
498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5. MAY 1994

Scheduling DAG’ s for Asynchronous
Mu ltiprocessor Execution
Brian A. Malloy, Errol L. Lloyd, and Mary Lou Soffa

Abstract-A new approach is given for scheduling a sequential
instruction stream for execution ‘4n parallel” on asynchronous
multiprocessors. The key idea in our approach is to exploit the
fine grained parallelism present in the instruction stream. In
this context, schedules are constructed by a careful balancing
of execution and communicat ion costs at the level of individual
instructions, and their data dependencies. Three methods are
used to evaluate our approach. First, several existing methods
are extended to the fine grained situation considered here. Our
approach is then compared to these methods using both static
schedule length analyses, and slmulated executions of the sched-
uled code. In each instance, our method is found to provide
significantly shorter schedules. Second, by varying, parameters
such as the speed of the instruction set, and the speed/parallelism
in the interconnection structure, simulation techniques are used to
examine the effects of various architectural considerations on the
executions of the schedules. These results show that our approach
provides significant speedups in a wide-range of situations. Third,
schedules produced by our approach are executed on a two-
processor Data General shared memory multiprocessor system.
These experiments show that there is a strong correlation between
our simulation results (those parameterixed to “model” the Data
General system), and these actual executions, and thereby serve
to validate the slmulation studies. Together, our results establish
that fine grained parallelism can be exploited in a substantial
manner when scheduling a sequential instruction stream for
execution “ln parallel” on asynchronous multiprocessors.

Index Terms- Concurrency, parallelism, multiprocessor, line
grained parallelism, schedule, asynchronous.

I. INTRoDUC~~N

0 VER the past decade or so, changes in technology have
provided the possibility for vast increases in computa-

tional speed and power through the exploitation of parallelism
in program execution. Indeed, within certain computat ional
domains, these technological changes have permitted solutions
to computat ion intensive problems such as weather modeling,
image processing, Monte Carlo simulations and sparse matrix
problems. An important part of this technology has focused on
two approaches to parallelizing a sequential instruction stream:

1) exploiting fine grained parallelism, such as single state-
ments, for VLIW machines, [8] and

2) exploiting coarse grained parallelism, such as loops
and procedures, on vectorizable machines and on asyn-
chronous multiprocessors.

Manuscript received May 26, 1992; revised May 13, 1993.
B.A. Malloy is with the Department of Computer Science, Clemson

University, Clemson, SC 29634, USA. E-mail: malloy@cs. Clemson. edu.
E. L. Lloyd is with the Department of Information and Computer Sciences,

University of Delaware, Newark, DE 19716, USA. E-mail: el loyd@dewey.
udeledu.

M.L. Soffa is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260, USA. E-mail: soffa@cs.pitt.edu.

IEEE Log Number 9216779.

In the first approach, VLIW machines support the concurrent
execut ion of multiple instruction streams and perform many
operat ions per cycle. VLIW machines however, also employ
a single control unit, thereby permitting only one branch
to be executed per cycle. Furthermore, while the VLIW
architectures perform well on programs deal ing with scientific
applications, their per formance can degrade rapidly when
faced with factors that decrease run-time predictability. [27] In
particular, a l though general purpose programs typically have
an abundance of fine grained parallelism, it is difficult to
exploit that parallelism on a VLIW machine because general
purpose programs are much less predictable than scientific
applications. In the second approach, existing techniques for
asynchronous mult iprocessors produce schedules at the coarse
grained level. Due to their multiple control units, asynchronous
mult iprocessors have greater flexibility than VLIW machines.
Unfortunately, it is frequently the case that a program segment
may be unable to support coarse grained parallelism because it
does not contain any loops, or because the data dependenc ies in
its loops preclude such concurrentization. Thus, asynchronous
multiprocessors, currently present in many installations, are
frequently underuti l ized due to the absence of techniques to
exploit fine grained parallelism in an asynchronous manner.

In this paper we offer an alternative approach to the exploita-
tion of parallelism in programs by combining the fine grained
approach of the VLIW with the flexibility of the asynchronous
machine. In so doing, we thereby provide a mechanism by
which parallelism may be exploited in programs where factors
are predictable (such as scientific applications), as well as in
programs with unpredictable factors (such as general purpose
applications).

Thus, we focus on exploiting fine grained parallelism to
schedule a sequential instruction stream for execut ion on an
asynchronous mult iprocessor system. Recall the processors in
an asynchronous mult iprocessor execute independent ly and
that communicat ion is performed explicitly through asyn-
chronous communicat ion primitives. It follows that sched-
uling for such systems will necessari ly involve packing to-
gether fine grained operations, including synchronizat ion com-
mands, for execut ion on the individual processors. The dif-
ficulty in such schedul ing lies in balancing the desire to
utilize all of the processors, with the desire to minimize
the amount of synchronizat ion that is introduced by utilizing
different processors for operat ions having data dependen-
cies.

W e conclude this section by noting that a l though our work
is directed toward the parallelization of entire programs, the
focus of this paper is on the parallelization of straight line

10459219/94$04.00 0 1994 IEEE

MALLOY et al.: SCHEDULING DAG’s 499

code such as that found in a basic block.’ Although early
studies indicated that basic blocks of programs provide on
average only two or three instructions that can be executed
in parallel, [24] compiler techniques such as loop unrolling,
[7, 261 in-line substitution, [15] code duplication, [121 and
trace schedul ing [9] are now being employed resulting in a
significant increase in the size of basic blocks (currently, up
to 1000 instructions). These techniques have, in turn, vastly
increased the fine grained parallelism present in a basic block.
Throughout the remainder of this paper we focus exclusively
on schedul ing the instructions of a single basic block for
execut ion on asynchronous tightly coupled multiprocessors.

The remainder of this paper is organized as follows.
In the next section, we provide some specifics on the
computational/architectural model that is assumed in this work,
a long with a precise discussion of schedul ing in this context.
W e investigate the complexity of comput ing a fine grained
schedule under our model and conclude that the problem is
NP-complete. W e then discuss how several existing coarse
grained methods can be extended to the fine grained situation
considered here. In Section III, we present our approach, the
Preferred Path Selection algorithm (PPS), for fine grained
schedul ing on asynchronous multiprocessors. The remainder
of the paper is devoted to evaluating our approach. In Section
IV, we study the performance of our approach in relation to
the modif ied coarse grained methods descr ibed in Section II.
Here, compar isons are made using both static schedule length
analyses, and simulated execut ions of the scheduled code. In
each instance, our method is found to produce significantly
shorter schedules. In addition, these results show explicitly that
the approach scales to at least 16 processors when the commu-
nication structure provides sufficient parallelism. In Section
V, further simulation techniques are used to determine the
performance of the PPS algorithm for varying communicat ion
speeds and interconnection structure bandwidths, including the
model ing of the content ion in the communicat ion structure.
W e conclude that for fast or moderate communicat ion speeds
and bandwidths, the PPS algorithm can provide significant
speedup for dags containing sufficient parallelism. Finally, in
Section VI, schedules produced by our approach are executed
on a two-processor Data General AViiON shared memory
mult iprocessor system. [2] These experiments show that there
is a strong correlation between our simulation results (those
parameter ized to “model” the Data General AViiON system),
and these actual executions, and thereby serve to validate the
simulation studies.

Together, the simulations and actual execut ions establish
that fine grained parallelism can indeed be exploited in a
substantial manner when schedul ing a sequential instruction
stream for execut ion “in parallel” on asynchronous
multiprocessors.

II. MODELS, SCHEDULES AND RELATED WORK

In this section, we provide some specifics on the computa-
tional/architectural model that is assumed in this work, a long
with a precise discussion of schedul ing in this context.

’ A basic block is a sequence of instructions for which the only entrance is
through the first statement of the block, and the only exit is through the last
statement of the block.

A. The ComputationaUArchitectural Model
In order for us to accurately evaluate the quality of the

schedules that we produce, it is necessary that we be a bit
more precise about certain aspects of the system that we
utilize. In particular, we assume a mult iprocessor system M
that consists of p asynchronous identical processors, shared
global memory modules, and a communicat ion structure that
allows processors to communicate with other processors or
with the shared memory. W e assume that the mult iprocessor
system includes the standard primitives send and receive,
which are used for the synchronizat ion of processors. Because
of the kind of synchronizat ion required here (i.e., based on
data dependencies) , we assume that the send operat ion does
not require the invoker to wait until a corresponding receive
is executed. [6]

In conjunction with the above system, we employ three
parameters that, together, descr ibe the “speed” of the ar-
chitecture. The first is a function Fe(I) that returns the
number of cycles required to execute instruction I. The second
is a function F, = F, + F,, that indicates the number
of cycles needed for communicat ion of values through the
interconnection structure. By an interconnecfion structure or
communicat ion structure we mean hardware support such as
memory channels, [l] register channels [l l] or an intercon-
nect ion network [141 that provides support for communicat ion
of values. Here, the function F, is the access time needed to
traverse the communicat ion structure and F, is the number
of cycles a processor waits (due to contention) before it
can access a required value. The third parameter, BW, is
the bandwidth of the communicat ion structure or the num-
ber of processors that can simultaneously use the structure.
Content ion occurs when the number of processors vying to
communicate during a given cycle, exceeds BW. The simulator
used to obtain a variety of results descr ibed in Sections IV and
V, takes the parameters F,, F,, and BW as inputs.

In a port ion of what follows, we use an idealized version
of the above model to isolate the important issues involved
in fine grained schedul ing. In this UECC or uniform execut ion
and communicat ion cost model, the following condit ions hold:

1) Fe(l) = 1 for every instruction I,
2) F, = 1,
3) F, = 0,
4) BW = p,
5) synchronizat ion primitives Sdi and Rvi can execute in

the same cycle.
The first condit ion provides for the execut ion of any operat ion
in one cycle, and the second and third condit ions allow com-
munication through the interconnection structure in one cycle.
The fourth condit ion allows p processors to communicate
simultaneously without contention; such throughput might, for
example, be provided by a crossbar interconnection topology.
The fifth condit ion allows one cycle for each processor to
execute a communicat ion or synchronizat ion primitive. The
communicat ion primitive Sdi indicates that node i has com-
pleted execut ion and the primitive Rvi requires the execut ing
processor to wait until node i has completed execution.

Finally, as is standard practice, [3] we use a directed
acyclic graph (dag) G = (V, E), to represent the computat ion

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 5, MAY 1994

l)Az=O

Z)B:*1

3)C:=A+B

4)X-C

5)YrCIZ

6)Z:=X*Y

z
l

X
Y

:= I

C

it

+ 2

A
B :. :=

6

4 5

R 3

1 2

0 i

Tnne 1 7. 3 4 5 6 7

Fig. 1. A program segmentis pictured in the upper left hand corner with
acorresponding expression dag to the right of the program segment. To the
right of the expression dag is the corresponding task dag consisting of
nodescontaining numbers to represent the operations in the expressiondagand
edges to indicate data dependencies between nodes. A scheduleforthe task dag
is pictured at the bottom of the figure where nodes 1.3, 4 and 6 are assigned
to list Pl and nodes 2 and 5 are assignedtolist P2.

performed in a basic block. In such a dag, the nodes correspond
to computed values, and the acrs indicate data dependenc ies
between values. Thus, the children of a node are the values
used to compute the node. In the discussions that follows, we
view the dag as shown in Fig. 1, with the root node(s) at the
top of the figure. Levels in the dag are numbered from the
bottom up, with the bottom (lowest) level numbered level 1.

B. Schedul ing Dags
In this section we provide some general information and

background on the schedul ing of dags in the context of
asynchronous machines.

W e use the following general approach for schedul ing dags
on asynchronous machines. There are four phases. First, each
node of the dag is assigned to a particular processor. Second,
for each processor, a list is constructed of the nodes assigned
to that processor. In these lists, nodes appear in reverse
topological order (a node must appear in a list before any
of it’s parents). Furthermore, nodes are inserted into the lists
in the same order that they appear in the program; thus, if
statements 1, 2, and 5 are assigned to list Pl, then they appear
in the list in that order. Third, these lists are modif ied by
incorporating the required communicat ion primitives. Finally,
these lists are used to produce a schedule. Of these four phases,
phase one, the assignment of nodes to processors is the main
focus of this paper. Phase 2 is straight-forward and is not
d iscussed here. The remainder of this section is devoted to a
discussion of phases 3 and 4.

In phase 3, note that if two operat ions A and B are
connected with an arc in the dag (A being the parent of B), and
they are assigned to different processors, then communicat ion
primitives must be inserted. In particular, a send is inserted
immediately after B, and a receive is inserted immediately
before A. For example, in Fig. 1, node 3 is the parent of
node 2 and nodes 3 and 2 are assigned to different lists.
Ultimately, when producing a schedule, a send is inserted
immediately after node 2 in list P2, and a receive is inserted

Tlmc12345678 9 10

PI 1 Rvl Rq 3 Sd, 4 4 Rvs Rv~ 6

Pi? 2 Sd, m fi3 5 w

Fig. 2. A possible run-time schedule for the compile-t ime in Fig. 1. All
receive primitives required 2 t ime units to execute in the run-time schedule
while send primitives required 1 t ime unit. Also, operation 4 required 2 t ime
units to execute in the run-time schedule, possibly due to contention in the
communicat ion structure.

immediately before node 3 in list Pl. For the example in
Fig. 1, both the send and receive primitives are assigned to
the same time slot, but this need not necessari ly be the case.
Since the communicat ion primitives are asynchronous, even if
the send operat ion occurs in a time slot prior to the receive,
the processor that executes the send operat ion may cont inue
execution. Of course, if the receive operat ion occurs in a time
slot prior to the send operation, then the processor that issued
the receive must wait until the send is issued. [6]

In phase 4, a compile-time schedule is p roduced from the
lists of operat ions and communicat ion primitives. This is, of
course, a schedule which is constructed at compile time. W e
will also refer to a run-time schedule, which is what occurs in
an actual execut ion of the compile-time schedule. These two
kinds of schedules represent the distinction between what we
can model/predict and what actually occurs in a real execution,
respectively.

Both kinds of schedules are obtained in the obvious fashion:
the operat ions in list i are executed on processor i, and the
jth operat ion in a list executes only after the previous j-1
operat ions of the list have completed. Also, a receive operat ion
may execute no earlier then its corresponding send operat ion
(which is on another processor).2 Clearly this means that some
idle time may exist on the processor execut ing the receive. For
example, processor P2 is idle during time slot 3 in the schedule
shown in Fig. 1. In the compile-time schedule constructed
under the UECC model, each operat ion requires one time unit
to complete, and send and receive operat ions can occur in the
same time unit. The length of schedule S is equal to the latest
time slot dur ing which a node of G executes. For example, in
Fig. 1, the length of the schedule is 7. In a run-time schedule,
the time to execute any particular operat ion may vary due to
factors such as content ion in the communicat ion structure and
var iances in the actual processor speeds. For example, in Fig.
2, each of the receive operat ions required two time units while
the send operat ions required one time unit, possibly due to the
particular implementation of the synchronizat ion operat ions
by the mult iprocessors.

Clearly the most desirable approach to the code schedul ing
problem is to produce an assignment that results in an optimal
compile-time schedule. However, we establish that producing
such a schedule for our UECC model that includes both
execut ion and communicat ion cost is NP-complete, even if
there are only 2 processors. Recall the UECC model assumes
a mult iprocessor M with p identical processors that execute

‘In an actual execution, this is not exactly what occurs. Rather, if the
jth operation is a receive, then that receive executes immediately after the
complet ion of the j-1st operation. Further executions on that processor are
suspended until the corresponding send operation executes. This is equivalent
with respect to t ime to the “no earlier than the send,” requirement. W e use
that requirement to simplify explanations in later sections.

MALLOY et al.: SCHEDULING DAG’s 501

each instruction in one cycle and that a processor can commu-
nicate with another processor in one cycle. W e assume that no
processor has to wait to communicate with another processor
and that the p processors can communicate simultaneously.
Input to M is a dag G = (V, E) where edges in the dag
represent precedence constraints. Given nodes {u, r~} E V and
edge (u, u) E E, the cost for schedul ing u and v on different
processors is one unit since communicat ion in M is one cycle.
W e assume a cost of 0 if u and v are scheduled on the same
processor. Formally, as is the usual practice, the problem is
stated as a decision problem:
Asynchronous Processor Schedul ing (APS):
Instance: A dag and a value L.
Question: Does there exist an assignment of the nodes

of a dag to 2 processors such that the length of
the synchronized schedule does not exceed L?

Theorem: Asynchronous Processor Schedul ing (APS) is
NP-complete. (The proof is in the appendix.)

C. Adapting Existing Schedul ing Methods
Since the Asynchronous Processor Schedul ing problem is

NP-complete, we focus on heuristics for finding “good” as-
signments/schedules, rather than optimal ones. Our heuristic,
the Preferred Path Selection algorithm (PPS) is presented in
Section III. Sections IV and V are devoted to evaluating
the schedul ing method that we descr ibe in Section III. One
aspect of that evaluation is to compare our method to earlier
methods. Unfortunately, only the Early-Scheduling Method
[20] is a imed at precisely the problem that we consider
where communicat ion cost is included as part of the problem.
Nonetheless, it has been suggested that traditional task sched-
uling techniques might be extended in natural ways in order to
exploit fine grained parallelism. Two promising techniques are:

Critical Path, Most Immediate Successors First
(CP/MISF) [131
Internalization Prepass Approach [21]
Since all three of the above methods are a variation of

list schedul ing we begin with a brief discussion of how list
schedul ing can be used to produce schedules in the situation
that we study. W e then descr ibe each of the above three
methods and how they may be adapted to the fine grained
schedul ing problem that we consider.

Traditionally, list schedul ing has been used for schedul ing
task systems on synchronous mathines. The idea is as follows:

Given a priority List L of the nodes of G, the list schedule S
that corresponds to L can be constructed using the following
procedure:

1) Iteratively assign the elements of S to a processor,
starting at time slot 1 such that dur ing the ith step, L is
scanned from left to right, and the first ready node not
yet scheduled is chosen to be executed during available
time at slot i.

2) If no ready node is found or there is no available time
at time slot i, then cont inue at time slot i + 1.

In constructing list L, the first two phases of our method are
accomplished, assignment of nodes to a processor and con-
struction of a list of nodes to be executed by each processor.
The versions of list schedul ing algorithms can be dist inguished

by the method in which L is obtained. In critical path schedul-
ing, nodes at the lowest levels of the dag (farthest from a root
node) are inserted into L first. Since there can be more than
one node at a given level in the dag, a version of critical path
schedul ing called CP/MISF [131 (critical path/most immediate
successors first) attempts to establish a hierarchy among nodes
at the same level by assigning a higher priority to those with
more immediate successors.

To adapt list schedul ing in general, and CP/MISF in par-
ticular, to an asynchronous model, communicat ion primitives
must be inserted in an appropriate fashion to accomplish phase
three of our method. W e view the “schedule” produced by
a list schedul ing algorithm (such as CP/MISF) as merely an
assignment of operat ions to processors in a particular order.
Using these assignments, each node in S is examined to
determine if its successor(s) in the dag is scheduled on the
same processor. If a node in S has a successor assigned
to a different processor, then communicat ion primitives are
inserted in the appropriate lists.

The Early-Scheduling Method [20] represents an attempt
to include communicat ion cost in the determination of the
schedule. The algorithm maintains a list E containing unsched-
uled nodes that are ready for execut ion (eligible nodes), and
sequences sr through sp. Sequence si contains the nodes that
are already assigned to processor P;. The algorithm proceeds
iteratively as follows:

1) For each node z E E and each processor Pi E P =
{Pl,... , P,}, calculate the finish time of z on Pi in-
cluding insertion of communicat ion primitives if needed.

2) Let f be the earliest finish time of a node z from
1). Create set A containing all possible assignments of
eligible nodes to processors having finish time f.

3) Choose a node randomly from set A and assign it to
sequences Si.

After all of the nodes in the dag have been assigned to a
sequence si, sequence si is mapped to processor Pi. As in the
other list schedul ing approaches, communicat ion primitives are
inserted into si to produce an actual schedule.

The third method that we consider is the Internalization
Prepass Approach, [21], [23] which processes program graphs
which represent computat ion as dataflow graphs. This ap-
proach was not des igned for schedul ing dags (graphs whose
nodes represent operat ions) but rather for graphs whose nodes
represent structures contained in a program written in a func-
tional language. W e modify the Internalization Prepass Ap-
proach so that the nodes of the graph are operat ions and
include it as a compar ison with the PPS approach. The Inter-
nalization Prepass Approach attempts to minimize communi-
cation cost by internalizing (executing on the same processor)
nodes along the critical path. [21] The algorithm maintains
a list of blocks that initially contains 1 node per block and a
table DeltaCPL [i, j] that represents the decrease in the critical
path length obtained by merging blocks i and j. Blocks that
will result in a decrease in the critical path length are merged
until further mergers cannot reduce the critical path length. In
comput ing the critical path length, all nodes in the same block
are sequential ized since they will be assigned to the same
processor. After the internalization prepass, the approach uses

502 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

Done : = Fal%
Wblk NOT Done Da

Tbm BestNode : = such an unassigned chii of BestNode
Ebe BestNode : = any unassigned child of BestNodc,

i:=imodp+ I:

Fig. 3. The Preferred Path Selection algorithm (PPS).

a modified priority list scheduling algorithm to assign nodes to
processors with the modification that when a node is assigned
to a processor, all other nodes in the same block are assigned
to the same processor.

III. THE PREFERRED PATH SELECTION
ALGORITHM-AN INTEGRATED APPROACH

In this section, we describe our algorithm for the scheduling
of program dags on an asynchronous multiprocessor. Actually,
based on the discussion in the previous section, we limit the
discussion here to “phase l”--that is, to the assignment of
each node to some processor. Throughout this paper, we use
the term PPS to refer both to the entire algorithm and more
particularly, to this first step. Typically, the meaning will be
clear from the context.

As noted earlier, the key idea in assigning nodes to pro-
cessors, is to exploit the fine grained parallelism present in
the instruction stream by a careful balancing of execution and
communication costs at the level of individual instructions, and
in consideration of their data dependencies. Thus the algorithm
that we present incorporates the dag sfructure, as well as
communication costs in its computation of a schedule. In
particular, the algorithm attempts to minimize communication
costs by locating a path Li in the dag and assigning all of
the nodes on the path to the same processor P. Such a path,
by definition, represents a series of data dependencies, and by
scheduling the entire path for execution on a single processor,
the need for synchronization among the nodes on this path is
eliminated. Further, we attempt to maximize these savings in
communication costs, by insuring that in the construction of
Li for execution on processor P: 1) that nodes with a parent
unassigned or assigned to P, are preferred over those with
a parent assigned to a processor other than P; and 2) that
Li is maximal (i.e., it cannot be extended). The complete
algorithm is given in Fig. 3; an input of a dag G = (V, E)
and a multiprocessor with P processors is assumed.

To illustrate the manner in which the PPS algorithm assigns
nodes to processors, we use it to schedule the dag shown in
Fig. 4 on two processors. Here, the initial value of Ic is 3,
since node 1 is at level 3 and is unassigned. BestNode is also
node 1 since it has no parent. In the first iteration of the inner
While loop, node 1 is assigned to PI. In the next iteration of
this inner While loop, a child of node 1, say node 2, is chosen
as BestNode and is assigned to PI. In the next iteration of

Turn 1 2 3 4 5 6 7

PI 4 5 6 2 Bv, 3 1

Pl 7 g*, 9 10 8

Fig. 4. A sample dag and the corresponding schedule produced using the
PP.5 algorithm.

the inner loop, node 4 is assigned to PI and this inner loop
terminates since all children of node 4 are assigned. Thus,
path (1, 2,4) in the dag is assigned to PI. The PPS algorithm
continues execution in the outer While loop by updating i to 2
indicating that we are now assigning nodes to Pp,. The variable
Ic is also updated to 2, since nodes 3 and 8 are unassigned. As
execution continues at the top of the outer While loop, node 8
becomes BestNode since it has no parent and it is assigned to
P2. BestNode is then updated to 9, assigned to P2 in the inner
While loop and the inner loop terminates with path (8, 9) in
the dag assigned to P2. In the outer While loop i is updated to
1 and execution continues at the top of the outer loop where
Ic remains 2 and BestNode becomes 3 since its parent, node
1, is also assigned to PI. BestNode is assigned to PI and is
updated to a child of node 3, say node 6, in the inner loop and
the inner loop terminates with path (3, 6) in the dag assigned
to PI. The PPS algorithm continues until all nodes in the dag
are assigned. The schedule resulting from this assignment is
shown in Fig. 4.

IV. PERFORMANCE EVALUATION USING THE
COMPUTATIONALIARCHITECT~RAL MODEL

In this section we compare the performance of our approach
to the modified coarse grained methods described in Section
II. In the first portion of this section, we compare the lengths
of compile-time schedules produced by each of the methods.
These comparisons use the UECC model for numbers of
processors ranging from 2 through 16. These results show that
the PPS algorithm performs significantly better than any of
the other methods. Further, these results show that in absolute
terms, the performance of the PPS approach is quite good.
That is, for every number of processors in this range the
PPS algorithm is able to produce schedules which utilize
a significant amount of the parallelism provided by those
processors. In particular, these results show explicitly that the
approach scales to at least 16 processors, provided that the
communication structure provides sufficient parallelism. In the
second portion of this section we compare the performance
of the various methods using simulated executions of the
compile-time schedule. Recall from Section II that we refer
to these as the run-time schedules. Unlike the compile-time
schedule results, these simulations are not restricted to the
UECC model. Once again, the PPS algorithm is found to
provide significantly shorter schedules than the other methods.
In conjunction with these evaluations, we provide extensive
evaluations of the PPS approach under a range of architectural
assumptions including the modeling of the contention in
the communication structure. All of these results verify the

MALLOY ef al.: SCHEDULING DAG’s

TABLE I
PERFORMANCE EVALUATION (p = 2 PROCESSORS)

NC&S Headstics
hdas CP/MISF[Early(Pqmss~Rmdm~PPS

10 11 I 9 I 12 I 13 I 7

Fig. 5. A dag with a chain.

compile-time schedule results-namely that the PPS algorithm
is able to scale to 16 processors.

A. Compile-Time Schedule Compar isons
In this section, we compare the lengths of compile-time

schedules produced by each of the methods: CP/MISF,
Early-Scheduling Method, Internalization Prepass and PPS
algorithms. In addition, a Random assignment algorithm is
included to serve as a “control” for the compar ison of the
heuristics. This algorithm, assigns the nodes of a dag to pro-
cessors in a random fashion. The details of the implementation
are straight-forward and are left to the reader.

Finally, we note that in this section, all of the compar isons
were done using the UECC model. Results were obtained for
2,3,4,8, and 16 processors. In each instance, the results show
that the PPS algorithm performs significantly better than any
of the other methods.

The results of the evaluations on two processors are sum-
marized in Table 1 (the results for 3, 4, 8, and 16 processors
are similar and may be be found in [16]). For example,
Sample is a program whose corresponding dag contains 10
nodes as shown in Fig. 4. Applying CP/MISF to Sample
resulted in a compile-time schedule of length 11, while Early,
Prepass and Random produce schedule lengths of 9, 12, and 13
respectively. Applying the PPS algorithm to Sample resulted
in a schedule of length 7 as shown in Fig. 4.

To fully evaluate the heuristics, their per formance was
examined using a variety of dags as input, including dags
having long or wide topologies, duplication of similar patterns,
those having theoretical interest as well as those of practical
application. The number of nodes in the dags ranges from
10 to 203. In addit ion to program Sample discussed above,
Table I contains seven other test programs. The programs
Fibonacci and Mat Mult were obtained by using loop unroll ing
to compute the first ten Fibonacci numbers and to multiply
two 3 x 3 matrices. The program Pyramid is an example
of a grid. [19] m is a program whose dag is a complete
binary tree and Dual Dag is a program whose dag contains
duplicate components. Finally, the whetstone program was

503

obtained by unroll ing loops in four of the Whetstone modules
and Livermore is a program containing the first 20 iterations
of the first kernel of the Livemore loops. [181

From Table I, it is clear that in almost every instance,
our PPS algorithm produces significantly shorter schedules
than any of the other methods. W e believe that this superior
per formance of the PPS algorithm can be attributed primarily
to its focus on minimizing communicat ion costs, while the
earlier algorithms (all based on list schedul ing) attempt to
minimize processor idle time exclusively. To accomplish this,
the earlier algorithms focus primarily on execut ing nodes at the
lowest level first. Unfortunately, this strategy can schedule on
different processors, nodes that are all connected to a single
successor. Such a situation obviously requires a great deal
of communicat ion and therefore a longer schedule. A further
advantage of the PPS algorithm is that it incorporates the struc-
ture of the dag in comput ing the preferred path and by assign-
ing the entire path to a processor, the PPS approach maintains a
globaZview of the dag in its computat ion of a schedule. The ear-
lier list schedul ing algorithms utilize a much more localview,
in examining primarily, nodes on a single level to decide which
to schedule next. For example, the earlier algorithms may quite
easily assign the nodes of Fig. 4 in the following manner:
nodes 4, 6, 9, 2, and 8 to processor 1 and 5, 7, 10, 3, and 1 to
processor 2. By assigning nodes 4 and 5, 6, and 7, 9, and 10,
and 2 and 3, to different processors, communicat ion between
processors 1 and 2 is required, resulting in a schedule of length
11. For the PPS algorithm, nodes along the longest path are
assigned to the same processor (for example nodes 1, 2 and
4) and communicat ion is not required for any of these nodes.

The Internalization Prepass Approach produces excellent
results when appl ied to graphs that result from functional
programs, [21] since they typically produce long chains of
computat ions. However, the results in Table I indicate that the
Internalization Prepass Approach does not perform as well as
the PPS algorithm when appl ied to expression dags. This is
primarily due to the fact that the Prepass algorithm is only
able to internalize or merge a low percentage of the nodes that
occur in expression dags, in particular, those that lie a long a
chain such as nodes 1, 2, 3, and 4 in Fig. 5. To demonstrate
the merging of nodes, recall that the algorithm utilizes a table,
DeltaCPL [i, j], that represents the decrease in critical path
length that will result when nodes i and j are merged. [23]
DeltaCPL can be initialized with the loop, DeltaCPL [i, j] :=
or igCPL-newCPL, for all i # j; the algoi-ithm then merges
pairs of nodes with a positive DeltaCPL entry until all entries
are negative. Since one unit is required for node execut ion and
one unit for communicat ion, the critical path in Fig. 5 is 1,
2, 3, 4 with length 7. If nodes 1, 2, and 3 are merged, the
critical path length reduces to 5 since the path (i, 2, 3, 4) has
length 5 and the path (1, 2, 3, 5) also has length 5, where
nodes 2 and 3 must be executed on the same processor as 1.
No further merging is possible. For the dags in Table I, a low
percentage of nodes were merged and thus the Internalization
Prepass Approach gave results nearly identical to the other
local-view algorithms. For example, the Prepass merged none
of the nodes in Whetstone.

W e conclude this section by noting that the PPS algorithm
is able to provide speedup, not only for two processors (Table

SO4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

SCALABI~

TABLE II
OF THE PPs ALGOFCWHM

Piboo& 20 1.30 1 1.00 1.00
m 36 125 1 1.89 1.89
M8tMllt 120 123 9 3.53 54s
tGiz2te 107 137 lA2 1.43 13 2 2.74 1.98 3.26 1.98

FFr 127 0.99 1 6.13 8.64
Livamotc 203 1.30 20 634 9.67

I), but also for numbers of processors up to 16 (Table II).
Here, speedup is the ratio of the number of nodes in the dag
to the length of the compile-time schedule. When the speedup
is equal to the number of ass igned processors, then we say
that the speedup is linear. In the case of a dag containing
10 nodes, a schedule must have length 5 to provide linear
speedup for 2 processors. In our evaluations, the PPS algorithm
provided virtually linear speedup for FFI and Livermore on
8 processors, and was able to provide significant speedup for
programs containing sufficient parallelism. In particular, the
Fibonacci and Pyramid programs did not exper ience significant
speedup because their corresponding dags contain a large
number of data dependencies. The speedup provided by the
PPS algorithm for the test cases is summarized in Table II for
8 and 16 processors.

The results in Table II also indicate the factors that con-
tribute to the degree of parallelism contained in a dag. These
factors are:

1) the number of nodes in the dag;
2) the average indegree for each node, and
3) the number of connected components in the dag.

The number of nodes in the dag is important since, in the
extreme, it is impossible for the dag to support l inear speedup
when the number of ass igned processors is greater than the
number of nodes in the dag.

The average indegree of a dag is the ratio of the total
number of edges entering nodes to the total number of nodes,

Avg Indegree =
Number of edges entering a node

Total number of nodes ’
For example, in Fig. 4 nodes 2, 3, 8, and 1 have indegree 2
while nodes 4, 5, 6, 7, 9, and 10 have indegree 0. The average
indegree of a dag indicates the number of uses of computed
values and therefore indicates possible synchronizat ion points
that can increase the length of the computed schedule. Table
II correlates the average indegree with the ability of the PPS
algorithm to provide good speedup. As the average indegree
increases from 1 to 2, the speedup for 8 and 16 processors
decreases so that for Whetstone and Dual Dags the PPS
algorithm did not scale for 8 processors and performance did
not improve when the number of processors was doubled to 16.
When the average indegree approaches 1, the PPS algorithm
provided significant speedup for 16 processors except for the
Fibonacci and Pyramid dags which do not contain enough
nodes to support 16 processors.

In the simulations of this section, the values establ ished
by Sarkar [22] are used to descr ibe the execut ion times for
simple operat ions (F,(I)) and the time needed to communicate
a value (F,). In particular, a table of cost values is utilized to
define the value of the function F,(lj) for each instruction Ij.
To descr ibe the access time via the communicat ion structure,
we let F, = 2*k*s. W e consider three situations, depending
on values for k of 0.0, 0 .125 and 1 which correspond to

fast, medium and slow access times respectively. Examples
of such communicat ion structures are channels for providing
a fast communicat ion structure, a crossbar or omega network
providing a medium speed structure and a unibus providing
a slow structure. The parameter s descr ibes the size of the
data value being transferred and for fine grained schedul ing is
assumed to be 4 bytes.

As in previous work, [5], [25] we use various bandwidths
(BW) to model the content ion in the communicat ion structure.
A value of 1 for BW descr ibes a worst case communicat ion
structure that allows only one request to be accepted per cycle;
a value of ,/$ descr ibes a multistage network such as that pro-
posed by Lang [141; and finally, a value of p descr ibes the best
case bandwidth where p requests can be accepted per cycle.

The number of connected components in the dag can also
affect speedup. For example, a single connected component
assigned to n processors must include n - 1 communicat ion
pairs in the corresponding schedule. Moreover, n connected

The results of these simulation studies again show that
in compar ison with the other methods, the PPS approach
produces significantly better schedules. [16] W e omit these
results since they are similar in nature to those of the previous
section and present the simulation results for the PPS algorithm
in Table III and IV. These tables illustrate the speedup obtained

components assigned to n processors poses the possibility of by execut ing the run-time schedules for Mat Mult and FFT on

linear speedup if each component contains the same number
of nodes and is assigned to a different processor. The PPS
algorithm was able to provide good speedup on 2 processors
for programs that contain 2 or more connected components, as
can be seen from Table I for Mat Mult, Dual Dag, Whetstone
and Liver-more. When the dag contains a single connected
component and has an average indegree larger than 1.25, the
PPS algorithm was not able to provide significant speedup
such as with the Fibonacci and pyramid dags.

B. Simulation Results For Run-t ime Schedules

In the previous section we evaluated the various methods by
compar ing the lengths of the compile-time schedules they pro-
duced. While we believe that these compar isons provide a very
good indication of the relative quality of the corresponding
run-time schedules, it is true that the compile-time schedules
provide only a lower bound on the lengths of the run-time
schedules for the given assignment of nodes to processors.
Further, there is no reason to bel ieve that among the heuristics
that we consider, one would be any more or less affected
than another by runtime factors such as content ion in the
communicat ion structure or the speed of the structure.

Nonetheless, it seems appropriate to test these observat ions
by compar ing run-time schedules. Thus, in this section we
simulate the execut ions of schedules produced by the various
methods, on architectures differing in communicat ion speed
and bandwidth. As noted in section 2, this is achieved by
supplying the three parameters, F,(I), F,, and BW, to a simu-
lator that we constructed using the process oriented simulation
language Simcal. [171

MALLOY et al.: SCHEDULING DAG’s

TABLE III
SPEEDUP FOR PPS ALGORITHM-MAT MULT

2, 3, 4, 8 and 16 processors using a fast, medium and slow
communicat ion structure with a bandwidth of 1, Jir and p.

In analyzing the results shown in Tables III and IV, recall
from Table II, that the dag for Mat Mult contains nine
connected components, and that the dag for FFT contains a
small average indegree and therefore few data dependencies.
The results in Tables III and IV demonstrate that a good
speedup can be achieved for these two programs using a fast
communicat ion structure. Using a medium speed structure,
good speedup is also achieved if the bandwidth is fi or
p. However, if the bandwidth is the worst case value of 1,
representat ive of a unibus structure, the performance can de-
grade with increasing number of processors due to content ion
in the communicat ion structure. For the Mat Mult program
executed on a mult iprocessor with a medium speed unibus
structure, the results in Table III show that speedup increases
form 1.58 on 2 processors to 1.92 on 3 processors, to 2.04
on 4 processors and to 2.40 on 8 processors. Speed up on 16
processors decreases from that achieved on 8 processors, from
2.40 to 2.18. This phenomenon whereby speedup “levels off’
or decreases as the number of processors is increased from
8 to 16 can be observed in Tables III and IV for all cases
where the bandwidth is 1. Thus, for a unibus communicat ion
structure, increasing the number of processors can produce
more content ion and a longer run-time schedule.

V. PERFORMANCEOFTHE PPS ALGOIUTHM
ON A DATA GENERAL MULI-IPR~CESSOR

As noted earlier, the PPS algorithm was implemented on a
Data General AViiON shared memory mult iprocessor system
[2] equ ipped with a unibus communicat ion structure and
two identical processors. The send and receive primitives
were implemented using spin-lock operat ions on unix shared
variables [4]. In order to compare the results of these actual
executions, with corresponding simulation results, we first
conducted a series of experiments to determine the average
cost of the send and receive primitives and the cost of using the
unibus communicat ion structure. These experiments revealed
that a send primitive requires approximately the same time to
execute as a floating point multiplication, and that a receive
primitive requires approximately twice as long as a floating
point multiplication (provided, of course, that the receive does
not have to wait). These values were utilized in setting the
parameter F, for the simulation studies descr ibed below.

The result summarized in Table V indicate a strong correla-
tion between the simulation results and the actual execut ions
on the Data General multiprocessor. In Table V. the first

SOS

TABLEIV
SPEEDUP FOR PPS ALGO~HM-FFI

TABLE V
COMPARISON OF SJMULATION WITH ACTUAL EXECUTION

column lists the programs used in the experiments, the next
three columns report the results of the simulations and the
last three columns report the results of the actual executions.
For the simulations, the second and third columns express the
number of cycles required to execute the test program on 1 and
2 processors respectively. For the actual executions, the fifth
and sixth columns express the number of seconds required to
execute the test program 10,000 times; these experiments were
conducted 1000 times and the results reported are the averages.
As a particular instance, note that the simulation indicates
that 54 cycles are required to execute the sequential code,
and that 60 cycles are required to execute the schedule for 2
processors with a resulting speedup of 0.90 over the sequential
executi0n.A speedup of less than one indicates that the parallel
execut ion took longer than the sequential execut ion assuming
machines with the same architectural configuration. For the
actual execut ion of the Fibonacci program on the Data General
multiprocessor, an average of 0.23 seconds were required for
10000 iterations using 1 processor and 0.25 seconds were
required for 10000 iterations using 2 processors producing
a speedup of 0.88 over the sequential execution. .’

The similarities in speedup between the simulation and
actual execut ion results are establ ished by compar ing columns
4 and 7. with the except ion of the Pyramid and Livermore
programs, the difference between these speedups is never more
than 0.25. This is a remarkably small difference, and certainly
validates the use of the simulation approach in most instances.

In addit ion to support ing the correlation between the sim-
ulation results and the actual execut ions on a Data General
Multiprocessor, Table V also supports the conclusion that the
PPS algorithm is able to provide very good speedup for pro-
grams containing sufficient parallelism. Sufficient parallelism
implies that the resulting dag does not contain a large number
of data dependenc ies (as expressed by the average indegree
for the edges), and has enough nodes to support all or most
of the orocessors.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

TABLE VI
SIMULATIONS FOR 2, 3, 4, 8, AND 16 PROCESSORS USING
PARAMETERS THAT DESCRIBE THE DATA GENERAL AViiON

1 hiat MuIt 1 1.21 1 1.76 1 1.80 1 1.77 I 1.62

TABLE VII
SIMULATIONS FOR 2. 3, 4, 8, AND 16 PROCESSORS USING
PARAMETERS THAT DESCRIBE A DATA GENERAL MACHINE

F@UIPPED WITH AN OMEGA TYPE COMMUNICATIONS STRUCTURE

Since the Data General AViiON mult iprocessor at our
installation is equ ipped with only two processors, we are not
able to evaluate the performance of the PPS algorithm for
actual execut ions of schedules using more than two processors.
However, simulations using parameters appropriate to the
Data General machine, produce the results shown in Table
VI for execut ions on 2, 3, 4, 8, and 16 processors. These
results suggest that if the AViiON were to maintain its current
configuration except for the addit ion of more processors,
no significant speedup would be achieved by using these
additional processors. The main bott leneck in the system is
the unibus communicat ion structure. In fact, an examinat ion
of Table VI reveals the same “leveling off’ effect that was
observed in Tables III and IV for the case where a unibus
communicat ion structure is employed. The lack of parallelism
in the unibus communicat ion structure produces a great deal
of content ion when accessing memory for load/stores and for
synchronizat ion with unix shared variables.

On the other hand, if the Data General were equipped
with both a larger number of processors, and an omega
type communicat ion structure that permitted fi processors
to communicate simultaneously, then the speedups shown in
Table VII could be achieved. These results show that the
addit ion of the omega network produces significant speedup
using 4 processors for the Mat Mult, Dual Dag, Whetstone,
FIT, and Livermore programs. Of course, increasing the speed
of the communicat ion structure and providing architectural
support for the synchronizat ion primitives [l], [1 l] would
produce even more dramatic results for increased numbers of
processors.

VI. CONCLUSION

W e have provided a new approach for schedul ing a se-
quential instruction stream for execut ion “in parallel” on
asynchronous multiprocessors. The key idea in our approach is
to exploit the fine grained parallelism present in the instruc-
tion stream. In this context, schedules are constructed by a

careful balancing of execut ion and communicat ion costs at the
level of individual instructions, and their data dependencies.
Our approach was compared using both compile-time and run-
time schedules to methods adapted from existing (primarily,
coarse grained) methods. These compar isons show that our
method provides superior schedules to each of the alternative
methods. In addition, our results support the conclusion that
if the mult iprocessor system incorporates a communicat ion
structure that allows fi or more processors to communicate
simultaneously, then a large degree of speedup is achieved on
2 to 16 processors by using the PPS algorithm.

In addit ion to the compile-time and simulation studies,
the PPS algorithm was implemented on the Data General
AViiON shared memory mult iprocessor system. Here, actual
execut ions of PPS algorithm, generated schedules produce
speedups that closely correspond to those produced in our
simulation studies (those parameter ized to “model” the Data
General system). These results are encouraging for the devel-
opment of compile time techniques for schedul ing f ine-grained
operations.

APPENDIX
A PROOF THAT APS IS NP-COMPLETE

In this appendix we provide the proof of Theorem 1.
Namely, we show that asynchronous processor schedul ing
(APS) is NP-complete, even when there are but two proces-
sors. W e begin by recalling the definition:
Asynchronous Processor Schedul ing (APS):

Instance: A dag and a value L.
Question: Does there exist an assignment of the nodes of

the dag to 2 processors such that the length of the
synchronized schedule does not exceed L?

Throughout this appendix, we use the term schedule to refer
both to an assignment and to its corresponding schedule. The
meaning of the term will be clear from the context.

To show that APS is NP-complete, we note that it is easy to
show that APS E NP, and proceed directly to establishing that
the following NP-complete problem is polynomially reducible
to APS.
3-partition problem [lo] (IPART):
Input: Multiset A containing 3n integers and an integer bound
B >= 2, where B/4 < ai < B/2 for all a; E A and
Cf’z, ai = Bn.
Question: Is there a partition of A into n triples of three
elements each such that the sum of the integers in each triple
equals B?3
Given an instance of 3-PART, we construct an instance of
APS that consists of the following:

l For each ai in the instance of 3-PART, there is a chain
Ci of 2ai nodes, (i.e., each node except for the end nodes
has a unique parent and a unique child). The first ai nodes
in Ci are red nodes and the second ai nodes are black
nodes. All of the nodes in Ci are partition nodes.

l There is a chain of 2(B + 3)n nodes. The first B + 3
nodes are black, the second B + 3 nodes are red, the third

3Because the 3-partition problem is strongly NP-complete, a reduction that
is polynomial in the value of the numbers in the 3-partition problem instance
is sufficient for a proof of NP-completeness,

MALLOY et al.: SCHEDULING DAG’s 507

- B+3 - - B+3 - -W

Pl 61 enforca nodes Rv B+3 cmtournode.s Sd Rv B+3cmtou1 nodes .,.

P2 &r enforcer nodes B+3 contour nodes Sd Rv B+3 contour nodes Sd

+ B+3 -f- B+3 -

Fie. 6. Partial Schedule Construction. All of the nodes on Pl are red nodes and all of the nodes on P2 are black nodes. Rv
indicates a receive and Sd indicates a send.

B + 3 nodes are black, and so on, alternating colors in
blocks of B + 3 nodes. All of the nodes in this chain are
contour nodes.

l There is a set of 6n additional red nodes and a set of
6n additional black nodes. These are enforcer nodes, and
there is an edge from each red enforcer node to each red
partition or contour node. There is an edge from each
black enforcer node to each black partition or contour
node. Intuitively, the enforcer nodes will force all of the
red nodes to execute on one processor and all of the black
nodes to execute on the other processor.

l L = 6n + 2(B + 3)n + 2n - 1 = 2Bn + 1472 - 1.
Now suppose that there is a solution to the instance of 3-

PART. A solution to APS is as fellows: Completely fill the
first 6n time units of the schedule by placing all of the red
enforcer nodes on one processor, say pr, and all of the black
enforcer nodes on the other processor, pa. Next, schedule all
of the red contour nodes on pl, and all of the black contour
nodes on pa. Note that these contour nodes appear in groups
of B+3 nodes, with the groups alternating between pr and pz.
Thus, between successive groups of contour nodes, we insert
a sendheceive pair to synchronize between the last red(black)
node in a group and the first black(red) node in the next group.
The partial schedule constructed to this point is shown in
Figure 6. Clearly, the partition nodes must be scheduled in
the portions where no tasks are currently scheduled. Note that
these unscheduled portions of the schedule occur in blocks
of size B + 3 and alternate between the two processors.
Thus, we schedule the nodes in the Ci chains as follows:
Suppose that in the solution to the instance of 3-PART, that
ai, aj and ak fOrIll the hth element of that partition. Thus,
ai + aj + ak = B. Then, in the hth unscheduled block on
PI, we schedule the red nodes in C;, Cj and Ck, followed
by three sends (one from the last red node in Ci to the
first black node in Ci, etc.). And, in the hth unscheduled
block on P2, we schedule the three corresponding receives,
followed by the black nodes in Ci, Cj and Ck. Since each
unscheduled block is of length B + 3, and we schedule exactly
B nodes and 3 synchronizations per block, we have a valid
schedule.

Conversely, suppose that there is a solution to the con-
structed instance of APS. We need to show that there also
exists a solution to the instance of 3-PART.

We begin by claiming that the APS schedule must be such
that all of the red nodes are scheduled on one processor and
that all of the black nodes are scheduled on the other processor.
To see that this is the case, assume by way of contradiction
that red nodes are scheduled on both processors. We consider
two cases.

1) Assume that each processor executes at least one red
contour or partition node. Then, each processor will
contain at least 6n sends and 6n receives to account
for synchronization between the red enforcer nodes
and the red contour and partition nodes. Since there
are 4Bn + 18n nodes altogether, this implies that the
schedule length is at least 2Bn + 15n > L, hence, a
contradiction. Thus, all of the red contour and partition
nodes are scheduled on one processor, and, similarly, all
of the black contour and partition nodes are scheduled
on the other processor.

2) Assume that each processor executes at least one red
enforcer node. Since from case 1, we know that all of
the red contour and partition nodes are scheduled on one
processor, this means that there are at least 2(B + 3)n
sends and 2(B + 3) n receives between red enforcer
nodes and red contour and partition nodes. Since there
are 4Bn + 18n nodes altogether, this implies that the
schedule length is at least 4Bn + 15n > L, hence,
a contradiction. Thus, all of the red nodes (enforcer,
contour and partition) are scheduled on one processor,
and all of the black nodes are scheduled on the other
processor.

Since all of the red nodes are scheduled on one processor,
say pl, and all of black nodes on the other processor (pa), it
follows from the precedence constraints that, when considering
only enforcer and contour nodes, the schedule must have the
form shown in Fig. 6. That is, the enforcer nodes are scheduled
in the first 6n time units. In time units 6n + 1 to L, the contour
nodes alternate on the two processors in blocks of B + 3 nodes,
with a single sendheceive pair being scheduled between each
block of B + 3 nodes. This means that the partition nodes
(and associated synchronizations) must be scheduled in the
unused portions of the schedule shown in Fig. 6. Note that
these unused portions can accommodate exactly 2(B + 3)n
nodes and/or synchronization operations. Since there are 2Bn
partition nodes and since, for each Ci, one send/receive pair
is required between the last red node in Ci and the first black
node in Ci (for a total of 3n sends and 3n receives), it follows
that there is no idle time in the schedule, nor can any other
synchronization be introduced.

To complete the proof, we consider the first unused block
Hz on p:! and consider which partition nodes could be sched-
uled in that block. Note that since in the instance of 3-PART,
each a; < B/2, there must exist partition nodes scheduled in
Hz from three chains, say Ci , Cj and Ck. Could there be nodes
from a fourth chain, say C,,? By way of contradiction, assume
so. Then, since these partition nodes are black, it follows that
all of the red nodes of Ci, Cj , Ck and Ch must be scheduled
in HI, the first unused block on pl. Further, 4 sends must also

508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

be scheduled in HI. But, since each ai > B/4, it follows that
the total number of nodes and sends scheduled in HI exceeds
B + 4. Since HI is of length B + 3, this is a contradiction.
Thus

1)

2)

we have the following.
HI, contains all of the red nodes of Ci, Cj and Ck, a long
with three sends. It follows that ai + aj +al, + 3 5 B + 3,
hence, ai + aj + ak 5 B.
H2 contains black nodes of Ci, Cj , and Ck, a long with
three receives, and nothing else. Since the schedule is
known to contain no idle time, it follows that a; + aj +
ak i- 3 >= B + 3, hence ai + aj + ak >= B.

From these, we have that a; +aj +ak = B. Thus, {ai, aj, ak}
is one element of the desired 3-partitions. A complete solution
to 3-PART follows in an inductive fashion.

ACKNOWLEDGMENT

This work was partially motivated by suggest ions from R.
Melhem. The authors wish to thank the referees for their
constructive comments. B. Simons provided this version for
the NP-completeness proof; our original proof, found in [161,
is based on a reduct ion for 3-SAT. F. Harris implemented the
PPS technique on the Data General machine and obtained the
statistics in Table V. Thanks to M. Smotherman and W. Madi-
son for their insights into the Data General multiprocessor.

REFERENCES

[II

PI

[31

[41

PI

WI

171

PI

[91

HOI

Ull

WI

r131

1141

[W

U61

u71

[181

“Parallel MIMD Computat ion: HEP Supercomputer & Its Applications,”
Scientific Computat ion Series. Cambridge, MA: MIT Press, 1985.
Installing and Managing the DG/UX System, Data General Corporation,
1990.
A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Techniques
and Tools . Reading, MA: Addison-Wesley, 1986.
M. J. Bach, The Design of the Unix Operating System. Englewood
Cliffs, NJ: Prentice-Hall, 1986.
Z. Cvetanovic, ‘The effects of problem partitioning, allocation, and
granularity on the performance of multi-processor system,” IEEE Trans.
?ompur., -vol. C-3& no. 4, Apr. 1987. - -
A. Dinning, “A survey of synchronization methods for parallel comput-
ers,” Comput., pp. 66-76, July 1989.
J. J. Dongarra and A. R. Jinds, “Unroll ing loops in Fortran,” SoJlware
Practice and Experience. pp. 2 19-226, Mar. 1979.
J. R. Ellis, Bulklog: A Compiler for VLIW Architectures. Cambridge,
MA: MIT Press, 1986.
J. Fisher, “Trace scheduling: A technique for global microcode com-
paction,” IEEE Trans. Cornput., vol. C-30, no. 7, July 1981.
M. R. Garey and D. S. Johnson, Compurers and Inrractability, A guide
to the Theory of NP-Completness. San Francisco: Freeman, 1979.
R. Gupta, “Employing register channels for the exploitation of instruc-
tion level pa&e&m:’ presented at the Second AeM SIGPLAN Symp.
Principles and Practice of Parallel Programming, Seattle Washington,
Mar. 1990.
W.-C. Hsu, C. N. Fischer, and J. R. Goodman, “On the minimization
of loads/stores in local register allocation,” IEEE Trans. Sojiware Eng.,
vol. 15, pp. 1252-1260, Oct. 1989.
H. Kasahara and S. Narita, “Practical multiprocessor schedul ing algo-
rithms for efficient parallel processing,” IEEE Trans. Compul., vol. C-33,
no. 11, pp. 1023-1029, Nov. 1984.
T. Lang, “Interconnections between processors and memory modules
using the shuff le-exchange network,” IEEE Trans. Cornput, vol. C-25,
no. 5, May 1976.
M. D. MacLaren, “Inline routines in VAXELN Pascal,” in Proc. ACM
SIGPLAN Symp. Compiler Consmruction. vol. 19, no. 6. June 1984.
B. Malloy, E. L. Lloyd and M. L. Soffa, “Fine grained schedul ing of
asynchronous multiprocessors in NP-complete,” Tech. Rep. # 89-23,
Dec. 1989.
B. Malloy and M. L. Soffa, “Conversion of simulation processes to
Pascal constructs,” Sofhvare-Practice and Experience, vol. 20, no. 2,
pp. 191-207, Feb. 1990.
F. H. McMohan, “FORTRAN CPU performance analysis,” Lawrence
Livermore Laboratories, 1972.

u91

W I

1211

WI

[251

WI

~271 .

C. H. Papadimitr iou and J. D. Ullman, “A communication-t ime trade-
off,” Siam J. Computing, vol. 16, no. 4, Aug. 1987.
T. L. Rodeheffer, “Compil ing ordinary programs for executing on
an asynchronous multiprocessor,” Tech. Rep. No. CMU-CS-85-155,
Carnegie Mel lon Univ., 1985.
V. Sarkar and J. Hennessy, “Compi le t ime partitioning and schedul ing of
parallel programs,” in Sigplan Symp. on Compiler Consrruction, 1986,
pp. 17-26.
V. Sarkar, “Partitioning and schedul ing parallel programs for execution
on multiprocessors,” Tech. Rep. no. CSL-TR-87-328, Standford Univ.,
Apr. 1987.
-, Private Communicat ion, Dec. 8, 1989.
G. S. T jaden and M. J. Flynn, “Detection and parallel execution of
independent instructions,” IEEE Trans. Cornput, vol. 19, no. 10, pp.
889-895, Oct. 1970.
D. Vrsalovic, D. Seiwiorek, Z. Segall. and E. Gehringer, “Performance
prediction and calibration for a class of multiprocessors,” IEEE Trans.
Compur., vol. 37, no. 11, Nov. 1988.
S. Weiss and J. E. Smith, “A study of scalar compilation techniques for
pipel ined supercomputers,” in Second Int. Conf: Architectural Support
for Programming Languages and Operating Syst., Oct. 1987.
A. Wolfe and J. Shen, “A variable instruction stream extension to
the VLIW architecture,” in Forth Int. Con& Architectural Support for
Programming Languages and Operating Syst., Apr. 1991, pp. 2-14.

B.A. Malloy received the B.S. degree in mathe-
matics from LaSalle University in Philadelphia, M.
Ed. in counselor education, and M.S. and Ph.D. in
computer science from the University of Pittsburgh.

He is currently an Assistant Professor at Clemson
University. His research interests include program-
ming language design and implementation, imple-
mentat ion of parallelism, simulation model ing and
software maintenance.

E. L. Lloyd received B.S. degrees in both computer
science and mathematics from the Pennsylvania
State University in 1975, and the S.M. and Ph.D.
degrees in computer science from the Massachusetts
Institute of Technology in 1977 and 1980, respec-
tively.

He is presently an Associate Professor in the
Computer and Information Science Department of
the University of Delaware. Earlier, he had been an
Associate Professor at the University of Pittsburgh
(1980-1988). and served as Program Director for . __. .-. the Computer and Computat ion Theory Program at the NattOnal Saence

Foundat ion (1988-1989). His research interests are in the design and analysis
of algorithms, with a particular emphasis on approximation algorithms for
NP-hard problems.

Dr. Lloyd has publ ished numerous journal and conference papers. He is a
member of the IEEE Computer Society and the Association for Comput ing
Machinery.

Dr. Soffa currently
on Programming Lang
ENGINEERING, and Intt
Languages.

M.L. Soffa received the Ph.D. degree in com-
puter science from the University of Pittsburgh in
1977.

Since that time, she has been a faculty member
at the University of Pittsburgh and is currently
a Professor in the Computer Science Department.
Since 1991, she has been also serving as the Dean
of Graduate Studies in Arts and Sciences at Pitt. Her
research interests include language implementation,
parallelizing compilers, program analysis, and soft-
ware tools.

serves on the editorial boards of ACM Transacrions
:uages and Systems, IEEE TRANSACTIONS ON SOFTWARE
vnational Journal of Parallel Programming, Computer

