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Abstract
The need for adaptability in a rapidly expanding embedded
systems market makes it important to design virtual execu-
tion environments (VEEs) specifically targeting embedded
platforms. We believe the first step in this direction should
be to replace the performance focus of traditional VEE de-
sign with a combined memory and performance focus, given
the memory constraints on embedded systems. In this work,
we present techniques that reduce the large code cache sizes
of VEEs by continually eliminating dead cached code as the
guest application executes. We use both a time-based heuris-
tic and an execution count-based heuristic to predict code
lifetime. When we determine that the lifetime of code has
ended, we remove it from the code cache. We found that at
least 20% code cache reduction can be achieved on average,
without a significant performance degradation.

1. Introduction
Virtual execution environments (VEEs) host and control the
execution of guest applications by inspecting and modify-
ing instructions at runtime. VEEs are well-suited to provide
adaptability for embedded, mobile and battery-powered de-
vices. For example, it would be beneficial if embedded ap-
plications could adapt to the remaining battery power as
they execute, increasing the battery life of the system or,
at least, making the power degradation more predictable.
Applications hosted by VEEs can be adapted dynamically
to achieve improved power predictability. VEEs can also
be used to adapt legacy binaries to leverage microarchitec-
tural improvements occurring in embedded processor fami-
lies. Also, VEEs can offer improved security to embedded
systems such as PDAs (personal digital assistants) which of-
ten download third-party software.

However, VEEs have been primarily designed for general-
purpose environments [5, 7, 9, 17, 23], resulting in VEE
benefits being primarily exploited by general-purpose ma-
chines [7, 9, 15, 16, 24]. Traditional VEE design strives to
improve performance regardless of the memory overheads
since memory is cheap in general-purpose environments.
While VEEs for embedded platforms are available [8, 17],

they also focus on performance and do not explicitly explore
the memory impacts of VEE design choices.

A VEE introduces an extra software layer between the
application and the hardware and consumes machine cycles
to fulfill its functionality, often slowing down the guest ap-
plication. Researchers have found that pure emulation-based
VEEs for general-purpose environments have 300x perfor-
mance overhead compared to native execution [3]. To over-
come performance overhead, translation-based VEEs store
translated, native code in a software code cache for future
reuse. For example, Strata [14, 15, 23], which uses a code
cache, has a performance ranging between 1.03x and 1.11x
compared to native execution for different hardware plat-
forms. The code cache has been shown to have a 500% mem-
ory overhead [12]. Our goal is to avoid such large memory
overheads and design VEEs taking both performance and
memory overheads into account.

In this paper, we reduce the code cache size by recogniz-
ing that all translated code is not executed throughout the
guest application execution. After a translated code region
has been executed for the last time, it is dead. Dead code re-
gions occupy space in the code cache unless they are evicted.
Our experiments show that on the average, 60% of code has
a short lifetime. The goal of this work is to develop effi-
cient methods for dynamically identifying dead code regions
and evicting them. Eviction of dead code regions reclaims
occupied space from the code cache, reducing its memory
requirements. Also, performance may be enhanced by such
evictions because the spaces created by eviction will be filled
again with code regions which are currently live. Packing
long-lived code regions into a smaller area offers improved
instruction locality. Our experiments also show that a high
percentage (about 90%) of long-lived code regions have a
high execution count while only a small percentage of short-
lived code regions (about 20%) have a high execution count.
Therefore, preserving only long-lived code regions is benefi-
cial because such code regions occupy a smaller code cache
area and yet, cover a greater part of the entire execution.

Code cache eviction based on lifetime has been explored
before for general-purpose environments [12]. Code cache
reduction techniques for general-purpose environments was



motivated by the fact that many modern general-purpose ap-
plications (e.g., Microsoft Word) execute a large amount of
code and hence have a high rate of code region formation
which can lead to uncontrolled memory expansion when
hosted by a VEE. However, embedded systems will be af-
fected by the memory expansion of VEEs even for much
less complicated benchmarks. For example, SPEC bench-
marks, which were found to have a considerably lower rate
of code region formation, can cause problems in embedded
devices. Among the SPEC benchmarks,gcc has the largest
code cache size of about 4 MB. Researchers have found that
VEE data structures occupy about as much memory as the
code cache [21]. Also, the VEE binary occupies 1-1.5 MB
of memory space. On an embedded device with 64 MB of
RAM, executing the operating system and a few applications
as large asgcc would make the system run out of memory.

The first challenge in evicting code regions is dynami-
cally identifying which code regions are dead. Heuristics
must be used to approximately determine the lifetime of
code regions. Previous work eliminated dead code regions
by allowing them to mature for some time and then monitor-
ing them for execution. If not executed during the monitor-
ing period, code regions were presumed to be dead. Mean-
while, the other code regions were promoted to long-lived
status. In our work, we explore this time-based heuristic for
an embedded environment.

We also found that lifetime and execution count of code
regions is strongly related, motivating us to use a heuristic
based on the code region execution count (which does not
depend on time elapsed) and to compare the two heuristics.
The execution count-based heuristic eliminates most short-
lived code regions and few long-lived code regions. In ad-
dition, our execution-count heuristic is simpler to calculate
and manage than the time-based heuristic, making it more
efficient in an embedded environment.

We found that the main trade-off between the time-based
and the count-based heuristic is that the time-based heuristic
offers better memory efficiency but is also more inaccurate
than the count-based heuristic, resulting in more evictions of
code regions which are not dead and need to be regenerated.
The increased amount of code region regenerations result in
the time-based heuristic having worse performance.

The second challenge is that evictions produce varying-
sized, scattered holes (fragmentation) in the code cache and
memory efficiency can be improved only by reusing the
holes. Default code cache management techniques are not
suitable for reusing such holes because information about
the size and location of each hole is not maintained. Also
since numerous holes can be formed, such information will
occupy considerable space and considerable time may be
spent searching for holes large enough to accommodate new
code regions.

To avoid fragmentation, previous work divided the code
cache into three parts - nursery, probation cache and per-

sistent cache, promoting a code region from the nursery to
the probation cache and then optionally promoting it to the
persistent cache as it executes [12]. To simplify code cache
management, we divide the code cache into temporary and
permanent areas only (corresponding to the nursery and per-
sistent caches). The temporary area stores all code regions
until it is determined whether the code region is long-lived.
Code regions are promoted to the long-lived area based on
our heuristics. After several promotions, the temporary area
should mostly contain dead code regions and can be com-
pletely flushed and reused. A size limit is placed on the tem-
porary code cache to avoid memory expansion due to dead
code regions. Flushes to reclaim space are triggered when
the size limit is reached. The temporary area is guaranteed
to be small because it is limited to a small size and is fre-
quently reused. The permanent area is also expected to be
small because a small subset of all generated code regions
gets promoted to the permanent area.

A third challenge is avoiding excessive performance
degradation due to frequent flushing of the temporary code
cache. In the code cache, branch instructions are patched (or
linked) so that they point to other code regions in the code
cache instead of code in the original application binary. Such
linking not only retains VEE control over code cache execu-
tion but also speeds up code cache execution as branches do
not always have to refer to the VEE translator for resolving
their target addresses. However, flushing requires that all in-
coming links to a code region be removed. Since temporary
area flushes are anticipated to be frequent, unlinking may
present a considerable overhead.

We explored the trade-offs of allowing and disallowing
links to code regions in the temporary code cache. Allow-
ing links speeds up execution in the temporary code cache
but slows down flushes. Disallowing links requires the VEE
to search the code cache address of each code region to be
executed, and also generate the code region if it is not al-
ready in the code cache. The count-based heuristic favored
the configuration without links while the time-based heuris-
tic favored the configuration with links.

A fourth challenge is deciding whether to promote code
regions to the permanent area early or late. In early promo-
tions, code regions are promoted as soon as they become el-
igible. In late promotions, each temporary area code region
is checked at the point of a flush to determine whether it
is eligible for promotion. Early code promotions send long-
lived code regions to the permanent area as soon as possible
and reap more benefits from code cache locality in the per-
manent area. However, greater control over the temporary
code cache execution is required for early promotion, pos-
sibly slowing it down. We explored the trade-offs of both
early and late promotions. Late promotions were beneficial
to memory efficiency. However, for the count-based heuris-
tic, early promotion provided better performance. For the
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Figure 1. Block diagram of a typical translation-based VEE
consisting of a translation engine and a code cache.

time-based heuristic, late promotion provided both improved
performance and memory efficiency.

The specific contributions of this paper are as follows:

• strategies to reduce the code cache size based on lifetime
and execution count characteristics of code regions

• implementation and evaluation of heuristics based on ex-
ecution count and time passed since generation to distin-
guish between long-lived and short-lived code

• implementation of different code cache management
techniques to evaluate trade-offs presented by linking
versus not linking into the temporary code area and car-
rying out early versus late promotions

• achievement of at least 20% reduction in code cache size
on the average, without significantly impacting perfor-
mance

In Section 2, we provide an overview of the internal
workings of a VEE, including the translation engine and
the code cache. In Section 3, we discuss how code region
characteristics motivate this work and their relationship to
the heuristics used. We describe our code cache organization
and code cache management techniques in Section 4, the
actual implementation in Section 5, and experimental results
in Section 6. We describe related work in Section 7 and
conclude in Section 8.

2. Translation-Based VEEs
A VEE hosts and controls the execution of a given appli-
cation. It can dynamically modify the application code to
achieve additional functionality that is not present in the
original application (such as dynamic binary instrumenta-
tion). Figure 1 is a simplified diagram of a translation-based
VEE. The VEE consists of two main components – a trans-
lation engine and a software code cache. The translation en-
gine is responsible for generating code and dynamically in-
serting it into the code cache. The software code cache is a
memory area managed by the translator, which stores trans-
lated or modified code from the guest application. This code
executes natively on the underlying layers. While the VEE
may appear below the OS layer or may be co-designed with
the hardware, the internal software architecture still corre-
sponds to Figure 1.

2.1 Translation Engine

The translation engine fetches application code from the
guest application, translates it and inserts it into the code
cache. The application code can be translated at several
different granularities, e.g., traces (single-entry, multiple-
exit code units), basic blocks (single-entry, single-exit code
units), or pages. Some extra code may be interleaved with
the original code to achieve the VEE’s goal. For example,
Pin [17], a dynamic binary instrumentation VEE, interleaves
instrumentation code with the guest application code.

The translation engine translates incrementally i.e., it
translates only a small part of the guest application binary
at a time. Therefore, it is possible that the next code to be
executed is not present in the code cache. In such a case, a re-
quest for the next instruction address is generated, triggering
translation to start.

In most cases, the translator stops translation at a branch
instruction because branch instructions may have multiple
outcomes. Based on the outcome, control continues on the
fall-through path or jumps to some target address. Since it
is not known beforehand which path the control will follow,
some paths may not be translated and the next instruction
may not be present in the code cache. Each such branch
instruction points to an auxiliary construct called an exit
stub. When the branch instruction is executed, control is
diverted to the exit stub which triggers a context switch to
the translator with a request to start translation at the next
instruction address.

After generating requested code, the translation engine
may patch the requesting branch to point to the newly in-
serted code if the requesting branch is a direct branch (the
branch target is fixed) or a call to a known subroutine. This
phenomenon is referred to aslinking.

2.2 Code Cache

The code cache is a memory area allocated to store the
translated application code and exit stubs (to transfer control
back to the translator). The code cache may or may not have
a size limit.

If a point is reached when there is not enough free space
to insert a code region into the code cache, more code cache
space is allocated. If the code cache is limited and the limit
is reached, then some cached code must be deleted (or
flushed) to make room for the new code. The code cache
may be flushed entirely or in parts. Whenever a code region
is marked for flushing, all branch instructions that point to
it must be redirected to their stubs, so that control does not
enter the flushed areas. When all the incoming links for the
code region are removed, it can be flushed. Overheads of
removing incoming links are especially relevant to our work
because we flush the temporary code cache area frequently.
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Figure 2. Percentages of code regions with certain lifetimes. 0-10% and 90-100% are by far the most major categories.
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Figure 3. Percentages of code regions with execution counts within certain thresholds. Most code regions have execution
counts of five or less.

3. Translated Code Characteristics
In this section, we discuss the code region characteristics that
motivated our work. We evaluated the lifetime and execu-
tion count characteristics of code regions for the SPEC2000
integer suite [13] and the MiBench embedded benchmark
suite [11]. We used Pin 2.0 for XScale [17] to host the ex-
ecution of these benchmarks on a iPAQ PocketPC H3835
machine running Intimate Linux kernel 2.4.19. All code re-
gions formed by Pin are traces (single-entry multiple-exit
code sequences).

Through experimentation, we found that the majority of
code regions live for a small fraction of the total guest ap-
plication execution time. Figure 2 shows the percentage of
code regions in each lifetime category. The graph shows

that on average, 60% of code regions live less than 10% of
the guest application execution time, motivating us to detect
these dead code regions and reclaim the space occupied by
them.

Intuitively, a code region in the code cache should be al-
lowed to remain for 10% of the guest application lifetime
and then monitored for execution to determine whether a
code region is long-lived. However, it is difficult to dynam-
ically determine 10% of the guest application time before a
program terminates. So time intervals between some prede-
termined events are used to decide when to start monitoring.

The graph also shows that the 0-10% and 90-100% life-
time categories are the most important. This fact, apart from
the ease of code cache management, inspired us to divide the
code cache into the temporary and permanent areas.
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Figure 4. Percentages of code regions in each lifetime category, which have high execution counts of above five. Most long-
lived code regions are included while few short-lived code regions are included.
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Figure 5. Code cache partitions. The temporary area is size
limited and at one end of the code cache. This example
depicts cache areas containing code regions and exit stubs.

We also examined the relationship between the execution
count of a code region and its lifetime. First, we examined
the execution counts of all code regions in a guest applica-
tion. Figure 3 shows the percentage of code regions that exe-
cute a certain number of times. The graph has a step around
five for all the benchmarks investigated. The step implies
that a large percentage of code regions can be eliminated by
placing the execution threshold at five, and in the context of
embedded applications, five can be considered a high execu-
tion count.

Next, we explored the percentage of code regions in each
lifetime category that has an execution count of more than
five. Figure 4 shows that the lifetime category of 90-100%
has a large fraction (90%) of code with a high execution
count. The opposite is true for code regions in the 0-10%
(20% code regions have a high execution count) category.
This motivated us to set an execution count threshold of five
to determine whether a code region is long-lived.

4. Code Cache Management
In this section we describe our code cache management
schemes, which includes our code cache organization and
two trade-offs that we explored. We considered whether to
allow links into the temporary code cache and whether to
use early or late promotions.

4.1 Restructuring the Code Cache

Once heuristics have identified a code region as dead, it
is evicted. Simply evicting short-lived code regions from
the code cache can form holes and complicate code cache
management. Therefore, the code cache is partitioned into
temporary and permanent areas as shown in Figure 5. Code
regions initially enter the temporary area and are promoted
to the permanent area based on our heuristics. After several
promotions, we assume the temporary area contains mostly
dead code regions and we flush and reuse it. We set a size
limit of 128 KB on the temporary code cache to prevent
memory expansion due to dead code regions and to initiate
flushes to reclaim occupied space.

Memory requirements of code caches are expected to de-
crease in this scheme as a small percentage of code regions
are long-lived, making the permanent area small. The tem-
porary area is overwritten many times, and as a result, is
also small. Performance can improve due to better instruc-
tion locality in the permanent area; however, overheads of
promoting code regions, flushing cache areas and in some
cases, regenerating evicted code regions, will be incurred.

4.2 Links in the Code Cache

Links are used in the code cache to improve the speed of exe-
cution. However, all links must be removed on a code cache
flush. In our design, we allow all code regions to link into
the permanent code cache because the permanent code cache
is flushed rarely, if at all. However, temporary area flushes
are anticipated to be frequent and managing incoming links
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Figure 6. Temporary area cache blocks form a circular
queue and are flushed in FIFO order to provide approxi-
mately uniform time to each code region to mature.

to the temporary area may present a considerable overhead.
Therefore, we explore disallowing incoming links to code
regions in the temporary area. Meanwhile, we acknowledge
that suppressing links can cause performance overheads as
there are more context switches between the code cache and
the translator.

4.3 Early and Late Promotions

Code promotion can occur early or late. Early code promo-
tions occur as soon as a code region is eligible for promo-
tion. Late code promotions occur at the point of a temporary
area flush. Early code promotions send long-lived code re-
gions to the permanent area as soon as possible and reap
more benefits from code locality in the permanent area. Late
promotions reduce the number of context switches between
the code cache and the translator because many code regions
are promoted after a single context switch at the point of a
flush. We explore the trade-offs of early and late promotions
in our work.

5. Implementation
This section describes the implementation details of the reor-
ganized code cache and code region promotions - the heuris-
tics used to decide promotions and the actual process of pro-
motion.

5.1 Code Cache Reorganization

The restructured code cache allocates 128 KB in the tempo-
rary area and 64 KB in the permanent area initially. The per-
manent area may increase in size as code regions are inserted
into it, but the temporary area remains fixed at 128 KB.

The temporary area is flushed from time to time, however,
the entire temporary area is never flushed at once. This is
because some time needs to be given to each code region
to execute and possibly complete its lifetime. If the entire
temporary area is flushed at once, enough time is not given
to the code regions that entered the temporary area close to
the flush. Therefore, as shown in Figure 6, the temporary

area is divided into blocks of 64 KB each and one block is
flushed at a time in FIFO order.

5.2 Heuristics

A time-based heuristic and an execution count-based heuris-
tic were motivated in Section 3. The time-based heuristic re-
quires that a bit be maintained for each code region to indi-
cate whether it executed while it was being monitored. Code
region monitoring starts when the cache block containing the
code region is next in line to be flushed. In the case of the
count-based heuristic, the number of executions of a code
region since its generation is tracked by maintaining an in-
teger counter for each code region. We used an execution
threshold of five.

5.3 Code Region Promotion

Code region promotion boils down to copying it from the
temporary area to the permanent area and removing instru-
mentation en route. Besides copying, the links to and from
the code region also have to be updated.

When to promote a code region depends on the heuristic.
On every execution of a code region, the counter is first
updated. Then a decision may be made whether to promote
the code region.

If links to the code region are disabled, the translator is
entered for each execution of the code region. The transla-
tor then updates the counter value and decides whether to
promote the code region. Therefore, promotions are always
early if links are not allowed.

However, if links to the temporary code cache are al-
lowed, the translator cannot be used to update the counter. So
instrumentation code is added to the beginning of each code
region to update the counter value. Additionally, in the case
of early promotions, code to decide whether to promote a
code region is also added to the beginning of the code region.
Updating and making decisions with the count heuristic re-
quired more instrumentation than the time-based heuristic.

However, the time-based heuristic with links and early
promotion does not require any instrumentation code. Since,
in early promotion, control will always enter the translator
when the code region becomes eligible, one context switch
per promoted code region is inevitable. In this case, all links
to code regions are removed once monitoring starts. When-
ever such a code region is executed, control enters the trans-
lator and promotes the code region. The memory overhead
of extra code is avoided without any extra performance cost.

There is a performance overhead of updating counters be-
fore executing each code region. Also, when links are al-
lowed, there is a memory overhead of inserting instrumen-
tation code into the code cache. Insertion of extra code into
the code cache also reduces code locality.

6. Experimental Results
This section evaluates the memory efficiency and the perfor-
mance of our design. We analyze the sources of performance
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Figure 7. Code cache usage as percentage of code cache usage by baseline Pin (benchmarks with code cache sizes greater
than or equal to that oftiffmedian are shown). Savings for the benchmarks are shown to be 20% on average.

degradation and discuss the resulting memory and perfor-
mance. Both of the heuristics were evaluated by allowing
and disallowing links into the temporary code cache. Ab-
sence of links implies early promotion. However, the cases in
which links were allowed, we evaluated both early and late
promotions. The count heuristic with links and early promo-
tion and the time-based heuristic with no links have been ex-
cluded from the graphs as they have very high performance
overheads.

As a baseline, we used Pin 2.0 for the XScale plat-
form [17]. We implemented our solutions by directly mod-
ifying the Pin source code. Pin uses traces as code regions
and assumes an unlimited code cache.

For the experiments, we ran the SPEC2000 integer suite [13]
and the MiBench embedded benchmark suite [11] on a iPAQ
PocketPC H3835 machine running Intimate Linux kernel
2.4.19. It has a 200 MHz StrongARM-1110 processor with
64 MB RAM, 16 KB instruction cache and a 8 KB data
cache. The SPEC benchmarks were run on test inputs, since
there was not enough memory on the embedded device to
execute larger inputs (even natively). The Mibench bench-
mark suite provides large and small input datasets for the
benchmarks. We used the large inputs in our experiments.
In all the graphs, the benchmarks are arranged in increasing
order of code cache size.

6.1 Memory Efficiency

Figure 7 shows the reduction in code cache size achieved
by our schemes. Our schemes always allocate 128 KB in
the temporary code cache and 64 KB in the permanent code
cache. So, in measuring memory efficiency, only the bench-
marks with code cache usage higher than 192 KB have been
considered (we are specifically targeting the larger bench-
marks). For the benchmarks originally having code caches
smaller than 192 KB, marginally larger code caches were
produced by our techniques.

Figure 7 shows that there is at least a 20% savings in code
cache memory consumption for all the schemes. Some of the
benchmarks with code cache footprint close to 192 KB suf-

fer a loss because they are small compared to the code cache
sizes we are targeting. It is clear that the time-based heuristic
has better memory efficiency than the count-based heuristic,
on average. But, as we shall see, the time-based heuristic
eliminates many code regions prematurely. For the count-
based heuristic, late promotion has better memory efficiency
on average. This is because late promotion inserts extra code
into the temporary code cache and thus accommodates less
code regions at a time. So late promotion chooses code re-
gions from a smaller set and promotes fewer code regions
during a flush. The same is true for the time-based heuristic.

6.2 Performance Evaluation

Figure 8 shows the performance of the new schemes. In con-
trast to memory efficiency, the count-based heuristic per-
forms better than the time-based heuristic on average, the
reason for which will become clear when we delve into an
analysis of overheads. For the count-based heuristic, count
with links and early promotion (not shown here) has very
poor performance because the code at the beginning of each
code region is very complicated and occupies considerable
space. Executing such code five times for every code re-
gion is very expensive. For the count-based heuristic, the
absence of links performs better. This indicates that the ef-
ficiency of flushing outweighs the performance degradation
due to absence of links. It is worth noting that in case of the
largest benchmark,gcc , the count-based heuristic without
links has by far the best performance becausegcc ’s work-
ing set is scattered over a large set of code regions and since
this scheme promotes the largest number of code regions, it
best covers the working set ofgcc in the permanent area.

For the time-based heuristic, enabling links is better than
disabling links (not shown in the graph) because code re-
gions are left around in the code cache for a period of
time before monitoring starts and disabling linking degrades
performance heavily during this period. For the time-based
heuristic, late promotion has better performance than early
promotion because late promotion promotes less code re-
gions and achieves better code locality in the permanent
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Figure 8. Performance with respect to baseline Pin (note the exponential axis). Count heuristic is better in general and the
count heuristic with no links is the best.
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Figure 9. Extent of code region regeneration. The time-based heuristic has higher regenerations in most cases, explaining the
cause of its worse performance. Benchmarks shown fromtiff2bw because the ratios are close to zero before it.

code cache. Also, the time-based heuristic suffers consid-
erably for the smaller benchmarks because better memory
efficiency is not achieved in these but the performance over-
heads still incur. Among the larger benchmarks, poor perfor-
mance forgcc , for example, can be attributed to the high
number of regenerations.

6.3 Regeneration Overheads

Code region generation is an expensive task. Therefore, the
higher the percentage of code region regeneration, the higher
is the performance degradation. Figure 9 shows the ratio of
the number of code region regenerations to the total number
of code regions. Although the average percentage of regen-
erations is almost the same for all of the schemes, in some of
the bigger benchmarks, they differ considerably. In the cases
where the schemes differ, the count heuristic with no links
is the best, explaining the cause of its superior performance.
Figure 9 also explains why the time-based heuristic performs
worse than the count-based heuristic. The time-based heuris-
tic achieves better memory efficiency but is more inaccurate
in its selection of code region and incurs more regeneration
overhead.

6.4 Flushing Overheads

Flushes are also responsible for performance degradation.
Figure 10 shows the number of temporary area flushes for
our designs. Again, the count-based heuristic with no links
has the least number of flushes. This may be due to the fact
that the regenerations are lowest in this case.

6.5 Discussion

The results show that the count-based heuristic has better
performance than the time-based heuristic and worse mem-
ory efficiency. This may be due to the fact that the time-based
heuristic wrongly eliminates more code regions compared to
the count-based heuristic, leading to more regenerations and
more flushes.

For the count-based heuristic, not linking has better per-
formance than linking into the temporary code cache. The
opposite is true of the time-based heuristic. Absence of links
for the count-based heuristic is better because the perfor-
mance degradation is limited to five context switches be-
tween the code cache and the translator. The faster flushes
achieved due to absence of links outweighs the context
switch overheads. But for the time-based heuristic, perfor-
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Figure 10. Number of temporary code cache flushes. Flushes are influenced by regenerations and also degrade performance.
Benchmarks fromtiffmedian are shown.

mance degradation due to absence of links continues until
code region monitoring starts. Since this period of time is
considerably longer than the time taken to execute a code
region five times, the performance degradation outweighs
the benefits of flushing.

The count-based heuristic requires more instrumentation
than the time-based heuristic, and even more in the case of
early promotion, resulting in early promotion with links be-
ing infeasible for the count-based heuristic. In case of the
time-based heuristic, late promotion is better in both perfor-
mance and memory than early promotion. Late promotion
promotes less code regions and thereby achieves better code
cache locality.

The different combinations evaluated have different mem-
ory and performance trade-offs. The count-based heuristic
offers better performance while the time-based heuristic of-
fers better memory efficiency. The actual combination to be
used depends on the parameter (memory or performance)
of focus. The VEE can adapt to changing conditions in an
embedded device and strive for better memory efficiency or
performance. For example, when few applications are be-
ing executed and the system has enough power, the focus
of VEE hosted applications can be performance. After some
time if the system starts a large graphics application, the fo-
cus of the VEE hosted applications can change to memory
efficiency.

7. Related Work
Several VEEs have been developed for general-purpose ma-
chines. Among them are Dynamo [2], DynamoRIO [5],
Strata [14, 15, 23] and Pin [17]. These VEEs provide
features such as optimization and security. Pin [17] and
DELI [8] are VEEs which support embedded platforms.

Apart from VEEs, in the embedded world, there are
several Java virtual machines available. Standards such as
Java card, J2ME/CLDC and J2ME/CDC have been built for
embedded JVMs. KVM [18] was the first virtual machine
developed by Sun Microsystems for embedded platforms.
However KVM is a pure bytecode interpreter and perfor-

mance suffers as a result. Later, Sun developed Hotspot [19]
for embedded devices. JEPES [22] and Armed E-Bunny [6]
are examples of research on embedded JVMs. There have
also been efforts to reduce memory footprint in embedded
JVMs [1, 22].

For VEEs, researchers have found that the code cache oc-
cupies five times the native application footprint [12]. Other
researchers have found that the data structures required to
support the code cache occupy about as much memory space
as the code cache itself [21]. These facts have motivated
several approaches to reduce the memory requirements of
VEEs. Code cache management schemes inspired by gener-
ational garbage collection were explored [12]. Client-server
approaches to manage code cache sizes in embedded sys-
tems [20, 25, 26] have also been explored. Other researchers
have been motivated to reduce code cache memory expan-
sion because many applications may be hosted by VEEs si-
multaneously, for example on a server [4]. Their work aimed
to adaptively increase the code cache size limit as the guest
application execution progresses. Finally, we have also ex-
plored techniques to reduce code cache sizes by focusing on
exit stubs rather than code regions [10].

8. Conclusions
Our goal is to design memory and performance aware VEEs
for embedded systems. While many approaches to this goal
are possible, in this work we exploited code-lifetime and
execution-count characteristics to achieve code cache size
reduction. We found that both time-based and execution
count-based heuristics can be used, resulting in different
trade-offs. The time-based heuristic achieved better memory
efficiency (around 25% code cache reduction on average) by
being more selective in promoting code, but at the cost of
more regenerations and degraded performance. The count-
based heuristic promoted more code regions resulting in
less code cache reduction (20% on average), but incurred
less regenerations and less performance penalty. The results
demonstrate that code characteristic-based VEE design has
strong potential in embedded environments.
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