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Much of the software in everyday operation is not making optimal use of the hardware on which it
actually runs. Among the reasons for this discrepancy are hardware/software mismatches, modular-
ization overheads introduced by software engineering considerations, and the inability of systems
to adapt to users’ behaviors.

A solution to these problems is to delay code generation until load time. This is the earliest
point at which a piece of software can be fine-tuned to the actual capabilities of the hardware on
which it is about to be executed, and also the earliest point at wich modularization overheads can
be overcome by global optimization.

A still better match between software and hardware can be achieved by replacing the already
executing software at regular intervals by new versions constructed on-the-fly using a background
code re-optimizer. This not only enables the use of live profiling data to guide optimization decisions,
but also facilitates adaptation to changing usage patterns and the late addition of dynamic link
libraries.

This paper presents a system that provides code generation at load-time and continuous pro-
gram optimization at run-time. First, the architecture of the system is presented. Then, two
optimization techniques are discussed that were developed specifically in the context of con-
tinuous optimization. The first of these optimizations continually adjusts the storage layouts
of dynamic data structures to maximize data cache locality, while the second performs profile-
driven instruction re-scheduling to increase instruction-level parallelism. These two optimizations
have very different cost/benefit ratios, presented in a series of benchmarks. The paper concludes
with an outlook to future research directions and an enumeration of some remaining research
problems.

The empirical results presented in this paper make a case in favor of continuous optimiza-
tion, but indicate that it needs to be applied judiciously. In many situations, the costs of dynamic
optimizations outweigh their benefit, so that no break-even point is ever reached. In favorable cir-
cumstances, on the other hand, speed-ups of over 120% have been observed. It appears as if the
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main beneficiaries of continuous optimization are shared libraries, which at different times can be
optimized in the context of the currently dominant client application.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—run-time
environments; code generation; compilers, optimization

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Dynamic code generation, continuous program optimization,
dynamic reoptimization

1. INTRODUCTION

In the wake of dramatic improvements in processor speed, it is often overlooked
that much of the software in everyday operation is not making the best use of the
hardware on which it actually runs. The vast majority of computers are either
running application programs that have been optimized for earlier versions
of the target architecture, or, worse still, are emulating an entirely different
architecture in order to support legacy code.

The first reason why hardware and software are often mismatched is linked
to the speed of technology evolution. Users demand backward compatibility and
are often unwilling to give up existing software when upgrading hardware. As
a result of this, an immense amount of legacy code is in use every day: 16-bit
software on 32-bit processors, emulated MC680x0 code on PowerPC Macintosh
computers, and soon also IA32 code on IA64 hardware. Simultaneously, purely
logistical constraints make it unfeasible for software vendors to provide sepa-
rate versions of every program for every particular hardware implementation of
a processor architecture. Just consider: there are several major manufacturers
of IA32-compatible CPUs, and each of these has a product line spanning sev-
eral processors—the total variability is far too great to manage in a centralized
fashion.

The second reason why the capabilities of the hardware are not exploited to
the fullest has to do with software engineering concerns. Increasingly, software
is developed and distributed as smaller components that are linked together
dynamically only at the end-users site. Unfortunately, there is a modularization
cost associated with separate compilation—since neither the end-user’s config-
uration nor the components’ interaction schemes are known at compile-time,
many traditional global code optimizations cannot be applied across component
boundaries. The added benefits of component-orientation are usually so great
that this drawback is readily accepted by software developers as well as users.

A solution to overcoming both of these performance impediments simulta-
neously is to delay code generation at least until load time. Not only are the
hardware characteristics of the target machine definite at this point, but load-
time code generation also makes it possible to perform optimizations across the
boundaries of independently-distributed software components and thereby re-
duce the performance penalty paid for modularization.This approach has been
validated in a significant amount of previous work [Deutsch and Schiffman
1984; Franz 1994; Hölzle 1994; Hölzle and Ungar 1996; Adl-Tabatabai et al.
1998].
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This paper presents a system that goes another step further, achieving a yet
again better match between the software and the hardware by re-evaluating
the bindings between software and hardware at regular intervals instead of
permanently fixing them prior to execution. To this effect, a profiler constantly
observes the running program and determines where the most effort is spent.
Using this information as a guide, new versions of the already running software
are then continuously constructed on-the-fly in the background, placing special
emphasis on optimizing the performance-critical regions of the program. When
the background re-optimization is complete, the new software is “hot-swapped”
into the foreground and execution resumes using the new code image rather
than the old one. The latter can be discarded as soon as the last thread of
execution has migrated away from it.

Continuous run-time optimization not only enables an exact match between
software and hardware and the ability to perform global re-optimization in re-
action to the dynamic addition of further software components, but the code
produced is also often of a genuinely higher quality than can be achieved using
static “off-line” compilation. This is because up-to-the-minute profiling data is
available to guide optimization decisions, whereas traditional compilers can
at best draw on traces of previous execution runs. Consequently, a continu-
ously optimizing system can quickly adapt to changing user-session patterns
and thereby provide a higher overall performance than any static system opti-
mized to a specific or “average” pattern. This is especially important as there is
usually no single “typical” usage scenario, but rather several distinctive ones
that differ widely from each other and among which a single user may al-
ternate over the course of a single computing session. In component-oriented
systems, there is not even a “typical” application, so that this effect is even more
pronounced.

Continuous program optimization also doesn’t suffer the same extreme re-
source constraints as load-time code generation, which due to its interactive
nature has severe code-generation-time limitations. This often prohibits use
of the best known optimization algorithms. Systems such as the one we have
built don’t have these constraints, because they perform optimization strictly
in the background during idle-time (and potentially on a different processor),
while an alternate version of the application program is already executing.
Consequently, the speed of optimization is almost completely irrelevant; even
optimization cycles that last on the order of 10 minutes are still useful.

The remainder of this paper is organized as follows. Sections 2 through 6
present different architectural facets of our system in which code generation
and code re-optimization are central system services. Sections 7 and 8 present
two optimization techniques that were specifically designed to take advantage
of continuous optimization and live profiling data: object layout adaptation and
dynamic trace scheduling. Section 9 then evaluates the performance of the sys-
tem based on these two optimization techniques. Section 10 outlines future
research directions and lists some open problems that will have to be solved
for continuous program optimization to become commonplace in modern oper-
ating systems. Section 11 discusses related work and Section 12 concludes the
paper.
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Fig. 1. General architectural overview.

2. ARCHITECTURAL OVERVIEW

We have implemented a system providing dynamic profiling, dynamic optimiza-
tion, and dynamic replacement of live code and data. We view this system as
a case study and possible blueprint for future efforts to provide continuous
optimization capabilities.

A central trait of our architecture is extensibility. The dynamic optimizer
at the heart of our system has a component structure supporting incremental
modification in a plug-and-play manner. This is an essential facility for making
system-level code generation useful in practice. Users migrating to a new set of
hardware features then merely need the appropriate plug-in components that
match the new target architecture, rather than a whole new run-time system.
These plug-in components are only loosely coupled to the rest of the run-time
system and communicate with it via a message bus.

The central idea behind this component-based architecture is that hardware
designers know a lot about their specific product, but relatively little about run-
time systems in general. A plug-in component for a run-time optimizer is akin to
a device driver, except that it enables an application program to utilize the main
computing engine more effectively. Just as operating systems today are shipped
with a large number of device drivers for every conceivable piece of hardware
that an end-user might want to install, an operating system incorporating an
extensible code optimizer at its core would rely on a set of plug-in optimization
components supplied by the manufacturers of the various processors. Hence,
instead of today’s centralized approach, in which software suppliers need to
keep track of, and maintain appropriate compilers for, all the architectures for
which they want to provide optimized code, our solution shifts this responsibility
to the hardware providers, completely eliminating the problems of hardware
variability that are one of the two main reasons for existing hardware/software
mismatches mentioned above.

The overall structure of our dynamic code generation and optimization sys-
tem is illustrated in Figure 1. The system, implemented on top of the Oberon
System 3 [Wirth and Gutknecht 1992; Gutknecht 1994; Gutknecht and Franz
1999] for the Macintosh platform, is composed of five key constituents: a man-
ager, a code generating loader, a profiler, an optimizer, and a replacer. This
assembly of sub-systems is in turn part of the Oberon System that provides
many additional services, among them, dynamic loading of software modules,
run-time type-tagging of dynamically allocated objects, and garbage collection.
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Table I. Built-in Profiling Components

Name Description
InstrCnt Measures the sampling frequency of individual instructions using a

sampling profiler
ProcCnt Measures the execution frequency of individual procedures
ProcTime Measures the execution time of individual procedures
EdgeCnt Measures the execution frequency of basic block transitions [Ball and

Larus 1994]
PathCnt Measures the execution frequency of individual paths within procedures

Ball et al. [1998]
CallCnt Measures the execution frequency of individual call-sites
CallTime Measures the execution time of individual call-sites
CallParamVal Monitors the most frequent actual parameters for individual call-sites

The five constituents of our system interact as follows: When the user first
launches an application, the code-generating loader translates the represen-
tation that programs are transported in into a sequence of native machine
instructions.1 Because this is an interactive process (the user is waiting), and
because many worthwhile code optimizations are extremely time-consuming,
the code-generating loader does not optimize much but instead concentrates on
simply producing an executable program as quickly as possible.

Once the application program has begun to execute, the profiler starts col-
lecting information about its behavior. This information is later used to guide
optimizations. Examples of the kind of information collected by the profiler are
illustrated in Table I and include the call-frequencies of individual procedures,
statistics on how variables and parameters are accessed, and a catalog of which
instructions stall due to misses in the data cache. The profiler runs continuously
at all times. It has an extensible structure that can support a wide spectrum
of profiling techniques and can be augmented as required by the plug-and-play
addition of appropriate profiling components, such as instrumenting profilers
and sampling profilers.

The system manager executes a low priority thread that uses application idle
time to optimize the already running software in the background. It repeatedly
queries the profiling database to examine whether and for which procedures the
characteristics of the system’s behavior have changed. This is done by means
of a similarity computation mechanism described in Section 5. Based on this
information, the system manager builds a list of procedures for potential opti-
mization. The optimization candidates in this list are not all equally well suited
for optimizations—optimizing some procedures might be more profitable than
optimizing others. Therefore, the system manager additionally queries the op-
timization manager for a rough estimate of the profitability of optimizing each
individual procedure. This information is used to sort the candidate list accord-
ing to optimization priorities.

1Our particular implementation uses the Slim Binary representation [Franz and Kistler 1997], but
the architecture presented here does not depend on this fact. The same architecture could also be
used with programs represented as class files for the Java Virtual Machine, or even with native code
for some specific processor. This would merely have an effect on the pre-processing effort required
to extract information relevant to the optimizer, such as control flow and data flow information.
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Table II. Built-in Optimization Phases

Optimization Components
Sparse Conditional Constant Propagation
Dead Code Elimination
Optimistic Value Numbering
Loop Invariant Code Motion
Strength Reduction
Peephole Optimization
Instruction Scheduling (Forward List Scheduling)
Hierarchical Register Allocation

Fig. 2. Schematic view of the optimizer.

The system manager then invokes the optimizer on each procedure,2 in the
order in which it appears in the candidate list. As explained below, optimizations
are organized as a sequence of phases that are executed sequentially. Table II
gives an overview of the built-in optimization phases provided in our system .

Finally, after the optimizer has completed its work, the replacer hot-swaps
the currently executing code image against the newly generated, optimized
version. This process requires updating interprocedural and intermodular de-
pendencies and, in some cases, undoing previous optimizations.

3. THE OPTIMIZER SUBSYSTEM

The optimizer is composed of three main parts: the optimization manager, a
history database, and a set of optimization components that can be dynamically
added, removed, and exchanged. Figure 2 presents a schematic overview of how
these parts interact. The various services offered by the optimizer operate on the
program being optimized at the level of individual procedures. However, the fact
that the optimizer operates on a program using a granularity of one procedure
at a time does not imply that it cannot perform interprocedural optimizations—
it merely represents an architectural decision. Our implementation preserves
cross-procedural state in the history database and in individual optimization
components.

2The fact that the optimizer operates on a program using a granularity of one procedure at a
time does not imply that it cannot perform interprocedural optimizations—it merely represents an
architectural decision. Our implementation preserves cross-procedural state in a history database
and in individual optimization components.
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The optimization manager handles all requests from the system manager
and coordinates the optimization process. Optimizations are organized as a se-
quence of phases that are executed sequentially. The various phases operate
on a common intermediate representation of the program, guarded single as-
signment form (GSA) [Brandis 1995], a variant of SSA [Cytron et al. 1991]. The
intermediate GSA representation is not cached across separate invocations of
the optimizer but generated afresh from the software transportation format3

each time that a new optimization cycle commences—since the unit of optimiza-
tion is the procedure, this keeps memory consumption within reasonable limits.
Hence, the first phase of the optimizer generates GSA for a procedure of the
program being optimized, while each subsequent phase retrieves this interme-
diate representation, performs a specific task, then returns a possibly modified
version of the procedure in the same intermediate format. If a look at actual
profiling data suggests that an optimization is not profitable, the intermediate
representation remains unmodified. The specific tasks that individual phases
perform correspond to individual code optimizations such as dead code elimina-
tion, common subexpression elimination, and register allocation. A complete list
of the built-in optimization phases provided in our system is depicted in Table II.

An optimization component is a container that encapsulates the implementa-
tion of one or more optimization phases. In most cases, each component imple-
ments exactly one phase. As discussed in the introduction, plug-and-play cus-
tomizability makes it possible to achieve a perfect match between user software
and underlying hardware platform without requiring global updates of either
application programs or the run-time system. Instead, for each new member
of a processor family, the hardware manufacturer merely needs to supply the
specific components that perform optimizations tailored to characteristics in
which the new processor differs from the generic representative of the family.
As an example, there would be a unique instruction-scheduling component for
each processor model. As a further example, a component supporting MMX in-
structions would map specific library calls and possibly further code patterns
directly into multimedia instructions emitted in-line.

The history database is a repository that records the set of optimizations that
have been performed on individual procedures. It is used for bookkeeping and
for coordinating code optimizations. Since different optimization techniques
may have conflicting goals (e.g., “decrease code-size to reduce misses in the
instruction cache” vs. “unroll loops to reduce misses in the data cache”), an
optimization phase may consult the history database to determine whether its
technique interferes with previously applied optimizations. This is important
because phases are independent of each other; each phase is only aware of which
other phases have executed previously in the current optimization schedule for
the procedure under consideration, and completely unaware of phases that
might follow further downstream. The history database is kept in memory and
its contents are volatile: history information is not preserved across cold-starts
of our system, and even while the system is running, all global state information
is “aged” periodically (see below).

3i.e., in the case of our implementation, the aforementioned Slim Binary format.
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Fig. 3. Optimizer message protocol.

Component Interaction in the Optimizer

The key to flexibility in our solution is that new phases can be registered at
the optimization manager, can be removed from the optimizer, and can even
replace other phases without affecting the remainder of the run-time system.
This is achieved by letting the optimization manager communicate with indi-
vidual phases via an open central message bus, rather than hard-coding com-
ponent interfaces. When the optimization manager receives a request from
the system manager, it translates the request into a sequence of messages
and distributes them to the phases within installed optimization components.
Each optimization phase has to conform to the message protocol depicted in
Figure 3. In the following, we explain the semantics attached to the individual
messages.

When the profiler subsystem detects a substantial change in the behavior of
a certain procedure, the system manager invokes the optimizer’s Estimate()
service. The Estimate() service assesses the profitability of applying further
optimizations to the procedure. Based on this assessment, the system manager
then decides whether or not to actually optimize the procedure. Since the es-
timate is used to eliminate unprofitable optimization candidates, it has to be
computed efficiently—at least in relation to the time that would be spent op-
timizing those candidates. Consequently, this computation is based on simple
heuristics without actually looking “into” the optimization candidate itself. This
also means that the estimate can be computed without first having to generate
GSA.

The Estimate() service is implemented by sending an EstimateMsg to each
installed optimization phase. Each phase is responsible for computing the esti-
mated speedup that would result if the associated optimization were added to
the already existing optimization schedule for a given procedure. Hence, if the
associated optimization is currently already performed on the procedure, no
additional speedup can be expected and a value of zero is returned. Otherwise,
a simple heuristic is used to compute the profitability of optimizing the pro-
cedure. The heuristic is based both on a hard-coded average speedup (e.g., 5%
speedup for data prefetching vs. 20% speedup for common subexpression elim-
ination) and actual speedups measured for previous applications of the same
optimization (to this and other procedures). The total speedup estimate for a
procedure is then derived by computing the sum of the speedup estimates of all
optimization phases that are present in the system.

Once the system manager has decided which procedures to optimize, it in-
vokes the Optimize() service for each optimization candidate. The Optimize()
service creates a newly optimized version of a given procedure from scratch.
To begin with, a GSA representation of the procedure is generated from the
software transportation format (e.g., the original “object file” or an in-memory

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.



508 • T. Kistler and M. Franz

cache). Then, each installed optimization phase is sent an OptimizeMsg,
instructing it to apply its respective modifications to the procedure’s GSA rep-
resentation (the order in which individual phases execute is discussed below).
Finally, the optimized GSA representation is transcribed into native code and
handed over to the replacer.

Upon receiving an OptimizeMsg, an optimization phase first needs to reeval-
uate whether or not it would be profitable to perform its associated task. This is
because the original estimate based upon which the optimization manager de-
cided to apply this optimization was founded on inaccurate low-cost heuristics,
whereas at this point, the full GSA representation and up-to-the-minute pro-
filing data are available. This makes a much better estimate of the anticipated
speedup possible. For example, a phase performing loop unrolling might have
an estimated speedup of 10%. However, after looking at the loops in question,
the optimization phase might determine that they exhibit too little parallelism
and hence aren’t profitable after all.

If the optimization had previously been applied to the given procedure, its
benefit is re-evaluated on the basis of actual performance data. If the past
speedup was negative or insignificant, the optimization is marked as non-
profitable in the history database and is dropped from future iterations. Oth-
erwise, it is applied again. If the particular code optimization had previously
not been applied to the procedure, the optimization phase examines profiling
data and decides whether to apply it or not (for example, based on whether a
certain profiling counter exceeds a certain threshold). If it decides to apply the
optimization, it is added to the history database and is performed.

In contrast to the Optimize() service that applies optimizations optimisti-
cally, the Recompile() service optimizes procedures pessimistically. Neither
does it consider new optimizations nor does it remove unsuccessful old ones.
It only re-performs the set of optimizations recorded in the history database,
excluding optimizations previously determined to be non-profitable. This ser-
vice is particularly useful for de-optimizations, a case in which optimizations
have to be selectively undone. As an example where this is useful, a method
that after class hierarchy analysis had been statically bound by the optimiz-
ing compiler could later be overridden in a dynamically loaded extension. In
such a situation, the previous optimization must be undone. This is achieved
by removing it from the history database and calling the Recompile() service
for all affected methods. The Recompile() service is implemented by sending a
RecompileMsg to all installed optimization phases.

Finally, the IdentifyMsg is sent to an optimization phase to request meta-
information, such as its name and when it wishes to be executed during the
optimization process. Our architecture does not attempt to solve the general
phase-ordering problem of compiler construction [Click and Cooper 1995]. In
our current implementation, the various phases “know” their relative place
in an ideal schedule, under the implied assumption that this can somehow
be coordinated by extension providers. A newly loaded optimization compo-
nent can inspect the set of already present phases and then install its con-
stituent phases immediately before or immediately after any already existing
phase. A single component can contain several phases that execute at different
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points in the time-line, and copies of the same phase can be inserted at multiple
points in the time-line. Still, we acknowledge that this solution is sub-optimal,
which is why the issue is revisited under the heading of “open questions”
below.

4. THE PROFILER SUBSYSTEM

It has been almost thirty years since it was first realized that code quality
could be improved by using feedback information (i.e., execution profiles) to
guide optimizations [Ingalls 1971]. As processor complexity has been rising,
the number of optimization decisions that a compiler must make has grown ac-
cordingly. Unfortunately, making the wrong optimization choices can seriously
affect runtime performance. Access to profiling information makes it possible to
base optimization decisions (such as which procedures to inline, which execu-
tion paths to favor during scheduling, and which variables to spill to memory) on
actual measured performance data rather than on imprecise (and often ad-hoc)
heuristics.

The most accurate profile of a program’s execution can be obtained by sim-
ulating the processor under consideration as well as the relevant parts of the
memory hierarchy at the gate level. However, this approach is hardly feasible
in a system that aims to respond to changing user needs almost in real time.
Hence, our approach considers only profiling techniques that are applicable in
real-time situations. These fall into the three main categories of instrumenta-
tion [MIPS Computer Systems 1990; Ball and Larus 1994], sampling [Anderson
et al. 1997; Zhang et al. 1997], and hardware-based solutions [Dean et al. 1997;
Conte et al. 1996].

The last of these is the most desirable and will become increasingly im-
portant in future microprocessors. As an example, while the 601 and 603
models of the PowerPC processor family [Motorola, Inc. 1997] do not provide
built-in profiling support, the PowerPC 604 is now equipped with a perfor-
mance monitor. This performance monitor includes two 32-bit hardware coun-
ters that facilitate monitoring detailed events during execution, such as in-
struction dispatches, instruction cycles, misses in the cache, and load/store
miss-latencies. The PowerPC 604e even includes four counters with augmented
functionality.

For the foreseeable future, however, system builders will have to accept the
fact that hardware profiling support is inadequate. Consequently, one has to
rely on either or both of the other two techniques. Neither of them is fully
appropriate for capturing the entire spectrum of profiling needs. On the one
hand, instrumentation is well suited for generating exact path profiles [Ball and
Larus 1996]; sampling techniques fail in this task because temporal information
is lost in the statistical process. On the other hand, a sampling profiler can
quite accurately pin down the set of instructions that miss in the data cache
(the likelihood of the program counter hitting such an instruction is higher
than the likelihood of hitting another instruction). An instrumenting profiler
cannot usually determine whether an instruction missed in the cache, unless
it is assisted by special hardware counters.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.



510 • T. Kistler and M. Franz

Fig. 4. Schematic view of the profiler.

As a consequence, a sound profiling infrastructure has to support both
sampling and instrumenting profilers, and be extensible to hardware-based
profiling as it becomes available. This points toward an architecture that is
surprisingly similar to that of the extensible optimizer introduced above. In
our implementation, the profiling subsystem is composed of a profiling man-
ager and a set of “plug-in” profiling components, as presented in Figure 4.

Just as in the optimizer, communication between the profiling manager and
the installed profiling components is achieved by a broadcast mechanism via a
message bus. Optimization components request profiling information by send-
ing messages to the profiling subsystem, which in turn delegates these requests
to the appropriate profiling component(s). As far as an optimization component
is concerned, it is not relevant which profiling component actually processes its
requests, as long as there is a component that does. This is the key to the evolv-
ability offered by our solution. For example, when suitable hardware support
for profiling becomes available, sampling and instrumenting profilers can be re-
placed by hardware-assisted ones simply by providing an appropriate profiling
component that maps profiling requests directly onto the appropriate hardware
counters.

Extensibility of the profiler in such a plug-and-play fashion also makes it
possible to meet unanticipated requirements of future optimization phases:
Suppose that a new plug-in optimization would require a specific kind of per-
formance information that is not provided by the default profiling system. This
problem can be solved easily by pairing the new optimization component with
a dedicated profiling component that supplies it with the needed data.

Unlike our optimizer subsystem, the profiler doesn’t provide a centralized
database. This is because the kinds of data that the various profiling compo-
nents collect and store are highly divergent in nature, and the availability of
hardware-assisted profiling would eventually lead to an additional overhead
for keeping the database in synch with the hardware counters. In our architec-
ture, individual profiling components are autonomous and store their profiling
data separately; in the current implementation, all of this information is kept
entirely in memory. As is elaborated in the following, the profiling subsystem
provides a centralized service for periodically and synchronously aging the in-
formation in this distributed database.
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Fig. 5. Profiler message protocol.

Component Interaction in the Profiler

A profiling component needs to adhere to a particular message protocol, which
is illustrated in Figure 5. In the following, we give an overview of the services
that are associated with these messages.

The AgeMsg is broadcast to all profiling components when the system man-
ager invokes the Age() service. This is done periodically to adjust and reduce
the relevance of older profiling data. The implementation of aging is left to each
individual profiling component, with exponential decay or linear decay being
possible models.

The system manager also periodically checks whether the system’s behavior
has shifted over time by calling the profiler subsystem’s Stable() service. The
Stable() service returns false if the profiling data has substantially changed
since the last Age() request—otherwise it returns true. The profiler manager
reacts to a Stable() request by broadcasting a SimilarityMsg to all profiling
components. Individual profiling components react to this message by comput-
ing a similarity measure that reflects the degree of change in their profiling
data for a given period of time. Section 5 discusses this similarity measure in
more detail.

The primary means for optimization phases to communicate with the profiler
is the message broadcast mechanism. Whenever an optimization phase requires
profiling information, it creates an instance of a particular message and passes
it to the profiling manager’s Broadcast() service. In turn, the Broadcast() ser-
vice distributes the message to all of the installed profiling components. For
each profiling event that needs to be monitored, a new message type is derived4

from the common MeasureMsg. Examples include messages for measuring ex-
ecution path frequencies (PathCntMsg) and data-cache miss rates (MissCntMsg).
If a particular profiling component receives such a message and provides a ser-
vice for that profiling event, it takes appropriate actions, otherwise the message
is ignored.

Details about the request itself are encoded in the message and may con-
tain one of three different request codes: (1) An optimization component may
signal interest in a particular profiling event (e.g., “measure the execution fre-
quency of path 14”), in which case the profiling component sets up auxiliary
data structures to store the corresponding profiling data. It may also direct an

4Note that this is an open-ended interface: the range of profiling events to be monitored cannot be
determined in advance, as future optimization components might have requirements that simply
cannot be anticipated. The way to solve this problem is by encapsulating the requests themselves
as a “message objects” derived from a common superclass. This is also known as the Command
(233) design pattern [Gamma et al. 1995].
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Fig. 6. Implementation of sampling profilers vs. instrumenting profilers.

optimization component to insert instrumentation code at the code location un-
der consideration. (2) An optimization component may request profiling data
for a particular event type (e.g., “return the current execution frequency for
path 14”). And (3), an optimization component may signal that a specific set of
profiling information is no longer needed (e.g., “the frequency of path 14 does
not have to be measured any longer”). This is usually the case after optimiza-
tions have been performed. The profiling component then de-allocates auxiliary
data structures and instructs an optimization component to remove previously
installed instrumentation code.

Another significant property of our architecture is that new profiling compo-
nents can easily be composed out of existing components, both vertically and
horizontally. New components can share existing functionality via message for-
warding. As an example, we can construct a basic block profiler on top of a path
profiler. Whenever the basic block profiler receives a BlockCntMsg, it creates and
re-broadcasts a new PathCntMsg for each path that crosses the specified basic
block. The basic block count is then computed by summing the path counts for
the individual paths. Neither does the new event profiler have to store addi-
tional data nor does it have to know specific implementation details of the path
profiler—all that is required is a consensus on how paths are named.

The component-oriented architecture also facilitates a particularly elegant
solution to the problem of constructing instrumenting profilers. Instrumenta-
tion involves modifying the actual machine code that is executed by the proces-
sor. The traditional approach has been to use binary rewriting tools [Eustace
and Srivastava 1994] that insert instrumentation only after the final code im-
ages of programs have already been generated. Our solution, on the other hand,
consists of structuring the instrumenting profiler as a closely coupled pair con-
sisting of a profiling component and a corresponding optimization phase that in-
serts instrumentation code directly into the GSA representation of a procedure
(Figure 6). If the instrumentation phase comes early enough in the optimization
schedule, this has the beneficial effect that profiling instructions are automat-
ically optimized in the context of the procedure, a very important advantage if
low-overhead continuous profiling is an objective. Also note that the optimizer
doesn’t need to be modified in any way in order to support instrumentation—
this is a natural capability provided by its component architecture.

5. THE REPLACER SUBSYSTEM

There are several different methods for replacing the code image of a procedure
by a newly optimized image of the same procedure, all of which have individual
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strengths and weaknesses. The most straightforward method is to simply over-
write the old code image by a new one in situ, preserving the existing entry point.
This has the apparent advantage that no branch instructions terminating at
the procedure’s entry point need to be updated. Unfortunately, this only works
well as long as the new image is at most as large as the old image, which is not
very likely given that many optimizations increase the code size in exchange for
greater speed. Examples of such optimizations include loop unrolling, prefetch-
ing, loop tiling, and procedure inlining. The code size problem can be allevi-
ated by reserving space “between” procedures in the code image, but this leads
to memory fragmentation. Moreover, overwriting existing code images causes
problems if the procedure being replaced is active at the time of replacement.

Consequently, the new code image is preferably stored in a new, separate
memory region. This preserves the old code image but requires changing in-
terprocedural dependencies—branches to the old image need to be replaced by
branches to the new image. Similarly, and less simple, the contents of procedure
variables pointing to a modified procedure need to be updated, and assignments
of the affected procedure to procedure variables need to be replaced by corre-
sponding assignments of the procedure’s entry address in the new code image.

These updates can be performed either immediately or lazily. Updating de-
pendencies lazily involves replacing the beginning of the old version by a code
stub that not only redirects any eventual caller to the new location, but that
also modifies the calling location so that the new destination address is reached
directly upon future calls. Since the stub that performs all of these actions is of-
ten rather large itself, a second indirection is usually employed. Unfortunately,
this solution works only for direct branches and fails for indirect calls via pro-
cedure variables. In the latter case, the entire code sequence preceding the call
instruction needs to be analyzed to determine the memory location contain-
ing the procedure variable to be updated. This may be simple in many cases,
but may also be very complicated at times—especially when procedure vari-
ables are themselves passed as parameters to the calling procedure, or when
the same procedure variable is stored in different locations at different times
(which can happen when a procedure variable is spilled by the register allo-
cator). Furthermore, assignments to procedure variables cannot be corrected
lazily because they do not involve a branch instruction. Lastly, when lazy re-
placement is used, it is difficult to decide at which point the old code image can
be discarded. Unless a reference-counting mechanism is also implemented, it
is unknown how many branches to the old image remain at any time.

Hence, a much better solution is to update dependencies instantaneously as
soon as the new code image has been generated. This is the solution we have
implemented. In our architecture, code for a particular application is not allo-
cated contiguously. Rather, individual procedures are allocated separately as
dynamic objects. References to procedures, such as calls and procedure vari-
ables, are treated like object-pointers—that is, they are traced by the garbage
collector. Procedures that are no longer referenced by either a direct branch
or a procedure variable can then be de-allocated automatically and memory
fragmentation can be avoided.
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In order to update dependencies, we have extended the garbage collector by a
translation mechanism that accepts a list of translation tuples (ptrold, ptrnew) as
its input. During the mark phase, the garbage collector automatically replaces
all occurrences of ptrold by ptrnew) . Hence, in order to replace a procedure by a
newly optimized replacement in our system, one constructs a translation tuple
and explicitly initiates the garbage collector. Note that the garbage collector
must trace the stack and all registers for this method to work correctly. The
advantage of this mechanism is that all references are updated at once, so that
the full benefit of the optimization can be used immediately. It also makes it
possible to discard the old code image right away. However, this technique is
also not perfect. It incurs the overhead of having to run the garbage collector,
although this is not a serious problem in practice.

When to Replace Code

Besides the question of how to replace code images, we also have to address
the issue of when to replace them. This is particularly difficult in the case in
which a procedure is replaced while it is active. In this situation, replacing code
in situ is virtually impossible because the original continuation point may no
longer exist. For example, a loop that had been partially executed before the
replacement occurred could be unrolled in the new image. Hence, replacement
in situ is possible only at specific synchronization points that have been inserted
artificially, but this limits optimization potential.

This particular problem disappears when the new code image is constructed
in a different location. Execution simply continues in the old version of
the procedure, and the new code isn’t executed until the next invocation of
the procedure. However, if the procedure being replaced consists of a long-
running task, the results of the applied optimizations may never take effect
at all.

There are also optimizations that require an immediate switch to the new
code. For example, we have implemented an optimization component that im-
proves data cache locality of pointer-centric program code (see Section 7). To
this effect, our optimization uses profiling information to build a temporal rela-
tionship graph of data-member accesses. It then computes the optimal internal
layout of data objects and recompiles the affected procedures to access data
members using this layout. Obviously, this optimization mandates that at the
same time the code is exchanged, all the existing data objects are also simulta-
neously transformed into the new format. In our solution, the garbage collector
performs both of these tasks. For this reason, the garbage collector in our system
is in fact also extensible.

As a consequence of wanting to explore such optimizations, our implementa-
tion permits the substitution of procedures only when it can be guaranteed that
no active thread is executing them. This still rules out the replacement of long-
running tasks, but considerably reduces implementation complexity. Since our
system is structured around a central “event loop,” such long-running tasks do
not occur in practice.
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How to Replace Data

In addition to replacing code after re-optimization, some optimization tech-
niques might also require that the layout of dynamically heap-allocated objects
be changed after optimization. One example is the just mentioned optimization
that tries to improve the cache and memory performance by rearranging the
layout of heap objects.

The process of updating live data objects bears many similarities with updat-
ing code entities. However, the general conditions for updating live objects are
stricter in that all updates have to occur atomically in order to maintain heap
consistency. In contrast to replacing code, a lazy approach is hence not practical
for data transformations. Frequently, updating data objects also entails simul-
taneous updates to the code base in order to guarantee faultless access to the
transformed objects.

To instantaneously transform live objects into a new format, our architecture
provides a simple mechanism that allows “touching” each active, heap-allocated
object of a given class or compound type. Although, in principle, this service can
be implemented as a stand-alone mechanism that traverses the entire heap,
we have decided not to do so. Instead, we again modify the garbage collector
for this purpose. This has the advantage that we only have to “touch” active
objects, but not objects that are no longer referenced. In our implementation,
the garbage collector automatically invokes an installed call-back function after
having marked a particular object and all of its descendents. The object can then
safely be transformed.

Note that this mechanism only applies to the heap-allocated objects, but not
to stack-allocated objects nor to global variables. The latter have to be trans-
formed separately utilizing meta information that is provided by our architec-
ture. In a similar way, run-time type information (i.e., type descriptors) has to
be transformed using meta information. Type descriptors contain essential in-
formation about dynamically allocated objects, such as their size or the relative
offsets of their pointer members. The latter information is used by the garbage
collector to correctly trace dependent objects.

6. THE SYSTEM MANAGER

The Sytem Manager monitors the behavior of the system using the Profiling
Subsystem and directs dynamic reoptimization using the Optimization Subsys-
tem. The System Manager operates fully automatically and requires no user
intervention.

An interesting aspect of our architecture is the fact that rather than being
hard-coded into the manager, optimization decisions are federated out to the
individual optimization phases currently installed in the system. The following
two subsections explain this in more detail.

Note that due to the distributed nature of optimization decisions and the
“drop-in” extensible nature of our system, there can be no guarantee that
a globally optimal state is reached; instead, a superposition of local optima
is what our system strives for. Hence, our system, for example, doesn’t con-
sider global choices between competing optimizations (e.g., minimizing code
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size for instruction-cache performance vs. unrolling loops for instruction-level
parallelism).

Deciding When to Optimize

One of the essential problems when performing optimizations at runtime is to
decide when to optimize and what to optimize. Optimizing too little does not
greatly improve runtime performance, optimizing too aggressively might lead
to a situation in which the effort invested into code optimization is never fully
recouped by faster-running application code [Hölzle and Ungar 1996].

In our system, optimizations are initially performed when a program has
been launched and enough profiling data has been gathered. Additionally, opti-
mizations are reconsidered whenever the footprint of the profiling data changes
substantially, that is, when the user’s behavior has shifted noticeably. In such
a case, earlier optimizations may no longer align well with the current use
of the system, and optimum performance may be restored only by performing
optimization all over again.

In order to detect substantial changes in the user’s behavior, we define a
similarity measure S that reflects the degree of change of profiling data between
two consecutive time steps t−1 and t. Each profiling component P logs n distinct
values (such as a path counter or a basic block counter) that we represent as an
n-dimensional vector Ep, and is required to log these profiling values for at least
the last two time steps. The similarity measure S(P ) can then be expressed
as a function S : P → [0..1] that compares the captured data at time step
t − 1 (i.e., Ept−1) with the captured data at time step t (i.e., Ept). It returns a
similarity value in the range [0..1], whereas 0 denotes complete dissimilarity
and 1 denotes complete data equivalence.

We first try to define S(P ) as a function that computes the geometric angle
α between Ept−1 and Ept :

α = arccos
Ept−1 · Ept

| Ept−1| | Ept |
This term has the advantageous property that it is independent of the time

difference between t − 1 and t since it measures the angle between the two
vectors only and disregards the length of the vectors. However, it is not defined
in the situation where Ept−1 = E0 and Ept = E0. This is the case when the profiling
database is first set up and initialized for a newly loaded application. To elimi-
nate this problem, we adjust α by adding 1 to the denominator of the term. For
simplicity reasons, we also remove the arccos function. The remaining term is
still continuously descending and allows us to set a threshold for reconsidering
new optimizations:

α = Ept−1 · Ept

| Ept−1| | Ept | + 1

However, this function has further undesirable properties: It is very sensitive
to small changes for short and low dimensional vectors Ep. For example, if we
measure the execution frequency of two paths, both paths have been executed
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Fig. 7. Similarity function.

once at time step t − 1 (Ept−1 = (1, 1)), and one path is executed once more
between t−1 and t (Ept = (2, 1)), the resulting α suggests a considerable change
in the profiling database—which of course is true, but an absolute change by
only 1 should clearly not trigger a reoptimization. An optimal function should
therefore disregard changes smaller than a given threshold. To achieve this,
we define a second term β that reflects the absolute size of the change:

β = |Ept − Ept−1|√
n

Note that this term is independent of the dimension of Ep since the absolute
change is divided by

√
n (the unit vector of dimension n has length

√
n). We

can now redefine the similarity function S(P ) as a combination of the angular
component α and the length component β:

S(P ) = e−
(
β

c

)k

(1− α)+ α

As illustrated in Figure 7 for large vectors, the function still returns the
geometric angle between the two vectors Ept−1 and Ept since it strives towards α.
For small vectors, however, the function strives towards 1 and is less sensitive
to small changes as a result. It even completely disregards changes smaller
than c—the constant c in the term was chosen to approximate the turning point
of the function. By appropriately setting c, we can adjust the threshold above
which changes in profiling data get reflected in the similarity measure S (e.g.,
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a procedure is only optimized if it has been executed at least 100 times in the
last time period). Similarly to c, the constant k can be used to modify the slope
of the function. We have found that a value of 8 performs quite well in practice.

One more problem remains, though: The function S(P ) always returns 1
for vectors of dimension 1. This can be circumvented elegantly by adding an
additional component n to both Ept−1 and Ept with Ept−1,n = m, Ept,n = m, and
m = max(Ept−1,0, . . . , Ept−1,n−1, Ept,0, . . . , Ept,n−1).

In practice, we say that profiles have not changed as long as S(P ) = 1.0. We
reconsider existing optimizations when S(P ) < 0.95.

Deciding What to Optimize

The decision on what to optimize is federated out to each individual optimiza-
tion component (see Section 3). Upon looking at the profiling information at
hand and the full intermediate representation (i.e., GSA), each optimization
component autonomously decides whether modifying the program might be
worthwhile or not. Due to the great diversity in optimization components and
their objectives, it is nearly impossible to devise a strategy that is common
to all possible optimization algorithms and works equally well in all contexts.
However, we were able to devise heuristics that apparently performed well for
the optimization components we designed.

For example, for our dynamic layout adaptation component (described fur-
ther in Section 7 and in Kistler [1999]; Kistler and Franz [2000]), we estimate
the number of misses in the cache and number of cycles being wasted due to
line-fill buffer forwarding and memory interleaving. For a given data type T the
number of cycles spent waiting for data from the first and second-level cache
can be approximated by the following cost function C(T ).

C(T ) =
n−1∑
i=1

n∑
j=i+1

Ci, j

Ci, j =
{ =ci, j : Fi.adr div bankwidth = F j .adr div bankwidth
6=ci, j : Fi.adr div bankwidth 6= F j .adr div bankwidth

=ci, j = wp
i, j

(
cmi

i, j + cbf
i, j

)+wp
j ,i

(
cmi

j ,i + cbf
j ,i

)
6=ci, j = tcache miss wp

i, j

cmi
i, j = todd bank((Fi.adr div bankwidth)mod 2)

cmi
j, i = todd bank((F j .adr div bankwidth)mod 2)

cbf
i, j = tbus fill(Fi.adr div buswidth)− (F j .adr div buswidth)

cbf
j, i = tbus fill

((
linesize

buswidth
− cbf

i, j

)
mod

(
linesize

buswidth

))
In this formula, and =ci, j represents the cost associated with two fields Fi and

F j co-located on the same cache-line, and 6=ci, j the cost for two fields located on
different cache-lines. cmi

i, j represents the penalty for accessing the second non-
preferred memory bank first, and cbf

i, j represents the cost of accessing field Fi

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.



Continuous Program Optimization: A Case Study • 519

before field F j in the case of a cache miss. wp
i, j reflects the number of times that

the two fields are accessed subsequently within a specific time interval. Fi.adr
denotes the offset of field Fi relative to the beginning of its cache line. All costs in
this formula are measured in execution cycles: todd bank represents the number of
cycles that are wasted if the second non-preferred memory bank is accessed first,
tbus fill represents the number of cycles that are required to transfer buswidth
number of bytes from the second-level cache into the currently loading cache
line, and tcache miss indicates the number of cycles lost due to a miss in the data-
cache.

We compute a new storage layout for the data type T as soon as a substantial
shift in C(T ) indicates that the system is no longer well aligned with the current
data layout. We also automatically generate new versions of all the affected
procedures. A procedure is affected if its code contains at least one modified
field-offset as a literal. Hence, a procedure can be affected by a re-ordering of
T ’s fields only if it references at least one of the fields declared directly in T—
fields inherited from supertypes of T or added in subtypes of T need not be
considered because their offsets do not change if only T is optimized. For the
case in which the new layout for T is identical with the old layout, no new code
is generated.

7. DYNAMIC OBJECT LAYOUT ADAPTATION

Two comprehensive optimizations have been implemented and integrated
within the framework described above. The first of these is a good represen-
tative of a newly emerging class of techniques based on accurate dynamic pro-
filing. Such techniques are almost ideally suited for a continuous optimization
context, in which the available profiling information is particularly accurate
because it refers to the current input set and the current user, rather than to a
profile collected off-line.

Our particular optimization concerns data-cache performance. As the growth
in raw processing power continues to outpace improvements in the storage
hierarchy, memory performance is increasingly becoming a limiting factor of
application speed. In recent years, compilers have begun to address this is-
sue. For example, techniques have been developed to mask memory latency
by fetching data ahead of time [Mowry et al. 1992], and program transforma-
tions such as cache-blocking, loop-skewing, and loop-tiling have been invented
to increase data locality [Wolf and Lam 1991]. All of these optimizations are
particularly effective in the domain of scientific computing, in which programs
operate extensively on arrays. Unfortunately, they fare considerably worse in
application domains in which most data structures are dynamically allocated
and accessed via pointers. Applications of the latter kind include object-oriented
and component-based programs.

The optimization presented in this section5 increases memory performance
specifically for pointer-centric applications. It is based on determining the best
internal storage layout for dynamically allocated data structures and applies to

5A more detailed description of this optimization can be found in Kistler [1999] and Kistler and
Franz [2000].
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programming languages that are fully type-safe. Examples of such languages
include Java [Gosling et al. 1996] and Oberon [Wirth 1988]. These languages
do not attach a semantic meaning to the declaration order of data members and
do not expose the actual physical layout to the programmer; as a consequence,
choosing an internal layout lies completely in the domain of the compiler.

The technique strives to maximize spatial locality of individual data mem-
bers and hence is markedly different from traditional data-layout strategies
that attempt to minimize the total space requirements of compound data struc-
tures [Muchnick 1997]. The traditional strategy is based on the assumption that
a smaller memory footprint leads to faster applications, especially in garbage-
collected environments. However, our work suggests that this assumption may
be misleading. In some cases, increasing an object’s size leads to a greater
flexibility in placing data members, and thereby facilitates better cache per-
formance. Our algorithm also specifically addresses the fact that there is a
preferred bank-access ordering that needs to be observed to obtain optimal
performance from interleaved memory. Object layout adaptation, in our imple-
mentation, is performed in two phases. First, data member clustering uses a
simple strategy to partition the individual data members of a dynamically allo-
cated data structure into aggregates that each fit into a single cache line. Then,
after partitioning, data member ordering orders the data members that have
already been mapped to a single cache line within the cache line to minimize
load latency in case of a cache miss.

Data Member Clustering. In order to determine how to best partition the
fields of an object into cache line sized aggregates, our optimization uses a
simplified cost model that estimates the number of cache misses under the
assumption that the number of cache misses is proportional to an execution time
penalty. This cost model is computed based on a temporal relationship graph
(TRG) that, for a particular data object, captures information on how its fields
are accessed. Similar graphs have been used in a variety of contexts [Chilimbi
et al. 1999a; Gloy et al. 1997]. In this graph, vertices correspond to fields, and
they are connected by edges whose weights represent the degree of temporal
dependency between the two connected fields. More concretely, the weights
reflect the number of times that the two fields are accessed subsequently within
a specific time interval. The weight is roughly proportional to the benefit of co-
locating both fields on the same cache line, as this increases the probability
that one field will already be in the cache as a result of accessing the other.
The TRG is created by collecting path profiling information and then stepping
through each program path returned by the profiler.

Once the TRG is created, the optimization searches for a multi-way graph
partitioning of the temporal relationship graph such that the size of all parti-
tions equals the size of a single cache line and such that the sum of all edges
between the partitions is minimized. Finding an optimal multi-way partition
for large graphs is an NP-complete problem. As such, there exists no known
algorithm that solves the problem in polynomial time. However, a wide variety
of heuristics-based approaches have been published in the last 30 years. One
of the original papers by Kernighan and Lin [1970] describes a very efficient
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algorithm for bipartitioning (also called graph bisection) large graphs. Using a
bipartitioning technique, we can solve the multi-way partitioning problem by
recursive bisection, that is, we first obtain a 2-way partition of the graph that
splits the graph into two equally-sized parts. We then further subdivide each
part using 2-way partitioning. Several refinements of this algorithm have been
described since, among them the improved version by Dutt [1993] that can be
implemented efficiently and which our own implementation is based on. There
also exist more advanced algorithms based on multilevel partitioning schemes
[Karypis and Kumar 1999]. However, since our graphs are usually small in size,
the use of multilevel-partitioning algorithms does not seem justified.

Data Member Ordering. After partitioning, the data members that have
already been mapped to a single cache line are ordered to minimize load latency
in case of a cache miss. Two specific hardware characteristics of modern memory
subsystems cause the ordering of fields on a line to be relevant, namely memory
interleaving and cache line-fill buffer forwarding. Interleaving has an influence
because it partitions the memory into banks that cannot be accessed equally
efficiently. Modern memory controllers deliver data from a single row of memory
in bursts and use a fixed sequence in which they distribute column addresses
to the memory banks (two such banks in our example). There is a preferred
memory bank that always receives the first column address cycle. If the read
starts with a column address that is mapped to a different bank, then this
first cycle is wasted. Hence, in order to achieve optimum performance, fields
that have a high probability of causing a cache miss should come to lie at
addresses that are mapped to the preferred memory bank. Therefore, during
this ordering, a distinction is made between fields that are less likely to cause
cache misses and those that are more likely to do so; the latter are placed at
addresses mapped to the preferred bank of interleaved memory.

The second reason why the ordering of fields on a cache line has an influence
on performance is related to the way that the cache is filled from memory.
On most processors, the words on a cache line do not become simultaneously
available after a cache miss has been serviced from memory. Rather, the cache
line is filled in ascending memory address order, starting at the location that
caused the cache miss, and “wrapping around” at the end of the cache line to
load the remaining words. For example, consider a system in which the data
bus is one word wide and a cache line holds eight such words. Now imagine that
a read from address 003 causes a cache miss, resulting in a cache line being
filled with the data stored in locations 000 through 007. The cache line would
actually be filled in the order 003, 004, 005, 006, 007, 000, 001, 002; that is, it
would take at least seven additional cycles from the time at which the contents
of location 003 become available until the contents of 002 also become available.
On processors such as the PowerPC 604e [Motorola, Inc. 1996] that forward the
contents of the cache line-fill buffer to a requesting load unit immediately upon
availability, it can hence make a difference whether the predominant memory
access pattern is 003 followed by 002, or vice versa.

Finding an optimal ordering of fields within cache lines is done with an
exhaustive search for the permutation of fields that minimizes a load latency
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cost associated with a particular permutation. The load latency cost considers
both the effects of memory interleaving and cache line-fill buffer forwarding.
Further, it also requires fields to be aligned properly. As an example, a double
precision floating-point value that is not aligned to an 8-byte boundary results in
a high cost value. Although our algorithm uses an exhaustive search technique,
run-time is not a major problem in practice because the number of fields in a
cache line is fairly small. Moreover, we use a smart branch-and-bound variant
of the algorithm that is an order of magnitude more efficient than a naive
implementation.

In our implementation, the optimization is fully automatic and operates
at run-time on live data structures, guided by dynamic profiling data. When-
ever the results of profiling suggest that a running program could benefit from
data-member reordering, optimized versions of the affected procedures are con-
structed on-the-fly in the background. The next time that the system reaches a
synchronization point6, the dynamically generated code is substituted in place
of the previously executing version and all affected live data objects are simulta-
neously transformed to the new storage layout. The program then continues its
execution using the improved data arrangement, until profiling again suggests
that re-optimization would be beneficial. Hence, storage layouts in our system
are continuously adapted to reflect current access profiles. Since the technique
presented here is fully automated, it does not involve programmers in the op-
timization process, but leaves them free to declare data members in any order
whatsoever. It thereby elegantly de-couples software-engineering concerns from
performance issues.

8. DYNAMIC INSTRUCTION RE-SCHEDULING

The optimization described in the previous section belongs to a new class of
fully automatic techniques specifically designed to take advantage of live pro-
filing data and continuous re-optimization. Many more traditional optimization
techniques, however, have not specifically been designed for use in a continu-
ous optimization infrastructure. Although it has been shown previously that
traditional techniques can profit from profiling data (e.g, code placement, code
scheduling, or register allocation [Pettis and Hansen 1990; Chang et al. 1991b,
1992; Chen et al. 1994]), it is not immediately obvious that they can also no-
ticeably benefit from continuous re-optimization. This section will present dy-
namic trace scheduling, an optimization that enables us to study the impact of
our infrastructure on more traditional optimization techniques.7

Instruction scheduling has long been known as an effective compiler opti-
mization technique for modern superpipelined processors. Instruction schedul-
ing tries to exploit instruction level parallelism by statically reordering the
instructions in a program but without invalidating program semantics. This
is especially beneficial for in-order and VLIW processors that execute instruc-
tions in strict program order and are not very tolerant against pipeline stalls

6Our system is structured around a “main event loop” and hence such a synchronization point in
this loop is executed frequently.
7A more detailed description of this optimization can be found in Kistler [1999].
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and cache misses [Chang et al. 1991a]. Instruction scheduling can also be very
effective for out-of-order processors. Although out-of-order processors already
reorder independent instructions on-the-fly, this reordering is usually restricted
in scope—the processor can only “see” a relatively small window of instruc-
tions at a time (e.g., 16 instructions on the PowerPC 604 [Motorola, Inc. 1994]).
Software scheduling techniques, in contrast, can be applied to whole program
paths that contain several hundreds of instructions. A considerable gain in
performance can therefore be expected for scheduling techniques that allow
instructions to be scheduled across individual basic block boundaries.

Trace scheduling [Fisher 1981] is a technique that achieves this goal by
coalescing basic blocks across branches into larger regions called traces. A trace
is a sequence of basic blocks that is likely to be executed contiguously. However,
control might leave the trace early at one or more exit points or control might
enter into the middle of the trace from one or more side-entry points. Given a
trace, instructions are then scheduled along this longer path rather than just
on a single basic block at a time.

Since trace scheduling applies aggressive speculation to the important exe-
cution paths, possibly at the cost of degraded performance along other paths,
the speed of the output code can be sensitive to the compiler’s ability to accu-
rately predict the important execution paths. Making effective use of profiling
information in both the trace selection and trace compaction phase is thus ex-
tremely important for trace scheduling to be effective. In fact, our results sug-
gest that trace scheduling based on live profiling data can increase program per-
formance by more than 15% over trace scheduling based only on static program
analysis.

Trace scheduling, in our implementation, is performed in three phases. First,
the trace selection phase selects traces by identifying frequently executed pro-
gram paths. Traces are then ordered into an execution schedule that matches
the hardware resource constraints while still maintaining program semantics.
This phase is called the trace compaction phase. Since inter-block code mo-
tions, such as moves below branches or moves above joins, might invalidate
program semantics, these motions have to be made legal by compensating the
code motions on the trace with insertion of copies for the moved operations in
the off-trace paths. This phase is called the bookkeeping phase.

Trace Selection. The trace selection phase of our optimization tries to find
good sequences of basic blocks (i.e., traces) that are likely to be executed con-
tiguously. A sequence has to fulfill two important criteria to be considered good.
First, it has to be long and has to contain a large number of instructions. Only
large traces provide the compactor with a potentially large enough pool of in-
dependent instructions and allow aggressive speculation. If the traces in a pro-
gram are not naturally long enough, trace scheduling can benefit from trace
enlargement techniques (e.g., branch target expansion, loop peeling, and loop
unrolling [Chen et al. 1993]). Second, a trace is good only if the dynamic pro-
gram flow often reaches the end of the trace. Traces that are likely to complete
are preferable to those that are exited before the end of the trace. This is because
the most aggressive compaction algorithms aim to minimize the cycle count for
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the entire trace. Early exits further lower performance because instructions
moved above early exits are wasted work.

Our algorithm selects traces as follows. First, it selects the most frequently
executed trace by starting at the entry point of a procedure and then following
the dominant fork at each branch until it reaches the end of the procedure.
This is guaranteed to be the most frequently executed path since our optimizer
transforms unstructured control flow into structured control flow in an earlier
optimization phase [Brandis 1995]. For the same argument, it can also easily be
proven that it always reaches the end of the procedure given that the control-
flow graph is acyclic. The trace constructed in this manner satisfies our quality
criteria; the trace is both and the dynamic program flow always reaches the
end of the trace. Once this trace is selected, the algorithm selects another start
block and again follows the dominant fork at each branch until it reaches a
basic block that has already been selected. At each step, the algorithm tries to
pick the longest possible trace that is most likely to be executed. This process
is repeated until all the basic blocks have been selected.

This algorithm can easily be extended to deal with cyclic control flow. Since
the set of loops in Oberon is partially ordered under inclusion—loops are prop-
erly nested and sequenced—all the loops within a program can be scheduled
separately, one at a time. For each loop L the algorithm first schedules all nested
loops L′ in L in a depth-first traversal and then considers the nested loops as
single compacted instructions. Once nested loops are compacted, it proceeds
with the same strategy outlined above for acyclic control-flow. The algorithm
first finds the most frequently executed trace within the loop, usually the loop
body. The algorithm then selects traces within the loop-exit paths until all the
basic blocks have been selected.

Like any other heuristics-based optimization, trace scheduling relies on ac-
curate probabilities of taking different forks for branches. Our implementa-
tion derives this information from live edge-profiles [Ball and Larus 1994]
that are collected by our instrumenting edge-profiling component. Although
branch probabilities could in principle also be derived from accurate path pro-
files (Young and Smith [1998] have shown that trace selection can be enhanced
by using accurate path-profiles rather than control-flow profiles [Chen et al.
1994]), this comes at an increased cost of profiling.

Trace Compaction. Once good traces have been selected, the trace com-
paction phase speculatively schedules instructions on each trace. This is done
by moving instructions in a trace both above and below branches to achieve
an efficient schedule. Our algorithm uses a forward scheduling approach that
first schedules the roots of the dependency graph (usually load-instructions) at
the earliest possible cycle and then moves downward through the graph to the
leaves (typically store-instructions). Each instruction is scheduled as soon as it
is data-ready, i.e., as soon as all definitions of its operands have been sched-
uled. If several instructions are data-ready concurrently, our algorithm ap-
plies several heuristics to select the best ordering of instructions. Among them
are a dependence height heuristic (i.e., schedule instructions first that have a
big dependence height), a liveness weights heuristic to avoid the problem of
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overscheduling [Warren 1990], a greatest uncovering heuristics (i.e., the in-
struction with the largest number of immediate successors is preferred), and
an interlock heuristic (i.e., instructions that may cause interlocks with succes-
sors are scheduled as early as possible).

Common to these heuristics is that they are purely static and do not take
advantage of live profiling information. However, profiling information can be
extremely useful for scheduling instructions on traces, especially to avoid mov-
ing unnecessary instructions above high-probability exits in the trace. Specu-
lative yield coupled with dependence height is a good profile-driven heuristic
that addresses this problem [Fisher 1981]. It minimizes the number of instruc-
tions executed unnecessarily, by avoiding scheduling instructions early that do
not contribute to high probability exits. However, one particular shortcoming of
speculative yield is that there is nothing inherent in the heuristics that ensures
that paths, which are shown by profiling data not to be important, do not get
delayed unnecessarily. This leads to execution time degradation when those
paths are really executed at run-time. Since the computation of yield values is
based on single traces at a time, it cannot evaluate the effect of long-latency
instructions on the trace on instructions following exit paths. In other words,
it can assess whether a particular exit is delayed by moving an instruction
above it but it can not assess whether the instructions following the exit are de-
layed by the code movement. To circumvent this problem, our implementation
of trace compaction utilizes an additional heuristic that circumvents schedul-
ing long-latency instructions above exits with a high probability. Long latency
instructions include floating-point and integer division, as well as load instruc-
tions that are likely to miss in the cache.

9. EMPIRICAL EVALUATION

We have implemented the architecture described in Section 2 through Section 6
on top of Oberon System 3 [Wirth and Gutknecht 1992; Gutknecht 1994;
Gutknecht and Franz 1999], and have integrated both dynamic object layout
adaptation and dynamic trace scheduling into the framework for the PowerPC
604e [Motorola, Inc. 1996]. The PowerPC 604e is a superscalar out-of-order pro-
cessor with one branch processing unit, one condition register unit, two single
cycle integer units, one multi-cycle integer unit, one floating-point unit, and
one load/store unit. It contains a 32Kbyte four-way set-associative first-level
data cache and first-level instruction cache, and a 1Mbyte unified second-level
cache.

The empirical data presented in the following is based on a common set of
benchmarks, illustrated in Table III. The benchmarks include TreeAdd, Bisort,
and Health from the Olden benchmark suite [Rogers et al. 1995] and Jigsaw
from the WPI benchmark suite [Finkel et al. 1992]. These benchmarks have in
common that each of them allocates many megabytes of data and represents
frequently used operations on dynamic data structures. BTrees and Texts are
fundamental shared libraries of the Oberon System 3 [Wirth and Gutknecht
1992; Gutknecht 1994; Gutknecht and Franz 1999] and are accessed by virtu-
ally every program running as part of any Oberon session. BLAS is a basic linear
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Table III. Benchmark Characteristics

Program Size
Benchmark Description (Lines of Code)
TreeAdd Sums the elements in a tree 166
Bisort Sorts two disjoint bitonic sequences and then merges them 229
Health Simulates the Columbian health care system 531
Jigsaw Solves a jigsaw puzzle 341
BTrees BTree library 1,343
Texts Oberon text system 961
BLAS Basic linear algebra subroutines (Vector/Vector, Matrix/Vector,

Matrix/Matrix)
10,274

FTP File transfer protocol client 4,690
DDD Graphics rendering engine that implements a standard z-buffer

rendering pipeline
2,250

MS Monte carlo simulation of a constant stimulus design 2,470

algebra reference library, providing subroutines for vector/vector, matrix/vector,
and matrix/matrix operations [Dongarra et al. 1988]. In contrast to typical ap-
plication programs, the latter three shared libraries are exposed to many differ-
ent client contexts and various usage patterns. Reoptimization is thus particu-
larly beneficial.8 The remaining benchmarks represent programs from a variety
of application domains: DDD is a 3D graphics rendering engine that imple-
ments a standard z-buffer rendering pipeline with texture mapping; and MS is
a Monte Carlo simulation of a constant stimulus design.9 All our benchmarks
were executed multiple times, utilizing the PowerPC’s performance monitor.
The performance monitor includes four 32-bit hardware counters that record
detailed events during execution, such as instruction dispatches, instruction
cycles, misses in the cache, and load/store miss latencies.

Profiling Overhead

Adaptive profiling is an essential feature of our system. Profiling not only has to
be unobtrusive and to incur low overhead for dynamic optimizations to pay off,
but also has to be continuous in order to detect changes in the user’s behavior.
Table IV summarizes the profiling techniques implemented in our prototype.

In order to estimate an upper bound for the costs induced by the profiling in-
frastructure, all the benchmarks have been instrumented pessimistically: Proc-
Cnt instruments every procedure; EdgeCnt instruments a minimum set of ba-
sic block transitions so that information about each transition can be computed
transitively; and CallTime and CallParamVal instrument every procedure call
and every parameter. In practice, profiling is not done conservatively—only

8Note that for optimizations such as our data layout improvement, specializing the library for
different clients (i.e., creating a separate version of the library for each client) is not an option,
because data structures can be shared across client boundaries, and in component-oriented systems
often are shared in this manner.
9As others have noted [Truong et al. 1998], benchmarks such as SpecInt95 are not ideal to measure
performance gains for optimizations that target applications with poor data locality and large
working sets. Also, since our system is based on Oberon, no comparable benchmark suite was
available. Consequently, we have used a non-standard suite of programs for our tests.
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Table IV. Built-in Profiling Components. An “S” Under the Heading “Implementation” Denotes
a Sampling Profiler, “I” Denotes an Instrumenting Profiler

Name Implementation Description
InstrCnt S Measures the sampling frequency of individual instructions

using a sampling profiler.
ProcCnt I Measures the execution frequency of individual procedures.
EdgeCnt I Measures the execution frequency of basic block transitions.

Is also used for path profiling.
CallTime I Measures the execution time of individual call-sites. Also

measures the execution frequency of each call-site.
CallParamVal I Monitors actual parameters for individual call-sites.

Table V. Profiling Overhead. Increase in Code Size in Relation to Uninstrumented Binaries

Benchmark InstrCnt ProcCnt EdgeCnt CallTime CallParamVal
TreeAdd 0.00% 10.92% 31.26% 96.42% 120.90%
is actually TreeAddInsert Bisort 0.00% 8.50% 36.72% 110.47% 325.95%
Health 0.00% 5.33% 27.72% 74.69% 84.31%
Jigsaw 0.00% 4.32% 47.17% 53.85% 77.08%
BTrees 0.00% 5.73% 36.48% 100.78% 286.88%
Texts 0.00% 1.38% 9.07% 20.62% 74.11%
BLAS 0.00% 1.23% 54.20% 21.71% 80.69%
DDD 0.00% 3.77% 30.89% 62.56% 124.55%
FTP 0.00% 2.27% 35.73% 77.58% 143.73%
MS 0.00% 5.38% 30.79% 75.68% 71.21%
Average 0.00% 4.88% 34.00% 69.44% 138.94%

code entities under current observation by an optimization component are in-
strumented. This is very likely to reduce the actual numbers presented below.
As an example, a prefetching algorithm only instruments selected procedure
calls to decide whether they can be used to hide the latency between a prefetch
instruction and a corresponding load instruction.

Table V first compares the increase in code size for the various (instrument-
ing) profiling techniques. In contrast to instrumenting techniques, sampling
techniques, such as InstrCnt do not cause any increase in code size at all. The
costs for ProcCnt are relatively modest. Adding three instructions per proce-
dure results in an overhead in the range of 1% for medium sized procedures
to about 11% for small procedures. Instrumenting transitions between basic
blocks (EdgeCnt) increases the cost by about 10% to 55%. EdgeCnt inserts three
instructions per transition with an average of about 7 transitions being instru-
mented per procedure.

The costs for both CallTime and CallParamVal are more substantial. Call-
Time inserts 14 additional instructions per call-site to count the number of
invocations as well as the time required for each invocation. CallParamVal
inserts 53 additional instructions for each actual parameter passed to a proce-
dure at a given call-site. This results in overheads up to 326%, practically qua-
drupling the code size for certain benchmarks. For CallTime and CallParam-
Val, the variations between different types of applications being profiled are
also significant. Call-intensive programs (e.g., object-oriented programs) incur
a much larger overhead than programs that invoke procedures less frequently
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Table VI. Profiling Overhead. Increase in Execution Time in Relation to Uninstrumented
Binaries

Benchmark InstrCnt ProcCnt EdgeCnt CallTime CallParamVal
TreeAdd 8.72% 0.00% 0.03% 17.62% 0.00%
actually TreeAddInsert Bisort 10.20% 1.64% 9.22% 22.20% 31.96%
Health 8.99% 0.95% 1.37% 5.07% 3.51%
Jigsaw 9.26% 0.00% 3.00% 0.00% 0.00%
BTrees 12.09% 0.27% 25.94% 1.94% 1.97%
Texts 2.89% 0.41% 4.40% 1.65% 4.82%
BLAS 11.56% 0.53% 16.32% 4.20% 1.69%
DDD 17.37% 1.08% 8.09% 12.08% 22.42%
FTP 17.43% 1.02% 0.73% 0.03% 1.27%
MS 6.84% 0.87% 1.65% 22.67% 3.95%
Average 10.54% 0.68% 7.08% 8.75% 7.16%

(e.g., traditional imperative programs). Also, procedure calls with floating point
and pointer parameters induce less overhead since these parameters are not
monitored by CallParamVal for the purpose of finding constant values.10

Table VI contrasts the overhead in code size to the overhead in execution
time. Surprisingly, InstrCnt causes more overhead than all of the instrument-
ing techniques. This must mainly be ascribed to a technical problem rather
than a fundamental one: the MacOS does not allow installation of light-weight
interrupt handlers but requires implementers to resort to more expensive tech-
niques. In the presence of light-weight interrupt routines the overhead could
be reduced considerably. In addition, InstrCnt presently samples with a fre-
quency of 1000 samples per second, but the sampling frequency can be arbi-
trarily adapted to control the overhead.

Instrumenting techniques cause an overall overhead of about 7–8% with
the exception of ProcCnt, which slows program execution down by only 0.5%.
Similar to the code overhead, large variations between different benchmarks
can again be observed. EdgeCnt is especially costly if the instrumented edges
are part of nested, frequently executed loops. The costs for CallTime and Call-
ParamVal primarily depend on whether the instrumented call-sites are part
of critical execution paths. Often, the majority of instrumented call-sites never
get executed, which explains the discrepancies between the overhead in code
size and execution time (e.g., for the BTrees benchmark).

Table VI reveals another interesting fact. In contrast to instrumenting tech-
niques, a sampling profiler does not allow reducing the total overhead by only
concentrating on a set of prefered procedures—it cannot sample selectively. The
FTP benchmark for example spends most of its time in an (already optimized
and uninstrumented) kernel routine that waits for incoming data packets. The
total profiling overhead for instrumenting profilers is therefore quite small. A
sampling profiler, however, also samples the already optimized kernel routine
even though this routine is not of interest to the optimizer.

10Constant floating-point parameters cannot benefit from constant propagation due to the compli-
cated nature of floating-point exceptions. For pointer variables, the value the pointer points to is
of much more interest than the pointer itself.
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Table VII. Similarity Computation Overhead. This Table Shows the Run-Time Overheads
Induced by the Similarity Computation for the Different Benchmarks. All the Numbers Under

the Heading “Events” Represent the Number of Events that the Corresponding Profiling
Component Chose to Instrument. The Numbers Under the Heading “Time” Represent the Time

(in Milliseconds) Required to Compute the Similarity Measure Once

ProcCnt EdgeCnt

Events Time Events Time
TreeAdd 12 0.44ms 42 0.49ms
Bisort 14 0.57ms 59 0.63ms
Health 13 0.57ms 75 0.66ms
Jigsaw 12 0.44ms 104 0.53ms
BTrees 58 2.67ms 327 4.09ms
Texts 44 1.68ms 97 1.92ms
BLAS 86 3.20ms 1,994 33.32ms
DDD 44 4.43ms 762 9.71ms
FTP 102 6.95ms 780 11.81ms
MS 103 2.52ms 311 6.73ms

CallTime CallParamVal

Events Time Events Time
TreeAdd 36 0.49ms 33 0.58ms
Bisort 51 0.62ms 88 1.00ms
Health 50 0.61ms 63 1.54ms
Jigsaw 37 0.48ms 41 0.66ms
BTrees 286 4.05ms 519 4.59ms
Texts 46 1.93ms 58 3.97ms
BLAS 256 4.85ms 432 9.70ms
DDD 453 7.03ms 476 16.64ms
FTP 518 15.27ms 853 16.56ms
MS 225 5.27ms 129 5.58ms

Similarity Computation Overhead. One of the key characteristics of our
architecture is that optimization is not only performed once but rather contin-
ually. In order to detect changes in the user’s and system’s behavior, the system
periodically computes a similarity measure that reflects the degree of behav-
ioral changes. In Table VII, we present the number of profiling events that are
monitored by the different profiling components for each benchmark. It also
lists the time required to compute the similarity measure for these profiling
events. For most of the benchmarks, the times required are in the range of
milliseconds and can thus be neglected in practice. A projection of the expected
overhead for larger applications is presented in Table VIII. Per megabyte of
code, the similarity computation induces an execution time overhead of about a
fourth of a second for each individual profiling component. On average, 45,000
code entities are instrumented. The additional memory requirements (as a per-
centage of the code size) to hold the profiling values and their history are 2%
for ProcCnt, about 20% for EdgeCnt and CallTime, and 82% for CallParamVal.

Although the cost of the similarity function looks considerable at first—a
10MByte application that instruments all the edges, all the procedure calls,
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Table VIII. Similarity Computation Overhead. This Table Shows the Average Overhead Per
Megabyte of Code in Terms of the Execution Time Required to Compute the Similarity Measure,

the Number of Events Monitored, and the Memory Requirements to Monitor those Events

Execution Number of Memory Requirements
Time (s) Events (bytes)

ProcCnt 0.08 4,855 19,423
EdgeCnt 0.23 45,284 181,137
CallTime 0.13 19,483 233,795
CallParamVal 0.19 26,787 857,169

and all the parameters causes a 5.5 second interruption to compute the sim-
ilarity measure—it is not in practice. For one, the function needs to be com-
puted only very infrequently, reducing its relative costs. Second, the interrupt
time can be reduced by splitting the computation into several steps. This can
be done by either computing the similarity function separately for different
profiling components (e.g., computing the similarity for EdgeCnt first and for
CallTime in a second step) or computing the similarity function separately for
different code entities (e.g., computing it for procedure X first and only later for
procedure Y). Alternatively, both variations can be combined by computing the
similarity function separately for different profiling components and different
code entities.

Since the numbers at hand present a pessimistic estimate and have been col-
lected to compute an upper bound for the additional run-time costs, the costs in
practice are considerably lower. Frequently, profiling components only instru-
ment a small subset of code entities—namely the ones that are of particular
interest to an optimization component—and not all the possible ones as done
in these benchmarks.

Speedup

Our first set of benchmarks (see Table IX) present an idealized situation in
which we compare a statically optimized program (performing the optimiza-
tions illustrated in Table II) with the same program after object layout adap-
tation and after dynamic trace scheduling—but without taking into account
the costs of optimization and profiling. Note that the default implementation
of Oberon provides none of these optimizations at all and hence corresponds to
a speedup factor of 1.0.

Clearly, optimizing the data-layout for memory intensive programs is well
worth the effort—program performance is increased by up to a factor of two
over static optimizations. It is only for scientific applications and applications
with no or small dynamic data structures that data-member reordering is less
effective. This is in sharp contrast to trace scheduling, for which the speedups
fall disappointingly short of our expectations. While scientific applications, such
as BLAS routines, achieve a speedup of up to 15%, memory intensive applica-
tions do not profit from trace scheduling at all.11 This can be explained by the
fact that load-instructions with latencies of more than 100 cycles can seldom

11These results might improve for in-order and VLIW architectures.
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Table IX. Ideal Performance Speedup. The Numbers Under the Heading “Statically Optimized”
Illustrate the Performance Increase of a Statically Optimized Binary Over an Unoptimized

Binary as Produced by the Default Implementation of Oberon. The Numbers Under the Heading
“Object Layout Adaptation” and “Trace Scheduling” Illustrate the Performance Increase of a

Binary After Performing Static Optimization Techniques as well as the Corresponding
Optimization Technique Over Purely Statically Optimized Binaries

Statically Object Layout Trace
Benchmark Optimized Adaptation Scheduling
TreeAdd 0.99 1.15 1.09
Bisort 1.04 1.04 1.02
Health 1.01 1.00 1.01
Jigsaw 0.99 1.30 0.99
BTrees 1.01 1.96 1.00
Texts 1.00 1.69 1.01
BLAS 2.27 1.00 1.15
DDD 1.09 1.00 1.06
MS 1.06 1.00 1.01
Average 1.16 1.24 1.04

be scheduled sufficiently far ahead of their uses. If instructions can be sched-
uled far ahead of their uses, register pressure is often increased as a result,
which causes additional spill-code to be inserted into the code. This cancels any
potential performance gains achieved by re-scheduling. Table IX also leads to
the suggestion that the static optimizer should perform trace scheduling by de-
fault rather than local scheduling. This is because trace scheduling generally
performs well whenever static optimizations perform well.

Considering Profiling Costs. A more realistic picture that accounts for pro-
filing costs is given in Figure 8 for object layout adaptation and in Figure 9
for dynamic trace scheduling. Figure 8 illustrates the different phases an exe-
cutable proceeds through during object layout adaptation. As soon as the back-
ground re-optimizer commences its task, it performs a series of static optimiza-
tions on critical procedures and instruments them with path profiling code.
The performance of the resulting executable is presented under the heading
“Original layout with path profiling.” Note that in the majority of benchmarks,
performance is lowered due to the cost of profiling, which in these cases cannot
be offset by static optimizations. In order to show the cost of the instrumen-
tation, we also present the performance that this first optimized code image
would have if there were no path profiling code. In actuality, the system never
removes the profiling code.

After a while, the system has gathered enough path profiling information to
be able to optimize the layouts of critical data structures. The resulting per-
formance is presented as “Optimized layout with path profiling.” Again, these
figures include the overhead of profiling (but not the overhead of re-optimization
itself), which is why we add separate numbers for timings without this over-
head. In actual use, the profiling instrumentation is not removed because opti-
mization is continuous: the system will keep monitoring the profiling data for
apparent changes in system behavior, and if such behavior is observed, will re-
optimize the affected procedures. Note that this does not invalidate the original
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Fig. 8. Profiling costs. At load-time, the code-generating loader creates a first unoptimized version
of the application. At run-time, the background optimizer performs basic code optimizations and
instruments applications with path profiling—the original data layout is retained. If profiling in-
formation suggests that a different memory layout might increase performance, the storage layout
of live data objects is modified.

Fig. 9. Comparing performance for local scheduling, static trace scheduling, and profile-guided
trace scheduling, both including and excluding profiling overhead.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.



Continuous Program Optimization: A Case Study • 533

goals of continuous profiling: as can be seen in Figure 8, even with the profil-
ing code left in, the optimized program is still faster than the optimized initial
program.

Similarly, Figure 9 illustrates the cost-effects of profiling instrumentation
in the case of dynamic trace scheduling. It compares program execution times
of the local instruction scheduler to two different versions of trace scheduling.
The first version, called “Static Trace Scheduling,” is based on a static branch
predictor and uses no profiling information at all. The second version, termed
“Dynamic Trace Scheduling,” is based on the profile-based heuristics described
in Section 8. The results for the static and dynamic trace scheduler are given
for both instrumented code (“. . .with Path Profiling”) and uninstrumented code
(“. . .without Path Profiling”).

There are two important observations that can be made from Figure 9. First,
profile-guided trace scheduling seems to perform noticeably better than static
trace scheduling—at least in the case in which the profiling data matches the
actual run-time behavior. With the exception of Jigsaw, the execution times for
“Dynamic Trace Scheduling” are smaller than the execution times for “Static
Trace Scheduling.”

The second observation is more fundamental in nature and has implica-
tions for the design of our system. One of the important insights that our work
has yielded (and that will be presented shortly) is that there is an added per-
formance benefit if applications can dynamically adapt to changing user ses-
sion patterns. Automatic adaptation, however, requires continuous profiling
which is clearly not feasible for trace scheduling. Figure 9 illustrates that trace
scheduling only pays off if profiling instrumentation is removed after perform-
ing the optimization—both trace scheduling variants cannot compete with the
local scheduler if path profiling instrumentation is present in the executable.
This is in direct contrast to object layout adaptation. For object layout adap-
tation, continuous profiling presents no major problem since the instrumented
optimized code is still considerably faster than the uninstrumented unopti-
mized code.

So if continuous profiling is not feasible, how can we still react to behavioral
changes? The solution to this problem is both simple and intuitive. Rather than
profiling programs continuously, programs are profiled periodically. Profiling
instrumentation is removed after optimization but periodically re-inserted into
the executable to re-monitor the program’s behavior for a short amount of time.
If the profiling data suggests that the behavior has changed since the last in-
strumentation step, the code is re-scheduled. The instrumentation code is then
removed again. Further, with the advent of cheaper or even free profiling tech-
niques and profiling hardware support [Anderson et al. 1997; Wu et al. 1999],
this problem will be of less concern in the future.

Profitability

Given the potential for both object layout adaptation and dynamic trace
scheduling, is performing these optimizations at run-time worth the consid-
erable effort? Can the time invested in code optimization ever be recouped by
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Fig. 10. Computing the break-even point.

a faster running program? In order to answer this question, we first need to
study how the “break-even” point is reached in a system such as ours—that
is, if it is ever reached at all. As Figure 10 illustrates, the benefit of reopti-
mization is not simply the ratio of the resulting speedup and the combined
overheads of profiling and code regeneration. This is because the speedup itself
is achieved only after the reoptimization phase has completed: if the optimiza-
tion was completed halfway through execution, then only half of its potential
benefit could be realized. As shown in Figure 10, the first part of this cost
is related to the fact that profiling information is not immediately available;
we cannot circumvent having to execute the unoptimized version of the pro-
gram for a while first, to detect the hot spots in the program (O0). This period
of time is commonly referred to as “opportunity cost.” Once hot spots are de-
tected, there is a further price to pay for re-generating and fine-tuning the code.
In some cases, we even need to insert additional path profiling instrumenta-
tion for these hot spots (C0). Again, we have to run the new version of the
program for a while until this information becomes available (O1). Only then
can we generate an even more optimized version of the program (C1). Hope-
fully, if the program’s overall run-time is sufficiently long, this cost is even-
tually recouped because the resulting program is significantly faster than the
original.

Also note that the cost for the first optimization cycle is higher than the cost
for subsequent optimization cycles. Ideally, since profiling instrumentation is
never actually removed, subsequent optimization cycles no longer have to pay
the price for finding hot spots and inserting path profiling instrumentation (O0
and C0). In addition, the opportunity cost O1 can be partially overlaid with the
time it takes for the previous optimization cycle to pay off.
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Table X. Break-Even Point (in Seconds). Illustrates the Time Required for the Object Layout
Adaptation to Pay Off. If the Unoptimized Program Version Ran Longer than the Break-Even
Point, Performing the Data Layout Technique First and then Running the Optimized Program

Version Would Perform Better. The Compilation Cost C0 Includes the Cost for Applying Standard
Optimizations to the Application and Inserting Instrumentation Utilized Later by the Memory
Optimization. C1 Includes the Cost for Reading the Collected Path Profiling Data and Creating

the TRG Graph, Computing the New Memory Layout and Changing the Layout of All Live
Objects, as well as the Cost for Generating Code for the New Memory Layout

Compilation Break-even point (s)
Costs (s) for various opportunity costs

C0 C1 Oi = 60s Oi = 120s Oi = 180s
TreeAdd 0.4 16.2 430.0 561.0 692.0
Bisort 1.3 5.8 ∞ ∞ ∞
Jigsaw 3.2 9.5 205.0 336.0 468.0
BTrees 19.1 50.9 276.0 404.0 533.0
Texts 5.4 30.2 198.0 316.0 433.0

Hence, the “break-even” point of such an optimization process with n − 1
phases can be represented by the following generic formula:

break-even point =
Sn

n−1∑
i=0

(Ci + Oi)−
n−1∑
i=0

Oi Si

Sn − 1

In the above formula, Oi denotes the opportunity cost at phase i (i.e., the time
required to detect hot spots in the program), Ci denotes the optimization costs
at phase i (i.e., the time required to optimize a hot spot), and Si denotes the
execution time ratio of the unoptimized unprofiled program over the current
version of the program at phase i.

Based on the above formula, Table X and Table XI attempt to answer
the question whether performing object layout adaptation and dynamic trace
scheduling at run-time pays off. It lists the times required to optimize the in-
dividual benchmarks and the resulting “break-even points” for various oppor-
tunity costs. For example, assuming that the system requires one minute to
collect enough profiling information before it can start the optimization, opti-
mizing the storage layout of the Oberon shared text subsystem pays off after
invoking text services for a total of 3.3 minutes. Similarly, if the system collects
profiling information for one minute, re-scheduling the code for TreeAdd pays
off after only 2.5 minutes. For larger shared libraries, such as the BLAS rou-
tines, re-scheduling pays off after 16.8 minutes of continuous execution. This
is already a quite substantial period of time and re-scheduling might hence
only be feasible in the context of long-running computationally intensive tasks.
In addition, the break-even point for trace scheduling is—not surprisingly—too
large to be practical for most other benchmarks. Consequently, our optimization
performs a static analysis of the source program prior to performing dynamic
optimizations. By limiting object layout adaptation to programs with dynamic
data structures and by limiting trace scheduling to programs with a high num-
ber of nested loops and a high number of floating-point operations, optimizing
unprofitable sections of code is avoided.
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Table XI. Break-Even Point (in Seconds): Illustrates the Time Required for the Optimization to
Pay Off. If the Unoptimized Program Version Ran Longer than the Break-Even Point, Performing
Trace Scheduling First and then Running the Optimized Program Version would Perform Better

Overall. See Accompanying Text for an Explanation on how these Values Are Computed. The
Compilation Cost C0 Includes the Cost for Applying Standard Optimizations to the Application
and Inserting Instrumentation Utilized Later by the Dynamic Trace Scheduler. C1 Includes the
Cost for Reading the Collected Path Profiling Data and Reoptimizing the Application Using the

Trace Scheduler that is Guided by the Path Profiles

Compilation Break-even point (s)
Costs (s) for various opportunity costs

C0 C1 Oi = 60s Oi = 120s Oi = 180s
TreeAdd 1.1 1.2 148.0 269.0 349.0
Bisort 3.6 4.4 1462.0 2500.0 3192.0
Health 3.9 4.7 2254.0 2665.0 2938.0
Jigsaw 2.9 3.7 ∞ ∞ ∞
BTrees 0.9 1.1 ∞ ∞ ∞
Texts 5.5 6.8 2374.0 2649.0 2831.0
BLAS 36.5 79.9 1009.0 1138.0 1223.0
DDD 56.6 63.5 2439.0 2571.0 2659 .0
MS 19.6 24.3 5384.0 5743.0 5982.0

Fig. 11. Procedure execution times for the Oberon file service.

Behavioral Mismatches. Another important insight that our work has
yielded is that continuous, rather than do-it-once, optimization yields an added
benefit. This is because a single piece of code is often put to several quite dis-
tinct uses over the course of a single user session lasting several hours, while
at each moment the user’s attention is usually focused on a relatively small
number of current tasks. Figure 11 illustrates this in the case of the Oberon
file system. It shows the usage pattern for various client applications, among
them a publishing document editor, a medical application that displays patient
images and image sequences taken by an echocardiograph (ECG), an Oberon
compiler for the PowerPC, and a file transfer protocol client (FTP).

Clearly, different client applications place different loads on the shared li-
brary functionality. The ECG Viewer, as an example, primarily reads from files
and does so in a sequential way. Publishing on the other hand spends most
of its time positioning the reader in the source document whenever the user
scrolls and moves the cursor to different positions in the document. Moreover,
FTP primarily writes to files but never accesses any of the read interfaces.
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Fig. 12. Basic block diagram for Texts.OpenFinder.

Similarly, the distribution of execution paths and basic blocks within sin-
gle procedures can change considerably for different execution scenarios. As
an example, Listing 1 on the following page and Figure 12 depict the proce-
dure OpenFinder from the text library and its control flow graph, respectively.
The distribution of paths for various client applications is given in Figure 13.
Here, the distribution of executed paths strongly varies with different client ap-
plications. While the Web-Browser falls straight through the procedure (path
1-11-24-34-46-13), other applications spend most of their execution time in the
innermost loop (path 24-34-44).

This raises the question of how a library optimized for one particular client
performs when it is used with another. To investigate this, we performed a
series of experiments that are summarized in Figure 14 and Figure 15. In the
first experiment, we took an “original” data-structure layout in which the fields
were arranged strictly in the order specified by the programmer in the source
text with four layouts that were automatically obtained by our optimizer for
four different uses of the Texts library, and correlated their performance across
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Fig. 13. Path frequencies for Texts.OpenFinder.

Fig. 14. Optimizing the Texts benchmark for different predominant access patterns.

these four different usage scenarios. In order to simplify the comparison, the
cost of regenerating the code itself has been disregarded, because this cost
varies greatly depending on the order in which the layout of different types is
modified. The cost of the first optimization cycle differs from that of subsequent
ones, because the first cycle additionally needs to insert profiling code whereas
subsequent cycles do not.

As can be seen in Figure 14, there is clearly a difference in optimizing for
different text services. For example, the publishing application is 13% faster
using a text library that is custom-tailored for it rather than a library tailored
for the compiler or the Web browser. Similarly, the text editor is 7% faster
with its custom-tailored version of the library versus the compiler’s custom-
tailored version. These results also confirm the expected result that dynamic
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Fig. 15. Optimizing the procedure DTBSV from the BLAS library for different predominant
execution patterns.

compilation is superior to static compilation, because it can adapt to multiple
behavior patterns instead of just a single one.

The reason why custom tailoring yields an additional benefit in this particu-
lar case is that the text service supports not only plain sequences of characters,
but also enriched documents that have elements such as images, buttons, and
hyperlinks embedded within them. The fields that support these additional
“floating text elements” are accessed relatively frequently when dealing with
Web pages and using the publishing application. But source programs rarely
contain any embedded elements, hence the program editor and the compiler
access the corresponding fields less frequently than other clients of the text
service. This results in two very different usage scenarios, one in which the cor-
responding fields are placed with other frequently accessed ones on the same
cache line, and another in which they are “demoted” in favor of other data
members.

In the second experiment, we evaluated the effect of profiling mismatches
on dynamic trace scheduling. To this effect, we performed a series of tests with
the procedure DTBSV from the BLAS benchmark for which trace scheduling
evidently yields an added benefit. DTBSV solves one of the equations Ax = b
or AT x = b where A is an n × n band matrix with multiple diagonals. De-
pending on the actual input parameters, A can either be a unit or a non-
unit matrix, as well as upper or lower triangular. In order to evaluate the
impact of profiling data mismatches, we compared the performance of the lo-
cal instruction scheduler to the performance obtained by trace scheduling code
for four different uses of DTBSV. We also correlated the performance across
these four different usage scenarios. The four usage scenarios are solving the
equation Ax = b for unit triangular matrices (“NU”), solving Ax = b for non-
unit triangular matrices (“NN”), solving AT x = b for unit triangular matrices
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(“TU”), and solving AT x = b for non-unit triangular matrices (“TN”). The re-
sults of our experiments are summarized in Figure 15. For simplicity reasons,
the overhead of path profiling and optimization is again not included in the
benchmarks.

Figure 15 clearly shows that there is a benefit in optimizing for different
path profiles. Throughout the results, the version optimized for the currently
predominant execution pattern is noticeably faster than the versions optimized
for another execution pattern. As an example, DTBSV executes roughly twice as
fast with input parameters “NU” if it has been optimized for input parameters
“NU” rather than for input parameters “NN.” Similarly, DTBSV executes about
twice as fast with input parameters “TU” if it has been optimized for input
parameters “TU” rather than for input parameters “TN.”

The second insight that Figure 15 yields is that profiling data that combines
data from several different execution scenarios is inferior to accurate profiling
data. The execution times for “Trace Scheduling for Norm” are regularly larger
than the execution times for the variants that generate code for one particular
execution scenario (“Trace Scheduling for NU/NN/TU/TN”). The former results
are based on a scenario in which there is no predominant execution pattern and
all parameters are equally likely to occur.

In any case, Figure 15 confirms our intuition that profile-guided trace
scheduling performs better than static trace scheduling. Using profiling data—
whether specialized for a particular set of parameters or not—performs better
than using no profiling data at all (“Static Trace Scheduling”).

10. OPEN PROBLEMS AND FUTURE WORK

One of the essential problems of dynamic reoptimization is to decide whether
the effort of optimization can be recouped by the faster running program in a
reasonable amount of time. The last section has yielded some evidence that this
might not always be the case. In certain situations, a system is better off not
to optimize a given piece of code. Currently, our architecture assigns a hard-
coded benefit estimate to each optimization phase (e.g., 5% speedup for data
prefetching, 20% speedup for common subexpression elimination) upon which
the system decides whether or not to perform optimization. This situation,
however, is not always optimal as the benefit values are only estimates, thus
inaccurate in many instances. The values also consider the program structure
to only a limited degree, which often influences the outcome of optimization
techniques. Loop unrolling, for example, increases the performance of loop-
intensive programs by several orders of magnitude but barely affects straight-
line programs.

In order not to haphazardly perform optimizations, more sophisticated so-
lutions are desirable for future generations of architectures. Program metrics
might emerge as one such solution. Program metrics reflect the structure of a
program and can thus better be used to guide optimization decisions. Potential
metrics include the ratio of load to store instructions, the ratio of floating
point operations to integer operations, the number and depth of loops, or the
frequency of procedure calls. Metrics might also capture information about
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memory accesses; whether data is accessed through arrays or dynamic data
structures.

For memory optimizations, metrics about the program behavior rather than
the program structure might be favorable. For example, certain types of opti-
mizations (e.g., data-linearization prefetching) are only useful if dynamic data
structures remain relatively constant at run-time. Beneficial metrics about
memory behavior would hence yield information about whether a given data
structure is predominantly static or dynamic. A good metric might also lead
to insights into whether changes in the data structure mainly involve moving
existing data objects around rather than adding new objects to it. Classifica-
tion of live data structures into lists, trees, and dags might also improve on
optimization decisions.

Several questions about program metrics remain to be explored. What is a
minimal set of metrics that are beneficial for a wide variety of optimization deci-
sions? Can program metrics be deduced by static program analysis, by dynamic
program profiling, or only by a combination of the two?

It also remains to be explored how program metrics can be used to predict
the potential of different optimization techniques in the case of a particular
program. For independent optimizations O, we might be able to compute the
potential benefit Bo based on a mapping of metrics values v0 ∈ V0, . . . , vm ∈ Vm
onto potential speedups, for example:

Bo : V0 × . . .× Vm→ [0..1]

However, not all optimizations are mutually independent. Some have to be
performed concurrently to yield a positive net speedup. For example, trace
scheduling is very likely to perform much better in the presence of loop un-
rolling. Likewise, some optimizations may disable others so they must not be
performed concurrently. In the presence of independent optimizations the above
formula might have to be generalized to sets of optimizations.

B : ℘({O0, . . . , On})× V0 × . . .× Vm→ [0..1]

Given a concrete implementation of B, the system favors the set of opti-
mizations for which B is maximal. In theory, this calculation is of exponential
complexity. In practice, however, we might be able to take advantage of the
fact that a given optimization usually depends on only a few other optimiza-
tion techniques. Hence, we might find the maximum by partitioning the set
of optimizations O0, . . . , On into partitions P0, . . . , Pk , where the Pi contain
mutually independent optimization techniques, then computing their maxima
individually:

max
o∈℘({O0...On})

B(o, v0, . . . , vm) =
k∑

i=0

max
o∈Pi

B(o, v0, . . . , vm)

Given the fact that compiler construction has always been an engineering dis-
cipline rather than an exact science, it is very unlikely that the above-mentioned
problem will ever be solved using a general approach that applies equally well
to all sorts of optimizations. More likely, particular solutions will evolve around
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carefully engineered solutions that are based on years of experience and collec-
tions of benchmark results.

A related remaining problem is organizational in nature: when a number
of independent vendors supply profiling and/or optimization components that
are assembled together to provide the runtime environment for application
software supplied by yet another set of vendors, whom does the user call when
a failure occurs? Even today, application programmers sometimes have to work
around errors in operating systems, knowing very well that the end-user would
be blaming them, rather than the operating system’s vendor, for any failure
occuring while their product was executing in the foreground. Unfortunately,
this issue might be greatly amplified by the existence of a multitude of runtime
environments resulting from different combinations of plug-in components.

11. RELATED WORK

Since 1996, when the project described in this paper was started, dynamic
optimization has become a very active field of research with several approaches,
different from our work, being investigated simultaneously.

The first fully automated system for runtime code optimization was described
by Hansen [1974]. Although it bore many structural similarities to our system,
as well as to today’s Java just-in-time compilers, it was markedly different
from the more recent systems in that it used profiling data only to decide when
to optimize and what to optimize, but not how to optimize. Consequently, the
speedups achieved were inherently limited and could not exceed the speedups
achieved with traditional static optimization techniques. In contrast, our sys-
tem allows optimization techniques to take advantage of live profiling-data and
to adapt to the user’s behavior.

With the advent of object-oriented programming languages, several sim-
ilar research projects were initiated with the explicit goal of making dy-
namic dispatches faster, reducing the overhead of garbage collection, and
minimizing the overhead of thread synchronization; among them are the
Smalltalk-80 system [Deutsch and Schiffman 1984], the Self-93 system [Hölzle
1994; Hölzle and Ungar 1996], the HotSpot system, the Intel VTune system
[Adl-Tabatabai et al. 1998], the Jalapeño system [Alpern et al. 1999a, b], LaTTe
[Yang et al. 1999], and a framwork for Java just-in-time compilers described in
Suganuma et al. [2001]. Typical optimizations performed by these systems in-
clude run-time type feedback [Hölzle and Ungar 1994], message inlining [Dean
and Chambers 1994], message splitting [Chambers 1992], polymorphic inline
caches [Hölzle et al. 1991], customization [Chambers and Ungar 1989], and
escape analysis [Choi et al. 1999]. In contrast, our work focuses primarily on
traditional optimizations and on novel optimizations that specifically exploit
live profiling data. Our work differs from these systems in another aspect: al-
though all of these systems perform dynamic optimization, they do not (yet)
perform unlimited dynamic reoptimization. Consequently, these systems can
only adapt to changing user session patterns to a limited degree. For example,
in the SELF system, methods were only reoptimized if not yet “optimal” (i.e.,
if a method contained sends that could not be inlined because of missing type
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information), but once a certain level of optimization had been achieved, the
counters were removed and no further enhancements were possible. One of
the main findings of this paper, however, is that recompiling even fully opti-
mized code images in response to changes in profiling-data can give rise to real
performance improvements.

Most of the above-mentioned systems—including ours—are based on source
code optimizations. In contrast, binary translation systems operate on binary
images directly. This prevents certain highly aggressive optimization tech-
niques from being performed at runtime (e.g., the memory optimization tech-
nique described in this paper) but allows optimizing legacy applications whose
source code is no longer available. An example of such a system is Hewlett
Packard’s Dynamo project [Bala et al. 1999] that optimizes HP PA-RISC bina-
ries in-flight. Often, however, binary translation systems not only optimize a
binary for a given instruction set, but translate it to or emulate it on an entirely
different instruction set. Digital FX!32 [Hookway and Herdeg 1997] uses such
an approach to enable the execution of Intel x86 applications on Alpha micro-
processors. Similarly, Hewlett Packard’s Aries system [Zheng and Thompson
2000] optimizes and translates Intel x86 code into Intel IA64 code, IBM’s BOA
[Gschwind et al. 2000] and Daisy system [Ebcioğlu and Altman 1997; Ebcioğlu
et al. 2001] translate PowerPC code into instructions for a smaller but faster
processor, and Transmeta’s code morphing software [Klaiber 2000] facilitates
the execution of Intel x86 code on a fast but low-power VLIW processor.

There are many differences between binary translation systems and our
work. First, our system is based on a type-safe transportation and intermedi-
ate format. This allows for much more aggressive optimizations since limiting
issues such as self-modifying code or precise exception handling do not arise.
Second, for some of the binary translation systems (e.g., Digital FX!32), pro-
filing information is used only to determine which program parts to translate,
but not to guide optimizations. The optimized code can hence never surpass
statically optimized code. Third, the flexibility of binary translation systems
is often limited by the fact that code images are only optimized once and can-
not be undone or redone. Since the profiles encountered in the first run of the
application may considerably deviate from the profiles collected in successive
application runs, code is not necessarily optimal for the predominant execution
patterns. Even worse, Digital FX!32, as an example, cannot immediately react
to critical performance bottlenecks at all since code is rewritten only after an
application quits. For applications that run very infrequently or only once, this
is a stringent limitation.

Continuous optimization has also been studied for systems providing incre-
mental (“staged”) specialization of an already executing program at run-time
[Engler et al. 1996; Lee and Leone 1996; Marlet et al. 1999; Grant et al. 1999],
based on manual annotation of the source program by a skilled programmer.
In these approaches, a static compiler constructs a dedicated run-time code-
generator that is able to dynamically create variants of the program to be exe-
cuted, specialized depending on actual input data. In contrast to our background
reoptimization engine, which is a full-fledged optimizing compiler, these dedi-
cated code generators are much simpler and operate on the complexity level of
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macro expansion. Value-specific optimizations also have the disadvantages of
involving the programmer in that he or she has to explicitly identify the bot-
tlenecks in the application. The potential benefits of such optimizations hence
are highly dependent on the skill level of the programmer. To this date, it is
not clear how making ill-chosen annotations affects run-time performance. Fur-
ther, value specific optimizations seem to be limited to a very narrow application
domain that includes simulations, code interpretation, and event dispatching.

Several optimization techniques have been described that are similar in
spirit to either object layout adaptation or dynamic trace scheduling. Among
them are field reorganization techniques [Truong et al. 1998; Chilimbi et al.
1999a], object co-location techniques [Chilimbi and Larus 1998], object cluster-
ing and coloring techniques [Chilimbi et al. 1999b], object placement techniques
[Calder et al. 1998], and profile-driven scheduling strategies [Chen et al. 1993;
Chen et al. 1994; Deitrich and Hwu 1996; Chekuri et al. 1996].

Finally, since the time this paper was submitted to TOPLAS, a number of
different approaches to profiling have been described. Most noteworthy are a
framework for reducing the cost of instrumented code [Arnold and Ryder 2001]
and ephemeral instrumentation, a technique to reduce the overhead of edge
profiling [Traub et al. 2000].

12. CONCLUSION

This paper has presented a study of a system that provides code generation
and continuous code optimization as a central system service. The system con-
stantly monitors the system’s state and reperforms optimizations as needed to
achieve a closer match between the executing software and the available hard-
ware resources. The system not only continuously adapts to the user’s behavior
but also eliminates some of the most severe performance problems found in
today’s software systems caused by hardware/software mismatches, software
components, and portable code.

This paper has also presented two optimization techniques that are early
representatives of an emerging class of code optimizations that are applica-
ble to programs that are already running. Object layout adaptation improves
the storage layout of dynamically allocated data structures. It is based on a
two-tiered strategy that first assigns fields to cache lines and then optimizes
the order of fields within individual cache lines. Dynamic trace scheduling im-
proves the instruction level parallelism for predominant execution patterns by
continuously adapting the instruction schedule to the most frequently executed
program paths.

Our results have shown that—because of the profiling feedback loop—object
code produced by continuous optimizations is often of a higher quality than
can be achieved using static “off-line” compilation. Optimizations at runtime,
if performed judiciously, can often surpass optimizations performed at compile-
time, independent of whether the latter are guided by profiling information or
not. Our results have also given evidence that reoptimizing an already running
program in response to changes in user behavior can give rise to real per-
formance improvements. The main beneficiaries of such reoptimizations are
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shared libraries, which at different times can be optimized in the context of the
currently dominant client application.
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