DRAFT: CC’05, October 7, 2004 2:06 pm

Jazz: A Tool for Demand-Driven Structural Testing

Jonathan Misurda, James A. Clause, Juliya L. Reed, Bruce R. Childers, and Mary Lou Soffa

Department of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania 15218 USA
{jmisurda,clausej,juliya,childers} @cs.pitt.edu

Abstract

Software testing to produce reliable and robust software
has become vitally important in recent years. Testing is
a process by which software quality can be assured
through the collection of information about software.
While testing can improve software reliability, current
tools typically are inflexible and have high overheads,
making it challenging to test large software projects. In
this paper, we describe a new scalable and flexible tool,
called Jazz, for testing Java programs with a novel
demand-driven dynamic approach to structural testing.
Jazz has a graphical user interface for specifying and
running tests, a test planner to determine the most effi-
cient way to test the program, and a dynamic instru-
menter to carry out a test.

1. Introduction

In the last several years, the importance of producing
high quality and robust software has become paramount
[2]. Testing is an important process to support quality
assurance by gathering information about the software
being developed or modified. It is, in general, extremely
labor and resource intensive, accounting for 50-60% of
the total cost of software development [3]. The
increased emphasis on software quality and robustness
mandates improved testing methodologies.

To test software, a number of techniques can be
applied. One class of techniques that is widely used is
structural testing, which checks that a given coverage
critierium is satisfied. For example, branch testing
checks that a certain percentage of branches are exe-
cuted. Other structural tests include def-use testing in
which pairs of variable definitions and uses are checked
for coverage and node testing in which nodes in a pro-
gram’s control flow graph are checked.

Unfortunately, structural testing approaches are often
hindered by the lack of scalable and flexible tools. Cur-
rent tools are not scalable in terms of both time and
memory, limiting the number and scope of the tests that
can be applied to large programs. These tools often

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22904 USA
soffa@cs.virginia.edu

modify the software binary to insert instrumentation for
testing. In this case, the tested version of the application
is not the same version that is shipped to customers and
errors may remain. Testing tools are usually inflexible
and only implement certain types of testing. For exam-
ple, many tools implement branch testing, but do not
implement node or def-use testing.

In this paper, we describe a new tool for structural test-
ing, called Jazz, that addresses these problems. This tool
uses a novel demand-driven technique to apply different
testing strategies in an efficient and automatic way. Our
method relies on test plans that describe what test
instrumentation should be inserted and removed on-
demand in executing code to carry out testing strategies.
A test plan is a “recipe” that describes how and where a
test should be performed. The approach is path specific
and uses the actual execution paths of an application to
drive the instrumentation and testing. Once a test site is
covered, the instrumentation is dynamically removed to
avoid performance overhead, and the test plan contin-
ues. The granularity of the instrumentation is flexible
and includes statement and structure level (e.g., loops,
functions). Because this approach is dynamic and can
insert and remove tests as a program executes, the same
program that is tested can be shipped to a customer.

Jazz has a specification language, which is used to
describe what to test. From the specification, a test plan
can be automatically generated by a test planner. The
test specification describes what tests to apply and under
what conditions to apply them. The specification lan-
guage has both a visual representation and textual form.
The visual language is expressed through a graphical
user interface (GUI). The GUI can be used to describe
tests, automatically carry them out, and report results.

Jazz is a complete and new implementation of our
SoftTest framework [REF] for structural testing. It
implements a GUI, a test planner, and dynamic instru-
menter for on-demand testing. Jazz is incorporated as a
plug-in in the Eclipse integrated development environ-
ment (IDE) and the IBM Jikes Java Research Virtual

Application

Test Planner

RVM Dynamic

Instrumenter

1
1
1
1
T Jikes
d
1
]

DRAFT: CC’05, October 7, 2004 2:06 pm

Figure 1: Jazz Tool Flow and Methodology

Machine. It supports branch, node and def-use testing
over code regions in a program. Experiments show that
Jazz’s run-time overhead is very low in comparison to
traditional testing tools that use static instrumentation.

2. Jazz: Testing Java Programs

Figure 1 shows Jazz’s components and how they inter-
act. To carry out a test, a user constructs a test specifica-
tion with the GUI. Next, the graphical representation of
the test specification is converted into a textual form in a
language called testspec. A testspec specification
includes the relevant parts of the program to be tested
and the actions needed in the testing process. If desired,
testers can write specifications directly in testspec,
rather than use the GUIL. Once the user is ready to test
the program, the specification is passed to a test planner.
This step translates the specification into a test plan. In
the next step, the test plan is used by the dynamic instru-
menter to instrument the program and determine cover-
age. Finally, the test results are displayed by the GUIL.

2.1. Test Specification

In testing a software application, a developer may wish
to apply different tests to various code regions. The tests
are also often applied with different coverage criteria.
Jazz has a GUI for specifying the tests to apply, where to
apply them, and under what conditions. A coverage cri-
terium can also be specified for each region.

As shown in Figure 2, the GUI lets an user visually
create and apply a test specification. The GUI shows the
complete Eclipse iIDE and how Jazz is incorporated.
The callouts in the figure show some of Jazz’s GUI wid-
gets for creating, running, and viewing test results.

To illustrate how the user interacts with the tool, the
figure shows several steps. The figure shows that the

user has selected several source lines in the Eclipse
source editor (step 1). The selected lines are used to
build a test specification. In this case, lines 343-356 in
the file Compress.java have been selected as a test
region for branch testing. When a region is selected, a
test specification is created and displayed by the GUL
Test specifications are shown in a “specification viewer”
window (step 2). A specification may be changed or
deleted from this window.

To run the current tests, the user clicks a button on the
Eclipse toolbar (step 3). Jazz automatically invokes the
test planner, Jikes and the dynamic instrumenter. When
the program completes, the test results are displayed as a
bar graph in the specification viewer (step 4). The GUI
also highlights covered and uncovered source lines in
the Eclipse editor window.

2.2. Test Planner

Using the test specification, the test planner decides how
to test Java methods. The test planner is invoked every
time a method is loaded by Jikes’ Just-in-Time com-
piler. The planner checks whether there is a test specifi-
cation for any portion of the method. If a specification
exists, then the planner generates a test plan for the rele-
vant code in the method. Thus, only methods that are
actually loaded and executed are tested.

The main function of the test planner is to producte a
test plan that determines where and how to instrument a
method to do the test actions. The test plan describes
how best to dynamically instrument a method to deter-
mine coverage. To generate a test plan, the planner iden-
tifies the locations where to instrument a test region,
when to insert and remove instrumentation at each loca-
tion, and what to do at each location. Typically, instru-
mentation locations correspond to basic blocks (in the

DRAFT: CC’05, October 7, 2004 2:06 pm

= lava - Compress.java - Eclipse Platform .In]ﬂ
Ble Ede Source Pefactor Nawgate Search Project Bun Test Andow Help
[T5= [#-0-Q- |EBHG- | &4 | 900 | A et e T *
M3 = — ?
MI 1] compress java 22 <2 ﬁ]fgzm 3 =10
- | B3an0 if (i == Al Bmwse ww
e L disp = 1: 3: Create & Run Test e
T @ Output : Qutp
S | ,
@l JRE System Librarf| 8, 5 buf £ byte(]
[# & input Lias @ " Comp_Base(ls
T Code_Table clazs i MAKCODEC)
46 = Q Ceenprasson
{u) Comp_Base.class |||, " CHECK AP :
b Compress.class . % S
] Compress.java 348 temphtab = htab.of [i}; // dm/ked 4/15 ratia ¢ int
| Compress.java.vi| @3 42 = checkpoink : ir
' Compress.javo~ || B2 50 Cdmikmd 415 if | htab.of (i) == fcods) { n_count : int
ik Compressoedass || 81351 u.!;:mn: i
Taa Decompressor clae 8352 znhs'_m hl:
Hamess.dass 353 ” m:sc_;;
[Harness. javs 354 ;‘ Ecg trw. (T
| Harmass.ava.bak | 883 55 land 4415 } while [htab.of {i} > 0J: . el 4
%Emaﬂuﬁﬁ-dm' 356 {emphoak Jf dm domd 4715 sprere
n, Oass
[d] Main, jarva 3:: u . ol _block{)
) Main java bk g ; 2: Test B G rash Table
1k Output_Buffer.clal SUERLE | ahEl s g . = G Decompressor
e ik i (8360 Out_count+: Specrflcatlon . i It
D k0 361 enc = e 4: Test Results tab_prefis 1 C
_,. vaﬁlrlﬂé A 362 if (free_ent < maxe b _suiffbe : S|
& @ arg.edpss cofttest ol B 63 codetab, set /* zade —» hashtabl de_stack : De
=12 Test [364 htab.age-Ti, foode): - | ® " Dacompeesso w
= 4] | 4] | »
Iéhnﬂuu;mah: ﬁ 1 Branch Coverage Tests Eﬂ"‘.‘_ ‘! \tL =0
|_|Fie | class [sthed | nes | #rogr % Covered o
| Compress.java . . nes; 343,356 7%
i Comprass.java Deacompressor decompress lnes: -1,-1 92%
| Compress.java Compressor output ines: -1,-1 63% e
| Compress.java Compressor Compressor fnes; -1,-1 100% -
i | LA X »
| 201 _compress

Figure 2: Branch Coverage GUI for Jazz

control flow graph of a test region) where coverage
information is collected. For example, in def-use testing,
there are instrumentation locations for each variable
definition and all uses reachable from a definition.

Instrumentation is inserted and removed on-demand as
the program executes. For example, in node testing,
when a particular basic block is executed, instrumenta-
tion is inserted in successor blocks. Once a block is hit,
its instrumentation can be removed because the block is
covered. In branch and def-use testing, the planner
ensures that instrumentation remains until all edges out
of'a block or all uses of a definition are covered.

Finally, the planner determines what actions to per-
form at each location. The actions are encoded in a “test
payload” that is executed at an instrumentation location.
In node testing, the payload updates coverage informa-
tion, inserts instrumentation at successor blocks, and
removes the instrumentation in the current block. The
payloads for branch and def-use testing are similar,
except they check whether all edges or def-use pairs are
covered.

When multiple tests are applicable at a location, the
test planner generates a “customized payload” for that
location. For example, in def-use testing, there may be
several definitions and uses within a single basic block.
The custom payload for such a block inserts instrumen-
tation at uses reachable from the definitions. It also
updates the coverage for the uses in the current block.

2.3. Dynamic Instrumenter

With the test plan from the planner, the dynamic instru-
menter provides the functionality to insert and remove
instrumentation at run-time. This interface is targeted by
the test planner. The dynamic instrumenter operates on
target machine code generated by Jikes. Dynamic
instrumentation (that can be removed/inserted at run-
time) is implemented with fast breakpoints. A fast
breakpoint replaces an instruction in the target machine
code with a jump to a breakpoint handler that invokes
the test instrumentation payload from the test planner.
The dynamic instrumenter’s API provides primitives,
such as the placement of successor breakpoints, storing
test-specific data, and removal of breakpoints, for con-

structing fast breakpoints with varying payloads. The
instrumentation constructed with the API is highly scal-
able since only relevant portions of the program are
instrumented for only as long as needed.

3. Experimental Results

We used Jazz to measure the node, branch, and def-use
coverage of the SPECjvm98 benchmarks. In this experi-
ment, the test specification covers all loaded methods
and the test inputs are the data sets from SPECjvm98.
The benchmarks were run on a 2.4 GHz Pentium IV
machine with 1 GB of RAM and RedHat Linux.

Benchmark || Branch Def-Use Node
compress 58% 89.8% 90.6%
jess 46.8% 71.8% 80.3%
db 44.4% 75% 76.9%
ljavac 38.9% 66.9% 75%

mpegaudio 60.9% 90.5% 88.7%
mtrt 50.6% 87.3% 90.3%
jack 55.6% 73.4% 82.2%

Table 1: Percentage coverage

Table 1 shows the coverages for the three tests sup-
ported by Jazz. As the table shows, for branch testing,
Jazz reported a coverage of 38.9-58% and for node test-
ing 75-90.6%. The tool reported coverage of 66.9—
90.5% for def-use testing.

We also investigate Jazz’s performance and compared
it to a traditional tool based on static instrumentation.
For fairness, we implemented a tool that uses static
instrumentation in our testing environment and frame-
work. This tool instruments a method’s binary code
before run time and does not remove instrumentation. It
is similar to Rational PurifyPlus [REF] and JCover
[REF]. Jazz and the static tool perform the same actions
when conducting a test. They differ only in on-demand
versus static instrumentation.

We measured run-time when the benchmarks were run
directly in Jikes without testing, with Jazz and with the
static tool. For brevity, we report the run-times only for
branch testing. When run without testing, the bench-
marks take 13.8-44.7 seconds. With the static branch
testing tool, run-time is increased dramatically. It varies
from 20.7-96.1 seconds and incurs an overhead of 11.7—
241% (average 89.9%) over native execution. Jazz has
much lower run-times than the static tool. Its run-time is
20.6-43.9 seconds and the performance overhead is
only 0.3% to 7.8% (average 17.6%). Jazz has less over-

DRAFT: CC’05, October 7, 2004 2:06 pm

head than the static tool because instrumentation is
inserted and removed on-demand. Indeed, in tight loops,
instrumentation is typically removed within the first few
loop iterations, which keeps overhead low (e.g., com-
press has a tight loop). As these results show, Jazz is an
effective tool, with minimal performance overhead.

4. Related Work

There are a number of commercial tools that perform
coverage testing on Java programs, including JCover
and IBM’s Rational PurifyPlus.These tools statically
instrument the program to perform coverage testing.
The work that is most closely related to ours is a tool
developed with the ParaDyn parallel instrumentation
framework [4]. This tool dynamically inserts and
removes instrumentation on method invocations to do
node coverage, where we take a similar approach for
branch coverage. Unlike our approach, instrumentation
is inserted in the whole method when it is invoked and a
separate garbage collection pass removes the instrumen-
tation. Our technique instruments only executed paths
and removes instrumentation as soon as possible.

5. Summary

This paper described a new tool, called Jazz, for soft-
ware testing of Java programs that relies on a novel
scheme for dynamically inserting and removing instru-
mentation on-demand. The performance results with
Jazz are very encouraging: The average overhead for
branch testing with Jazz was 17.6%, while a tool that
used static instrumentation had an overhead of 89.9%.
Jazz supports branch, node, and def-use testing. It is
available for Eclipse 3.0 and the IBM Jikes Java RVM.

References

[17 P. Kessler, “Fast breakpoints: Design and imple-
mentation”, ACM SIGPLAN Conf. on Programming
Languages, Design and Implementation, June 1990.

[2] L. Osterweil et al., “Strategic directions in software
quality”, ACM Computing Surveys, Vol. 4, Decem-
ber 1996.

[3] W. Perry, Effective Methods for Software Testing,
John Wiley & Sons, Inc., New York, New York,
1995.

[4] M. Tikir and J. Hollingsworth, “Efficient instru-
mentation for code coverage testing”, Int’l. Symp.
on Software Testing and Analysis, Rome, Italy,
2002.

