Tdb: A Source-level Debugger for Dynamically Translated
Programs

Naveen KumarT, Bruce R. Childers, and Mary Lou Soffat

TDepartment of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

{naveen, childers}@cs.pitt.edu

Abstract

Debugging techniques have evolved over the years in response to
changes in programming languages, implementation techniques,
and user needs. A new type of implementation vehicle for software
has emerged that, once again, requires new debugging techniques.
Software dynamic translation (SDT) has received much attention
due to compelling applications of the technology, including sofi-
ware security checking, binary translation, and dynamic optimiza-
tion. Using SDT, program code changes dynamically, and thus,
debugging techniques developed for statically generated code can-
not be used to debug these applications. In this paper, we describe
a new debug architecture for applications executing with SDT sys-
tems. The architecture provides features that create the illusion
that the source program is being debugged, while allowing the
SDT system to modify the executing code. We incorporated this
architecture in a new tool, called tdb, that integrates a SDT system,
Strata, with a widely used debugger, gdb. We evaluated tdb in the
context of a code security checker. The results show that a dynami-
cally translated program can be debugged at the source level and
that the approach does not overly increase the run-time perfor-
mance or memory demands of the debugger.

Categories and Subject Descriptors

D.2.5. [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.3.3. [Programming Languages]: Language Con-
structs and Features—Program instrumentation, run-time
environments

General Terms
Languages, Performance, Algorithms

Keywords

Debugging, Dynamic Binary Translation, Dynamic Instrumenta-
tion

1 Introduction

Although the importance of debugging techniques to assist users in
finding software bugs has long been recognized, new debugging
techniques continue to be needed as programming languages, user
demands, and implementation strategies change. The goal of a
debugger is to accurately respond to user queries and commands
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from the viewpoint of the source program. Debugging activities
include requesting variable values, single stepping through pro-
gram execution, watching for particular conditions and requests to
add and remove breakpoints. In order to respond, the debugger has
to map the values and statements that the user expects using the
source program viewpoint, to the actual values and locations of
the statements as found in the executable program.

As programming languages have evolved, new debugging tech-
niques have been developed. For example, checkpointing and time
stamping techniques have been developed for languages with con-
current constructs [6,19,30]. The pervasive use of code optimiza-
tions to improve performance has necessitated techniques that can
respond to queries even though the optimization may have
changed the number of statement instances and the order of execu-
tion [15,25,29].

Currently, a new implementation vehicle, software dynamic
translation (SDT), is being increasingly used for important applica-
tions, including software security [17,22], dynamic code optimiza-
tion [1,2,4], binary translation of one instruction set to another
[10,11,12,23], host machine virtualization [28], and computer
architecture simulation [8,28]. A SDT system translates (gener-
ates) target code fragments/traces dynamically and stores the gen-
erated code in a fragment cache from which it executes.
“Trampoline” code is put in the translated code to switch between
the fragment cache and the dynamic translator for code generation.
A SDT system may also insert instrumentation code into a trans-
lated program to gather run-time information and monitor program
behavior.

The motivation to debug dynamically translated programs
arises from two sources. First, some environments may have a
dynamic translator tightly integrated with the host machine such
that all applications must be translated before execution. There-
fore, a developer may not have the luxury of debugging the appli-
cation without dynamic translation. Security systems enforcing
security policies by checking an application’s binary code fall in
this category [5]. Secondly, SDT systems may result in code trans-
formations that expose bugs that are not manifested in the absence
of the transformation. An example in this category is a dynamic
optimizer [1,2,4].

SDT creates problems in debugging that cannot be solved by
current techniques. In particular, debuggers targeted for statically
generated code produce debug information at compile-time. The
debug information consists of mappings that can be used to relate
source code and data to the executable. Since the target code is
generated dynamically, this static debug information for relating
the untranslated code statements and data values to the executing
code, is insufficient. Another problem is that a translated statement
can be modified during execution, or a statement may be translated
several times such that the number of statement instances can
change throughout execution. Yet another problem that current
techniques cannot handle is a user may put a breakpoint, using the
source program, in code that has not been translated yet. Solving



these problems requires techniques that can relate the source code
to the executing code, as the code is dynamically generated and
modified.

In SDT systems, the trampoline code, as well as instrumenta-
tion code, is executed as part of the application code. However,
this code should be transparent to the user debugging the applica-
tion. Similarly, the translation actions should also be hidden from
debug users. Therefore, debugging techniques need to be devel-
oped that hide execution of everything that is unrelated to source
code.

Finally, due to both the growing importance of SDT and the dif-
ficulty of developing SDT systems, several frameworks, including
Strata [21], Dynamo/RIO [4], and Walkabout [7], have attempted
to enable dynamic translator reconfigurability and retargetability
to ease the burden of SDT development. As a result, the SDT sys-
tem can easily be targeted to a different SDT application or
machine platform. Hence, there is a strong need to decouple the
debugger as much from the SDT system as possible, so that debug-
ging capabilities can be quickly realized for a new SDT system.

In this paper, we present a new debug architecture for SDT sys-
tems that achieves transparency while supporting the usual source-
level debug queries including step, watch, and set and remove
breakpoints. The debug architecture also provides necessary
decoupling between the SDT system and the debugger.

This paper provides a reference implementation of the debug
architecture. The dynamic code changes that we consider result
from basic translations, overhead reduction transformations, and
dynamic instrumentation. The basic dynamic translations include
generating a new instruction, inserting multiple instructions for a
single program statement during translation, ignoring and not gen-
erating instructions for a program statement, deletion (flushing) of
previously translated instructions, and the duplication of program
instructions in the translated code. We also consider several over-
head reduction transformations, including instruction trace forma-
tion, conditional branch linking, indirect branch translation
caching, partial inlining of unconditional branches and calls, and
fast return handling [21]. Finally, we consider the effect of inser-
tion and removal of instrumentation in the translated code.

To demonstrate the effectiveness of our techniques, we devel-
oped a new debugger, tdb, based on our debug architecture. 7db
extends the GNU gdb debugger and supports all of gdb’s source-
level commands and queries. We integrated the SDT framework
Strata [21] into the debug architecture and evaluated the debugging
capabilities in the context of a software security checker.

This paper makes a number of contributions, including:

* A debug architecture that enables source-level debugging for
dynamically translated programs and an implementation of
this architecture in a new tool, tdb;

* An interface that enables SDT debugging tools to be easily
written without regard to machine specific details and SDT
system specific details;

* An interface that enables existing debuggers to be easily
extended to support dynamically translated programs;

* Debug techniques that provide source-level transparency
even though instrumentation and trampoline code are exe-
cuted as part of the application code;

* Debug techniques that handle the dynamic transformations
that are used to reduce translation overhead by avoiding con-
text switches; and,

A verification and experimental evaluation that shows our
approach works well and has minimal overhead.

In the next section, we describe background and the challenges
of debugging dynamically translated programs. Section 3 describes
an overview of our debug architecture. Section 4 describes the
components and interfaces in the debug architecture, including
techniques for generating and using debug information, for a basic
SDT system. Section 5 describes the generation of debug informa-
tion for a more complex SDT system. Validation and experimental
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Figure 1: A software dynamic translator

results of tdb are presented in Section 6. Finally, Section 7
describes related work and Section 8 summarizes and concludes
with future work.

2 Background

Debuggers use breakpoints to enable a user to understand and con-
trol a program, including pausing and stepping through execution
and inspecting and modifying data values. To answer source-level
queries, a debugger maps a program’s source code to its binary
executable instructions and data locations using information pro-
vided by the compiler. A debugger’s job is difficult when programs
are modified dynamically because information provided by the
compiler can become inconsistent with the code modifications.

A SDT is an execution environment that changes code dynami-
cally. A basic SDT system, shown in Figure 1, is a software layer
between the application and the underlying operating system.
Thus, given an application’s source program, a compiler first gen-
erates some type of code, including binary or a higher level repre-
sentation such as byte code. This code, which we call
“untranslated” code, is then translated by the SDT to a binary exe-
cutable. Translated instructions are held in a software cache, called
the fragment cache. The cache holds “code fragments” (or instruc-
tion traces), which are instruction sequences that execute sequen-
tially, ending with a conditional or indirect control transfer.

The working of a SDT system is shown in Figure 1. A SDT
system first captures the context of an application (e.g., PC, regis-
ters and condition codes) and saves it. Following context capture,
the SDT system processes the subsequent application code to be
executed.The SDT system checks to see whether the code to be
executed has been previously translated and cached. If yes, a con-
text switch restores the application context and begins executing
translated application instructions on the host CPU. If the code is
not cached, the instructions are fetched and translated one-by-one.
When an instruction is translated, it is placed in a fragment within
the fragment cache. Instructions are translated until an end of frag-
ment condition is encountered (e.g., a branch or an indirect jump).
A control transfer that terminates a fragment returns control to the
SDT layer through a trampoline because the code at the control
transfer’s target may not have been translated yet. When transla-
tion of a fragment is complete, the SDT layer performs a context
switch to the code cache for execution. Thus, the dynamic transla-
tor gets control after each fragment executes to translate subse-
quent fragments.

Because the SDT layer executes different code than the
untranslated code, the source-to-binary debug mappings main-
tained with static information are insufficient by themselves for
debugging translated code. As an example, consider a simple
translation that copies a binary instruction from the untranslated
code to exactly one location in the fragment cache. We assume that
the mappings from source to untranslated code are available from
the compiler. During a debug session, when a user places a break-



point at a source program instruction, the debugger cannot locate
the translated instruction where the breakpoint should actually be
placed because of the translation.

One complexity of debugging an application executed with
SDT involves the translation of a branch. A branch is handled with
a trampoline that is used to re-invoke the dynamic translator to
translate the branch’s actual target fragment(s). In a debug session,
the location of the source branch is mapped to the untranslated
branch; however, the executable branch instruction has changed
which can affect the reportability of debug queries. When debug-
ging a dynamically modified program with a traditional debugger,
the user has to be aware of the trampoline code and the subsequent
entry into the translator. Thus, if a user issues a “next” command,
he/she has to be aware that the stopping point may be the trampo-
line code.

Another problem occurs when the translator deletes a instruc-
tion, reorders instructions, or introduces more instances of an
instruction than were in the untranslated code. Also, the number of
instruction instances may change during execution. In these cases,
the debugger has to detect the correct instruction instance being
executed. Another case happens when the dynamic translator
flushes the fragment cache to free space. The debugger needs to
recognize that the debug information for the flushed instructions
are no longer in effect.

Even more challenging is when the translator applies overhead
reduction transformations. Most dynamic translators use several
overhead reduction transformations to avoid context switches
between the dynamic translator and the code cache, including frag-
ment linking, indirect branch translation caching and chaining,
instruction trace formation, fast return handling, and partial inlin-
ing of target blocks for unconditional control transfers [2,4,11,21].

Fragment linking rewrites conditional branches to avoid invok-
ing the dynamic translator when the code at the actual target of a
branch is already translated. Linking two fragments requires
rewriting the existing branch to directly transfer control to the
translated target (thus, by-passing trampoline code). If the debug-
ger is unaware of this code transformation, then it may report
incorrect information about the translated branch or the trampoline
code. Similarly, instructions are emitted to minimize the context-
switches into the SDT system from fragments with indirect
branches [2,21].

Another overhead reduction technique forms instruction traces,
chains of code fragments, to improve cache locality and simplify
branch handling. An instruction trace can be, for example, a
sequence of instructions on a hot path. Instruction traces present a
challenge for a debugger because the traces change at run-time and
incur code duplication, code flushes from the fragment cache,
branch inversions and fragment linking. The debugger must update
its knowledge of duplication, flushes, and dynamic linking and
keep these modifications transparent from the user. The other over-
head reduction techniques and dynamic instrumentation also per-
form code modifications that need to be tracked by the debugger.

3 Overview of the SDT Debug Architecture

In this section, we describe a debug architecture that can be used
for source-level debugging of dynamically translated programs.
The structure of this architecture is shown in Figure 2. The debug
architecture has three components: a SDT system, a native debug-
ger and a debug engine. The arrows in the figure represent the
invocation of one component (or an action in a repository) by
another component. For example, the arrow between the native
debugger and the mapper denotes initiation of operations in the
mapper.

The debug engine is the key component of the debug architec-
ture, which computes debug information at run-time. This infor-
mation is used to hide code generation and modification in the
SDT system from the native debugger.
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Figure 2: SDT Debug Architecture

The native debugger is similar to a conventional debugger,
except that it performs debug actions by targeting the debug
engine, rather than the executing program. For example, if a user
sets a breakpoint at a source location, the native debugger com-
putes the corresponding untranslated location (binary or bytecode)
and notifies the debug engine to set a breakpoint at that location.
This is in contrast to the traditional scenario in which the debugger
would itself set the breakpoint.

The SDT system is minimally altered to communicate the
translation operations to the debug engine. The architecture does
not impose restrictions on the SDT system, such as transforma-
tions that should not be performed in a debug session. The applica-
tion being debugged needs to be compiled with the static debug
flag turned on, as is traditionally done to debug at source level. The
debug architecture does not require any other changes to thepro-
gram.

Debug Engine. The debug engine consists of three components: a
mapping generator, a mapper, and a breakpoint manager, and two
repositories, the mapping repository and the breakpoint repository.
The components and repositories are shown in Figure 2.

The mapping generator computes debug information, consist-
ing of dynamic debug mappings, to relate source program loca-
tions to translated program locations and the vice-versa. It uses
information provided by the SDT system for generating and updat-
ing mappings. The mappings are stored in the mapping repository.

The mapper uses the debug information from the generator to
map untranslated and translated code. The output of the mappings
can be used by either the native debugger or the SDT system. The
mapper also interacts with the breakpoint manager to determine if
a breakpoint needs to be placed in freshly translated code.

The breakpoint manager keeps track of all active breakpoints
(and watchpoints) for the executing program in the breakpoint
repository. The native debugger communicates information about
the breakpoints to the breakpoint manager. The breakpoint man-
ager is responsible for inserting breakpoints in translated code.
When breakpoints are hit in the translated code, the breakpoint
manager is notified.

To understand the flow of information through the debug
engine, consider a typical debug session when a user tries to insert
a breakpoint at a source location. The native debugger computes
the corresponding untranslated program location and invokes the
breakpoint manager. The breakpoint manager consults the mapper
to determine the corresponding translated locations and inserts
breakpoints at each of these locations. The breakpoint manager
also saves the breakpoint information in the breakpoint repository.

When a breakpoint is hit in translated code, an exception is
raised which is handled by the breakpoint manager. This handler



overrides the exception handler in the native debugger. The break-
point manager invokes the mapper, which then uses the mapping
repository to determine corresponding untranslated location. The
untranslated location is passed to the native debugger with the
information that a breakpoint has just been hit at that location.

4 The Debug Engine

This section describes how the debug engine orchestrates informa-
tion flow between the native debugger and the SDT system. We
first discuss how mappings are generated. Then, we discuss how
the mapper and the breakpoint manager use the mappings to enable
debug queries and actions.

4.1 Generating Debug Mappings

The mapping generator uses information received from the SDT
system to compute debug mappings. It stores the mappings in the
mapping repository. The debug architecture does not specify how
the mappings are stored in the repository.

The communication from the SDT system to the mapping gen-
erator is performed through a set of API’s, shown in Table 1. SDT
systems may perform a number of different transformations on the
generated code. For example, a dynamic optimizer may reorder
statements [2]. The number of transformation operations per-
formed during dynamic translation is diverse and depends on the
purpose of translation, such as optimization, security checks, or
binary translation, among others. While describing the API’s for
all of these operations is out of scope for this paper, we discuss the
APT’s for operations performed by a basic SDT system.

A basic SDT system generates code, one fragment at a time (as
shown in Figure 1). There are five basic translation operations that
are done in a SDT system. Other operations can be handled simi-
larly or using a combination of these operations.

A regular operation corresponds to the translation of one
instruction to another. An API, as shown in the first row of Table 1,
is used to describe this operation. In this API, u is the untranslated
location, ¢ is the translated location, the operation type is regular,
and the transformation is applied on code, as opposed to data.

operation API
regular regular(Loc u, Loc t, Trans code)
delete delete(Loc u, Loc t, Trans code)
many many(Loc u, Loc t, Trans code)
flush flush(Loc t, Trans code)
trampoline | trampoline(Loc u, Loc t;, Loc t,, Trans code)

Table 1: APD’s for different translation operations

A delete operation happens when an untranslated instruction
does not result in any translated code (i.e., the untranslated instruc-
tion is “deleted” because it is eliminated in the fragment cache).
The second row in Table 1 shows an API that describes this opera-
tion. In this API, u, represents untranslated location, ¢ represents
the translated location for the next instruction to be translated (e.g.,
statement location u+1/), the operation is delete, and the transfor-
mation is applied to code.

A many operation involves an untranslated instruction that is
translated into multiple new instructions. An API for this operation
is shown in the third row of Table 1, which describes the case when
translation of a statement leads to generation of two statements. In
this example, u represents the untranslated location and ¢ is the
location for the additional statement.

A flush operation evicts translated instructions from the frag-
ment cache. The API shown in the fourth row of Table 1 can be

used to describe a flush operation, in which ¢ is a translated loca-
tion containing the statement being flushed.

Finally, a trampoline operation handles control transfers that
result in trampoline code that transfers control from one location to
another. The last row of Table 1 shows an API for a trampoline
operation, in which u is the untranslated branch location and #;and

¢, are the not-taken and taken trampoline locations.

Operations that affect the location of data-values, such as those
resulting from statement reordering in a dynamic optimizer, can be
described in a similar way. Such operations are not shown in this
paper, although the debug architecture described above can be
used to generate debug information for these operations.

4.1.1 Dynamic Debug Mappings

Before we describe the generation and update of mappings, we dis-
cuss the different categories of mappings that are used for debug-
ging applications translated by a basic SDT system. For brevity,
we do not make a distinction between an instruction and its loca-
tion and use the term “instruction” to refer to its “instruction loca-
tion” in the following discussion. There are four types of debug
mappings:

* Untranslated-to-translated code mapping (U-T): This map-
ping relates untranslated code to translated code. It is bidi-
rectional; i.e., given an untranslated instruction, a
corresponding translated instruction can be found, and given
a translated instruction, a corresponding untranslated
instruction can be found. A U-T mapping is notationally
shown as u<>D, where u is the untranslated statement loca-
tion and D is a set of translated locations.
Translated-to-translated code mapping (T-T): This type
relates translated instructions to translated instructions. It is
used when a dynamic code modification results in several
new instructions for one translated instruction. A T-T map-
ping is unidirectional and shown as ¢;—{?,}, where ¢; and ¢,

are translated instructions.

Translated-to-untranslated code mapping (T-U): This type
relates a translated instruction to an instruction in the
untranslated code. It is used to map instructions in the frag-
ment cache that do not have a direct relationship to untrans-
lated instructions (e.g., as in trampoline code). This mapping
is unidirectional and shown as t—{u}, where ¢ is a translated
location and u is a location in the untranslated code.

Initially, before an untranslated statement, u, is translated, it has
the default U-T mapping, u<>&. During translation, an instruc-
tion’s U-T mappings are updated and T-T and T-U mappings are
generated/updated. An update modifies the destinations of a map-
ping. The dynamic debug mappings are generated/updated differ-
ently based on how the code is dynamically transformed. For
example, a translation of an instruction into another instruction
results in update of a single U-T mapping, while the translation of
an instruction to two instructions causes the update of a U-T map-
ping and the generation of a new T-T mapping. Side effects that
result from translation, such as a fragment cache flush also gener-
ate and update mappings.

4.1.2 Basic Translation Operations

The mapping algorithms for the five basic translation operations,
shown in Table 1, are described below. For each operation, an
algorithm is used to update and generate the dynamic mappings. In
the algorithms, a mapping for a program or translated instruction is
represented as <s>, where <s>=s—R (or <s>= s<>R), s is an
instruction and R is a set of destination instruction(s). For nota-
tional convenience, “*” is the set of destinations for a mapping
(e.g., if <s>=s<>R in a U-T mapping, then *=R). The symbol u is
an untranslated instruction location and the symbol 7 is a location
in the fragment cache. The normal set operators, such as union and
difference, can be applied to the mappings.



Regular. For this operation, the mapping generator updates a
U-T mapping for a program instruction as shown in Figure 3(a).
Consider an untranslated location u that is translated to a new loca-
tion ¢. In this case, the U-T mapping <u> is updated to include the
new destination # in u’s set of translated destinations (*). Figure
3(b) shows this mapping between the program instruction u and

translated location ¢'.

regular (Loc u, Loc t, Trans code) {
<u> = uér* U {t}

(a) Algorithm
untranslated  translated

}

New mappings (solid lines
U-T: ue>{t u |

t —1,,
Note: u is untranslated program
instr. and t is the translated instr.

(b) Example
Figure 3: Regular Operation

Delete. The delete operation is shown in Figure 4(a). In this
case, the U-T mapping <u> for a deleted program instruction u is
updated to map it to the next translated location ¢. The translation
of the next logical program instruction will also be mapped to 7.
Hence, when a program instruction is deleted, the mapping genera-
tor maps it to the translated location of the following program
instruction as shown in Figure 4(b). Here, u is deleted and is
mapped to the translated instruction, ¢, for u+1.

delete(Loc u, Loc t, Trans code) {
// t is the next translated location and
// is different than t in regular oper.
<u> = uér*r U {t}

(a) Algorithm

untranslated  translated

New mappings (solid lines
U-T: ue{t} u

>t

Note: u is deleted program instr. | U+1 <7

and t is the translated instr. for
untranslated instr. u+17.
(b) Example

Figure 4: Delete Operation

Many. A translation that produces more than one instruction
uses the many operation in Figure 5(a). A T-T mapping is gener-
ated for each instruction in the translated sequence that does not
have a corresponding location in the untranslated code. For exam-
ple, if an untranslated instruction at location u is translated into
instructions at locations ¢, ¢,, and ¢3, then a T-T mapping is gener-
ated for ¢, and #3 with many (u, 1,) andmany (u, #3).A T-T map-
ping is not generated for #; because the operation regular (u,
t;) is used to update u’s mapping to have location ¢; as a destina-
tion. In effect, many maps the additional translated instructions ¢,
and ¢; to the translated location of the next program instruction. If
the next instruction is u+I, then ¢, and ¢; have mappings
ty—>{translated(u+1)} and t;—>{translated(u+1)}, where trans-
lated() gives the translated location of an untranslated program
address. Figure 5(b) shows this case where ¢, and ¢; have been
mapped to translated instruction, ¢4, for the next logical program
instruction, u+/.

1. In the figures, a solid line shows the new mappings
that result from the mapping algorithms.

many (Loc u, Loc t, Trans code) {
t is an additional instruction; e.g.,
// t2 or t3 in the example (b)
if (instruction(u) is not a branch)
<t> = t—>{translated(u+l)}

else
<t> = t—{translatedTargets (u) }
}
(a) Algorithm

untranslated  translated

New mappings (solid lines u >
T-T: t, —

to—>{ts}, tb—{ts} utt x, N 2

(b) Example
Figure 5: Many Operation

Because u may be a branch, the translated instructions may
have two possible next logical program instructions (i.e., the taken
and not taken targets of the branch at «). Hence, when u is a branch
with taken and not-taken targets, u+/ and u+2, then ¢, and ¢; have

mappings t,—{translated(u+1),translated(u+2)} and t;3—>{trans-

lated(u+1),translated(u+2)}. In the algorithm, the many operation
uses translatedTargets () to get the set with the taken and not
taken translated locations.

The algorithm can be easily extended to the case when the
branch targets are not yet translated: they can be handled by updat-
ing the mappings when a target block is actually translated (in a
way similar to backpatching, except the mappings are patched).
The many operation can also be implemented using T-U mappings,
however it is more efficient to use the T-T mappings.

Flush. When a translated instruction is removed from the frag-
ment cache (due to cache overflow, self-modifying code, or
dynamically linked libraries), the flush operation in Figure 6 is
used. When an instruction at translated location ¢ is deleted, all
mappings with ¢ as a source or destination are modified. If 7 is in
the set of destinations for a U-T or T-T mapping, then the destina-
tion sets are updated by removing ¢. For mappings with ¢ as a
source, the destination set is set to &, effectively deleting the map-
ping <>.

flush (Loc t, Trans code) {

V<u> | t = destination (<u>)
<u> = u—>* - {t}

V<t;> | t = destination(<t;>)
<t > = t;>* - {t}

<t> = t>0

Figure 6: Flush Operation

Trampoline. The trampoline operation in Figure 7(a) is used to
generate T-U mappings for each instruction in a trampoline. For a
location ¢ in the trampoline, a mapping is generated from ¢ to the
trampoline’s target (i.e., the untranslated code). In the algorithm, ¢;
is a not-taken trampoline location and ¢, is a taken trampoline loca-
tion. If the branch is unconditional, then only one trampoline will
be generated and only one mapping will be formed.

An example for the not-taken and taken trampolines is shown
in Figure 7(b). Here, instruction u is the untranslated branch and ¢
is the branch at the end of the fragment. When the branch is not
taken, control falls through to the not-taken trampoline at ¢;.
Hence, there is a mapping from ¢; to u +1, which is the fall-
through location in the untranslated program. Similarly, when the
branch at u is taken, control is transferred to ¢,, which is mapped to
u+n (the taken target of u). If the trampoline consists of several
instructions, mappings will be generated for all of them using the
trampoline operator.



trampoline (Loc u, Loc t;, Loc t,, Trans code) {
<t;> = t;—>{notTaken (u)}
<t,> = ty—>{taken(u)}

(a) Algorithm
untranslated  translated
New mappings (solid lines u< >t
T-U: P t

ti—>{u+1}, b—>{u+n} .
2

utn '

(b) Example
Figure 7: Trampoline Operation

4.2 Using Mappings for Debug Queries

The native debugger communicates debug queries and actions to
the debug engine. The API’s are shown in Table 2. The debug
engine uses mappings from the mapping repository to implement
these queries and actions on the translated code.

A write operation is used by the native debugger to write a
value into the translated program. All writes in the native debugger
are overloaded in our debug architecture to instead call the write
API. The API is shown in the first row of Table 2. In this API, u
represents the untranslated location to be written to; v represents
the value to be written; and s represents the size of data. Note that
the location ¥ may be a memory location as well as a register.

The mapAddress operation is used by the native debugger to
request a translated location for an untranslated location. Any
debug action using untranslated locations in the native debugger
are overloaded in our debug architecture to call the API shown in
the second row of Table 2. The address u in the API call is the
untranslated location.

The insertBreakpoint and removeBreakpoint operations are
used to insert and remove breakpoints in the translated code. The
APT’s for inserting and removing breakpoints are shown in the last
two rows of Table 2. In the API’s, u represents an untranslated
location and ¢ represents the type of breakpoint (e.g., breakpoint or
watchpoint).

operation APIL
write write(Address u, Value v, Size s)
mapAddress mapAddress(Address u)
insertBreakpoint insertBreakpoint(Address u, Type t)
removeBreakpoint | removeBreakpoint(Address u, Type t)

Table 2: APD’s for different debug operations

For each of the operations described above, the debug engine
uses mappings in the mapping repository to determine code associ-
ations and implement debug actions. We now describe how debug
queries and actions can be implemented with our debug architec-
ture.

Set Breakpoint. A user can place a breakpoint at a particular
source statement or a function call. To find where the breakpoint
should be placed, a traditional debugger uses the program’s static
symbol information and maps the source statement to the gener-
ated (untranslated) code. When the breakpoint is hit at run-time,
control is transferred to the debugger, which suspends the pro-
gram’s execution. The user can then set/delete breakpoints, modify
program state, single step, or continue execution.

For dynamically translated code, the native debugger maps
source statements to untranslated code, using the U-T mappings,
and passes this information to the breakpoint manager. The break-

point manager stores the breakpoint information in the breakpoint
repository and invokes the mapper to determine corresponding
translated locations. The breakpoint manager then inserts break-
points at each of the translated locations.

When new code is translated by the SDT system, mappings are
generated and stored in the mapping repository. The mapper passes
the information about newly generated code to the breakpoint
manager. The breakpoint manager looks up the breakpoint reposi-
tory to determine if breakpoints need to be placed in freshly trans-
lated code. If so, the breakpoint manager inserts requisite
breakpoints.

When a breakpoint is hit and an exception is raised in the trans-
lated code, it is handled by the breakpoint manager. The breakpoint
manager uses the mapper to determine the corresponding untrans-
lated location for the breakpoint location. This untranslated loca-
tion is then passed to the native debugger for further debug actions.

Remove Breakpoint. This command removes a breakpoint.
The native debugger calls the breakpoint manager. The breakpoint
manager consults the mapper to determine if corresponding trans-
lated locations exist for the breakpoint. If so, the breakpoints are
removed from all these locations. The breakpoint manager also
updates the breakpoint repository.

Continue. A continue command resumes execution after a
breakpoint is hit. On a continue command, the debugger puts the
untranslated statement in the breakpoint location. It then executes
the statement, re-inserts the breakpoint and continues normal exe-
cution. With dynamic translation, the same set of actions is taken,
except the translated instruction is used by the mapper when the
debugger is stopped at a translated location.

Next and Step. A next or step command causes execution to
continue until the next source statement is encountered. With hard-
ware-assisted single-step, both commands continue execution from
the current breakpoint until a location is reached that corresponds
to a different source statement. When the next command is used in
dynamically translated code, the debugger can continue execution
until a translated code location is reached that can be mapped to a
different source statement, using the U-T mappings.

If during the single step command, a translated code location is
reached that has a T-T or T-U mapping, then the mapper looks up
dynamic mappings and instructs the breakpoint manager to insert a
user-invisible breakpoint at the destinations of the mapping. User-
invisible breakpoints are used by debuggers to silently step
through code (i.e., without notifying the user that a breakpoint has
been hit). Execution continues and when the user-invisible break-
point is hit, the mapper checks to see if the next source statement
has been encountered. Hence, the user is unaware that additional
code for a many or trampoline has been executed.

Without hardware-assisted single-step, next or step set a break-
point at the next source statement or all targets of a branch instruc-
tion. In this case, next and step are break commands and can be
handled similarly to break.

Watchpoint. A watchpoint monitors a change in a program
value . If there is hardware assistance for a watchpoint, an excep-
tion is raised when the value in the “watched” location changes.
This exception is caught by the debugger and the user is notified.
In our architecture, this exception is caught by the breakpoint man-
ager. With a dynamic translator, the exception may be raised dur-
ing the execution of the translator itself or in additional code
inserted by the translator (trampoline code, overhead reduction
code, or dynamically instrumented code). If a value changes in
such a situation, then the mappings are used to determine whether
execution should be stopped. In this case, the mapper can resume
execution invisibly to the user (and the native debugger) to avoid
reporting a change that should be transparent. Without hardware
assistance, the debugger single steps until the value at the watched
location changes. The mappings can be used to avoid the translator
code and the additional code.



Other commands. Other commands such as, disassembly,
examining contents of a memory address or a register, setting a
value in memory or register, next instruction, step instruction, dis-
able, post-mortem crash analysis, etc. can be implemented using a
combination of the techniques above.

5 Overhead Reduction Transformations and

Dynamic Instrumentation

Our reference implementation of the debug architecture targets a
SDT system that performs basic translation, applies overhead
reduction transformations, and performs dynamic instrumentation.
In this section, we describe how the overhead reduction transfor-
mations and dynamic insertion/removal of instrumentation can be
handled. We focus on the generation of mappings by the mapping
generator.

5.1 Overhead Reduction Transformations

Dynamic code translations can be more complex than described in
the last section, particularly for overhead reduction transforma-
tions. For example, an indirect branch may be translated into a
series of instructions to perform a lookup in an indirect branch
translation cache (IBTC) using the target address. When an IBTC
is used, T-T mappings are needed for the IBTC in addition to the
U-T mapping for the indirect branch in the untranslated code. A
more complex transformation, such as instruction trace formation,
involves a number of translations that affect the mappings. It uses
the regular, many, flush and trampoline operations to generate its
mappings. We describe the mapping algorithms for these two over-
head reduction transformations next. Mappings for other overhead
reduction techniques can be generated similarly.

IBTC (Loc u,Loc t){
delete (u, t)

Vr € (tramp(u)) do
trampoline (u, 9, <r>)

Figure 8: IBTC Translation

IBTC. When an IBTC is used, an indirect branch is eliminated
and additional code is generated for a lookup into the IBTC. The
algorithm that generates the mappings for the IBTC is shown in
Figure 8. A U-T mapping is generated from the untranslated loca-
tion u of the indirect branch to the next translated location ¢ using
the delete operation. The IBTC lookup code is essentially an indi-
rect branch trampoline and T-T mappings <r> are generated with
the trampoline operation with target being a register location.
When the mappings are used by the debugger, the target of the
mapping can be inferred by inspecting the correct register.

let head be frag starting a trace
let entry be the fragment at the trace entry
retranslate to create the trace
insert a branch in head to jump to entry
update mappings to reflect the trace:

V<r> € mappings (head) do
flush (<r>)
branch in head fragment to entry
first instruction in trace entry
= t—>{e}

Figure 9: Instruction Trace

t
e
<

Vo

t

Instruction Trace. Figure 9 shows a simplified algorithm for
generating the mappings for an instruction trace. When a trace is
created, the instructions in fragments that form the trace are
retranslated. During retranslation, mappings are generated nor-
mally for each instruction. After the trace is formed, the fragment
that started the trace (the “head fragment”) is changed to have a
branch at the top of the fragment that jumps to the trace (the “trace
entry”), which in effect turns the head into a trampoline to the trace
(for any existing fragments that are linked to the head). Because

the untranslated code in the head is dead after the trace is formed,
all mappings associated with it are flushed. A T-T mapping is cre-
ated for the branch from the head to the trace entry.

5.2 Dynamically Instrumented Code

SDT systems typically monitor and gather information about the
executing program, and instrumentation code is injected in the
translated code for such monitoring and profiling. When debug-
ging a dynamically translated program, the debugger has to ensure
that instrumentation code (not part of the program) is transparent
to the user. In a way similar to the basic translation operations and
the overhead reduction techniques, the debug mappings can be
used to hide the instrumentation.

Instrumentation is typically injected with a probe. A probe is
the code that intercepts program execution to transfer control to a
monitor or profiler. Because instrumentation can be both inserted
and removed on-the-fly, fast breakpoints have been used for
probes [16]. A fast breakpoint replaces a translated instruction by a
jump to a “breakpoint handler” that does the instrumentation.
Dynamic instrumentation systems, such as Dyninst [18] use this
technique. Note that a fast breakpoint is not related to debug break-
points—a fast breakpoint is inserted and removed for monitoring
and profiling, rather than debugging; that is, it is transparent to the
user.

When a new probe is inserted, the debug mappings need to be
updated to reflect the presence of the probe. Figure 10(a) shows
how the mappings are affected. The insertProbe () algorithm
takes the translated location that is instrumented, u, as an input. A
many operation is done for each instruction, », in the probe
(probe (u) returns all locations in the probe at u). That is, a T-U
mapping is generated from each instruction in the probe to the next
location after u (i.e., u+1I). The U-T mapping from the u to its
translated location ¢ is kept to map the fast breakpoint at # to u.

insertProbe (Loc u, Trans code) {
V<r> € probe (u) do
many (<u>, <r>)

removeProbe (Loc u, Trans code) {
V<r> € probe (u) do
flush (<r>)

(a) Algorithms for Probe Insertion and Removal

untranslated  translated untranslated  translated
€--d____| L ] .

. >t A »j probe

utl < >t utl €17 ot
probe

tn

tn+k —

Before Probe Insertion | After Probe Insertion at u

New mappings (solid lines) after probe insertion
T-T: t—t, tn+k*>{t1}

(b) Example
Figure 10: Probe Insertion and Removal

Figure 10(b) show an example before and after a probe is
inserted. In the “before case”, there is a mapping from program
instruction u to translated instruction # and a mapping from the pro-
gram instruction u+/ (the next logical instruction after u) to ¢;.
When a probe is inserted at ¢, a fast breakpoint is inserted to trans-
fer control to the instrumentation code (indicated by j probe).
Each instruction, ¢, ... t,1, in the instrumentation code is mapped



to the next instruction, u+/, after u. The case when a probe is
inlined directly in the translated code can be handled similarly by
the algorithm in Figure 10(a). Figure 10(b) shows only a probe that
has been inserted with a fast breakpoint.

Because probes may be removed during execution (e.g., when a
counter reaches some threshold), the debug mappings should be
updated. In this case, all the mappings associated with the instru-
mentation probe are flushed with the removeProbe () algorithm,
as shown in Figure 10(a).

Dynamic instrumentation may not always be performed with
fast breakpoints. Indeed, the instrumented code can be inlined in
the translated code. Our debug techniques can handle such pro-
grams, and the algorithms in Figure 10(a) still hold.

6 Evaluation

We developed a debugger, called #db, for dynamically translated
programs as a reference implementation of the debug architecture.
Tdb uses the GNU debugger gdb (version 5.3) as the native debug-
ger [24] and supports all source-level commands and queries in
gdb. The SDT system used to dynamically translate applications
was Strata [21]. The translation operations performed by Strata
were the five basic translation operations as described in Section
4.1, overhead reduction techniques of fragment linking, IBTC, par-
tial function inlining and instruction traces, and dynamic insertion
of probes.

The changes made to gdb involved modifying the functions that
read/write program addresses and insert/delete breakpoints to
instead target the API’s shown in Table 2. The changes made to
Strata were also small. The changes included modifying the trans-
lation loop of Strata, overhead reduction techniques, and dynamic
instrumentation. We used shared memory as a mechanism for com-
munication between different components of the debug engine.

To validate and evaluate tdb, we used the debugger in a sce-
nario involving a code security checker. A SDT code security
checker instruments instructions in the program binary and per-
forms a security check before executing that instruction. This tech-
nique is used in program security applications of SDT such as
Dynamo-RIO [17] and Strata [22,21]. Our code security checker is
implemented with Strata and can enforce policies on the use of
operating system calls, using dynamic instrumentation at system
call instructions. For example, the use of file open may be
restricted to not open certain files (e.g., the password file). We val-
idated #db to ensure that source-level information can be correctly
reported. 7db’s performance and memory overheads for generating
and using the mappings were also evaluated.

6.1 Methodology

Several SPEC2000 benchmarks were used to compare the results
and overhead of gdb and tdb. All experiments were run on a 500
MHz Sun Blade 100 with 256 MB RAM and Solaris 9. Strata’s
default fragment cache size of 2 MB was used and all overhead
reduction transformations were enabled. In the security applica-
tion, all system calls are instrumented. The instrumentation is done
with fast breakpoints and enforces the restrictions on operating
system services.

We inserted user breakpoints in the benchmarks with gdb and
tdb. To find appropriate breakpoint locations that would likely be
hit, the functions that accounted for 90% of the execution time in
each benchmark were selected to have breakpoints. Within these
hot functions, breakpoint locations were selected at assignment,
conditional, and switch statements. Breakpoints were also inserted
at function calls, returns, and instrumented system calls. The num-
ber of breakpoints varied from 149-218, with 6—13 functions
selected per benchmark.

All benchmarks were run until at least 10,000 breakpoints were
hit. The actual number of hits varied depending on the number of
system calls that were executed. The breakpoints that were hit cov-

ered all dynamic code translations, overhead reduction techniques,
and instrumentation points.

6.2 Verification

To validate the operation of ?db, we ensured that it correctly
mapped breakpoint locations to appropriate source statements. The
validation compared the information reported by gdb without
dynamic translation to the information reported by tdb with
dynamic translation. The validation was automatically done by
scripts that inserted breakpoints, controlled the program execution,
and generated output at each breakpoint. The output from each
benchmark run for tdb and gdb was also automatically compared.

Table 3 shows the distribution of the breakpoints that were hit
for the benchmarks. The table shows the number of unique break-
points that were hit for the different types of translations. In the
table, “Regular” are regularly translated instructions, “Cond” are
conditional branches, “Calls” are function calls, “Indirect” are reg-
ister-indirect branches, and “Instr” is instrumented system calls.
For example, in mcf, 14 unique breakpoints on assignment state-
ments were hit a total of 1,569 times. We checked whether gdb and
tdb hit the same breakpoints, in the same order and the same num-
ber of times. In all cases, the same breakpoints were hit by both
debuggers. We also verified that the breakpoint commands in both
cases reported the same information (e.g., which source line num-
ber was hit). Finally, we ensured that the programs ran successfully
to completion when all breakpoints were disabled.

6.3 Performance and Memory

To evaluate performance and memory overhead, we compared the
run-times of both debuggers and measured the memory require-
ments of tdb. Table 4 shows the run-times for the benchmarks
under gdb and tdb when breakpoints are inserted and hit, according
to the methodology in Section 6.1. The first two table columns
report run-time in seconds for hitting at least 10,000 user break-
points. As the table shows, gdb has run-times that range from 135
to 244 seconds and tdb has run-times from 192 to 379 seconds.
Tdb incurs an additional overhead of 42% (bzip) to 110% (vortex),
with an average of 63%, over gdb. This extra overhead is due to
generating and using mappings and inserting additional break-
points in the translated code. We measured where tdb spends its
time and found that the overhead due to generating and using the
mappings is negligible and accounts for less than 1% of the over-
head. The cost of translation and instrumentation was also negligi-
ble. The main cost is the insertion of additional breakpoints.

As Table 4 shows in the third and fourth columns (“Total
Breakpoints™), tdb inserts many more breakpoints than gdb. The
number of additional breakpoints inserted is increased by 111%
(bzip) to 220% (vortex), with an average increase of 141%. More
breakpoints are inserted by tdb due to code duplication from frag-
ment overlap (fragments may share code), partial inlining, and
instruction traces. 7db inserts breakpoints in the untranslated code
and the translated code, which further increases the number of
breakpoints. As the table demonstrates, the amount of extra over-
head incurred by a benchmark directly tracks the number of addi-
tional breakpoints inserted.

The number of breakpoints is high for both debuggers due to an
implementation artifact. When a breakpoint is hit at run-time, gdb
and tdb remove all active breakpoints and re-insert them when exe-
cution resumes. Both implementations can be improved to remove
and insert necessary breakpoints on-demand only as determined by
the debug commands issued by the user. Furthermore, in an actual
usage scenario, very few breakpoints are active at once, and it has
been our experience that the overhead due to breakpoint insertion
is not perceivable. From these performance results, the run-time
overhead incurred by tdb over gdb is reasonable, given the large
number of breakpoints inserted.



Program Number of Unique Breakpoints Hit Number of Breakpoints Hit
Regular | Cond. Calls | Indirect | Instr. || Regular | Cond. Calls | Indirect | Instr.
mcf 14 7 15 8 10 1569 2018 3348 3065 382
gce 24 15 32 7 4583 1467 3051 899 2501
gzip 8 3 4 9 1804 1219 5404 1572 65
bzip 3 3 6 6 9 1667 1667 3333 3333 76
twolf 32 9 33 14 14 4649 424 3602 1325 566
vortex 3 5 13 5 12 1132 923 5327 2618 1501
vpr 5 6 6 13 27 3174 1005 4898 114 498
Table 3: Number and type of breakpoints hit
Execution Time (secs.) Total Breakpoints Number of Mappings Memory
Program .
GDB TDB GDB TDB U-T T-U T-T (kilobytes)
mcf 183 283 1,941,434 | 4,280,539 6,081 1,701 186 56
gce 244 354 2,737,719 | 6,222,586 174,796 52,065 6,806 1,634
gzip 164 234 1,680,855 | 3,736,738 8,154 1,930 230 74
bzip 135 192 1,511,400 | 3,195,215 9,060 2,210 220 82
twolf 191 379 1,996,974 | 5,382,900 42,580 8,568 1,999 382
vortex 156 329 1,736,651 | 5,557,198 116,013 21,074 683 1,015
vpr 153 231 1,774,162 | 3,843,540 29,424 6,340 1,548 267

Table 4: Run-time performance, number of breakpoints, number of mappings, and memory overhead

We also investigated the memory overhead of tdb, as shown in
the last four columns of Table 4 (“Number of Mappings” and
“Memory”). Tdb’s memory requirements are related to the size of
the mapping and breakpoint tables, with the former dominating.
For example, in mcf, the number of U-T mappings is 6,081, T-U
mappings is 1,701, and T-T mappings is 186. The maximum size
of the mapping table is limited by the size of Strata’s fragment
cache. Entries in the mapping table need 8 bytes for U-T mappings
and 4 bytes for the other mappings. In the worst case, there is one
entry per instruction in the fragment cache. For a 2 MB fragment
cache, there are roughly 500,000 instructions, and the mapping
table needs 16 MB of memory. In practice, however, the number of
entries in the mapping table is considerably less than the maximum
number of instructions. For example, mcf'has a maximum of 7,968
entries at any time and gcc has 233,667 entries, as shown in the
table. The average number of entries is 23,425 across all bench-
marks. The total amount of memory for the mapping table varies
from 56 KB to 1.3 MB (average of 501 KB). The breakpoint
table’s size is minimal as the table holds only active breakpoints.
The memory requirement was less than 1KB in all benchmarks.

7 Related Work

A number of debuggers for statically optimized code have been
developed [3,9,13,14,15,25,29], some of which deal with both data
value and code location problems (reordering/deletion of state-
ments). The code location problem in statically optimized code
entail similar debug mappings to that proposed in this paper. How-
ever, these mappings are generated assuming all of the optimiza-
tions have been applied statically. Dynamic mapping must handle
having translations done as the code executes as well as having
trampoline and instrumentation code. The translation itself also
needs to be hidden from the debug users. Jaramillo et al. used map-
pings, generated staticaly, that are powerful and capture path-sen-
sitive information by analyzing program [15]. However, the
mappings require the entire optimized code to be available for
mappings. The mapping techniques are also not well-suited to
being updated, which is needed for dynamically changing code.
Wau et al. used statically generated code location mappings to insert

invisible breakpoints and techniques of selective emulation and
forward recovery for data reportability [29]. The anchor points
described by Wu are similar to our U-T mappings. Tabatabai et al.
proposed code location mappings similar to the basic translation
mappings proposed in this paper [23,24]. However, these map-
pings are insufficient for handling the overhead reduction tech-
niques and dynamic instrumentation. Tice et al. proposed changing
the source code so that code location mappings better relate the
source code and optimized binary [27]. However, a dynamic trans-
lator often generates code that has no relation with the source code
(e.g., trampolines, instrumentation probe) which would not be han-
dled by this approach. Other work on optimized code has proposed
code location mappings [9,13], which are also not suitable in a
dynamic translator. There has been much work on the data-value
problem in debugging [3,9,13,14,15,25,29]. The data-value prob-
lem refers to the challenge of finding the appropriate location
(memory or register) of a source-level data construct, when pro-
gram code is optimized. While this problem is very difficult, a
basic dynamic translator does not have this problem (unless
dynamic optimizations are applied).

SDT has been used in a variety of scenarios, including architec-
ture simulation [8,28], dynamic optimization [1,2,4], security
checking [17,22] and binary translation [10,12,23]. Transmeta’s
Crusoe and Efficeon processors use code morphing, which per-
forms dynamic binary translation of x86 instructions to VLIW
instructions in hardware [10]. In this system, insertion of a break-
point causes re-translation of the code containing the breakpoint,
which raises an exception to transfer control to the debugger. In
effect, the debugger modifies the behavior of the translator itself.
One of the advantages from a debugger’s perspective is that
dynamic translation is kept completely transparent to the user.
Some other SDT frameworks, such as Dynamo [2] and Dynamo-
RIO [4], provide low-level debug constructs to analyze translated
code and data. In these cases, the user must understand the work-
ing of the translator and debugging is not transparent. Indeed, this
debug mechanism is provided primarily for SDT developers.

The Java Platform Debug Architecture (JPDA) provides an
architecture similar to that proposed in this paper [31]. However,



the JDPA is very tightly integrated with the underlying just-in-time
compiler. This is because, the JDPA targets exactly one Virtual
Machine (Java), which is not intended to be reconfigured for dif-
ferent purposes, unlike SDT systems. Further, the JDPA does not
provide techniques to generate debug information for SDT sys-
tems, where code is generated and modified at a much finer granu-
larity than JIT compilers.

8 Summary

In this paper, we propose a debug architecture that enables source-
level debugging of dynamically translated code. We present code
mappings that are constructed during dynamic translation and used
by the debugger to relate dynamically generated code to source
code. We provide a reference implementation of the debug archi-
tecture for a retargetable and reconfigurable SDT system, Strata.
We also show how to generate mappings for several basic code
translations, overhead reduction techniques, and instrumentation
probes. Our mappings can be used by a debugger to keep the user
unaware of the SDT’s existence. We developed a reference imple-
mentation of our debug architecture as a new debugger, called 7db,
and evaluated it. Our experiments show that the debugger has rea-
sonable performance and memory overheads. It is our intention to
contribute #db to the public domain for other SDT users and devel-
opers.
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