
A Taxonomy of Computer Program Security Flaws

CARL E. LANDWEHR, ALAN R. BULL, JOHN P. MCDERMOTT, AND WILLIAM S. CHOI

Informatmn Technology Division, Naval Research Laboratory, Washington, D. C. 20375-5337

An organized record of actual flaws can be useful to computer system designers,

programmers, analysts, administrators, and users. This survey provides a taxonomy

for computer program security flaws, with an Appendix that documents 50 actual

security flaws. These flaws have all been described previously in the open literature,

but in widely separated places. For those new to the field of computer security, they

provide a good introduction to the characteristics of security flaws and how they can

arise. Because these flaws were not randomly selected from a valid statistical sample

of such flaws, we make no strong claims concerning the likely distribution of actual

security flaws within the taxonomy. However, this method of organizing security flaw

data can help those who have custody of more representative samples to organize them

and to focus their efforts to remove and, eventually, to prevent the introduction of

security flaws,

Categories and Subject Descriptors: D.2.OISoftware Engineering]:

General—profectzon mechanisms; D.2.9[Software Engineering]: Management—lIf&

cycle; software configuration management; D.4.6[Operating Systems]: Security and

Protection—access controls; authentzcatzon; information fZow controls; inuasive

software; K.6.3[Management of Computing and Information Systems]: Software

Management—software development; software maintenance, K.6.5{Management of

Computing and Information Systems]: Security and Protection—authentication;

inuasiue software

General Terms: Security

Additional Key Words and Phrases: Error/defect classification, security flaw, taxonomy

INTRODUCTION

Knowing how systems have failed can
help us build systems that resist failure.
Petroski [1992] makes this point elo-
quently in the context of engineering de-
sign, and although software failures may
be less visible than those of the bridges
he describes, they can be equally damag-
ing. But the history of software failures,
apart from a few highly visible ones
[Leveson and Turner 1992; Spafford
1989] is relatively undocumented. This
survey collects and organizes a number
of actual security flaws that have caused
failures, so that designers, programmers,

and analysts may do their work with a
more precise knowledge of what has gone
before.

Computer security flaws are any condi-
tions or circumstances that can result in
denial of service, unauthorized disclo-
sure, unauthorized destruction of data,
or unauthorized modification of data
[Landwehr 1981]. Our taxonomy at-
tempts to organize information about
flaws so that, as new flaws are added,
readers will gain a fuller understanding
of which parts of systems and which parts
of the system life cycle are generating
more security flaws than others. This in-
formation should be useful not only to

ACM Computing Surveys, Vol. 26, No. 3. September 1994

212 “ Carl E. Landwehr et al,

CONTENTS

INTRODUCTION

What m a Security Flaw m a Program?

Why Look for Security Flaws?

in Computer Programs

1 PREVIOUS WORK

2 TAXONOMY

2 1 By Genesis

22 By Time of Introduction

23 By Location

3 DISCUSSION

3.1 Llmltatlons

32 Inferences

APPENDIX SELECTED SECURITY FLAWS

ACKNOWLEDGMENTS

REFERENCES

designers, but also to those faced with
the difficult task of assessing the secu-
rity of a system already built. To assess
accurately the security of a computer
system, an analyst must find its vulnera-
bilities. To do this, the analyst must
understand the system thoroughly and
recognize that computer security flaws
that threaten system security may exist
anywhere in the system.

There is a legitimate concern that this
kind of information could assist those
who would attack computer systems.
Partly for this reason, we have limited
the cases described here to those that
already have been publicly documented
elsewhere and are relatively old. We do
not suggest that we have assembled a
representative random sample of all
known computer security flaws, but we
have tried to include a wide variety. We
offer the taxonomy for the use of those
who are presently responsible for re-
pelling attacks and correcting flaws.
Their data, organized this way and ab-
stracted, could be used to focus efforts to
remove security flaws and prevent their
introduction.

Other taxonomies [Brehmer and Carl
1993; Chillarege et al. 1992; Florae 1992]
have recently been developed for organiz-
ing data about software defects and
anomalies of all kinds. These are primar-
ily oriented toward collecting data during

the software development process for the
purpose of improving it. We are primar-
ily concerned with security flaws that are
detected only after the software has been
released for operational use; our taxon-
omy, while not incompatible with these
efforts, reflects this perspective.

What is a Security Flaw in a Program?

This question is akin to “what is a bug?”.
In fact, an inadvertently introduced secu-
rity flaw in a program is a bug. Gener-
ally, a security flaw is a part of a pro-
gram that can cause the system to
violate its security requirements. Finding
security flaws, then, demands some
knowledge of system security require-
ments. These requirements vary accord-
ing to the system and the application, so
we cannot address them in detail here.
Usually, they concern identification and
authentication of users, authorization of
particular actions, and accountability for
actions taken.

We have tried to keep our use of the
term “flaw” intuitive without conflicting
with standard terminology. The IEEE

Standard Glossary of Software Engineer-

ing Terminology [IEEE Computer Soci-
ety 1990] includes the following
definitions:

●

●

☛

error: human action that produces an
incorrect result (such as software con-
taining a fault).

fault: an incorrect step, process, or data
definition in a computer program, and,

failure: the inability of a system or
component to perform its required
functions within specified performance
requirements.

A failure may be produced when a fault
is encountered. This glossary lists bug as
a synonym for both error and fault. We
use fZaw as a synonym for bug, hence (in
IEEE terms) as a synonym for fault, ex-
cept that we include flaws that have been
inserted into a system intentionally, as
well as accidental ones.

IFIP WG1O.4 has also published a tax-
onomy and definitions of terms [Laprie

ACM Computmg Surveys, Vol 26, No 3, September 1994

et al. 1992] in this area. These define
faults as the cause of errors that may
lead to failures. A system fails when the
delivered service no longer complies with
the specification. This definition of “error”
seems more consistent with its use in
“error detection and correction” as ap-
plied to noisy communication channels or
unreliable memory components than the
IEEE one. Again, our notion of flaw cor-
responds to that of a fault, with the pos-
sibility that the fault may be introduced
either accidentally or maliciously.

Why Look for Security Flaws in Computer
Programs?

Early work in computer security was
based on the paradigm of “penetrate and
patch”: analysts searched for security
flaws and attempted to remove them.
Unfortunately, this task was, in most
cases, unending: more flaws always
seemed to appear [Neumann 1978; Schell
1979]. Sometimes the fix for a flaw intro-
duced new flaws, and sometimes flaws
were found that could not be repaired
because system operation depended on
them (e.g., cases 13 and B1 in the
Appendix).

This experience led researchers to seek
better ways of building systems to meet
security requirements in the first place
instead of attempting to mend the flawed
systems already installed. Although some
success has been attained in identifying
better strategies for building systems
[Department of Defense 1985; Landwehr
1983], these techniques are not univer-
sally applied. More importantly, they do
not eliminate the need to test a newly
built or modified system (for example, to
be sure that flaws avoided in initial spec-
ification have not been introduced in
implementation).

1. PREVIOUS WORK

Most of the serious efforts to locate secu-
rity flaws in computer programs through
penetration exercises have used the Flaw
Hypothesis Methodology developed in the
early 1970s [Linde 1975]. This method

Program Security Flaws ● 213

requires system developers first (1) to
become familiar with the details of the
way the system works (its control struc-
ture), then (2) to generate hypotheses as
to where flaws might exist in a system,

(3) to use system documentation and tests
to confirm the presence of a flaw, and (4)
to generalize the confirmed flaws and use
this information to guide further efforts.
Although Linde [1975] provides lists of
generic system functional flaws and
generic operating system attacks, he does
not provide a systematic organization for
security flaws.

In the mid-70s both the Research in
Secured Operating Systems (RISOS) pro-
ject, conducted at Lawrence Livermore
Laboratories, and the Protection Analy-
sis project, conducted at the Information
Sciences Institute of the University
of Southern California (USC /1S1), at-
tempted to characterize operating system
security flaws. The RISOS final report
[Abbott et al. 1976] describes seven cate-
gories of operating system security flaws:

(1)

(2)
(3)

(4)

(5)

(6)

(7)

incomplete parameter validation,

inconsistent parameter validation,

implicit sharing of privileged/con-
fidential data,

asynchronous validation/inadequate
serialization,

inadequate identification/authenti-
cation/authorization,

violable prohibition/limit, and

exploitable logic error.

The report describes generic examples for
each flaw category and provides reason-
ably detailed accounts for 17 actual flaws
found in three operating systems:
IBM OS/MVT, Univac 1100 Series, and
TENEX. Each flaw is assigned to one of
the seven categories.

The goal of the Protection Analysis (PA)
project was to collect error examples and
abstract patterns from them that, it was
hoped, would be useful in automating the
search for flaws. According to the final
report [Bisbey and Hollingworth 1978],
more than 100 errors that could permit
system penetrations were recorded from

ACM Computing Surveys, Vol. 26, No. 3, September 1994

214 ● Carl E. Landwehr et al.

six different operating systems (GCOS,
MULTICS, and Unix, in addition to those
investigated under RISOS). Unfortu-
nately, this error database was never
published and no longer exists [Bisbey
1990]. However, the researchers did pub-
lish some examples, and they did develop
a classification scheme for errors. Ini-
tially, they hypothesized 10 error cate-
gories; these were eventually reorganized
into four “global” categories:

. domain errors, including errors of ex-
posed representation, incomplete de-
struction of data within a deallocated
object, or incomplete destruction of its
context,

. validation errors, including failure to
validate operands or to handle bound-
ary conditions properly in queue man-
agement,

Q naming errors, including aliasing and
incomplete revocation of access to a
deallocated object, and

* serialization errors, including multiple
reference errors and interrupted atomic
operations.

Although the researchers felt that they
had developed a very successful method
for finding errors in operating systems,
the technique resisted automation. Re-
search attention shifted from finding
flaws in systems to developing methods
for building systems that would be free of
such errors.

Our goals are more limited than those
of these earlier efforts in that we seek
primarily to provide an understandable
record of security flaws that have oc-
curred. They are also more ambitious, in
that we seek to categorize not only the
details of the flaw, but also the genesis of
the flaw and the time and place it
entered the system.

2. TAXONOMY

A taxonomy is not simply a neutral
structure for categorizing specimens. It
implicitly embodies a theory of the uni-
verse from which those specimens are

drawn. It defines what data are to be
recorded and how like and unlike speci-
mens are to be distinguished. In creating
a taxonomy of computer program secu-
rity flaws, we are in this way creating a
theory of such flaws, and if we seek an-
swers to particular questions from a
collection of flaw instances, we must or-
ganize the taxonomy accordingly.

Because we are fundamentally con-
cerned with the problems of building and
operating systems that can enforce secu-
rity policies, we ask three basic questions
about each observed flaw:

● How did it enter the system?

● When did it enter the system?

● Where in the system is it manifest?

Each of these questions motivates a sub-
section of the taxonomy, and each flaw is
recorded in each subsection. By reading
case histories and reviewing the distribu-
tion of flaws according to the answers to
these questions, designers, programmers,
analysts, administrators, and users will,
we hope, be better able to focus their
respective efforts to avoid introducing se-
curity flaws during system design and
implementation, to find residual flaws
during system evaluation or certification,
and to administer and operate systems
securely.

Figures 1-3 display the details of the
taxonomy by genesis (how), time of intro-
duction (when), and location (where).
Note that the same flaw will appear at
least once in each of these categories.
Divisions and subdivisions are provided
within the categories; these, and their
motivation, are described in detail later.
Where feasible, these subdivisions define
sets of mutually exclusive and collec-
tively exhaustive categories. Often, how-
ever, especially at the finer levels, such a
partitioning is infeasible, and complete-
ness of the set of categories cannot be
assured. In general, we have tried to in-
clude categories only where they might
help an analyst searching for flaws or a
developer seeking to prevent them.

The description of each flaw category
refers to applicable cases (listed in the

ACM Computmg Surveys, Vol 26, No. 3, September 1994

Genesis

Intentional

Inadvertent

Program Security Flaws ● 215

Case

Count ID’s
——

t---

Non-
Replicating

Trojan Horse

Malicious Replicating
(virus)

I

I Trapdoor

Validation Error (Incomplete / Inconsistent)

Domain Error (Including Object Re-use, Residuals,

and Exposed Representation Errors)

Serirdizarion/aliasing (Including TOCT”l’OU Errors)

Identification/Authentication Inadequate

Boundary Condition Violation (Including Resource
Exhaustion and Violable Constraint Errors)

Other Exploitable Logic Error

(J1,PC2,PC4,
, MAI ,MA2,CA1,

AT1

2} Wl)(ulo)

1 18

1 DTI

2 19,D2

14,15,MT1,MU2,
10 MU4,MU8,U7,

U11,U12,U13

13,16,MT2,
7 MT3,MU3,

UN1,D1

2 11,12

4 MT4,MU5,
MU6,U9

4
MU7,MU9,
U8,1NI

Figure 1. Security flaw taxonomy: Flaws by Genesis. Parenthesized entries indicate secondary assign-
ments.

Appendix). Open-literature reports of se-
curity flaws are often abstract and fail to
provide a realistic view of system vulner-
abilities. Where studies do provide exam-
ples of actual vulnerabilities in existing
systems, they are sometimes sketchy and
incomplete lest hackers abuse the infor-
mation. Our criteria for selecting cases
are:

(1) the case must present a particular

type of vulnerability clear~y enough
that a scenario or program that
threatens system security can be un-
derstood by the classifier and

(2) the potential damage resulting from
the vulnerability described must be
more than superficial.

Each case includes the name of the au-
thor or investigator, the type of system
involved, and a description of the flaw.

A given case may reveal several kinds
of security flaws. For example, if a sys-
tem programmer inserts a Trojan horse
that exploits a covert channell to disclose
sensitive information, both the Trojan
horse and the covert channel are flaws in
the operational system; the former will
probably have been introduced mali-
ciously, the latter inadvertently. Of
course, any system that permits a user to
invoke an uncertified program is vulner-
able to Trojan horses. Whether the fact
that a system permits users to install
programs also represents a security flaw
is an interesting question. The answer
seems to depend on the context in which
the question is asked. Permitting users

1Covert channel: a communication path in a com-
puter system not intended as such by the system’s

designers.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

216 Q Carl E. Landwehr et al.

Case

Count ID’s
.—

11,12,13,14,15,
16,17,19,MT2,

22 ~6gyuN1
,,

U6,Li7,U9,U10,
U13,U14,D2,
IN1

MT1,MT4,MU1,
MU2,MU5,MU7,

15 MU8,DTI, U2,
U3,U4,U5,U8
U11,U12

1 U1

Requirement/
Specification/
Design

During
Development

Time of
Introduction Source Code

Object Code

During
Maintenance I D1 ,MU3,

3 MU9

18,PCl ,PC2,
PC3,PC4,MA1

9 M*Z,CA,,

AT1

During

Operation

Figure2. Security flaw taxonomy :Flawsby tlmeofmtroduction.

Case

xmt ID’s —

U5,U13,PC2,

9 PC4,MA1,
MA2,ATI,CA1I System Initlalizatlon

Operating
System

m

2 MT3,MU5

16,19,MTI,MT2,
O MU2,MU3,MU4,

MU6,MU7,UN1

3 12,13,14
Device Management
(including I/0, networking)

File Management 6
11,15,MU8,
U2,U3,U9

Software I Identificahon/AuthenticationLocation

I Other / Unknown 1 MT4

17,Bi,U4,U7,
O U8,U1O,U12,

U14,PCI, PC3

1 UI

I Privileged Utdities
support

Unprivileged Utdities

Application 1 18

Hardware 3 MU9,D2,1N1

Figure 3. Security flaw taxonomy: Flaws by location.

ACM Computing Surveys, Vol 26. No 3, September 1994

of, say, an air traffic control system or,
less threateningly, an airline reservation

system, to install their own programs
seems intuitively unsafe; it is a flaw. On
the other hand, preventing owners of PCs
from installing their own programs would

seem ridiculously restrictive.
The cases selected for the Appendix

are a small sample, and we caution
against unsupported generalizations
based on the flaws they exhibit. In par-
ticular, readers should not interpret the
flaws recorded in the Appendix as indica-
tions that the systems in which they
occurred are necessarily more or less se-
cure than others. In most cases, the ab-
sence of a system from the Appendix sim-
ply reflects the fact that it has not been
tested as thoroughly or had its flaws doc-
umented as openly as those we have cited.
Readers are encouraged to communicate
additional cases to the authors so that
we can better understand where security
flaws really occur.

The balance of this section describes
the taxonomy in detail. The case histo-
ries can be read prior to the details of the
taxonomy, and readers may wish to read
some or all of the Appendix at this point.
Particularly if you are new to computer
security issues, the case descriptions are
intended to illustrate the subtlety and
variety of security flaws that have actu-
ally occurred, and an appreciation of
them may help you grasp the taxonomic
categories.

2.1 By Genesis

How does a security flaw find its way
into a program? It may be introduced
intentionally or inadvertently. Different
strategies can be used to avoid, detect, or
compensate for accidental flaws as op-
posed to those inserted intentionally, For
example, if most security flaws turn out
to be accidentally introduced, increasing
the resources devoted to code reviews and
testing may be reasonably effective in
reducing the number of flaws. But if most
significant security flaws are introduced
maliciously, these techniques are much
less likely to help, and it may be more

Program Security Flaws “ 217

productive to take measures to hire
more trustworthy programmers, devote
more effort to penetration testing, and
invest in virus detection packages. Our
goal in recording this distinction is, ulti-
mately, to collect data that will provide a
basis for deciding which strategies to use
in a particular context.

Characterizing intention is tricky:
some features intentionally placed in
programs can at the same time introduce
security flaws inadvertently (e.g., a fea-
ture that facilitates remote debugging or
system maintenance may at the same
time provide a trapdoor to a system).
Where such cases can be distinguished,
they are categorized as intentional but
nonmalicious. Not wishing to endow pro-
grams with intentions, we use the terms
“malicious flaw,”” malicious code,” and so
on, as shorthand for flaws, code, etc.,
that have been introduced into a system
by an individual with malicious intent.
Although some malicious flaws could be
disguised as inadvertent flaws, this dis-
tinction should be possible to make in
practice—inadvertently created Trojan
horse programs are hardly likely! Inad-
vertent flaws in requirements or specifi-
cations manifest themselves ultimately
in the implementation; flaws may also be
introduced inadvertently during
maintenance.

Both malicious flaws and nonmalicious
flaws can be difficult to detect, the for-
mer because they have been intention-
ally hidden and the latter because resid-
ual flaws may be more Iikely to occur in
rarely invoked parts of the software. One
may expect malicious code to attempt to
cause significant damage to a system,
but an inadvertent flaw that is exdoited
by a malicious intruder can be ~quall~
dangerous.

2.1.1 Malicious Flaws

Malicious flaws have acquired colorfu
names, including Trojan horse, trap

door, time-bomb, and logic-bomb. The
term “Trojan horse” was introduced by
Dan Edwards and recorded by Anderson
[1972] to characterize a particular com-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

218 “ Carl E. Landwehr et al.

puter security threat; it has been rede-
fined many times [Anderson 1972;
Denning 1982; Gasser 1988; Landwehr
1981]. It refers generally to a program
that masquerades as a useful service but
exploits rights of the program’s
user—rights not possessed by the author
of the Trojan horse—in a way the user
does not intend.

Since the author of malicious code
needs to disgaise it somehow so that it
will be invoked by a nonmalicious user
(unless the author means also to invoke
the code, in which case he or she presum-
ably already possesses the authorization
to perform the intended sabotage), al-
most any malicious code can be called a
Trojan horse. A Trojan horse that repli-
cates itself by copying its code into other
program files (see case MA1) is com-
monly referred to as a uirus [Cohen 1984;
Pfleeger 1989]. One that replicates itself
by creating new processes or files to con-
tain its code, instead of modifying exist-
ing storage entities, is often called a
worm [Schoch and Hupp 1982]. Denning
[1988] provides a general discussion of
these terms; differences of opinion about
the term applicable to a particular flaw
or its exploitations sometimes occur
[Cohen 1984; Spafford 1989].

A trapdoor is a hidden piece of code
that responds to a special input, allowing
its user access to resources without pass-
ing through the normal security enforce-
ment mechanism (see case Ul). For
example, a programmer of automated
teller machines (ATMs) might be re-
quired to check a personal identification
number (PIN) read from a card against
the number keyed in by the user. If the
numbers match, the user is to be permit-
ted to enter transactions. By adding a
disjunct to the condition that implements
this test, the programmer can provide a
trapdoor, shown in italics below:

if PINcard ==PINkeyed OR PIiVkeyed =

9999 then {permit transactions}

In this example, 9999 would be a univer-
sal PIN that would work with any bank
card submitted to the ATM. Of course the
code in this example would be easy for a

code reviewer, although not an ATM user,
to spot, so a malicious programmer would
need to take additional steps to hide the
code that implements the trapdoor. If
passwords are stored in a system file
rather than on a user-supplied card, a
special password known to an intruder
mixed in a file of legitimate ones might
be difficult for reviewers to find.

It might be argued that a login pro-
gram with a trapdoor is really a Trojan
horse in the sense defined above, but the
two terms are usually distinguished
[Denning 1982]. Thompson [1984] de-
scribes a method for building a Trojan
horse compiler that can install both itself
and a trapdoor in a Unix password-
checking routine in future versions of the
Unix system.

A time-bomb or logic-bomb is a piece

of code that remains dormant in the host
system until a certain “detonation” time
or event occurs (see case 18). When trig-
gered, a time-bomb may deny service by
crashing the system, deleting files, or de-
grading system response time. A time-
bomb might be placed within either a
replicating or nonreplicating Trojan
horse.

2.1.2 Intentional, Nonmalicious Flaws

A Trojan horse program may convey sen-
sitive information to a penetrator over
couert channels. A covert channel is sim-
ply a path used to transfer information
in a way not intended by the system’s
designers [Lampson 1973]. Since covert
channels, by definition, are channels not
placed there intentionally, they should
perhaps appear in the category of inad-
vertent flaws. We categorize them as in-
tentional but nonmalicious flaws because
they frequently arise in resource-sharing
services that are intentionally part of the
system. Indeed, the most difficult ones to
eliminate are those that arise in the ful-
fillment of essential system require-
ments. Unlike their creation, their ex-
ploitation is likely to be malicious.
Exploitation of a covert channel usually
involves a service program, most likely a
Trojan horse. Generally, this program has

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

access to confidential data and can en-
code that data for transmission over the

covert channel. It also will contain a
receiver program that “listens” to the
chosen covert channel and decodes the
message for a penetrator. If the service
program could communicate confidential
data directly to a penetrator without be-
ing monitored, of course, there would be
no need for it to use a covert channel.

Covert channels are frequently classi-
fied as either storage or timing channels.
A storage channel transfers information
through the setting of bits by one pro-
gram and the reading of those bits by
another. What distinguishes this case
from that of ordinary operation is that
the bits are used to convey encoded infor-
mation. Examples would include using a
file intended to hold only audit informa-
tion to convey user passwords—using the
name of a file or perhaps status bits
associated with it that can be read by all
users to signal the contents of the file.
Timing channels convey information by
modulating some aspect of system behav-
ior over time, so that the program receiv-
ing the information can observe system
behavior (e.g., the system’s paging rate,
the time a certain transaction requires to
execute, the time it takes to gain access
to a shared bus) and infer protected
information.

The distinction between storage and
timing channels is not sharp. Exploita-
tion of either kind of channel requires
some degree of synchronization between
the sender and receiver. It requires also
the ability to modulate the behavior of
some shared resource. In practice, covert
channels are often distinguished on the
basis of how they can be detected: those
detectable by information flow analysis
of specifications or code are considered
storage channels.

Other kinds of intentional but nonma-
licious security flaws are possible. Func-
tional requirements that are written
without regard to security requirements
can lead to such flaws; one of the flaws
exploited by the “Internet worm”
[Spafford 1989] (case U1O) could be
placed in this category.

Program Security Flaws “ 219

2.1.3 Inadvertent Fla ws

Inadvertent flaws may occur in require-
ments; they may also find their way into
software during specification and coding.
Although many of these are detected and
removed through testing, some flaws can
remain undetected and later cause prob-
lems during operation and maintenance
of the software system. For a software
system composed of many modules and
involving many programmers, flaws are
often difficult to find and correct because
module interfaces are inadequately docu-
mented and because global variables are
used. The lack of documentation is espe-
cially troublesome during maintenance
when attempts to fix existing flaws often
generate new flaws because maintainers
lack understanding of the system as a
whole. Although inadvertent flaws may
not pose an immediate threat to the se-
curity of the system, the weakness re-
sulting from a flaw may be exploited by
an intruder (see case D 1).

There are many possible ways to orga-
nize flaws within this category. Recently,
Chillarege et al. [1992] and Sullivan and
Chillarege [1992] published classifica-
tions of defects (not necessarily security
flaws) found in commercial operating
systems and databases. Florae’s [1992]
framework supports counting problems
and defects but does not attempt to char-
acterize defect types. The efforts of
Bisbey and Hollingworth [1978] and Ab-
bott [1976], reviewed in Section 1, pro-
vide classifications specifically for secu-
rity flaws.

Our goals for this part of the taxonomy
are primarily descriptive: we seek a clas-
sification that provides a reasonable
map of the terrain of computer program
security flaws, permitting us to group
intuitively similar kinds of flaws and
separate different ones. Providing secure
operation of a computer often corre-
sponds to building fences between differ-
ent pieces of software (or different in-
stantiation of the same piece of soft-
ware), to building gates in those fences,
and to building mechanisms to control
and monitor traffic through the gates.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

220 “ Carl E. Landwehr et al.

Our taxonomy, which draws primarily on
the work of Bisbey and Abbott, reflects
this view. Knowing the type and distribu-
tion of actual, inadvertent flaws among
these kinds of mechanisms should pro-
vide information that will help designers,
programmers, and analysts focus their
activities.

Inadvertent flaws can be classified as
flaws related to the following:

e

0

0

0

●

0

validation errors,

domain errors,

serialization/ aliasing errors,

errors of inadequate
identification/ authentication,

boundary condition errors, and

other exploitable logic errors.

Validation flaws may be likened to a
lazy gatekeeper: one who fails to check
all the credentials of a traveler seeking
to pass through a gate. They occur when
a program fails to check that the param-
eters supplied or returned to it conform
to its assumptions about them, or when
these checks are misplaced, so they are
ineffectual. These assumptions may in-
clude the number of parameters pro-
vided, the type of each, the location or
maximum length of a buffer, or the ac-
cess permissions on a file. We lump to-
gether cases of incomplete validation
(where some but not all parameters are
checked) and inconsistent validation
(where different interface routines to a
common data structure fail to apply the
same set of checks).

Domain flaws, which correspond to
“holes in the fences,” occur when the in-
tended boundaries between protection
environments are porous. For example, a
user who creates a new file and discovers
that it contains information from a file
deleted by a different user has discovered
a domain flaw. (This kind of error is
sometimes referred to as a problem with
object reuse or with residuals.) We also
include in this category flaws of exposed

representation [Bisbey and Hollingworth
1978] in which the lower-level represen-
tation of an abstract object, intended to

be hidden in the current domain, is in
fact exposed (see cases B1 and DT1). Er-
rors classed by Abbot as “implicit shar-
ing of privileged\ confidential data” will
generally fall in this category.

A serialization flaw permits the asyn-
chronous behavior of different system
components to be exploited to cause a
security violation. In terms of the “fences”
and “gates” metaphor, these reflect a for-
getful gatekeeper—one who perhaps
checks all credentials, but then gets dis-
tracted and forgets the result. These
flaws can be particularly difficult to dis-
cover. A security-critical program may
appear to validate all of its parameters
correctly, but the flaw permits the asyn-
chronous behavior of another program to
change one of those parameters after it
has been checked but before it is used.
Many time -of-check-to-time-of-use

(TOCTTOU) flaws will fall in this cate-
gory, although some may be classed as
validation errors if asynchrony is not in-
volved. We also include in this category
aliasing flaws, in which the fact that two
names exist for the same object can cause
its contents to change unexpectedly and,
consequently, invalidate checks already
applied to it.

An identification\ authentication flaw
is one that permits a protected operation
to be invoked without sufficiently check-
ing the identity and authority of the in-
voking agent. These flaws could perhaps
be counted as validation flaws, since pre-
sumably some routine is failing to vali-
date authorizations properly. However, a
sufficiently large number of cases have
occurred in which checking the identity
and authority of the user initiating an
operation has in fact been neglected to
keep this as a separate category.

Typically, boundary condition flaws re-
flect omission of checks to assure that
constraints (e.g., on table size, file alloca-
tion, or other resource consumption) are
not exceeded. These flaws may lead to
system crashes or degraded service, or
they may cause unpredictable behavior.
A gatekeeper who, when his queue be-
comes full, decides to lock the gate and
go home, might represent this situation.

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 221

Finally, we include as a catchall a cate-
gory for other exploitable logic errors.
Bugs that can be invoked by users to
cause system crashes, but that do not
involve boundary conditions, would be
placed in this category, for example.

2.2 By Time of Introduction

The software engineering literature in-
cludes a variety of studies (e.g., Weiss
and Basili [1985] and Chillarege et al.

[1992]) that have investigated the gen-
eral question of how and when errors are
introduced into software, Part of the mo-
tivation for these studies has been to
improve the process by which software is
developed: if the parts of the software
development cycle that produce the most
errors can be identified, efforts to im-
prove the software development process
can be focused to prevent or remove these
errors. But is the distribution of when in
the life cycle security flaws are intro-
duced the same as the distribution for
errors generally? Classifying identified
security flaws, both intentional and inad-
vertent, according to the phase of the
system life cycle in which they were in-
troduced can help us find out.

Models of the system life cycle and the
software development process have pro-
liferated in recent years. To permit us to
categorize security flaws from a wide va-
riety of systems, we need a relatively
simple and abstract structure that will
accommodate a variety of such models.
Consequently, at the highest level we
distinguish only three different phases in
the system life cycle when security flaws

may be introduced: the development
phase, which covers all activities up to
the release of the initial operational ver-
sion of the software, the maintenance

phase, which covers activities leading to
changes in the software performed under
configuration control after the initial re-
lease, and the operational phase, which
covers activities to patch software while
it is in operation, including unauthorized
modifications (e.g., by a virus). Although
the periods of the operational and main-
tenance phases are likely to overlap, if

not coincide, they reflect distinct activi-
ties, and the distinction seems to fit best
in this part of the overall taxonomy.

2.2.1 During Development

Although iteration among the phases of
software development is a recognized fact
of life, the different phases still comprise
distinguishable activities. Requirements
are defined; specification are developed
based on new (or changed) requirements;
source code is developed from specifica-
tions; and object code is generated from
the source code. Even when iteration
among phases is made explicit in soft-
ware process models, these activities are
recognized, separate categories of effort,
so it seems appropriate to categorize
flaws introduced during software devel-
opment as originating in requirements

and specifications, source code, or object

code.

Requirements and Specifications

Ideally, software requirements describe
what a particular program or system of
programs must do. How the program or
system is organized to meet those re-
quirements (i.e., the software design)
is typically recorded in a variety of docu-
ments, referred to collectively as
specifications. Although we would like to
distinguish flaws arising from faulty re-
quirements from those introduced in
specifications, this information is lacking
for many of the cases we can report, so
we ignore that distinction in this work.

A major flaw in a requirement is not
unusual in a large software system. If
such a flaw affects security, and its cor-
rection is not deemed to be cost effective,
the system and the flaw may remain. For
example, an early multiprogramming op-
erating system performed some I/O-re-
lated functions by having the supervisor
program execute code located in user
memory while in supervisor state (i.e.,
with full system privileges). By the time
this was recognized as a security flaw, its
removal would have caused major incom-
patibilities with other software, and it

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

222 “ Carl E. Landwehr et al.

was not fixed. Case 13 reports a related
flaw.

Requirements and specifications are
relatively unlikely to contain maliciously
introduced flaws. Normally they are re-
viewed extensively, so a specification for
a trapdoor or a Trojan horse would have
to be well disguised to avoid detection.
More likely are flaws that arise because
of competition between security require-
ments and other functional requirements
(see case 17). For example, security con-
cerns might dictate that programs never
be modified at an operational site. But if
the delay in repairing errors detected in
system operation is perceived to be too
great, there will be pressure to provide
mechanisms in the specification to per-
mit on-site reprogramming or testing (see
case U1O). Such mechanisms can provide
built-in security loopholes. Also possible
are inadvertent flaws that arise because
of missing requirements or undetected
conflicts among requirements.

Source Code

The source code implements the design
of the software system given by the spec-
ifications. Most flaws in source code,
whether inadvertent or intentional, can
be detected through a careful examin-
ation of it. The classes of inadvertent flaws
described previously apply to source code.

Inadvertent flaws in source code are
frequently a by-product of inadequately
defined module or process interfaces.
Programmers attempting to build a sys-
tem from inadequate specifications are
likely to misunderstand the meaning (if
not the type) of parameters to be passed
across an interface or the requirements
for synchronizing concurrent processes.
These misunderstandings manifest
themselves as source code flaws. Where
the source code is clearly implemented as
specified, we assign the flaw to the speci-
fication (cases 13 and MU6, for example).
Where the flaw is manifest in the code
and we also cannot confirm that it corre-
sponds to the specification, we assign the
flaw to the source code (see cases MU1,
U4, and U8). Readers should be aware of

the difficulty of making some of these
assignments.

Intentional but nonmalicious flaws can
be introduced in source code for several
reasons. A programmer may introduce
mechanisms that are not included in the
specification but that are intended to help
in debugging and testing the normal op-
eration of the code. However, if the test
scaffolding circumvents security controls
and is left in place in the operational
system, it provides a security flaw. Ef-
forts to be “efficient” can also lead to
intentional but nonmalicious source code
flaws, as in case DT1. Programmers may
also decide to provide undocumented fa-
cilities that simplify maintenance but
provide security loopholes—the inclusion
of a “patch area” that facilitates repro-
gramming outside the scope of the config-
uration management system would fall
in this category.

Technically sophisticated malicious
flaws can be introduced at the source
code level. A programmer working at the
source code level, whether an authorized
member of a development team or an
intruder, can invoke specific operations
that will comprise system security. Al-
though malicious source code can be
detected through manual review of soft-
ware, much software is developed with-
out any such review; source code is fre-
quently not provided to purchasers of
software packages (even if it is supplied,
the purchaser is unlikely to have the
resources necessary to review it for mali-
cious code). If the programmer is aware
of the review process, he may well be
able to disguise the flaws he introduces.

A malicious source code flaw may be
introduced directly by any individual who
gains write access to source code files,
but source code flaws can also be intro-
duced indirectly. For example, if a pro-
grammer who is authorized to write
source code files unwittingly invokes a
Trojan horse editor (or compiler, linker,
loader, etc.), the Trojan horse could use
the programmer’s privileges to modify
source code files. Instances of subtle indi-
rect tampering with source code are
difficult to document, but Trojan horse

ACM Computing Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 223

programs that grossly modify all a user’s
files, and hence the source code files,
have been created (see cases PC1 and
PC2).

Object Code

Object code programs are generated by
compilers or assemblers and represent
the machine-readable form of the source
code. Because most compilers and assem-
blers are subjected to extensive testing
and formal validation procedures before
release, inadvertent flaws in object pro-
grams that are not simply a translation
of source code flaws are rare, particularly
if the compiler or assembler is mature
and has been widely used. When such
errors do occur as a result of errors in a
compiler or assembler, they show them-
selves typically through incorrect behav-
ior of programs in unusual cases, so they
can be quite difficult to track down and
remove.

Because this kind of flaw is rare, the
primary security concern at the object
code level is with malicious flaws. Be-
cause object code is difficult for a human
to make sense of (if it were easy, soft-
ware companies would not have different
policies for selling source code and object
code for their products), it is a good hid-
ing place for malicious security flaws

(again, see case U1 [Thompson 1984]).
Lacking system and source code docu-

mentation, an intruder will have a hard
time patching source code to introduce a
security flaw without simultaneously al-
tering the visible behavior of the pro-
gram. The insertion of a malicious object
code module or replacement of an exist-
ing object module by a version of it that
incorporates a Trojan horse is a more
common threat. Writers of self-replicat-
ing Trojan horses (viruses) [Pfleeger
1989] have typically taken this approach:
a bogus object module is prepared and
inserted in an initial target system. When
it is invoked, perhaps during system boot
or running as a substitute version of an
existing utility, it can search the disks
mounted on the system for a copy of itself
and, if it finds none, insert one. If it finds

a related, uninfected version of a pro-
gram, it can replace it with an infected
copy. When a user unwittingly moves an
infected program to a different system
and executes it, the virus gets another
chance to propagate itself. Instead of re-
placing an entire program, a virus may
append itself to an existing object pro-
gram, perhaps, perhaps as a segment to
be executed first (see cases PC4 and CA1).
Creating a vir’ls generally requires some
knowledge of the operating system and
programming conventions of the target
system; viruses, especially those intro-
duced as object code, typically cannot
propagate to different host hardware or
operating systems.

2.2.2 During Maintenance

Inadvertent flaws introduced during
maintenance are often attributable to the
maintenance programmer’s failure to un-
derstand the system as a whole. Since
software production facilities often have
a high personnel turnover rate, and be-
cause system documentation is often in-
adequate, maintenance actions can have
unpredictable side effects. If a flaw is
fixed on an ad hoc basis without perform-
ing a backtracking analysis to determine
the origin of the flaw, it will tend to
induce other flaws, and this cycle
will continue. Software modified during
maintenance should be subjected to the
same review as newly developed soft-
ware; it is subject to the same kinds of
flaws. Case D1 shows graphically that
system upgrades, even when performed
in a controlled environment and with the
best of intentions, can introduce new
flaws. In this case, a flaw was inadver-
tently introduced into a subsequent re-
lease of a DEC operating system follow-
ing its successful evaluation at the C2
level of the Trusted Computer System
Evaluation Criteria (TCSEC) [Depart-
ment of Defense 19851.

System analysts should also be aware
of the possibility of malicious intrusion
during the maintenance stage. In fact,
viruses are more likely to be present dur-
ing the maintenance stage, since viruses

ACM Computing Surveys, Vol. 26, No. 3, September 1994

224 ● Carl E. Landwehr et al.

by definition spread the infection through
executable codes.

2.2.3 During Operation

The well-publicized instances of virus
programs [Denning 1988; Elmer-Dewitt
1988; Ferbrache 1992] dramatize the
need for the security analyst to consider
the possibilities for unauthorized modifi-
cation of operational software during its
operational use. Viruses are not the only
means by which modifications can occur:
depending on the controls in place in a
system, ordinary users may be able to
modify system software or install re-
placements; with a stolen password, an
intruder may be able to do the same
thing. Furthermore, software brought
into a host from a contaminated source

(e.g., software from a public bulletin
board that has, perhaps unknown to its
author, been altered) may be able to
modify other host software without au-
thorization (see case MA1).

2.3 By Location

A security flaw can be classified accord-
ing to where in the system it is intro-
duced or found. Most computer security
flaws occur in software, but flaws affect-
ing security may occur in hardware as
well. Although this taxonomy addresses
software flaws principally, programs can
with increasing facility be cast in hard-
ware. This fact and the possibility that
malicious software may exploit hardware
flaws motivate a brief section addressing
them. A flaw in a program that has been
frozen in silicon is still a program flaw to
us; it would be placed in the appropriate
category under “Operating System”
rather than under “Hardware.” We re-
serve the use of the latter category for
cases in which hardware exhibits secu-
rity flaws that did not originate as errors
in programs.

2.3.1 Software Flaws

In classifying the place a software flaw is
introduced, we adopt the view of a secu-
rity analyst who is searching for such

flaws. Thus we ask: “Where should one
look first?”

Because the operating system typically
defines and enforces the basic security
architecture of a system—the fences,
gates, and gatekeepers—flaws in those
security-critical portions of the operating
system are likely to have the most far-
-reaching effects, so perhaps this is the
best place to begin. But the search needs
to be focused. The taxonomy for this area
suggests particular system functions that
should be scrutinized closely. In some
cases, implementation of these functions
may extend outside the operating system
perimeter into support and application
software; in this case, that software must
also be reviewed.

Software flaws can occur in operating
system programs, support soflware, or
application (user) software. This is a
rather coarse division, but even so the
boundaries are not always clear.

Operating System Programs

Operating system functions normally in-
clude memory and processor allocation,
process management, device handling,
file management, and accounting, al-
though there is no standard definition.
The operating system determines how
the underlying hardware is used to de-
fine and separate protection domains,
authenticate users, control access, and
coordinate the sharing of all system re-
sources. In addition to functions that may
be invoked by user calls, traps, or inter-
rupts, operating systems often include
programs and processes that operate on
behalf of all users. These programs pro-
vide network access and mail service,
schedule invocation of user tasks, and
perform other miscellaneous services.
Systems must often grant privileges to
these utilities that they deny to individ-
ual users. Finally, the operating system
has a large role to play in system initial-
ization. Although in a strict sense ini-
tialization may involve programs and
processes outside the operating system
boundary, this software is usually in-
tended to be run only under highly con-
trolled circumstances and may have

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 225

many special privileges, so its seems ap-
propriate to include it in this category.

We categorize operating system secu-
rity flaws according to whether they oc-
cur in the functions for

● system initialization,

● memory management,

~ process management,

● device management
working),

~ file management, or

(including net-

. identification/authentication.

We include an other/unknown category
for flaws that do not fall into any of the
preceding classes. It would be possible to
orient this portion of the taxonomy more
strongly toward specific, security-related
functions of the operating system: access
checking, domain definition and separa-
tion, object reuse, and so on. We have
chosen the categorization above partly
because it comes closer to reflecting the
actual layout of typical operating sys-
tems, so that it will correspond more
closely to the physical structure of the
code a reviewer examines. The code for
even a single security-related function is
sometimes distributed in several sepa-
rate parts of the operating system (re-
gardless of whether this ought to be so).
In practice, it is more likely that a re-
viewer will be able to draw a single circle
around all of the process management
code than around all of the discretionary
access control code. A second reason for
our choice is that the first taxonomy (by
genesis) provides, in the subarea of inad-
vertent flaws, a structure that reflects
some security functions, and repeating
this structure would be redundant.

System initialization, although it may
be handled routinely, is often complex.
Flaws in this area can occur either be-
cause the operating system fails to estab-
lish the initial protection domains as
specified (for example, it may set up
ownership or access control information
improperly) or because the system ad-
ministrator has not specified a secure
initial configuration for the system. In
case U5, improperly set permissions on

the mail directory led to a security
breach. Viruses commonly try to attach
themselves to system initialization code,
since this provides the earliest and most
predictable opportunity to gain control of
the system (see cases PC 1–4, for exam-
ple).

Memory management and process
management are functions the operating
system provides to control storage space
and CPU time. Errors in these functions
may permit one process to gain access to
another improperly, as in case 16, or to
deny service to others, as in case MU5.

Device management often includes
complex programs that operate in paral-
lel with the CPU. These factors make the
writing of device-handling programs both
challenging and prone to subtle errors
that can lead to security flaws (see case
12). Often, these errors occur when the
1/0 routines fail to respect parameters
provided them (case U12) or when they

validate parameters provided in storage
locations that can be altered, directly or
indirectly, by user programs after checks
are made (case 13).

File systems typically use the process,
memory, and device management func-
tions to create long-term storage struc-
tures. With few exceptions, the operating
system boundary includes the file sys-
tem, which often implements access con-
trols to permit users to share and protect
their files. Errors in these controls, or in
the management of the underlying files,
can easily result in security flaws (see
cases 11, MU8, and U2).

Usually, the identification and authen-
tication functions of the operating system
maintain special files for user IDs and
passwords and provide functions to check
and update those files as appropriate. It
is important to scrutinize not only these
functions, but also all of the possible ports
of entry into a system to ensure that
these functions are invoked before a user
is permitted to consume or control other
system resources.

Suppo17 Software

Support software comprises compilers,
editors, debuggers, subroutine or macro

ACM Computing Surveys, Vol. 26, No. 3, September 1994

226 “ Carl E. Landwehr et al.

libraries, database management systems,
and any other programs not properly
within the operating system boundary
that many users share. The operating
system may grant special privileges to
some such programs; these we call privi-
leged utilities. In Unix, for example, any
“setuid program owned by “root,” in ef-
fect, runs with access-checking controls
disabled. This means that any such pro-
gram will need to be scrutinized for secu-
rity flaws, since during its execution one
of the fundamental security-checking
mechanisms is disabled.

Privileged utilities are often complex
and sometimes provide functions that
were not anticipated when the operating
system was built. These characteristics
make them difficult to develop and likely
to have flaws that, because they are also
granted privileges, can compromise secu-
rity. For example, daemons, which may
act on behalf of a sequence of users and
on behalf of the system as well, may have
privileges for reading and writing special
system files or devices (e.g., communica-
tion lines, device queues, mail queues) as
well as for files belonging to individual
users (e.g., mailboxes). They frequently
make heavy use of operating system fa-
cilities, and their privileges may turn a
simple programming error into a pene-
tration path. Flaws in daemons providing
remote access to restricted system capa-
bilities have been exploited to permit
unauthenticated users to execute arbi-
trary system commands (case U12) and
to gain system privileges by writing the
system authorization file (case U13).

Even unprivileged software can repre-
sent a significant vulnerability because
these programs are widely shared, and
users tend to rely on them implicitly. The
damage inflicted by flawed, unprivileged
support software (e.g., by an embedded
Trojan horse) is normally limited to the
user who invokes that software. In some
cases, however, since it may be used to
compile a new release of a system, sup-
port software can even sabotage operat-
ing system integrity (case Ul). Inadver-
tent flaws in support can also cause
security flaws (case 17); intentional but

nonmalicious flaws in support software
have also been recorded (case Bl).

Application Software

We categorize programs that have no
special system privileges and are not
widely shared as application software.
Damage caused by inadvertent software
flaws at the application level is usually
restricted to the executing process, since
most operating systems can prevent one
process from damaging another. This
does not mean that application software
cannot do significant damage to a user’s
own stored files, however, as many vic-
tims of Trojan horse and virus programs
have painfully discovered. An application
program generally executes with all the
privileges of the user who invokes it, in-
cluding the ability to modify permissions,
read, write, or delete any files that user
owns. In the context of most personal
computers now in use, this means that
an errant or malicious application pro-
gram can, in fact, destroy all the infor-
mation on an attached hard disk or
writeable floppy disk.

Inadvertent flaws in application soft-
ware that cause program termination or
incorrect output, or can generate unde-
sirable conditions such is infinite looping,
have been discussed previously. Mali-
cious intrusion at the application soft-
ware level usually requires access to the
source code (although a virus could con-
ceivably attach itself to application object
code) and can be accomplished in various
ways, as discussed in Section 2.2.

2.3.2 Hardware

Issues of concern at the hardware level
include the design and implementation of
processor hardware, microprograms, and
supporting chips, and any other hard-
ware or firmware functions used to
realize the machine’s instruction set ar-
chitecture. It is not uncommon for even
widely distributed processor chips to be
incompletely specified, to deviate from
their specifications in special cases, or to
include undocumented features. Inadver-

ACM Computing Surveys, Vol. 26, No 3, September 1994

Program Security Flaws 9 227

tent flaws at the hardware level can cause
problems such as improper synchroniza-
tion and execution, bit loss during data
transfer, or incorrect results after execu-
tion of arithmetic or logical instructions

(see case MU9). Intentional but nonmali-
cious flaws can occur in hardware, par-
ticularly if the manufacturer includes
undocumented features (for example, to
assist in testing or quality control). Hard-
ware mechanisms for resolving resource
contention efficiently can introduce covert
channels (see case D2). Generally, mali-
cious modification of installed hardware

(e.g., installing a bogus replacement chip
or board) requires physical access to
hardware components, but microcode
flaws can be exploited without physical
access. An intrusion at the hardware level
may result in improper execution of pro-
grams, system shutdown, or, conceivably,
the introduction of subtle flaws ex-
ploitable by software.

3. DISCUSSION

We have suggested that a taxonomy de-
fines a theory of a field, but an unpopu-
lated taxonomy teaches us little. For this
reason, the security flaw examples in the
Appendix are as important to this survey
as the taxonomy. Reviewing the exam-
ples should help readers understand the
distinctions that we have made among
the various categories and how to apply
those distinctions to new examples. In
this section, we comment briefly on the
limitations of the taxonomy and the set
of examples, and we suggest techniques
for summarizing flaw data that could help
answer the questions we used in Section
2 to motivate the taxonomy.

3.1 Limitations

The development of this taxonomy fo-
cused largely, though not exclusively, on
flaws in operating systems. We have not
tried to distinguish or categorize the
many kinds of security flaws that might
occur in application programs for
database management, word processing,
electronic mail, and so on. We do not

suggest that there are no useful struc-
tures to be defined in those areas; rather,
we encourage others to identify and doc-
ument them. Although operating systems
tend to be responsible for enforcing fun-
damental system security boundaries, the
detailed, application-dependent access
control policies required in a particular
environment are in practice often left to
the application to enforce. In this case,
application system security policies can
be compromised even when operating
system policies are not.

While we hope that this taxonomy will
stimulate others to collect, abstract, and
report flaw data, readers should recog-
nize that this is an approach for evaluat-
ing problems in systems as they have
been built. Used intelligently, informa-
tion collected and organized this way can
help us build stronger systems in the
future, but some factors that affect the
security of a system are not captured by
this approach. For example, any system
in which there is a great deal of software
that must be trusted is more likely
to contain security flaws than one in
which only a relatively small amount of
code could conceivably cause security
breaches.

Security failures, like accidents, often
are triggered by an unexpected combina-
tion of events. In such cases, the assign-
ment of a flaw to a category may rest on
relatively fine distinctions. So, we should
avoid drawing strong conclusions from
the distribution of a relatively small
number of flaw reports.

Finally, the flaws reported in the Ap-
pendix are selected, not random or com-
prehensive, and they are not recent.
Flaws in networks and applications are
becoming increasingly important, and the
distribution of flaws among the cate-
gories we have defined may not be sta-
tionary. So, any conclusions based strictly
on the flaws captured in the Appendix
must remain tentative.

3.2 Inferences

Despite these limitations, it is important
to consider what kinds of inferences we

ACM Computing Surveys, Vol. 26, No. 3, September 1994

228 “ Carl E. Landwehr et al.

Other Intentional

Covert Timing Chan.

Covert Storage Chan.

Time I Lagic Bomb

(e Trapdoor

%’
c

Virus

G Trojan horse

: Other Inadvertent
—
IL Sd. Condltlon VIOI

ldentiflcatlon/Auth.

Serialization/Allas,

Domam

Validation

L
❑ Rqmnts/Spec/Design

o Source Code

x Object Code

O Maintenance

A Operation

.,,

,. +3

-0-- -- --

n

El

❑

❑

o

0

u
o

I I I I 1 I I I I 1 I

El

D

I I 1 1 I I I I I I I

o

x

A

System Me- PrO - De- Flle Ident /Other/ Priv, Unprw Appl I- Hard

Imr. mory cess vice Mgmt Auth. Unknown Util. Utll - ca- ware

Mgmt Mgmt Mgmt Itles ttles tlons

Flaw Location

Figure 4. Example flaws, Genesis vs. location, over life-cycle

could draw from a set of flaw data orga-
nized according to the taxonomy. Proba-
bly the most straightforward way to
display such data is illustrated in Fig-
ures 1–3. By listing the case identifiers
and counts within each category, the fre-
quency of flaws across categories is
roughly apparent, and this display can
be used to give approximate answers to
the three questions that motivated the
taxonomy: how, when, and where do se-
curity flaws occur? But this straightfor-
ward approach makes it difficult to per-
ceive relationships among the three tax-
onomies: determining whether there is
any relationship between the time a flaw
is introduced and its location in the sys-
tem, for example, is relatively difficult.

To provide more informative views of
collected data, we propose the set of scat-
ter plots shown in Figures 4–7. Figure 4
captures the position of each case in all
three of the taxonomies (by genesis, time,
and location). Flaw location and genesis

are plotted on the x and y axes, respec-
tively, while the symbol plotted reflects
the time the flaw was introduced. By
choosing an appropriate set of symbols,
we have made it possible to distinguish
cases that differ in any single parameter.
If two cases are categorized identically,
however, their points will coincide ex-
actly, and only a single symbol will ap-
pear in the plot. Thus from Figure 4 we
can distinguish those combinations of all
categories that never occur from those
that do, but information about the rela-
tive frequency of cases is obscured.

Figures 5–7 remedy this problem. In
each of these figures, two of the three
categories are plotted on the x and y
axes, and the number of observations
corresponding to a pair of categories con-
trols the diameter of the circle used to
plot that point. Thus a large circle indi-
cates several different flaws in a given
category, and a small circle indicates only
a single occurrence. If a set of flaw data

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

Program Security Flaws ● 229

Flew Genes~
I I I 1 I I I 1 I I I
,,, 0 N=l

Other Intentional
:;

:, 60:, ~Q:::

Coverl Timmg Chan - ----- ------- - 0------- ; ----. -.--!--- j
O N=2

---- }..::,
:,

Covert Storage Charl. -::!: 0;::0 O N=3
Time I Logic Bomb - -- .~...... ..:;;. .:. . ..7. -$-i --y

Trapdoor -:: :: :, :, () N=4

0“””””:”’”””-:-----;-----:---:-----:, :,., :,
Virus - --- :.

. ..Q .. ;. O N=~

Trojan horse :. ,,:, 0::; r
Other Inadvertent - -- +----6----+ ---------- ------ /... + ‘--; -- ------ -

:,,
EM, Condition VIOL -:OOQ ;O:, :,

ldentlficatlon/Auth. - -.Q :....&.... .T Q..+ :..

Sertallzatlon/Ailaa. b~,;~!::

Domam - - ----+ ------ -+------- : --------~--------! -------: --

Val!dat}on o :000 +; 0!:;

I
I I 1 I I i 1 I I I

System Me- Pro- De. Fde ldent./Other/ Prw. Unprlv. App!i-Hard-

Imt. mory cess vice Mgmt Auth, (Jnknownlftlt - Utll - ca. ware

Mgmt Mgmt Mgmt
Flaw Location

ities itiea tlons

Figure5. Example flaws: Genesis vs.location; Nequals number ofexamples in Appendix.

Flaw Genesis -

Other Intentional 0“
Covert Timing Chan,- -- --

..Q.O; .:

Covert Storage Chan o

Time I Logic Bomb - - .- ;.
-- -Q --

Trapdoor

Virus - - -0- -- ------- 0 ““”
Trojan horse o

0 N=l

O N=2

0 N=4

() N=5

o N=6

I
Other Inadvertent - --- - -0 -------- --- --; -- ----(- -- -- ---

Sal. Condltmn VIOI. o 0’”

ldentlflcatlon/Auth. - --’ - p-------o -------;- --- -- -J

Serial! zatlon/Allas. 0!:
Domain - -

8

.Q. -

Valldatlon
0111

Rqmt/ Source Ob)ect Malnte-

Spec/
Opera-

Gxka Cc&l nance tion
Design Time In Life.C@e when FIaW we.s Introduced

Figure 6. Example flaws: Genesis vs. time introduced; N equals number of examples in Appendix.

reveals a few large-diameter circles, ef- security flaws generally. What actions
forts at flaw removal or prevention might might be indicated? The three large cir-
be targeted on the problems these circles cles in the lower left corner of Figure 6
reflect. Suppose for a moment that data might, for example, be taken as a signal
plotted in Figures 4–7 were in fact a that more emphasis should be placed on
valid basis for inferring the origins of domain definition and on parameter vali-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

230 ● Carl E. Landwehr et al.

I I I I I
Flaw Location O N=l

Hardware o 0 0 N=2
Appllcatlons o

Unpnv. Ufllltles
0 N=3

PrIv Uilllfies - -
09::

-0 O N=5

Other/Unknown

.0 ‘=’
Ident lAuth G “ “~ “

File Mgml
;0

Dewca Mgmt 0’::

P recess Mgmt
o 0: Q

Memory Mgmt o Q .,

System Iruf o 0
Q

I I I 1

Rqmt/ Source Object Mainte- Opera-
Specl Cc& C&s nance tlon
Design Time in Life-Cycle When Flaw Was Introduced

Figure 7. Example flaws: Location vs. time of introduction; N equals number of examples in Appendix.

dation during the early stages of
software development.

Because we do not claim that this se-
lection of security flaws is statistically
representative, we cannot use these plots
to draw strong conclusions about how,
when, or where security flaws are most
likely to be introduced. However, we be-
lieve that the kinds of plots shown would
be an effective way to abstract and pre-
sent information from more extensive,
and perhaps more sensitive, data sets.

We also have some observations based
on our experiences in creating the taxon-
omy and applying it to these examples. It
seems clear that security breaches, like
accidents, typically have several causes.
Often, unwarranted assumptions about
some aspect of system behavior lead to
security flaws. Problems arising from
asynchronous modification of a previ-
ously checked parameter illustrate this
point: the person who coded the check
assumed that nothing could cause that
parameter to change before its use
—when an asynchronously operating
process could in fact do so. Perhaps the
most dangerous assumption is that secu-
rity need not be addressed—that the en-
vironment is fundamentally benign, or

that security can be added later. Both
Unix and PC operating systems illus-
trate clearly the cost of this assumption.
One cannot be surprised when systems
designed without particular regard to se-
curity requirements exhibit security
flaws. Those who use such systems live
in a world of potentially painful sur-
prises.

APPENDIX: SELECTED SECURITY FLAWS

The following case studies exemplify se-
curity flaws. Without making claims as
to the completeness or representative-
ness of this set of examples, we believe
they will help designers know what pit-
falls to avoid and security analysts know
where to look when examining code,
specifications, and operational guidance
for security flaws.

All of the cases documented here (ex-
cept possibly one) reflect actual flaws in
released software or hardware. For each
case, a source (usually with a reference
to a publication) is cited, the software/
hardware system in which the flaw oc-
curred is identified, the flaw and its ef-
fects are briefly described, and the flaw
is categorized according to the taxonomy.

ACM Computmg Surveys, Vol 26, No. 3, September 1994

Program Security Flaws ● 231

Table 1. The Codes Used to Refer to Systems

Flaw Page Flaw Page Flaw Page
code System no. code System no. code System no.

11

12
13

14

15
16
17
18

19

MT1
MT2
MT3
MT4
MU1
MU2
MU3

MU4

IBM 0S/360

IBM VM/370
IBM VM\370

IBM VM/370
IBM MVS

IBM MVS
IBM MVS
IBM
IBM KVM/370

MTS
MTS
MTS
MTS
Multics
Multics
Multics
Multics

232
232
233
233
234
234
234
235
235
235
236
236
236
237
237
238

238

MU5
MU6
MU7

MU8

MU9
B1

UN1
DT1

U1

U2
U3
U4
U5
U6
U7
U8

U9

Multics

Multics
Multics

Multics

Multics
Burroughs
Univac

DEC Tenex
Unix

Unix
Unix
Unix
Unix
Unix
Unix
Unix
Unix

238
239

239
239

239
240
240

241
242

242
243
243
244
244
245
245
246

Ulo

Ull
U12

U13
U14

D1
D2
IN1
Pc 1

PC2
PC3
PC4
MA1
MA2
CA1
AT1

Unix

Unix
Unix

Unix
Unix
DEC VMS
DEC Security Kernel

Intel 80386/7
IBM PC

IBM PC
IBM PC
IBM PC
Apple Macintosh
Apple Macintosh

Commodore Amiga
Atari

246
246
247

247
248

248
249
249

250
251
251
251
252
252
252
253

Where it has been difficult to deter-
mine with certainty the time or place a
flaw was introduced, the most probable
category (in the judgment of the authors)
has been chosen, and the uncertainty is
annotated by a question mark (?). In some
cases, a flaw is not fully categorized. For
example, if the flaw was introduced
during the requirements/specification
phase, then the place in the code where
the flaw is located may be omitted.

The cases are grouped according to the
system on which they occurred. (Unix,
which accounts for about a third of the
flaws reported here, is considered a sin-
gle system.) The systems are ordered
roughly chronologically. Since readers
may not be familiar with the details of
all of the architectures included here,
brief introductory discussions of relevant
details are provided as appropriate.

Table 1 lists the code used to refer to
each flaw and the number of the page on
which the flaw is described.

IBM /360 and /370 Systems

In the IBM System/360 and /370 archi-
tecture, the Program Status Word (PSW)
defines the key components of the system
state. These include the current machine
state (problem state or supervisor state)
and the current storage key. Two instruc-
tion subsets are defined: the problem

state instruction set, which excludes
privileged instructions (loading the PSW,
initiating 1/0 operations, etc.) and the
supervisor state instruction set, which
includes all instructions, Attempting to
execute a privileged operation while in
problem state causes an interrupt. A
problem state program that wishes to
invoke a privileged operation does so nor-
mally by issuing the Supervisor Call

(SVC) instruction, which also causes an
interrupt.

Main storage is divided into 4KB pages;
each page has an associated 4-bit storage
key. Typically, user memory pages are
assigned storage key 8, while a system
storage page will be assigned a storage
key from O to 7. A task executing with a
nonzero key is permitted unlimited ac-
cess to pages with storage keys that
match its own. It can also read pages
with other storage keys that are not
marked as fetch-protected. An attempt to
write into a page with a nonmatching
key causes an interrupt. A task executing
with a storage key of zero is allowed
unrestricted access to all pages, regard-
less of their key or fetch-protect status.
Most operating system functions execute
with a storage key of zero.

The 1/0 subsystem includes a variety
of channels that are, in effect, separate,
special-purpose computers that can be
programmed to perform data transfers

ACM Computing Surveys, Vol. 26, No. 3, September 1994

232 ● Carl E. Landwehr et al.

between main storage and auxiliary de-
vices (tapes, disks, etc.). These channel
programs are created dynamically by de-
vice driver programs executed by the
CPU. The channel is started by issuing a
special CPU instruction that provides the
channel with an address in main storage
from which to begin fetching its instruc-
tions. The channel than operates in par-
allel with the CPU and has independent
and unrestricted access to main storage.
Thus, any controls on the portions of
main storage that a channel could read
or write must be embedded in the chan-
nel programs themselves. This paral-
lelism, together with the fact that
channel programs are sometimes (inten-
tionally) self-modifying, provides com-
plexity that must be carefully controlled
if security flaws are to be avoided.

0S/360 and MVS (Multiple Virtual
Storages) are multiprogramming operat-
ing systems developed by IBM for this
hardware architecture. The Time Shar-
ing Option (TSO) under MVS permits
users to submit commands to MVS from
interactive terminals. VM/370 is a vir-
tual machine monitor operating system
for the same hardware, also developed by
IBM. The KVM/370 system was devel-
oped by the U.S. Department of Defense
as a high-security version of VM\370.
MTS (Michigan Terminal System), devel-
oped by the University of Michigan, is an
operating system designed especially to
support both batch and interactive use of
the same hardware.

MVS supports a category of privileged,
non-MVS programs through its Autho-
rized Program Facility (APF). APF pro-
grams operate with a storage key of 7 or
less and are permitted to invoke opera-
tions (such as changing to supervisor
mode) that are prohibited to ordinary
user programs. In effect, APF programs
are assumed to be trustworthy, and they
act as extensions to the operating sys-
tem. An installation can control which
programs are included under APF. RACF
(Resource Access Control Facility) and
Top Secret are security packages de-
signed to operate as APF programs
under MVS.

Case: 11

Source: Tanenbaum A. S., Operating
Systems Design and Implementation.
Prentice-Hall, 1987.

System: IBM 0S/360

Description: In 0S/360 systems, the
file-access-checking mechanism could be
subverted. When a password was re-
quired for access to a file, the filename
was read, and the user-supplied pass-
word was checked. If it was correct, the
file name was reread, and the file was
opened. It was possible, however, for the
user to arrange that the filename be
altered between the first and second
readings. First, the user would initiate a
separate background process to read data
from a tape into the storage location that
was also used to store the filename. The
user would then request access to a file
with a known password. The system
would verify the correctness of the pass-
word. While the password was being
checked, the tape process replaced the
original filename with a file for which
the user did not have the password, and
this file would be opened. The flaw is
that the user can cause parameters to be
altered after they have been checked (this
kind of flaw is sometimes called a time-
of-check-to-time-of-use (TO CTTOU)
flaw). It could probably have been cor-
rected by copying the parameters into
operating system storage that the user
could not cause to be altered.

Genesis: Inadvertent: Serialization

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: File Manage-
ment

Case: 12

Source: Attanasio, C. R., Markstein, P.
W., and Phillips, R. J. Penetrating an
operating system: A study of VM/370
integrity. IBM Syst. J. (1976), 102–116.

System: IBM VM/370

Description: By carefully exploiting an
“oversight in condition-code checking,” a

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

Program Security Flaws ● 233

retrofit in the basic VM/370 design, and
the fact that CPU and 1/0 channel pro-
grams could execute simultaneously, a
penetrator could gain control of the sys-
tem. Further details of this flaw are not
provided in the cited source, but it ap-
pears that a logic error (“oversight in
condition-code checking”) was at least
partly to blame.

Genesis: Inadvertent: Serialization

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: Device Man-
agement

Case: 13

Source: Attanasio, C. R., Markstein,
P. W., and Phillips, R. J. Penetrating an
operating system: A study of VM/370
integrity. Bill Syst. J. (1976), 102–116.

System: IBM VM/370

Description: As a virtual machine mon-
itor, VM/370 was required to provide
1/0 services to operating systems exe-
cuting in individual domains under its
management, so that their 1/0 routines
would operate almost as if they were
running on the bare IBM/370 hardware.
Because the 0S/360 operating system

(specifically, the Indexed Sequential Ac-
cess Method (ISAM) routines) exploited
the ability of 1/0 channel programs to
modify themselves during execution,
VM/370 included an arrangement
whereby portions of channel programs
were executed from the user’s virtual
machine storage rather than from
VM/370 storage. This permitted a pene-
trator, mimicking an 0S/360 channel
program, to modify the commands in user
storage before they were executed by the
channel and thereby to overwrite arbi-
trary portions of VM/370.

Genesis: Inadvertent: Domain(?) This
flaw might also be classed as (Inten-
tional, Nonmalicious, Other), if it is con-
sidered to reflect a conscious compromise
between security and both efficiency in
channel program execution and compati-
bility with an existing operating system.

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: Device Man-
agement

Case: 14

Source: Attanasio, C. R., Markstein,
P. W., and Phillips, R. J. Penetrating an
operating system: A study of VM/370
integrity. IBM Syst. J. (1976), 102–1 16.

System: IBM VM/370

Description: In performing static anal-
ysis of a channel program issued by a
client operating system for the purpose of
translating it and issuing it to the chan-
nel, VM/370 assumed that the meaning
of a multiword channel command re-
mained constant throughout the execu-
tion of the channel program. In fact,
channel commands vary in length, and
the same word might, during execution
of a channel program, act both as a sepa-
rate command and as the extension of
another (earlier) command, since a chan-
nel program could contain a backward
branch into the middle of a previous mul-
tiword channel command. By careful con-
struction of channel programs to exploit
this blind spot in the analysis, a user
could deny service to other users (e.g., by
constructing a nonterminating channel
program), read restricted files, or even
gain complete control of the system.

Genesis: Inadvertent: Validation (?) The
flaw seems to reflect an omission in the
channel program analysis logic. Perhaps
additional analysis techniques could
be devised to limit the specific set of
channel commands permitted, but deter-
mining whether an arbitrary channel
program halts or not appears equivalent
to solving the Turing machine halting
problem. On this basis, this could also be
argued to be a design flaw.

Time: During Development: Require-
merit/Specification/ Design

Place: Operating System: Device Man-
agement

ACM Computing Surveys, Vol. 26, No. 3, September 1994

234 ● Carl E. Landwehr et al.

Case: 15

Source: Opaska, W. A security loophole
in the MVS operating system. Comput.
Fraud Sec. Bull. (May 1990), 4-5.

System: IBM\370 MVS(TSO)

Description: Time Sharing Option
(TSO) is an interactive development sys-
tem that runs on top of MVS. Input/
Output operations are only allowed on
allocated files. When files are allocated
(via the TSO ALLOCATE function), for
reasons of data integrity the requesting
user or program gains exclusive use of
the file. The flaw is that a user is allowed
to allocate files whether or not he or she
has access to the files. A user can use the
ALLOCATE function on files such as
SMF (System Monitoring Facility)
records, the TSO log-on procedure lists,
the ISPF user profiles, and the produc-
tion and test program libraries to deny
service to other users.

Genesis: Inadvertent: Validation (?) The
flaw apparently reflects omission of an
access permission check in program logic.

Time: During Development: Require-
ment/Specification/Design (?) Without
access to design information, we cannot
be certain whether the postulated omis-
sion occurred in the coding phase or prior
to it.

Place: Operating System: File Manage-
ment

Case: 16

Source: Paans, R. and Bonnes, G. Sur-
reptitious security violation in the MVS
operating system. In Security, IIWP/Sec
’83, V. Fak, Ed. North Holland, 1983,
95-105.

System: IBM MVS (TSO)

Description: Although TSO attempted
to prevent users from issuing commands
that would operate concurrently with
each other, it was possible for a program
invoked from TSO to invoke multitask-
ing. Once this was achieved, another TSO
command could be issued invoking a

program that executed under the Autho-
rized Program Facility (APF). The con-
current user task could detect when the
APF program began authorized execu-
tion (i.e., with storage key value less than
8). At this point the entire user’s address
space (including both tasks) was effec-
tively privileged, and the user-controlled
task could issue privileged operations and
subvert the system. The flaw here seems
to be that when one task gained APF
privilege, the other task was able to do so
as well—that is, the domains of the two
tasks were insufficiently separated.

Genesis: Inadvertent: Domain

Time: Development: Requirement/
Specification/Design (?)

Place: Operating System: Process Man-
agement

Case: 17

Source: Paans, R. and Bonnes, G. Sur-
reptitious security violation in the MVS
operating system. In Security, IFIP/Sec
’83, V. Fak, Ed. North Holland, 1983,
95-105.

System: IBM MVS

Description: Commercial software
packages, such as database management
systems, must often be installed so that
they execute under the Authorized Pro-
gram Facility. In effect, such programs
operate as extensions of the operating
system, and the operating system per-
mits them to invoke operations that are
forbidden to ordinary programs. The soft-
ware package is trusted not to use these
privileges to violate protection require-
ments. In some cases, however, (the ref-
erenced source cites as examples the
Cullinane IDMS database system and
some routines supplied by Cambridge
Systems Group for servicing Supervisor
Call (SVC) interrupts) the package may
make operations available to its users
that do permit protection to be violated.
This problem is similar to the problem of
faulty Unix programs that run as SUID
programs owned by root (see case U5):
there is a class of privileged programs

ACM Computing Surveys, Vol 26, No 3, September 1994

developed and maintained separately
from the operating system proper that

can subvert operating system protection
mechanisms. It is also similar to the
general problem of permitting “trusted
applications.” It is difficult to point to
specific flaws here without examining
some particular APF program in detail.
Among others, the source cites an SVC
provided by a trusted application that
permits an address space to be switched
from non-APF to APF status; subse-
quently all code executed from that ad-
dress space can subvert system protec-
tion. We use this example to characterize
this kind of flaw.

Genesis: Intentional: Nonmalicious:
Other(?) Evidently, the SVC performed
this function intentionally, but not for
the purpose of subverting system protec-
tion, even though it had that effect. Might
also be classed as Inadvertent: Domain.

Time: Development: Requirement/
Specification/Design (?) (During devel-
opment of the trusted application)

Place: Support: Privileged Utilities

Case: 18

Source: Burgess, J. Searching for a bet-
ter computer shield. The Washington
Post, Nov. 13, 1988, HI.

System: IBM

Description: A disgruntled employee
created a number of programs that each
month were intended to destroy large
portions of data and then copy them-
selves to other places on the disk. He
triggered one such program after being
fired from his job, and was later con-
victed of this act. Although this certainly
seems to be an example of a malicious
code introduced into a system, it is not
clear what, if any, technical flaw led to
this violation. It is included here simply
in order to provide one example of a
“time-bomb.”

Genesis: Intentional: Malicious: Logic/
Time-Bomb

Time: During Operation

Program Security Flaws ● 235

Place: Application (?)

Case: 19

Source: Schaefer, M., Gold, B., Linde,
R., and Scheid, J. Program confinement
in KVM/370. In Proc. ACM National
Conf. Oct. 1977.

System: KVM/370

Description: Because virtual machines
shared a common CPU under a round-
robin scheduling discipline and had
access to a time-of-day clock, it was pos-
sible for each virtual machine to detect
at what rate it received service from the
CPU. One virtual machine could signal
another by either relinquishing the CPU
immediately or using its full quantum; if
the two virtual machines operated at dif-
ferent security levels, information could
be passed illicitly in this way. A straight-
forward, but costly, way to close this
channel is to have the scheduler wait
until the quantum is expired to dispatch
the next process.

Genesis: Intentional: Nonmalicious:
Covert timing channel.

Time: During Development: Require-
ments/Specification/Design. This chan-
nel occurs because of a design choice in
the scheduler algorithm.

Place: Operating System: Process Man-
agement (Scheduling)

Case: MT1

Source: Hebbard, B., et al. A penetra-
tion analysis of the Michigan Terminal
System. ACM SIGOPS Oper. Syst. Rev.
14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A user could trick system
subroutines into changing bits in the
system segment that would turn off all
protection checking and gain complete
control over the system. The flaw was in
the parameter-checking method used by
(several) system subroutines. These sub-
routines retrieved their parameters via
indirect addressing. The subroutine
would check that the (indirect) parame-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

236 ● Carl E. Landwehr et al.

ter addresses lay within the user’s stor-
age area. If not, the call was rejected, but
otherwise the subroutine proceeded.
However, a user could defeat this check
by constructing a parameter that pointed
into the parameter list storage area it-
self. When such a parameter was used by
the system subroutine to store returned
values, the (previously checked) parame-
ters would be altered, and subsequent
use of those parameters (during the same
invocation) could cause the system to
modify areas (such as system storage) to
which the user lacked write permission.
The flaw was exploited by finding sub-
routines that could be made to return at
least two controllable values: the first
one to modify the address where the sec-
ond one would be stored, and the second
one to alter a sensitive system variable.
This is another instance of a time-of-
check-to-time-of-use problem.

Genesis: Inadvertent: Validation

Time: During Development: Source Code
(?) (Without access to design information,

we can not be sure that the parameter-
checking mechanisms were adequate as
designed.)

Place: Operating System: Process Man-
agement

Case: MT2

Source: Hebbard, B., et al. A penetra-
tion analysis of the Michigan Terminal
System. ACM SIGOPS Oper. Syst. Reu.
14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A user could direct the op-
erating system to place its data (specifi-
cally, addresses for its own subsequent
use) in an unprotected location. By alter-
ing those addresses, the user could cause
the system to modify its sensitive vari-
ables later so that the user would gain
control of the operating system.

Genesis: Inadvertent: Domain

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: Process Man-
agement

Case: MT3

Source: Hebbard, B., et al. A penetra-
tion analysis of the Michigan Terminal
System. ACM SIGOPS Oper. Syst. Rev.
14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: Certain sections of mem-
ory readable by anyone contained sensi-
tive information including passwords and
tape identification. Details of this flaw
are not provided in the source cited; pos-
sibly this represents a failure to clear
shared input/output areas before they
were reused.

Genesis: Inadvertent. Domain (?)

Time: During Development: Require-

ment/Specification/Design (?)

Place: Operating System: Memory Man-
agement (possibly also Device Manage-
ment)

Case: MT4

Source: Hebbard, B., et al. A penetra-
tion analysis of the Michigan Terminal
System. ACM SIGOPS Oper. Syst. Rev.
14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A bug in the MTS supervi-
sor could cause it to loop indefinitely in
response to a “rare” instruction sequence
that a user could issue. Details of the bug
are not provided in the source cited.

Genesis: Inadvertent: Boundary Condi-
tion Violation

Time: During Development. Source Code
(?)

Place: Operating System: Other/Un-
known

Multics (GE-645 and Successors)

The Multics operating system was devel-
oped as a general-purpose “information
utility” and successor to MIT’s Compati-
ble Time Sharing System (CTSS) as a

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

supplier of interactive computing ser-
vices. The initial hardware for the sys-
tem was the specially designed General
Electric GE-645 computer. Subsequently,
Honeywell acquired GE’s computing divi-
sion and developed the HIS 6180 and its
successors to support Multics. The hard-
ware supported “master” mode, in which
all instructions were legal, and a “slave”
mode, in which certain instructions (such
as those that modify machine registers
that control memory mappings) are pro-
hibited. Additionally, the hardware of the
HIS 6180 supported eight “rings” of pro-
tection (implemented by software in the
GE-645), to permit greater flexibility in
organizing programs according to the
privileges they required. Ring O was the
most privileged ring, and it was expected
that only operating system code would
execute in ring O. Multics also included a
hierarchical scheme for files and directo-
ries similar to that which has become
familiar to users of the Unix system, but
Multics file structures were integrated
with the storage hierarchy, so that files
were essentially the same as segments.
Segments currently in use were recorded
in the Active Segment Table (AST). De-
nial of service flaws like the ones listed
for Multics below could probably be found
in a great many current systems.

Case: MU1

Source: Tanenbaum, A. S. Operating
Systems Design and Implementation.
Prentice-Hall, 1987.

System: Multics

Description: Perhaps because it was
designed with interactive use as the pri-
mary consideration, initially Multics per-
mitted batch jobs to read card decks into
the file system without requiring any
user authentication. This made it possi-
ble for anyone to insert a file in any
user’s directory through the batch
stream. Since the search path for locat-
ing system commands and utility pro-
grams normally began with the user’s
local directories, a Trojan horse version
of (for example) a text editor could be
inserted and would very likely be exe-

Program Security Flaws ● 237

cuted by the victim, who would be un-
aware of the change. Such a Trojan horse
could simply copy the file to be edited (or
change its permissions) before invoking
the standard system text editor.

Genesis: Inadvertent: Inadequate Iden-
tification/Authentication. According to
one of the designers, the initial design
actually called for the virtual card deck
to be placed in a protected directory, and
mail would be sent to the recipient an-
nouncing that the file was available for
copying into his or her space. Perhaps
the implementer found this mechanism
too complex and decided to omit the pro-
tection. This seems simply to be an error
of omission of authentication checks for
one mode of system access.

Time: During Development: Source Code

Place: Operating System: Identifica-
tion/Authentication

Case: MU2

Source: Karger, P. A., and Schell, R. R.
Multics Security Evaluation; Vulnerabil-
ity Analysis. ESD-TR-74-193, Vol II, U.S.
Air Force Electronic Systems Div. (ESD),
Hanscom AFB, Mass. June 1974.

System: Multics

Description: When a program exe-
cuting in a less privileged ring passes
parameters to one executing in a more
privileged ring, the more privileged pro-
gram must be sure that its caller has the
required read or write access to the pa-
rameters before it begins to manipulate
those parameters on the caller’s behalf.
Since ring-crossing was implemented in
software in the GE-645, a routine to per-
form this kind of argument validation
was required. Unfortunately, this pro-
gram failed to anticipate one of the sub-
tleties of indirect addressing modes
available on the Multics hardware, so the
argument validation routine could be
spoofed.

Genesis: Inadvertent: Validation. Failed
to check arguments completely.

Time: During Development: Source Code

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

238 ● Carl E. Landwehr et al.

Place: Operating System: Process Man-
agement

Case: MU3

Source: Karger, P. A., and Schell, R. R.
Multics Security Evaluation: Vulnerabil-
ity Analysis, ESD-TR-74-193, Vol II, June
1974.

System: Multics

Description: In early designs of Mul-
tics, the stack base (sb) register could
only be modified in master mode. After
Multics was released to users, this re-
striction was found unacceptable, and
changes were made to allow the sb reg-
ister to be modified in other modes.
However, code remained in place, which
assumed that the sb register could only
be changed in master mode. It was possi-
ble to exploit this flaw and insert a trap-
door. In effect, the interface between
master mode and other modes was
changed, but some code that depended on
that interface was not updated.

Genesis: Inadvertent: Domain. The
characterization of a domain was
changed, but code that relied on the for-
mer definition was not modified as
needed.

Time: During Maintenance: Source Code

Place: Operating System: Process Man-
agement

Case: MU4

Source: Karger, P. A. and Schell, R. R.
Multics Security Evaluation: Vulnerabil-
ity Analysis. EST-TR-74-193, Vol II, June
1974.

System: Multics

Description: Originally, Multics de-
signers had planned that only processes
executing in ring O would be permitted to
operate in master mode. However, on the
GE-645, code for the signaler module,
which was responsible for processing
faults to be signaled to the user and re-
quired master mode privileges, was per-
mitted to run in the user ring for reasons
of efficiency. When entered, the signaler

checked a parameter, and if the check
failed, it transferred, via a linkage regis-
ter, to a routine intended to bring down
the system. However, this transfer was
made while executing in master mode
and assumed that the linkage register
had been set properly. Because the sig-
naler was executing in the user ring, it
was possible for a penetrator to set this
register to a chosen value and then make
an (invalid) call to the signaler. After
detecting the invalid call, the signaler
would transfer to the location chosen by
the penetrator while still in master mode,
permitting the penetrator to gain control
of the system.

Genesis: Inadvertent: Validation

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: Process Man-
agement

Case: MU5

Source: Gligor, V. D. Some thoughts on
denial-of-service problems. Electrical En-
gineering Dept., Univ. of Maryland, Col-
lege Park, Md., Sept. 1982.

System: Multics

Description: A problem with the Active
Segment Table (AST) in Multics version
18.0 caused the system to crash in cer-
tain circumstances. It was required that
whenever a segment was active, all di-
rectories superior to the segment also be
active. If a user created a directory tree
deeper than the AST size, the AST would
overflow with unremovable entries. This
would cause the system to crash.

Genesis: Inadvertent: Boundary Condi-
tion Violation: Resource Exhaustion. Ap-
parently, programmers omitted a check
to determine when the AST size limit
was reached.

Time: During Development: Source Code

Place: Operating System: Memory Man-
agement

Case: MU6

ACM Computing Surveys, Vol. 26, No 3, September 1994

Source: Gligor, V. D. Some thoughts on

denial-of-service problems. Electrical En-
gineering Dept., Univ. of Maryland, Col-
lege Park, Md., Sept. 1982.

System: Multics

Description: Because Multics originally
imposed a global limit on the total num-
ber of login processes, but no other re-
striction on an individual’s use of login
processes, it was possible for a single
user to Iogin repeatedly and thereby block
logins by other authorized users. A sim-
ple (though restrictive) solution to this
problem would have been to limit indi-
vidual logins as well.

Genesis: Inadvertent: Boundary Condi-
tion Violation: Resource Exhaustion

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: Process Man-
agement

Case: MU7

Source: Gligor, V. D. Some thoughts on
denial-of-service problems. Electrical En-
gineering Dept., Univ. of Maryland, Col-
lege Park, Md., Sept. 1982.

System: Multics

Description: In early versions of Mul-
tics, if a user generated too much storage
in his or her process directory, an excep-
tion was signaled. The flaw was that the
signaler used the wrong stack, thereby
crashing the system.

Genesis: Inadvertent: Other Exploitable
Logic Error

Time: During Development: Source Code

Place: Operating System: Process Man-
agement

Case : MU8

Source: Gligor, V. D. Some thoughts on
denial-of-service problems. Electrical En-
gineering Dept., Univ. of Maryland, Col-
lege Park, Md., Sept. 1982.

System: Multics

Description: In early versions of Mul-
tics, if a directory contained an entry for
a segment with an all-blank name, the

Program Security Flaws “ 239

deletion of that directory would cause a
system crash. The specific flaw that
caused a crash is not known, but, in ef-
fect, the system depended on the user to
avoid the use of all-blank segment names.

Genesis: Inadvertent: Validation

Time: During Development: Source Code

Place: Operating System: File Manage-
ment. (In Multics, segments were equiva-
lent to files.)

Case: MU9

Source: Karger, P. A., and Schell, R. R.
Multics Security Evaluation: Vulnerabil-
ity Analysis. ESD-TR-74-193, Vol II, June
1974.

System: Multics

Description: A piece of software writ-
ten to test Multics hardware protection
mechanisms (called the Subverter by its
authors) found a hardware flaw in the
GE-645: if an execute instruction in one
segment had as its target an instruction
in location zero of a different segment,

and the target instruction used index
register, but not base register modifica-
tions, then the target instruction exe-
cuted with protection checking disabled.
By choosing the target instruction judi-
ciously, a user could exploit this flaw to
gain control of the machine. When in-
formed of the problem, the hardware
vendor found that a field service change
to fix another problem in the machine
had inadvertently added this flaw. The
change that introduced the flaw was in
fact installed on all other machines of
this type.

Genesis: Inadvertent: Other

Time: During Maintenance: Hardware

Place: Hardware

Burroughs B6700

Burroughs advocated a philosophy in
which users of its systems were expected
never to write assembly language pro-
grams, and the architecture of many
Burroughs computers was strongly influ-

ACM Computing Surveys, Vol 26, No. 3, September 1994

240 * Carl E. Landwehr et al.

enced by the idea that they would pri-
marily execute programs that had been
compiled (especially ALGOL programs).

Case: B1

Source Wilkinson, A. L., et al. A pene-
tration analysis of a Burroughs large sys-
tem. ACM SIGOPS Oper. Syst. Rev. 15,
1 (Jan, 1981), 14-25.

System: Burroughs B6700

Description: The hardware of the Bur-
roughs B6700 controlled memory access
according to bounds registers that a pro-
gram could set for itself. A user who
could write programs to set those regis-
ters arbitrarily could effectively gain con-
trol of the machine, To prevent this, the
system implemented a scheme designed
to assure that only object programs gen-
erated by authorized compilers (which
would be sure to include code to set the
bounds registers properly) would ever be
executed. This scheme required that ev-
ery file in the system have an associated
type. The loader would check the type of
each file submitted to it in order to be
sure that it was of type “code-file,” and
this type was only assigned to files pro-
duced by authorized compilers. Thus it
would be possible for a user to create an
arbitrary file (e.g., one that contained
malicious object code that reset the
bounds registers and assumed control of
the machine), but unless its type code
were also assigned to be “code- file,” it
still could not be loaded and executed.
Although the normal file-handling rou-
tines prevented this, there were utility
routines that supported writing files to
tape and reading them back into the file
system. The flaw occurred in the routines
for manipulating tapes: it was possible to
modify the type label of a file on tape so
that it became “code-f ile.” Once this was
accomplished, the file could be retrieved
from the tape and executed as a valid
program.

Genesis: Intentional: Nonmalicious:
Other. System support for tape drives
generally requires functions that permit
users to write arbitrary bit patterns on

tapes. In this system, providing these
functions sabotaged security.

Time: During Development: Require-
ment/Specification/Design

Place: Support: Privileged Utilities

Univac 1108

This large-scale mainframe provided

timesharing computing resources to
many laboratories and universities in the
1970s. Its main storage was divided into
“banks” of some integral multiple of 512
words in length. Programs normally had
two banks: an instruction (I-) bank and a
data (D-) bank. An I-bank containing a
reentrant program would not be expected
to modify itselfi a D-bank would be
writable. However, hardware storage

protection was organized so that a pro-

gram would either have write permission
for both its I-bank and D-bank or nei-
ther.

Case: UN1

Source: Stryker, D. Subversion of a
“secure” operating system, NRL Memo.
Rep. 2821, June, 1974.

System: Univac 1108/Exec 8

Description: The Exec 8 operating sys-
tem provided a mechanism for users to
share reentrant versions of system utili-
ties, such as editors, compilers, and
database systems, that were outside the
operating system proper. Such routines
were organized as “Reentrant Processors”
or REPs. The user would supply data for
the REP in his or her own D-bank; all
current users of a REP would share a

common I-bank for it, Exec 8 also in-
cluded an error recovery scheme that
permitted any program to trap errors (i.e.,
to regain control when a specified error,
such as divide by zero or an out-of-bounds
memory reference, occurs). When the
designated error-handling program
gained control, it would have access to
the context in which the error occurred.
On gaining control, an operating system
call (or a defensively coded REP) would
immediately establish its own context for

ACM Computing Surveys, Vol. 26, No 3, September 1994

Program Security Flaws ● 241

trapping errors. However, many REPs did
not do this. Soj it was possible for a
malicious user to establish an error-
handling context, prepare an out-of-
bounds D-bank for the victim REP, and
invoke the REP, which immediately
caused an error. The malicious code re-
gained control at this point with both
read and write access to both the REPs
I-and D-banks. It could then alter the
REP’s code (e.g., by adding Trojan horse
code to copy a subsequent user’s files into
a place accessible to the malicious user).
This Trojan horse remained effective as
long as the modified copy of the REP

(which is shared by all users) remained
in main storage. Since the REP was sup-
posed to be reentrant, the modified ver-
sion would never be written back out to a
file, and when the storage occupied by
the modified REP was reclaimed, all evi-
dence of it would vanish. The flaws in
this case are in the failure of the REP to
establish its error handling and in the

hardware restriction that I- and D-banks
have the same write protection. These
flaws were exploitable because the same
copy of the REP was shared by all users.
A fix was available that relaxed the
hardware restriction.

Genesis: Inadvertent: Domain: It was
possible for the user’s error handler to
gain access to the REPs domain.

Time: During Development: Require-

ments/Specification/Design

Place: Operating System: Process Man-
agement. (Alternatively, this could be
viewed as a hardware design flaw.)

DEC PDP-10

The DEC PDP-10 was a medium-scale
computer that became the standard sup-
plier of interactive computing facilities
for many research laboratories in the
1970’s. DEC offered the TOPS-10 operat-
ing system for it; the TENEX operating
system was developed by Bolt, Beranek,
and Newman, Inc. (BBN), to operate in
conjunction with a paging box and minor
modifications to the PDP-10 processor
also developed by BBN.

Case: DT1

Source: Tanenbaum, A. S. Operating
Systems Design and Implementation.
Prentice-Hall, 1987, and Abbott, R. P., et
al. Security analysis and enhancements
of computer operating systems. Final Rep.
the RISOS Project, NBSIR-76-1041, Na-
tional Bureau of Standards, April 1976,

(NTIS PB-257 087), 49-50.

System: TENEX

Description: In TENEX systems, pass-
words were used to control access to files.
By exploiting details of the storage allo-

cation mechanisms and the password-
checking algorithm, it was possible to
guess the password for a given file. The
operating system checked passwords
character by character, stopping as soon
as an incorrect character was encoun-
tered. Further, it retrieved the char-
acters to be checked sequentially from
storage locations chosen by the user. To
guess a password, the user placed a trial
password in memory so that the first
unknown character of the password occu-
pied the final byte of a page of virtual
storage resident in main memory, and
the following page of virtual storage was
not currently in main memory. In re-
sponse to an attempt to gain access to
the file in question, the operating system
would check the password supplied. If
the character before the page boundary
was incorrect, password checking was
terminated before the following page was
referenced, and no page fault occurred.
But if the character just before the page
boundary was correct, the system would
attempt to retrieve the next character
and a page fault would occur. By check-
ing a system-provided count of the num-
ber of page faults this process had
incurred just before and again just after
the ~assword check. the user could de-
duce’ whether or not a page fault had
occurred during the check, and, hence,
whether or not the guess for the next
character of the password was correct. In
effect, this technique reduces the search
space for an N-character password over
an alphabet of size m from N“ to Nm.

ACM Computing Surveys, Vol. 26, No 3, September 1994

242 ● Carl E. Landwehr et al.

The flaw was that the password was
checked character by character from the
user’s storage. Its exploitation required
that the user also be able to position a
string in a known location with respect
to a physical page boundary and that a
program be able to determine (or dis-
cover) which pages are currently in
memory.

Genesis: Intentional: Nonmalicious:
Covert Storage Channel (could also be
classed as Inadvertent: Domain: Exposed
Representation)

Time: During Development: Source Code

Place: Operating System: Identifica-
tion\Authentication

Unix

The Unix operating system was origi-
nally developed at Bell Laboratories as a
“single-user Multics” to run on DEC
minicomputers (PDP-8 and successors).
Because of its original goals—to provide
useful, small-scale, interactive comput-
ing to a single user in a cooperative labo-
ratory environment—security was not a
strong concern in its initial design. Unix
includes a hierarchical file system with
access controls, including a designated
owner for each file, but for a user with
userID “root” (also known as the “super-
user”), access controls are turned off.
Unix also supports a feature known as
“setUID” or “SUID.” If the file from which

a Program IS loaded for execution is
marked “setUID,” then it will execute
with the privileges of the owner of that
file, rather than the privileges of the user
who invoked the program. Thus a pro-
gram stored in a file that is owned by
“root” and marked “setUID” is highly
privileged (such programs are often re-
ferred to as being “setUID to root”). Sev-
eral of the flaws reported here occurred
because programs that were “setUID to
root” failed to include sufficient internal
controls to prevent themselves from be-
ing exploited by a penetrator. This is not
to say that the setUID feature is only of
concern when “root” owns the file in
question: any user can cause the setUID

bit to be set on files he or she creates. A
user who permits others to execute the
programs in such a file without exercis-
ing due caution may have an unpleasant
surprise.

Case: U1

Source: Thompson, K. Reflections on
trusting trust. Commun. ACM 27,8 (Aug.
1984), 761-763.

System: Unix

Description: Ken Thompson’s ACM
Turing Award Lecture describes a proce-
dure that uses a virus to install a trap-
door in the Unix login program. The virus
is placed in the C compiler and performs
two tasks. If it detects that it is compil-
ing a new version of the C compiler, the
virus incorporates itself into the object
version of the new C compiler. This en-
sures that the virus propagates to new
versions of the C compiler. If the virus
determines it is compiling the Iogin pro-
gram, it adds a trapdoor to the object
version of the login program. The object
version of the login program then con-
tains a trapdoor that allows a specified
password to work for a specific account.
Whether this virus was ever actually in-
stalled as described has not been re-
vealed. We classify this according to the
virus in the compiler; the trapdoor could
be counted separately.

Genesis: Intentional: Replicating Tro-
jan horse (virus)

Time: During Development: Object Code

Place: Support: Unprivileged Utilities
(compiler)

Case: U2

Source: Tanenbaum, A. S. Operating
Systems Design and Implementation.
Prentice-Hall, 1987.

System: Unix

Description: The “lpr” program is a
Unix utility that enters a file to be printed
into the appropriate print queue. The -r
option to lpr causes the file to be re-
moved once it has been entered into the
print queue. In early versions of Unix,

ACM Computing Surveys, Vol 26, No. 3, September 1994

the -r option did not adequately check
that the user invoking lpr -r had the
required permissions to remove the spec-
ified file, so it was possible for a user to
remove, for instance, the password file
and prevent anyone from logging into the
system.

Genesis: Inadvertent: Identification and
Authentication. Apparently, lpr was a
SetUID (SUID) program owned by root

(i.e., it executed without access controls)
and so was permitted to delete any file
on the system. A missing or improper
access check probably led to this flaw.

Time: During Development: Source Code

Place: Operating System: File Manage-
ment

Case: U3

Source: Tanenbaum, A. S. Operating
Systems Design and Implementation.
Prentice-Hall, 1987.

System: Unix

Description: In some versions of Unix,
“mkdir” was an SUID program owned by
root. The creation of a directory required
two steps. First, the storage for the direc-
tory was allocated with the “mknod” sys-
tem call. The directory created would be
owned by root. The second step of “mkdir”
was to change the owner of the newly
created directory from “root” to the ID of
the user who invoked “mkdir.” Because
these two steps were not atomic, it was
possible for a user to gain ownership of
any file in the system, including the
password file. This could be done as fol-
lows: the “mkdir” command would be ini-
tiated, perhaps as a background process,
and would complete the first step, creat-
ing the directory, before being sus-
pended. Through another process, the
user would then remove the newly cre-
ated directory before the suspended pro-
cess could issue the “chown” command
and would create a link to the system
password file with the same name as the
directory just deleted. At this time the
original “mkdir” process would resume
execution and complete the “mkdir” invo-

Program Security Flaws ● 243

cation by issuing the “chown” command.
However, this command would now have
the effect of changing the owner of the
password file to be the user who had
invoked “mkdir.” As the owner of the
password file, that user could now re-
move the password for root and gain su-
peruser status.

Genesis: Intentional: Nonmalicious:
Other. (Might also be classified as Inad-
vertent: Serialization.) The developer
probably realized the need for (and lack
of) atomicity in mkdir, but could not find
a way to provide this in the version of
Unix with which he or she was working.
Later versions of Unix (Berkeley Unix)
introduced a system call to achieve this.

Time: During Development: Source Code

Place: Operating System: File Manage-
ment. The flaw is really the lack of a
needed facility at the system call inter-
face.

Case: U4

Source: Discolo, A. V. 4.2 BSD Unix se-
curity. Computer Science Dept., Univ. of
California, Santa Barbara, April 26, 1985.

System: Unix

Description: Using the Unix command
“sendmail,” it was possible to display any
file in the system. Sendmail has a -C
option that allows the user to specify the
configuration file to be used. If lines in
the file did not match the required syn-
tax for a configuration file, sendmail dis-
played the offending lines. Apparently,
sendmail did not check to see if the user
had permission to read the file in ques-
tion, so to view a file for which he or she
did not have permission (unless it had
the proper syntax for a configuration file),
a user could simply give the command
“sendmail -Cfile _ name.”

Genesis: Inadvertent: Identification and
Authentication. The probable cause of
this flaw is a missing access check, in
combination with the fact that the send-
mail program was an SUID program

ACM Computing Surveys, Vol. 26, No. 3, September 1994

244, ● Carl E. Landwehr et al.

owned by root, and so was allowed to
bypass all access checks.

Time: During Development: Source Code

Place: Support: Privileged Utilities

Case: U5

Source: Bishop, M. Security problems
with the UNIX operating system. Com-
puter Science Dept., Purdue Univ., West
Lafayette, Ind., March 31, 1982.

sy~>tem: Unix

Description: Improper use of an SUID
program and improper setting of permis-
sions on the mail directory led to this
flaw, which permitted a user to gain full
system privileges. In some versions of
Unix, the mail program changed the
owner of a mail file to be the recipient of
the mail. The flaw was that the mail
program did not remove any preexisting
SUID permissions that file had when it
changed the owner. Many systems were
set up so that the mail directory was
writable by all users. Consequently, it
was possible for user X to remove any
other user’s mail file. The user X wish-
ing superuser privileges would remove
the mail file belonging to root and re-
place it with a file containing a copy of
/bib/csh (the command interpreter or
shell). This file would be owned by X,
who would then change permissions on
the file to make it SUID and executable
by all users. X would then send a mail
message to root. When the mail message
was received, the mail program would
place it at the end of root’s current mail
file (now containing a copy of /bin/csh
and owned by X) and then change the
owner of root’s mail file to be root (via
Unix command “chown”). The change
owner command did not, however, alter
the permissions of the file, so there now
existed an SUID program owned by root
that could be executed by any user. User
X would then invoke the SUID program
in root’s mail file and have all the privi-
leges of superuser.

Genesis: Inadvertent: Identification and
Authentication. This flaw is placed here

because the programmer failed to check
the permissions on the file in relation to
the requester’s identity. Other flaws con-
tribute to this one: having the mail direc-
tory writeable by all users is in itself a
questionable approach. Blame could also
be placed on the developer of the “chown”
function. It would seem that it is never a
good idea to allow an SUID program to
have its owner changed, and when
“chown” is applied to an SUID program,
many Unix systems now automatically
remove all the SUID permissions from
the file.

Time: During Development: Source Code

Place: Operating System: System Ini-
tialization

Case: U6

Source: Bishop, M. Security problems
with the UNIX operating system. Com-
puter Science Dept., Purdue Univ., West
Lafayette, Ind., March 31, 1982.

System: Unix (Version 6)

Description: The “SU” command in Unix
permits a logged-in user to change his or
her userID, provided the user can au-
thenticate himself by entering the pass-
word for the new userID. In Version 6
Unix, however, if the “SU” program could
not open the password file it would cre-
ate a shell with real and effective UID
and GID set to those of root, providing
the caller with full system privileges.
Since Unix also limits the number of files
an individual user can have open at one
time, “SU” could be prevented from open-
ing the password file by running a pro-
gram that opened files until the user’s
limit was reached. By invoking “SU” at
this point, the user gained root privi-
leges.

Genesis: Intentional: Nonmalicious:
Other. The designers of “SU” may have
considered that if the system were in a
state where the password file could not
be opened, the best option would be to
initiate a highly privileged shell to allow
the problem to be fixed. A check of de-
fault actions might have uncovered this

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

Program Security Flaws “ 245

flaw. When a system fails, it should de-
fault to a secure state.

Time: During Development: Design

Place: Operating System: Identifica-
tion/Authentication

Case: U7

Source: Bishop, M. Security problems
with the Unix operating system. Com-
puter Science Dept., Purdue Univ., West
Lafayette, Ind., March 31, 1982.

System: Unix

Description: Uux is a Unix support
software program that permits the re-
mote execution of a limited set of Unix
programs. The command line to be exe-
cuted is received by the uux program at
the remote system, parsed, checked to
see if the commands in the line are in the
set uux is permitted to execute, and if so,
a new process is spawned (with userID
uuicp) to execute the commands. Flaws in
the parsing of the command line, how-
ever, permitted unchecked commands to
be executed. Uux effectively read the first
word of a command line, checked it, and
skippe~ characters in the input line until
a ““” “ “, or a “1” was encountered, signi-
fyi;~ the end of this command. The first
word following the delimiter would then
be read and checked, and the process
would continue in this way until the end
of the command line was reached. Unfor-
tunately, the set of delimiters was incom-
plete (“&” and ‘“” were omitted), so a
command following one of the ignored
delimiters would never be checked for
legality. This flaw permitted a user to
invoke arbitrary commands on a remote
system (as user uucp). For example, the
command

uux’’remote_ computer !rmail

rest_ of_ command

& command2°

would execute two commands on the re-
mote system, but only the first (rmail)
would be checked for legality.

Genesis: Inadvertent: Validation. This
flaw seems simply to be an error in the
implementation of “UUX,” though it might
be argued that the lack of a standard
command line parser in Unix or the lack
of a standard, shared set of command
termination delimiters (to which “UUX”
could have referred) contributed to the
flaw.

Time: During Development: Require-
merit/Specification\ Design (?) Deter-
mining whether this was a specification
flaw or a flaw in programming is difficult
without examination of the specification
(if a specification ever existed) or an in-
terview with the programmer.

Place: Support: Privileged Utilities

Case: U8

Source: Bishop, M. Security problems
with the UNIX operating system. Com-
puter Science Dept., Purdue Univ., West
Lafayette, Ind., March 31, 1982.

System: Unix

Description: On many Unix systems it
is possible to forge mail. Issuing the fol-
lowing command

mail userl < message—file > device—of—user2

creates a message addressed to userl
with contents taken from message _ file
but with a FROM field containing
the login name of the owner of
device _of_user2, so userl will receive a
message that is apparently from user2.
This flaw is in the code implementing the
“mail” program. It uses the Unix “get-
login” system call to determine the sender
of the mail message, but in this situa-
tion, “getlogin” returns the Iogin name
associated with the current standard out-
put device (redefined by this command to
be device_ of user2) rather than the lo-
gin name–of~he user who invoked the
“mail.” While this flaw does not permit a
user to violate access controls or gain
system privileges, it is a significant secu-
rity problem if one wishes to rely on the

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

246 ● Carl E. Landwehr et al.

authenticity of Unix mail messages.
(Even with this flaw repaired, however,
it would be foolhardily to place great trust
in the “from” field of an email message,
since the Simple Mail Transfer Protocol

(SMTP) used to transmit email on the
Internet was never intended to be secure
against spoofing.)

Genesis: Inadvertent: Other Exploitable
Logic Error. Apparently, this flaw re-
sulted from an incomplete understanding
of the interface provided by the “getlogin”
function. While “getlogin” functions cor-
rectly, the values it provides do not rep-
resent the information desired by the
caller.

Time: During Development: Source Code

Place: Support: Privileged Utilities

Case: U9

Source: Unix Programmer’s Manual,
7th ed., vol. 2B. Bell Telephone Laborato-
ries, 1979.

System: Unix

Description: There are resource ex-
haustion flaws in many parts of Unix
that make it possible for one user to deny
service to all others. For example, creat-
ing a file in Unix requires the creation of
an “i-node” in the system i-node table. It
is straightforward to compose a script
that puts the system into a loop creating
new files, eventually filling the i-node
table, and thereby making it impossible
for any other user to create files.

Genesis: Inadvertent: Boundary Condi-
tion Violation: Resource Exhaustion (or
Intentional: Nonmalicious: Other). This
flaw can be attributed to the design phi-
losophy used to develop the Unix system,
namely, that its users are benign— they
will respect each other and not abuse the
system. The lack of resource quotas was
a deliberate choice, and so Unix is rela-
tively free of constraints on how users
consume resources: a user may create as
many directories, files, or other objects as
needed. This design decision is the cor-
rect one for many environments but

leaves the system open to abuse where
the original assumption does not hold. It
is possible to place some restrictions on a
user, e.g., by limiting the amount of stor-
age he or she may use, but this is rarely
done in practice.

Time: During Development: Require-
ment/Specification/Design

Place: Operating System: File Manage-
ment

Case: U1O

Source: Spafford, E. H. Crisis and after-
math. Commun. ACM 32, 6 (June 1989),
678-687.

System: Unix

Description: In many Unix systems the
sendmail program was distributed with
the debug option enabled, allowing unau-
thorized users to gain access to the sys-
tem. A user who opened a connection to
the system’s sendmail port and invoked
the debug option could send messages
addressed to a set of commands instead
of a user’s mailbox. A judiciously con-
structed message addressed in this way
could cause commands to be executed on
the remote system on behalf of an unau-
thenticated user; ultimately, a Unix shell
could be created, circumventing normal
login procedures.

Genesis: Intentional: Nonmalicious:
Other(?--Malicious, Trapdoor if inten-
tionally left in distribution). This feature
was deliberately inserted in the code,
presumably as a debugging aid. When it
appeared in distributions of the system
intended for operational use, it provided
a trapdoor. There is some evidence that
it reappeared in operational versions af-
ter having been noticed and removed at
least once.

Time: During Development: Require-
ment/Specification/Design

Place: Support: Privileged Utilities

Case: Ull

Source: Gwyn, D. Unix-Wizards Digest.
6, 15 (Nov. 10, 1988).

ACM Computmg Surveys. Vol. 26, No 3, September 1994

System: Unix

Description: The Unix chfn function
permits a user to change the full name
associated with his or her userID. This
information is kept in the password file,
so a change in a user’s full name entails
writing that file. Apparently, chfn failed
to check the length of the input buffer it
received, and merely attempted to rewrite
it to the appropriate place in the pass-
word file. If the buffer was too long, the
write to the password file would fail in
such a way that a blank line would be
inserted in the password file. This line
would subsequently be replaced by a line
containing only “: :0:():: :“ which corre-

sponds to a null-named account with no
password and root privileges. A penetra-
tor could then log in with a null userID
and password and gain root privileges.

Genesis: Inadvertent: Validation

Time: During Development: Source Code

Place: Operating System: Identifica-
tion/Authentication. From one view, this
was a flaw in the chfn routine that ulti-
mately permitted an unauthorized user
to log in. However, the flaw might also be
considered to be in the routine that al-
tered the blank line in the password file
to one that appeared valid to the login
routine. At the highest level, perhaps the
flaw is in the lack of a specification that
prohibits blank userIDs and null pass-
words, or in the lack of a proper abstract
interface for modifying /etc/passwd.

Case: U12

Source: Rochlis, J, A. and Eichin, M. W.
With microscope and tweezers: The worm
from MITs perspective. Comrnun. ACM
32, 6 (June 1980), 689-699.

System: Unix (4.3BSD on VAX)

Description: The “fingerd” daemon in

Unix accepts requests for user informa-
tion from remote systems. A flaw in this
program permitted users to execute code
on remote machines, bypassing normal
access checking. When fingerd read an
input line, it failed to check whether the

Program Security Flaws ● 247

record returned had overrun the end of
the input buffer. Since the input buffer
was predictably allocated just prior to
the stack frame that held the return ad-
dress for the calling routine, an input
line for fingerd could be constructed so
that it overwrote the system stack, per-
mitting the attacker to create a new Unix
shell and have it execute commands on
his or her behalf. This case represents a

(mis)use of the Unix “gets” function.

Genesis: Inadvertent: Validation

Time: During Development (Source
Code)

Place: Support: Privileged Utilities

Case: U13

Source: Robertson, S. Sec. Distrib. List
1, 14 (June 22, 1989).

System: Unix

Description: Rwall is a Unix network
utility that allows a user to send a mes-
sage to all users on a remote system.
/etc/utmp is a file that contains a list of
all currently logged-in users. Rwall uses
the information in /etc/utmp on the re-
mote system to determine the users to
which the message will be sent, and the
proper functioning of some Unix systems
requires that all users be permitted to
write the file /etc/utmp. In this case, a
malicious user can edit the /etc\utmp
file on the target system to contain the
entry:

../etc/passwd.

The user then creates a password file
that is to replace the current password
file (e.g., so that his or her account will
have system privileges). The last step is
to issue the command:

rwall hostname < newpasswordfile.

The rwall daemon (having root privi-
leges) next reads /etc/utmp to deter-
mine which users should receive the
message. Since /etc/utmp contains an
entry ../etc/passwd, rwalld writes the
message (the new password file) to that
file as well, overwriting the previous ver-
sion.

ACM Computing Surveys, Vol. 26, No, 3, September 1994

248 ● Carl E. Landwehr et al.

Genesis: Inadvertent: Validation

Time: During Development: Require-
ment/Specification/Design. The flaw oc-
curs because users are allowed to alter a
file on which a privileged program relied.

Place: Operating System: System Ini-
tialization. This flaw is considered to be
in system initialization because proper
setting of permissions on \etc/utmp at
system initialization can eliminate the
problem.

Case: U14

Source: Purtilo, J. Risks-Forum Dig, 7,
2 (June 2, 1988).

System: Unix (SunOS)

Description: The program rpc.rexd is a
daemon that accepts requests from re-
mote workstations to execute programs.
The flaw occurs in the authentication
section of this program, which appears to
base its decision on userID (UID) alone.
When a request is received, the daemon
determines if the request originated from
a superuser UID. If so, the request is
rejected. Otherwise, the UID is checked
to see whether it is valid on this worksta-
tion. If it is, the request is processed with
the permissions of that UID. However, if
a user has root access to any machine in
the network, it is possible for him to
create requests that have any arbitrary
UID. For example, if a user on computer
1 has a UID of 20, the impersonator on
computer 2 becomes root and generates a
request with a UID of 20 and sends it to
computer 1. When computer 1 receives
the request it determines that it is a
valid UID and executes the request. The
designers seem to have assumed that if a
(locally) valid UID accompanies a re-
quest, the request came from an autho-
rized user. A stronger authentication
scheme would require the user to supply
some additional information, such as a
password. Alternatively, the scheme
could exploit the Unix concept of “trusted
host.” If the host issuing a request is in a
list of trusted hosts (maintained by the
receiver) then the request would be hon-
ored; otherwise it would be rejected.

Genesis: Inadvertent: Identification and
Authentication

Time: During Development: Require-
merit/Specification\ Design

Place: Support: Privileged Utilities

DEC VAX Computers

DEC’S VAX series of computers can be
operated with the VMS operating system
or with a UNIX-like system called UL-
TRIX; both are DEC products. In VMS
there is a system authorization file that
records the privileges associated with a
userID. A user who can alter this file
arbitrarily effectively controls the sys-
tem. DEC also developed the VAX Secu-
rity Kernel, a high-security operating
system for the VAX based on the virtual
machine monitor approach. Although the
results of this effort were never mar-
keted, two hardware-based covert timing
channels discovered in the course of its
development have been documented
clearly in the literature and are included
below.

Case: D1

Source: VMS code patch eliminates se-
curity breach. Dig. Rev. (June 1, 1987),
3.

System: DEC VMS

Description: This flaw is of particular
interest because the system in which it
occurred was a new release of a system
that had previously been closely scruti-
nized for security flaws. The new release
added system calls that were intended to
permit authorized users to modify the
system authorization file. To determine
whether the caller has permission to
modify the system authorization file, that
file must itself be consulted. Conse-
quently, when one of these system calls
was invoked, it would open the system
authorization file and determine whether
the user was authorized to perform the
requested operation. If the user was not
authorized to perform the requested op-
eration, the call would return with an
error message. The flaw was that when

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 249

certain second parameters were provided
with the system call, the error message
was returned, but the system authoriza-
tion file was inadvertently left open. It
was then possible for a knowledgeable

(but unauthorized) user to alter the sys-
tem authorization file and eventually
gain control of the entire machine.

Genesis: Inadvertent: Domain: Residu-
als. In the case described, the access to
the authorization file represents a resid-
ual.

Time: During Maintenance: Source Code

Place: Operating System: Identifica-
tion/Authentication

Case: D2

Source: Hu, W.-M. Reducing timing
channels with fuzzy time. In Proc. of the
1991 IEEE Computer Society Symposium
on Research in Security and Privacy.
1991, pp. 8-20.

System: VAX Security Kernel

Description: When several CPUS share
a common bus, bus demands from one
CPU can block those of others. If each
CPU also has access to a clock of any
kind, it can also detect whether its re-
quests have been delayed or immediately
satisfied. In the case of the VAX Security
Kernel, this interference permitted a pro-
cess executing on a virtual machine at
one security level to send information to
a process executing on a different virtual
machine, potentially executing at a lower
security level. The cited source describes
a technique developed and applied to
limit this kind of channel.

Genesis: Intentional: Nonmalicious:
Covert timing channel

Time: During Development: Require-
ment/Specification/Design. This flaw

arises because of a hardware design deci-
sion.

Place: Hardware

Intel 80386 / 80387 Processor/
CoProcessor Set

Case: IN1

Source: EE’s tools & toys. IEEE Spec-
trum 25, 8 (Aug. 1988), 42.

System: All systems using Intel 80386
processor and 80387 coprocessor.

Description: It was reported that sys-
tems using the 80386 processor and
80387 coprocessor may halt if the 80387
coprocessor sends a certain signal to the
80386 processor when the 80386 proces-
sor is in paging mode, This seems to be a
hardware or firmware flaw that can cause
denial of service. The cited reference does
not provide details as to how the flaw
could be evoked from software. It is in-
cluded here simply as an example of a
hardware flaw in a widely marketed
commercial system.

Genesis: Inadvertent: Other Exploitable
Logic Error(?)

Time: During Development: Require-
ment/Specification/Design(?)

Place: Hardware

Personal Computers: IBM PC’s and
Compatibles, Apple Macintosh, Amiga,
and Atari

This class of computers poses an inter-
esting classification problem: can a com-
puter be said to have a security flaw if it
has no security policy? Most personal
computers, as delivered, do not restrict

(or even identify) the individuals who use
them. Therefore, there is no way to dis-
tinguish an authorized user from an
unauthorized one or to discriminate an
authorized access request by a program
from an unauthorized one. In some re-
spects, a personal computer that is al-
ways used by the same individual is like
a single user’s domain within a conven-

tional time-shared interactive system:
within that domain, the user may invoke
programs as he or she wishes. Each pro-
gram a user invokes can employ the full

ACM Computing Surveys, Vol. 26, No. 3, September 1994

250 ● Carl E. Landwehr et al.

privileges of that user to read, modify, or
delete data within that domain. Never-
theless, it seems to us that even if per-
sonal computers do not have explicit se-
curity policies, they do have implicit ones.
Users normally expect certain properties
of their machines—for example, that
running a new piece of commercially pro-
duced software should not cause all of
one’s files to be deleted.

For this reason, we include a few ex-
amples of viruses and Trojan horses that
exploit the weaknesses of IBM PC’s, their
non-IBM equivalents, Apple Macin-
toshes, Atari computers, and Commodore
Amiga. The fundamental flaw in all of
these systems is the fact that the operat-
ing system, application packages, and

user-provided software programs inhabit
the same protection domain and there-
fore have the same privileges and infor-
mation available to them. Thus, if a
user-written program goes astray, either
accidentally or maliciously, it may not be
possible for the operating system to pro-
tect itself or other programs and data in
the system from the consequences. Effec-
tive attempts to remedy this situation
require hardware modifications gener-
ally, and some such modifications have
been marketed. Additionally, software
packages capable of detecting the pres-
ence of certain kinds of malicious soft-
ware are marketed as “virus detection
prevention” mechanisms. Such software
can never provide complete protection in
such an environment, but it can be effec-
tive against some specific threats.

The fact that PC’s normally provide
only a single protection domain (so that
all instructions are available to all pro-
grams) is probably attributable to the
lack of hardware support for multiple
domains in early PC’s, to the culture that
led to the production of PC’s, and to the
environments in which they were in-
tended to be used. Today, the processors
of many, if not most, PC’s could support
multiple domains, but frequently the
software (perhaps for reasons of compati-
bility with older versions) does not ex-
ploit the hardware mechanisms that are
available.

When powered up, a typical PC (e.g.,
running MS-DOS) loads (“boots”) its op-
erating system from predefine sectors
on a disk (either floppy or hard). In many
of the cases listed next, the malicious
code strives to alter these boot sectors so
that it is automatically activated each
time the system is rebooted; this gives it
the opportunity to survey the status of
the system and decide whether or not to
execute a particular malicious act. A typ-
ical malicious act that such code could
execute would be to destroy a file alloca-
tion table, which will delete the file-
names and pointers to the data they con-
tained (though the data in the files may
actually remain intact). Alternatively, the
code might initiate an operation to refor-
mat a disk; in this case, not only the file
structures, but also the data, are likely to
be lost.

MS-DOS files have two-part names: a
filename (usually limited to eight charac-
ters) and an extension (limited to three
characters) which is normally used to in-
dicate the type of the file. For example,
files containing executable code typically
have names like MYPROG.EXE. The
basic MS-DOS command interpreter
is normally kept in a file named COM-
MAND.COM. A Trojan horse may try to
install itself in this file or in files that
contain executable for common MS-DOS
commands, since it may then be invoked
by an unwary user. (See case MU1 for a
related attack on Multics.)

Readers should understand that it is
very difficult to be certain of the com-
plete behavior of malicious code. In most
of the cases listed below, the author of
the malicious code has not been identi-
fied, and the nature of that code has been
determined by others who have (for ex-
ample) read the object code or attempted
to “disassemble” it. Thus the accuracy
and completeness of these descriptions
cannot be guaranteed.

IBM PC’s and Compatibles

Case: PC1

Source: Richardson, D. Risks Forum
Dig. 4, 48 (Feb. 18, 1987).

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

Program Security Flaws ● 251

System: IBM PC or compatible

Description: A modified version of a
word processing program, (PC-WRITE,
version 2.71) was found to contain a Tro-
jan horse after having been circulated to
a number of users. The modified version
contained a Trojan horse that both de-
stroyed the file allocation table of a user’s
hard disk and initiated a low-level for-
mat, destroying the data on the hard
disk.

Genesis: Malicious: Nonreplicating Tro-
jan horse

Time: During Operation

Place: Support: Privileged Utilities

Case: PC2

Source: Joyce, E. J. Software viruses:
PC-health enemy number one. Datama-
tion (Oct. 15, 1988), 27–30.

System: IBM PC or compatible

Description: This virus places itself
in the stack space of the file
COMMAND.COM. If an infected disk is
booted, and then a command such as
TYPE, COPY, DIR, etc., is issued, the
virus will gain control. It checks to
see if the other disk contains a COM-
MAND.COM file, and if so, it copies itself
to it, and a counter on the infected disk is

fact, it destroyed data on the user’s disks
and then printed the message “Arfl Arf!
Got You!”

Genesis: Malicious: Nonreplicating Tro-
jan horse

Time: During Operation

Place: Support: Privileged Utilities (?)

Case: PC4

Source: Y. Radai, Info-IBM PC Dig. 7,8
(Feb. 8, 1988). Also ACM SIGSOFT
Softw. Eng. Notes 13, 2 (Apr. 1988),
13-14

System: IBM-PC or compatible

Description: The so-called “Israeli”
virus, infects both COM and EXE files.
When an infected file is executed for the
first time, the virus inserts its code into
memory so that when interrupt 2 lh oc-
curs the virus will be activated. Upon
activation, the virus checks the currently
running COM or EXE file. If the file has
not been infected, the virus copies itself
into the currently running program. Once
the virus is in memory it does one of two
things: it may slow down execution of the
programs on the system or, if the date it
obtains from the system is Friday the
13th, it is supposed to delete any COM or
EXE file that is executed on that date.

incremented. When the counter equals 4 Genesis: Malicious: Replicating Trojan
every disk in the PC is erased. The boot horse (virus)
tracks and the File Access Tables are
nulled. Time: During Operation

Place: Operating System: System Ini-Genesis: Malicious: Replicating Trojan tialization
horse (virus)

Time: During Operation

Place: Operating System: System Ini-
tialization

Case: PC3

Source: Malpass, D. Risks Forum Dig.
1, 2 (Aug. 28, 1985).

System: IBM-PC or compatible

Description: This Trojan horse pro-
gram was described as a program to en-
hance the graphics of IBM programs. In

Apple Macintosh

An Apple Macintosh application presents
quite a different user interface from that
of a typical MS-DOS application on a PC,
but the Macintosh and its operating sys-
tem share the primary vulnerabilities of
a PC running MS-DOS. Every Macintosh
file has two “forks”: a data fork and a
resource fork, although this fact is invisi-
ble to most users. Each resource fork has
a type (in effect a name) and an identifi-
cation number. An application that

ACM Computing Surveys, Vol. 26, No 3, September 1994

252 ● Carl E. Landwehr et al.

occupies a given file can store auxiliary
information, such as the icon associated
with the file, menus it uses, error mes-
sages it generates, etc., in resources of
appropriate types within the resource
fork of the application file. The object
code for the application itself will reside
in resources within the file’s resource
fork. The Macintosh operating system
provides utility routines that permit pro-
grams to create, remove, or modify re-
sources, Thus any program that runs on
the Macintosh is capable of creating new
resources and applications or altering ex-
isting ones, just as a program running
under MS-DOS can create, remove, or
alter existing files. When a Macintosh is
powered up or rebooted, its initializa-
tion may differ from MS-DOS initializa-
tion in detail, but not in kind, and the
Macintosh is vulnerable to malicious
modification of the routines called during
initialization.

Case: MA1

Source: Tizes, B. R. Beware the Trojan
bearing gifts. MacGuide Msg. 1, (1988),
110-114.

System: Macintosh

Description: NEWAPP.STK, a Macin-
tosh program posted on a commercial
bulletin board, was found to include a
virus. The program modifies the System
program located on the disk to include an
INIT called “DR.” If another system is
booted with the infected disk, the new
system will also be infected. The virus is
activated when the date of the system
is March 2, 1988. On that date the
virus will print out the following mes-
sage: “RICHARD BRANDOW, publisher
of MacMag, and its entire staff would
like to take this opportunity to convey
their UNIVERSAL MESSAGE OF
PEACE to all Macintosh users around
the world.”

Genesis: Malicious: Replicating Trojan
horse (virus)

Time: During Operation

Place: Operating System: System Ini-
tialization

Case: MA2

Source: Stefanac, S. Mad Mats. Mac-
world 5, 11 (Nov. 1988), 93–101.

System: Macintosh

Description: The Macintosh virus, com-
monly called “scores,” seems to attack
application programs with WLT or ERIC
resources. Once infected, the scores virus
stays dormant for a number of days and
then begins to affect programs with
WLT or ERIC resources, causing at-
tempts to write to the disk to fail. Signs
of infection by this virus include an extra
CODE resource of size 7026, the exis-
tence of two invisible files titled Desktop
and Scores in the system folder, and
added resources in the Note Pad file and
Scrapbook file.

Genesis: Malicious: Replicating Trojan
horse (virus)

Time: During Operation

Place: Operating System: System Ini-
tialization (?)

Commodore Amiga

Case: CA1

Source: Koester, B. Risks Forum Dig. 5,
71 (Dec. ‘7, 1987); also ACM SIGSOFT
Softw. Eng. Notes 13, 1 (Jan. 1988),
11-12.

System: Amiga personal computer

Description: This Amiga virus uses the
boot block to propagate itself. When the
Amiga is booted from an infected disk,
the virus is copied into memory. The virus
initiates the warm-start routine. Instead
of performing the normal warm start, the
virus code is activated. When a warm
start occurs, the virus code checks to de-
termine if the disk in drive O is infected.
If not, the virus copies itself into the boot
block of that disk. If a certain number of
disks have been infected, a message is
printed revealing the infection; otherwise
~he normal warm start occurs.’

Genesis: Malicious: Replicating
horse (virus)

Trojan

ACM Computmg Surveys, Vol. 26, No 3, September 1994

Program Security Flaws - 253

Time: During Operation

Place: Operating System:
tialization

Atari

Case: AT1

System Ini-

Source: Jainschigg, J. Unlocking the se-
crets of computer viruses. Atari Expl. 8,
5 (Oct. 1988), 28-35.

System: Atari

Description: This Atari virus infects
the boot block of floppy disks. When the
system is booted from an infected floppy
disk, the virus is copied from the boot
block into memory. It attaches itself to
the function getbpd so that every time
getbpd is called the virus is executed.
When executed, first the virus checks to
see if the disk in drive A is infected. If
not, the virus copies itself from memory
onto the boot sector of the uninfected
disk and initializes a counter. If the disk
is already infected the counter is incre-
mented. When the counter reaches a cer-
tain value the root directory and file
access tables for the disk are overwrit-
ten, making the disk unusable.

Genesis: Malicious: Replicating Trojan
horse (virus)

Time: During Operation

Place: Operating System: System Ini-
tialization

ACKNOWLEDGMENTS

The idea for this survey was conceived several years

ago when we were considering how to provide auto-

mated assistance for detecting security flaws. We

found that we lacked a good characterization of the

things we were looking for. It has had a long gesta-

tion, and many have assisted in its delivery. We are
grateful for the participation of Mark Weiser (then
of the University of Maryland) and LCDR Philip
Myers of the Space and Naval Warfare Combat
Systems Command (SPAWAR) in this early phase
of the work. We also thank the National Computer
Security Center and SPAWAR for their continuing
financial support. The authors gratefully acknowl-
edge the assistance provided by the many reviewers

of earlier drafts of this survey. Their comments

helped us refine the taxonomy, clarify the presenta-

tion, distinguish the true computer security flaws

from the mythical ones, and place them accurately

in the taxonomy. Comments from Gene Spafford,

Matt Bishop, Paul Karger, Steve Lipner, Robert

Morris, Peter Neumann, Philip Porras, James P.

Anderson, and Preston Mullen were particularly

extensive and helpful. Jurate Maciunas Landwehr

suggested the form of Figure 4. Thomas Bethj

Richard Bisbey II, Vronnie Hoover, Dennis Ritchie,

Mike Stolarchuck, Andrew Tanenbaum, and Clark

Weissman also provided useful comments and en-

couragement; we apologize to any reviewers we

have inadvertently omitted. Finally, we thank the

SURVEYS referees who asked several questions that

helped us focus the presentation. Any remaining

errors are, of course, our responsibility.

REFERENCES

ABBOTT, R. P., CHIN, J. S., DONNELLEY, J. E.,

KONIGSFORD, W. L., TOKUBO, S., AND WEBB,
D. A. 1976. Security analysis and enhance-
ments of computer operating systems. NBSIR

76-1041, National Bureau of Standards, ICST,
Washington, D.C.

ANDERSON, J. P. 1972. Computer security technol-

ogy planning study. ESD-TR-73-51, vols. I and
II. NTIS AD758206, Hanscom Field, Bedford,
Mass.

BISBEY R., II AND HOLLINC+WORTH, D. 1978. Protec-

tion analysis project final report. ISI\RR-78-13,
DTIC AD A056816, USC\ Information Sciences

Inst., 1978.

BREHMER, C. L. AND CARL, J. R. 1993. Incorporat-

ing IEEE Standard 1044 into your anomaly
tracking process. Cross Talk. J. Def. Softcu.
Eng. 6, 1 (Jan.), 9-16.

CHILLAREGE, R., BHANDAM, I. S., CIMAR, J. K.,
HALLIDAY, M. J., MOEBUS, D. S., RAY, B. K., AND
WONG, M.-Y. 1992. Orthogonal defect classifi-
cation—a concept for in-process measure-
ments. IEEE Trans. Softw. Eng. 18, 11 (Nov.),

943-956.

COHEN, F. 1984. Computer viruses: Theory and
experiments. In the 7th DoD/NBS Computer

Security Conference. 240-263.

DEPARTMENT OF DEFENSE. 1985. Trusted com-
puter system evaluation criteria. DoD 5200.28 -
STD, U.S. Dept. of Defense, Washington, D.C.

DENNING, D. E. 1982. Cryptography and Data Se-
curity. Addison-Wesley, Reading, Mass.

DENNING, P. J. 1988. Computer viruses. Am. Sci.
76 (May-June), 236-238.

ELMER-DEWIm, P. 1988. Invasion of the data

snatchers. TIME Msg. (Sept. 26), 62–67.

FERBRACHE, D. 1992. A Pathology of Computer
Viruses. Springer-Verlag, New York.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

254 * Carl E. Landwehr et al.

FLORAC, W. A. 1992. Software quality measure-

ment: A framework for counting problems and

defects. CMU/SEI-92-TR-22, Software En@
neering Inst. Pittsburgh, Pa.

GASSER, M. 1988. Building u Secure c077LpLL&T

System. Van Nostrand Reinhold, New York.

IEEE COMPUTER SOCIETY 1990. Standard glos-

sary of software engineering terminology.
ANSI/IEEE Standard 610.12-1990 IEEE
Press, New York.

LAMPSON, B. W. 1973, A note on the confinement

problem. Conznum. ACM 16, 10 (Oct.), 613-615.

LANDWEHR, C, E. 1983. The best avadable tech-
nologies for computer security, IEEE Comput,

16, 7 (July), 86-100.

LANDWEHR, C. E. 1981. Formal models for com-

puter security. ACM Comput. Surv. 13, 3

(Sept.), 247-278.

LAPRIE, J. C.j ED, 1992, Dependabil~t.y; Baszc
Concepts and Terminology. Springer-Verlag Se-
ries in Dependable Computing and Fault-
Tolerant Systems, vol. 6, Springer-Verlag, New

York.

LEVESON, N. AND TURNER, C. S 1992, An investi-

gation of the Therac-25 accidents. UCI TR-92-

108, Information and Computer Science Dept.,

Univ. of California, Irvine, Ca.

LINDE, R. R. 1975, Operating system penetration.

In the AFIPS National Computer Conference,

AFIPS, Arlington, Vs., 361-368.

MCDERMOTT, J. P. 1988. A technique for removing
an important class of Trojan horses from high

order languages. In Proceedings of the 1 lth

National Computer Security Conference.
NBS\ NCSC, Gaithersburg, Md., 114-117.

Recewed June 1993; final rewsion accepted March 1994

NEUMANN, P. G. 1978. Computer security evalua-

tion. In the 1978 Nattonal Computer Confer-
en ce, AFIPS Conference Proceedings 47. AFIPS,

Arlington, Va,, 1087-1095.

PETROSIiI, H. 1992, To Engineer zs Human: The

Role of Failure m Successful Design. Vintage
Books, New York.

PFLEEGER, C. P. 1989, Security m Computzng.

Prentice-Hall, Englewood Cliffs, N.J.

ROCHLIS, J. A. AND EICHEN, M W. 1989. With mi-

croscope and tweezers: The worm from MIT’s

perspective. Commun. ACM 32, 6 (June),
689-699.

SCHELL, R. R. 1979, Computer security: The

Achdles heel of the electronic Air Force’? Am

Univ. Rev, 30, 2 (Jan, -Feb.), 16-33.

SCHOCH, J. F. AND HUPP, J. A. 1982. The “worm”
programs-early experience with a distributed

computation. Commun. ACM 25, 3 (Mar.),
172-180.

SPAFFORD, E, H. 1989. Crisis and aftermath. Com -
mun. ACM 32, 6 (June), 678–687.

SULLIVAN, M. R. AND CHILLAREGE, R. 1992. A com-

parison of software defects in database man-
agement systems and operating systems. In
Proceedings of the 22nd International Sympo-

sium on Fault-Tolerant Computer Systems

IEEE Computer Society, Boston, Mass.,

(FTCS-22) (July).

THOMPSON, K. 1984. Reflections on trusting trust.

Commun. ACM 27, 8 (Aug.), 761-763,

WEISS, D. M. AND BASILI, V. R. 1985. Evaluating
software development by analysis of changes:
Some data from the Software Engineering Lab-
oratory. IEEE Trans. Softw Eng. SE-11, 2
(Feb.), 157-168.

ACM Computing Surveys. Vol 26, No. 3, September 1994

