to 16. 
When  the average indegree approaches 1, the PPS algorithm 
provided significant speedup  for 16  processors except  for the 
Fibonacci and  Pyramid dags  which do  not contain enough  
nodes  to support  16  processors. 

In the simulations of this section, the values establ ished 
by  Sarkar [22] are used  to descr ibe the execut ion times for 
simple operat ions (F,(I)) and  the time needed  to communicate 
a  value (F,). In particular, a  table of cost values is utilized to 
define the value of the function F,(lj) for each  instruction Ij. 
To  descr ibe the access time via the communicat ion structure, 
we let F, =  2*k*s. W e  consider three situations, depending 
on  values for k of 0.0, 0 .125 and  1  which correspond to 

fast, medium and  slow access times respectively. Examples 
of such communicat ion structures are channels for providing 
a  fast communicat ion structure, a  crossbar or omega  network 
providing a  medium speed structure and  a  unibus providing 
a  slow structure. The  parameter s descr ibes the size of the 
data value being transferred and  for fine grained schedul ing is 
assumed to be  4  bytes. 

As in previous work, [5], [25] we use various bandwidths 
(BW) to model  the content ion in the communicat ion structure. 
A value of 1  for BW descr ibes a  worst case communicat ion 
structure that allows only one  request to be  accepted per  cycle; 
a  value of ,/$ descr ibes a  multistage network such as  that pro- 
posed  by  Lang  [ 141;  and  finally, a  value of p  descr ibes the best 
case bandwidth where p  requests can be  accepted per  cycle. 

The  number  of connected components  in the dag  can also 
affect speedup.  For example, a  single connected component  
assigned to n  processors must include n  - 1  communicat ion 
pairs in the corresponding schedule. Moreover,  n  connected 

The  results of these simulation studies again show that 
in compar ison with the other methods, the PPS approach 
produces significantly better schedules. [16] W e  omit these 
results since they are similar in nature to those of the previous 
section and  present the simulation results for the PPS algorithm 
in Table III and  IV. These tables illustrate the speedup  obtained 

components  assigned to n  processors poses the possibility of by  execut ing the run-time schedules for Mat Mult and  FFT on  

linear speedup  if each  component  contains the same number  
of nodes  and  is assigned to a  different processor.  The  PPS 
algorithm was able to provide good  speedup  on  2  processors 
for programs that contain 2  or more connected components,  as  
can be  seen from Table I for Mat Mult, Dual Dag, Whetstone 
and  Liver-more. When  the dag  contains a  single connected 
component  and  has  an  average indegree larger than 1.25, the 
PPS algorithm was not able to provide significant speedup  
such as  with the Fibonacci and  pyramid dags.  

B. Simulation Results For Run-t ime Schedules 

In the previous section we evaluated the various methods by  
compar ing the lengths of the compile-time schedules they pro- 
duced.  While we believe that these compar isons provide a  very 
good  indication of the relative quality of the corresponding 
run-time schedules, it is true that the compile-time schedules 
provide only a  lower bound  on  the lengths of the run-time 
schedules for the given assignment of nodes  to processors. 
Further, there is no  reason to bel ieve that among  the heuristics 
that we consider, one  would be  any  more or less affected 
than another by  runtime factors such as  content ion in the 
communicat ion structure or the speed of the structure. 

Nonetheless, it seems appropriate to test these observat ions 
by  compar ing run-time schedules. Thus, in this section we 
simulate the execut ions of schedules produced by the various 
methods, on  architectures differing in communicat ion speed 
and  bandwidth. As noted in section 2, this is achieved by  
supplying the three parameters, F,(I), F,, and  BW, to a  simu- 
lator that we constructed using the process oriented simulation 
language Simcal. [ 171  
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TABLE III 
SPEEDUP FOR PPS ALGORITHM-MAT MULT 

2, 3, 4, 8  and  16  processors using a  fast, medium and  slow 
communicat ion structure with a  bandwidth of 1, Jir and  p. 

In analyzing the results shown in Tables III and  IV, recall 
from Table II, that the dag  for Mat Mult contains nine 
connected components,  and  that the dag  for FFT contains a  
small average indegree and  therefore few data dependencies.  
The  results in Tables III and  IV demonstrate that a  good  
speedup  can be  achieved for these two programs using a  fast 
communicat ion structure. Using a  medium speed structure, 
good  speedup  is also achieved if the bandwidth is fi or 
p. However,  if the bandwidth is the worst case value of 1, 
representat ive of a  unibus structure, the performance can de-  
grade with increasing number  of processors due  to content ion 
in the communicat ion structure. For the Mat Mult program 
executed on  a  mult iprocessor with a  medium speed unibus 
structure, the results in Table III show that speedup  increases 
form 1.58 on  2  processors to 1.92 on  3  processors, to 2.04 
on  4  processors and  to 2.40 on  8  processors. Speed up  on  16  
processors decreases from that achieved on  8  processors, from 
2.40 to 2.18. This phenomenon  whereby speedup  “levels off’ 
or decreases as  the number  of processors is increased from 
8  to 16  can be  observed in Tables III and  IV for all cases 
where the bandwidth is 1. Thus, for a  unibus communicat ion 
structure, increasing the number  of processors can produce 
more content ion and  a  longer run-time schedule. 

V. PERFORMANCEOFTHE PPS ALGOIUTHM 
ON A DATA GENERAL MULI-IPR~CESSOR 

As noted earlier, the PPS algorithm was implemented on  a  
Data General  AViiON shared memory mult iprocessor system 
[2] equ ipped with a  unibus communicat ion structure and  
two identical processors. The  send and  receive primitives 
were implemented using spin-lock operat ions on  unix shared 
variables [4]. In order to compare the results of these actual 
executions, with corresponding simulation results, we first 
conducted a  series of experiments to determine the average 
cost of the send and  receive primitives and  the cost of using the 
unibus communicat ion structure. These experiments revealed 
that a  send primitive requires approximately the same time to 
execute as  a  floating point multiplication, and  that a  receive 
primitive requires approximately twice as  long as  a  floating 
point multiplication (provided, of course, that the receive does  
not have  to wait). These values were utilized in setting the 
parameter F, for the simulation studies descr ibed below. 

The  result summarized in Table V indicate a  strong correla- 
tion between the simulation results and  the actual execut ions 
on  the Data General  multiprocessor. In Table V. the first 

SOS 

TABLEIV 
SPEEDUP FOR PPS ALGO~HM-FFI 

TABLE V 
COMPARISON OF SJMULATION WITH ACTUAL EXECUTION 

column lists the programs used in the experiments, the next 
three columns report the results of the simulations and  the 
last three columns report the results of the actual executions. 
For the simulations, the second and  third columns express the 
number  of cycles required to execute the test program on  1  and  
2  processors respectively. For the actual executions, the fifth 
and  sixth columns express the number  of seconds required to 
execute the test program 10,000 times; these experiments were 
conducted 1000  times and  the results reported are the averages.  
As a  particular instance, note that the simulation indicates 
that 54  cycles are required to execute the sequential code,  
and  that 60  cycles are required to execute the schedule for 2  
processors with a  resulting speedup  of 0.90 over the sequential 
executi0n.A speedup  of less than one  indicates that the parallel 
execut ion took longer than the sequential execut ion assuming 
machines with the same architectural configuration. For the 
actual execut ion of the Fibonacci program on  the Data General  
multiprocessor, an  average of 0.23 seconds were required for 
10000  iterations using 1  processor and  0.25 seconds were 
required for 10000  iterations using 2  processors producing 
a  speedup  of 0.88 over the sequential execution. .’ 

The  similarities in speedup  between the simulation and  
actual execut ion results are establ ished by  compar ing columns 
4  and  7. with the except ion of the Pyramid and  Livermore 
programs, the difference between these speedups  is never  more 
than 0.25. This is a  remarkably small difference, and  certainly 
validates the use  of the simulation approach in most instances. 

In addit ion to support ing the correlation between the sim- 
ulation results and  the actual execut ions on  a  Data General  
Multiprocessor, Table V also supports the conclusion that the 
PPS algorithm is able to provide very good  speedup  for pro- 
grams containing sufficient parallelism. Sufficient parallelism 
implies that the resulting dag  does  not contain a  large number  
of data dependenc ies (as expressed by  the average indegree 
for the edges),  and  has  enough  nodes  to support  all or most 
of the orocessors. 
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TABLE VI 
SIMULATIONS FOR 2, 3, 4, 8, AND 16  PROCESSORS USING 
PARAMETERS THAT DESCRIBE THE DATA GENERAL AViiON 

1 hiat MuIt 1 1.21 1 1.76 1 1.80 1 1.77 I 1.62 

TABLE VII 
SIMULATIONS FOR 2. 3, 4, 8, AND 16  PROCESSORS USING 
PARAMETERS THAT DESCRIBE A DATA GENERAL MACHINE 

F@UIPPED WITH AN OMEGA TYPE COMMUNICATIONS STRUCTURE 

Since the Data General  AViiON mult iprocessor at our  
installation is equ ipped with only two processors, we are not 
able to evaluate the performance of the PPS algorithm for 
actual execut ions of schedules using more than two processors. 
However,  simulations using parameters appropriate to the 
Data General  machine, produce the results shown in Table 
VI for execut ions on  2, 3, 4, 8, and  16  processors. These 
results suggest  that if the AViiON were to maintain its current 
configuration except  for the addit ion of more processors, 
no  significant speedup  would be  achieved by  using these 
additional processors. The  main bott leneck in the system is 
the unibus communicat ion structure. In fact, an  examinat ion 
of Table VI reveals the same “leveling off’ effect that was 
observed in Tables III and  IV for the case where a  unibus 
communicat ion structure is employed. The  lack of parallelism 
in the unibus communicat ion structure produces a  great deal 
of content ion when  accessing memory for load/stores and  for 
synchronizat ion with unix shared variables. 

On  the other hand,  if the Data General  were equipped 
with both a  larger number  of processors, and  an  omega  
type communicat ion structure that permitted fi processors 
to communicate simultaneously, then the speedups  shown in 
Table VII could be  achieved. These results show that the 
addit ion of the omega  network produces significant speedup  
using 4  processors for the Mat Mult, Dual Dag, Whetstone, 
FIT, and  Livermore programs. Of course, increasing the speed 
of the communicat ion structure and  providing architectural 
support  for the synchronizat ion primitives [l], [ 1  l] would 
produce even more dramatic results for increased numbers  of 
processors. 

VI. CONCLUSION 

W e  have  provided a  new approach for schedul ing a  se- 
quential instruction stream for execut ion “in parallel” on  
asynchronous multiprocessors. The  key idea in our  approach is 
to exploit the fine grained parallelism present in the instruc- 
tion stream. In this context, schedules are constructed by  a  

careful balancing of execut ion and  communicat ion costs at the 
level of individual instructions, and  their data dependencies.  
Our  approach was compared using both compile-time and  run- 
time schedules to methods adapted from existing (primarily, 
coarse grained) methods. These compar isons show that our  
method provides superior schedules to each  of the alternative 
methods. In addition, our  results support  the conclusion that 
if the mult iprocessor system incorporates a  communicat ion 
structure that allows fi or more processors to communicate 
simultaneously, then a  large degree of speedup  is achieved on  
2  to 16  processors by  using the PPS algorithm. 

In addit ion to the compile-time and  simulation studies, 
the PPS algorithm was implemented on  the Data General  
AViiON shared memory mult iprocessor system. Here, actual 
execut ions of PPS algorithm, generated schedules produce 
speedups  that closely correspond to those produced in our  
simulation studies ( those parameter ized to “model” the Data 
General  system). These results are encouraging for the devel- 
opment  of compile time techniques for schedul ing f ine-grained 
operations. 

APPENDIX 
A PROOF THAT APS IS NP-COMPLETE 

In this appendix  we provide the proof of Theorem 1. 
Namely, we show that asynchronous processor schedul ing 
(APS) is NP-complete, even  when  there are but two proces- 
sors. W e  begin by  recalling the definition: 
Asynchronous Processor Schedul ing (APS): 

Instance: A dag  and  a  value L. 
Question: Does there exist an  assignment of the nodes  of 

the dag  to 2  processors such that the length of the 
synchronized schedule does  not exceed L?  

Throughout  this appendix,  we use the term schedule to refer 
both to an  assignment and  to its corresponding schedule. The  
meaning of the term will be  clear from the context. 

To  show that APS is NP-complete, we note that it is easy to 
show that APS E NP, and  proceed directly to establishing that 
the following NP-complete problem is polynomially reducible 
to APS. 
3-partition problem [lo] (IPART): 
Input: Multiset A containing 3n  integers and  an  integer bound  
B >= 2, where B/4 < ai <  B/2 for all a; E A and  
Cf’z, ai =  Bn. 
Question: Is there a  partition of A into n  triples of three 
elements each  such that the sum of the integers in each  triple 
equals B?3 
Given an  instance of 3-PART, we construct an  instance of 
APS that consists of the following: 

l For each  ai in the instance of 3-PART, there is a  chain 
Ci of 2ai nodes,  (i.e., each  node  except  for the end  nodes  
has  a  unique parent and  a  unique child). The  first ai nodes  
in Ci are red nodes  and  the second ai nodes  are black 
nodes.  All of the nodes  in Ci are partition nodes.  

l There is a  chain of 2(B + 3)n nodes.  The  first B + 3  
nodes  are black, the second B + 3  nodes  are red, the third 

3Because the 3-partition problem is strongly NP-complete, a  reduction that 
is polynomial in the value of the numbers in the 3-partition problem instance 
is sufficient for a  proof of NP-completeness, 
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Fie. 6. Partial Schedule Construction. All of the nodes on Pl are red nodes and all of the nodes on P2 are black nodes. Rv 
indicates a receive and Sd indicates a send. 

B + 3 nodes are black, and so on, alternating colors in 
blocks of B + 3 nodes. All of the nodes in this chain are 
contour nodes. 

l There is a set of 6n additional red nodes and a set of 
6n additional black nodes. These are enforcer nodes, and 
there is an edge from each red enforcer node to each red 
partition or contour node. There is an edge from each 
black enforcer node to each black partition or contour 
node. Intuitively, the enforcer nodes will force all of the 
red nodes to execute on one processor and all of the black 
nodes to execute on the other processor. 

l L = 6n + 2(B + 3)n + 2n - 1 = 2Bn + 1472 - 1. 
Now suppose that there is a solution to the instance of 3- 

PART. A solution to APS is as fellows: Completely fill the 
first 6n time units of the schedule by placing all of the red 
enforcer nodes on one processor, say pr, and all of the black 
enforcer nodes on the other processor, pa. Next, schedule all 
of the red contour nodes on pl, and all of the black contour 
nodes on pa. Note that these contour nodes appear in groups 
of B+3 nodes, with the groups alternating between pr and pz. 
Thus, between successive groups of contour nodes, we insert 
a sendheceive pair to synchronize between the last red(black) 
node in a group and the first black(red) node in the next group. 
The partial schedule constructed to this point is shown in 
Figure 6. Clearly, the partition nodes must be scheduled in 
the portions where no tasks are currently scheduled. Note that 
these unscheduled portions of the schedule occur in blocks 
of size B + 3 and alternate between the two processors. 
Thus, we schedule the nodes in the Ci chains as follows: 
Suppose that in the solution to the instance of 3-PART, that 
ai, aj and ak fOrIll the hth element of that partition. Thus, 
ai + aj + ak = B. Then, in the hth unscheduled block on 
PI, we schedule the red nodes in C;, Cj and Ck, followed 
by three sends (one from the last red node in Ci to the 
first black node in Ci, etc.). And, in the hth unscheduled 
block on P2, we schedule the three corresponding receives, 
followed by the black nodes in Ci, Cj and Ck. Since each 
unscheduled block is of length B + 3, and we schedule exactly 
B nodes and 3 synchronizations per block, we have a valid 
schedule. 

Conversely, suppose that there is a solution to the con- 
structed instance of APS. We need to show that there also 
exists a solution to the instance of 3-PART. 

We begin by claiming that the APS schedule must be such 
that all of the red nodes are scheduled on one processor and 
that all of the black nodes are scheduled on the other processor. 
To see that this is the case, assume by way of contradiction 
that red nodes are scheduled on both processors. We consider 
two cases. 

1) Assume that each processor executes at least one red 
contour or partition node. Then, each processor will 
contain at least 6n sends and 6n receives to account 
for synchronization between the red enforcer nodes 
and the red contour and partition nodes. Since there 
are 4Bn + 18n nodes altogether, this implies that the 
schedule length is at least 2Bn + 15n > L, hence, a 
contradiction. Thus, all of the red contour and partition 
nodes are scheduled on one processor, and, similarly, all 
of the black contour and partition nodes are scheduled 
on the other processor. 

2) Assume that each processor executes at least one red 
enforcer node. Since from case 1, we know that all of 
the red contour and partition nodes are scheduled on one 
processor, this means that there are at least 2(B + 3)n 
sends and 2( B + 3) n receives between red enforcer 
nodes and red contour and partition nodes. Since there 
are 4Bn + 18n nodes altogether, this implies that the 
schedule length is at least 4Bn + 15n > L, hence, 
a contradiction. Thus, all of the red nodes (enforcer, 
contour and partition) are scheduled on one processor, 
and all of the black nodes are scheduled on the other 
processor. 

Since all of the red nodes are scheduled on one processor, 
say pl, and all of black nodes on the other processor (pa), it 
follows from the precedence constraints that, when considering 
only enforcer and contour nodes, the schedule must have the 
form shown in Fig. 6. That is, the enforcer nodes are scheduled 
in the first 6n time units. In time units 6n + 1 to L, the contour 
nodes alternate on the two processors in blocks of B + 3 nodes, 
with a single sendheceive pair being scheduled between each 
block of B + 3 nodes. This means that the partition nodes 
(and associated synchronizations) must be scheduled in the 
unused portions of the schedule shown in Fig. 6. Note that 
these unused portions can accommodate exactly 2(B + 3)n 
nodes and/or synchronization operations. Since there are 2Bn 
partition nodes and since, for each Ci, one send/receive pair 
is required between the last red node in Ci and the first black 
node in Ci (for a total of 3n sends and 3n receives), it follows 
that there is no idle time in the schedule, nor can any other 
synchronization be introduced. 

To complete the proof, we consider the first unused block 
Hz on p:! and consider which partition nodes could be sched- 
uled in that block. Note that since in the instance of 3-PART, 
each a; < B/2, there must exist partition nodes scheduled in 
Hz from three chains, say Ci , Cj and Ck. Could there be nodes 
from a fourth chain, say C,,? By way of contradiction, assume 
so. Then, since these partition nodes are black, it follows that 
all of the red nodes of Ci, Cj , Ck and Ch must be scheduled 
in HI, the first unused block on pl. Further, 4 sends must also 
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be  scheduled in HI. But, since each  ai >  B/4, it follows that 
the total number  of nodes  and  sends scheduled in HI exceeds 
B + 4. Since HI is of length B + 3, this is a  contradiction. 
Thus 

1) 

2) 

we have  the following. 
HI, contains all of the red nodes  of Ci, Cj and  Ck, a long 
with three sends.  It follows that ai +  aj +al, +  3  5  B + 3, 
hence,  ai +  aj +  ak  5  B. 
H2 contains black nodes  of Ci, Cj , and  Ck, a long with 
three receives, and  nothing else. Since the schedule is 
known to contain no  idle time, it follows that a; +  aj +  
ak  i- 3 >= B + 3, hence  ai +  aj +  ak  >= B. 

From these, we have  that a; +aj +ak = B. Thus, {ai, aj, ak} 
is one  element of the desired 3-partitions. A complete solution 
to 3-PART follows in an  inductive fashion. 
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