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Abstract

Trace reuse improves the performance of proces-
sors by skipping the execution of sequences of redun-
dant instructions. However, many reusable traces do
not have all of their inputs ready by the time the reuse
test is done. For these cases, we developed a new tech-
nique called Reuse through Speculation on Traces (RST),
where trace inputs may be predicted. This paper stud-
ies the limits of RST for modern processors with deep
pipelines, as well as the effects of constraining re-
sources on performance. We show that our approach reuses
more traces than the non-speculative trace reuse tech-
nique, with speedups of 43% over a non-speculative trace
reuse and 57% when memory accesses are reused.

1. Introduction

Although modern processes devote significant resources
to extracting instruction-level parallelism (ILP) from pro-
grams, control and data dependencies still remain a barrier
to effectively exploiting large amounts of ILP. Indeed, the
additional complexity introduced by very wide issues may
adversely impact the processor clock rate. What is needed
are complexity-effective techniques that can increase per-
formance by overcoming or mitigating the impact of con-
trol and data dependencies.

It is known that programs execute a large amount of
redundant or predictable computations [1, 6, 10, 13, 14].
Many techniques have been developed to take advantage of
redundancy to improve performance by not executing re-
dundant computations. Value reuse is one technique that ex-
ploits redundant computations by reusing previously com-
puted values. Once a computation is executed, future execu-
tions can check if the inputs match previous inputs, and then
the result of the computation can simply be reused without

computing it. However, the input values needed by the com-
putation must be available when checking for reuse.

It is also well known that many of the values during pro-
gram execution can be predicted correctly [6, 10, 13]. By
predicting values, the impact of true data dependencies can
be mitigated by letting more instructions execute in paral-
lel. Value prediction may also hide high latencies. When
value prediction is employed, unlike reuse, the predicted
value must be validated by actually computing the value
and checking it against the predicted value. On a mispre-
diction, any computation using the predicted value directly
or indirectly has to be recomputed.

In this paper, we present a technique, called Reuse
through Speculation on Traces (RST), that combines
both value reuse and value prediction for instruction
traces. The goal of RST is to increase the number of in-
struction traces that can be reused by predicting the
values of trace inputs that are not available when apply-
ing reuse. We explore to what extent value prediction and
trace reuse can be effectively combined to improve per-
formance. Our work is a limit study that investigates the
potential of different RST models for improving per-
formance in deeply pipelined superscalar processors.
The study illustrates the effects of several parameters of
RST on performance. We show that speculatively exe-
cuting traces can be an effective technique for improving
performance with a simple reuse model and small hard-
ware tables.

In the next section, we describe the RST technique in
more detail. In Section 3, we present the goals of our limit
study, our trace reuse models, and the architecture config-
urations used for the study. The results of our limit study
are given in Section 4. We also investigate how to constrain
the reuse model in Section 5 to get good performance with
less resources. Concluding remarks are given in the last sec-
tion.



2. Reuse through speculation on traces

The key idea of RST is to speculate some of the input val-
ues of a trace if they are not ready, rather than waiting for
their computation to end or not applying reuse. Value pre-
diction is done when some of the input trace registers match
stored values and other input values are not available. It is
these latter values that are predicted. RST is an integrated
mechanism that combines trace reuse and value prediction.
It is also designed to be a complexity-effective approach us-
ing most of the hardware that is already present for trace
reuse.

Traditional value reuse is non-speculative. After the in-
put values of a set of instructions are verified against stored
values and a match is found, their results can be reused with-
out executing the instructions. Importantly, resources are
not wasted due to reuse and are available to other instruc-
tions. The main disadvantage is that reuse must wait until
all the input values are ready to be tested for reuse. There-
fore, many cycles that could be saved by reusing instruc-
tions may be spent waiting for input values that were not
ready at the time of the reuse test.

On the other hand, value prediction can overcome the
limits imposed by true data dependencies [10, 13]. Instruc-
tions with true data dependencies may be executed in paral-
lel when value prediction is employed. This technique may
also hide latencies of instructions accessing memory or with
high complexity. The main disadvantage is that mispredic-
tions can incur a high recovery penalty. Another disadvan-
tage is that, since value prediction increases concurrency
and demands for resources, instructions executing with mis-
predicted values may prevent the execution of useful in-
structions.

Trace reuse has been proposed to improve performance
by not computing redundant sequences of instructions [3].
The three stages of trace reuse are shown in Figure 1. The
reuse domain is defined as the set of instructions that can be
reused and do not present side effects. First, in Figure 1(a)
instructions in the reuse domain are identified (gray circles)
and stored. In the next execution shown in Figure 1(b), these
instructions are marked as redundant and a trace is formed,
until an instruction that does not belong to the reuse do-
main or is not redundant is found (black circle). This trace
is memoized and stored in a memoization table. Figure 1(c)
shows the next time execution reaches the beginning of this
trace with the same inputs, when the memoized trace is
reused; i.e., the previous values are written in the output reg-
isters. In this example, the input registers compared are r1,
r2, r3 and r9 using stored values for these registers. If the in-
puts match, the values stored for r5, r6, r7 and r9 are loaded
into these registers as the outputs of the trace. Thus, all in-
structions inside the trace are essentially collapsed into the
checking of the inputs and storing of the outputs. The in-

struction fetch is redirected to the next address after the
trace. More information about trace construction is avail-
able at [3, 4].

(a) (b) (c)

r1  r2  r3  r9
inputs

r5  r6  r7  r9
outputs

Figure 1. Trace: (a) identification and con-
struction, (b) memoization, (c) reuse

RST combines the advantages of both value prediction
and reuse. Unavailable inputs for memoized traces (input
and output values stored) are predicted by RST. When traces
are reused speculatively in RST, the output values are sent
directly to the commit stage, as well as to the instructions
waiting for these values and to the register file. Dispatch,
issue, and execution are bypassed for the entire trace in a
single cycle. Therefore, speculative reuse does not increase
but reduces the pressure on valuable resources such as func-
tional units.

Applying reuse and value prediction separately but at the
same time could require a prohibitive amount of storage in
tables. Because we integrate the techniques, RST does not
need extra tables to store values to be predicted. The input
context of each trace (the input values of all instructions in
the trace) already stores the values for the reuse test, which
may also be used for prediction. Thus, our proposed tech-
nique minimally increases the hardware needed to imple-
ment speculative trace reuse, when compared to the hard-
ware needed for non-speculative trace reuse.

RST may reuse both instructions and traces, but only
traces are speculatively reused because they encapsulate
many instructions and possibly critical paths, thus allowing
more performance improvement than single instructions.

Compared with instruction reuse techniques [14], RST
has all the benefits of trace reuse, such as the potential
for collapsing critical paths into a single cycle, improv-
ing branch predictions, and reducing the fetch bandwidth
needed. It is also simple to implement as it does not need to
involve compiler or ISA modifications such as those needed
in block and sub-block reuse [8, 18], allowing the execution
of legacy code without modifications. Unlike other trace
reuse mechanisms [3, 7], RST can speculatively reuse traces
when inputs are not ready. Previous value prediction tech-
niques [6, 10, 13, 17] use more resources when mispecu-
lations occur, while RST is more conservative: predicted



traces are not executed, but speculatively reused.

3. Trace reuse model

In designing an RST mechanism, there are many choices
that could be made. For example, the size of the tables that
store input values for traces impacts the number of candi-
date traces for reuse. As another example, it may be benefi-
cial to allow load and store instructions to be part of a trace.
However, including memory operations on traces will sig-
nificantly increase the hardware complexity. In general, the
best configuration of the RST mechanism is difficult to de-
termine a priori and is influenced by the program workload.
In this work, we investigate and answer the questions about
the limits of RST and how aggressive the hardware mecha-
nisms must be to achieve significant performance improve-
ments.

We first considered the potential (and unrealistic) perfor-
mance gains (limits) for RST, using an oracle and an ag-
gressive superscalar architecture, with a superscalar being
our base architecture. We then performed experiments to
better understand the factors that influence the performance
of RST. To explore the performance gains in a more real-
istic setting, we place restrictions on our architecture and
reuse model. In the next sections, we describe our experi-
ments and results for the limit study followed by the exper-
iments and their results when restrictions are placed.

3.1. Trace Reuse without and with Speculation

To investigate the characteristics and potential of RST,
we extended the sim-outorder microarchitecture simula-
tor from SimpleScalar [2] to support trace reuse without
and with speculation. Our extension also models a deeply
pipelined wide-issue superscalar processor (see below). For
trace reuse without speculation, we use Dynamic Trace
Memoization (DTM) [3, 4, 5]. The DTM hardware collects
a sequence of redundant instructions across branches as a
trace. The traces are stored in two hardware tables called
Memo Table G and Memo Table T . When a redundant in-
struction is found in Memo Table G , DTM starts to build a
trace as depicted in the previous section and in [3, 4]. For
this study, we considered fully-associative tables.

To implement trace reuse with speculation, we extended
DTM to have the capability to speculate unavailable trace
input values. The reuse test in DTM only identifies a trace
as reusable when all inputs are ready and equal to the val-
ues stored in Memo Table T . RST introduces a modifica-
tion in the reuse test to allow speculation using a previous
value for a missing trace input. If a value in the input con-
text is not ready, but the remaining values match the cur-
rent values, then a confidence mechanism can be accessed
to verify if the value should be predicted or not.

In our experiments on RST, we limit prediction to one
register value for each trace, as it is more likely that these
traces will be reusable in implementations. In some cases,
loads and stores were included in the reuse domain and in-
cluded in traces. We also use an oracle confidence mecha-
nism for value predictions, which knows when a prediction
is correct or incorrect, allowing only correct predictions.

To investigate the limits of RST and the characteristics
of traces from RST, we used a number of different architec-
ture and reuse models, including:

� DTM: Trace reuse without speculation of unavailable
inputs;

� DTM-M: DTM with loads and stores in the reuse do-
main;

� RST: Trace reuse with speculation of one unavailable
input using oracle confidence;

� RST-M: RST with loads and stores in the reuse do-
main; and

� RST-R: Restricted RST-M, where only loads served
by stores in the same trace can be reused; a load that is
not served by a store inside the trace terminates trace
construction.

3.2. Architecture Configuration and Benchmarks

For our study, we use a baseline architecture that is com-
parable to aggressive superscalar processors. The baseline
is augmented with hardware support for trace reuse in the
DTM, DTM-M, RST, and RST-M models. The baseline su-
perscalar has a 20-stage, 4-wide pipeline with three cache
levels. The execution pipeline has three integer FUs, with
one of them capable of doing multiplication and division.
The branch predictor is a 2048-entry combined predictor,
using Gshare with 1024 entries and 13 bits of history and
bimodal with 2048 entries. The return address stack has 32
entries. The IFQ allows 16 instructions, the RUU has 128
entries, and the LSQ allows 64 loads and stores to be simul-
taneously in flight.

The i-l1 cache is 2-way set-associative 16 KB and the
d-l1 cache is 4-way set-associative 16 KB. The latency of
a hit in the first level is two cycles. The remaining caches
were unified. The l2 cache is 8-way set-associative 512 KB,
with a hit latency of 7 cycles. The l3 cache is 8-way set-
associative 2 MB; the hit latency is 14 cycles. Finally, the
memory access latency is 200 cycles. The memory width is
two words.

For the initial set of experiments with RST and DTM,
we used Memo Table G and Memo Table T table sizes of
16 K entries. Such large tables capture the majority of traces
in a program.

A limitation imposed by our simulation environment was
that 64 instructions is the maximum number of instructions



in a trace. However, this limitation has a negligible effect
since the vast majority of traces had lengths of less than 64.

The benchmarks chosen for this work are a sub-
set of SPEC95int and SPEC2Kint [15]. We simulated com-
press95, ijpeg, li, m88ksim, and perl from SPEC95, and
art, cc1, and vortex from SPEC2K. Only integer bench-
marks were chosen because of the intrinsic difficulty of
reusing and predicting floating point values [4]. Our bench-
marks were compiled with GNU gcc 2.7.2.3 for Sim-
pleScalar PISA, with the flags -O3 -funroll-loops. When
available, reduced input sets [9] were used for SPEC2000
benchmarks. Each simulation was executed with a maxi-
mum of 1 billion committed instructions, or until comple-
tion.

4. Limit study of RST

For the limit study, we explored different two different
reuse domains: trace reuse without loads and trace reuse
with loads and stores. Our first simulations did not constrain
the number of input and output contexts or table size. In a
later section, we look at the impact of reducing the hard-
ware structures on RST’s performance.

4.1. Impact of two reuse domains

In the first set of experiments, the goal was to dis-
cover the performance gains possible with RST in an ag-
gressive superscalar machine. The results are given in Fig-
ure 2, which shows the potential performance gain over the
superscalar baseline. The last set of bars is the harmonic
mean across all benchmarks. In general, the speedups of
RST over the baseline is 70% and the speedup of RST-M
is 85.3%. Most benchmarks have improved performance
when reusing loads and stores, but some benchmarks are
particularly effected by memory reuse, such as m88ksim.
For this benchmark, RST-M presents a speedup of 115%
over RST.

art-2K cc1-2K compress-95 ijpeg-95 li-95 m88ksim-95 perl-95 vortex-2k HM
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DTM-M
RST
RST-M

SPEEDUPS OVER SS
MT 16K, MG 16K

Figure 2. Speedup over baseline architecture

m88ksim has a large amount of redundancy, and the
speedups for both reuse domains (i.e., with and without
memory operations) are greater than all of the other bench-
marks. In this case, DTM-M has a speedup of 1.57 times
over the baseline and RST-M has a speedup of 3.98 times
over the baseline. Interestingly, for m88ksim, the benefit of
DTM-M over DTM was not significant, with a performance
improvement of only 1.6% of DTM-M over DTM. How-
ever, the speedup of RST vs. RST-M is much more signifi-
cant with a performance improvement of 15.6% .

art has a different behavior where trace reuse has little
benefit. In this case, the maximum performance improve-
ment is only 3.7%. Indeed, RST-M reduces performance
slightly for art. The reason performance is little improved
by trace reuse for art is the high miss rate in the data caches
(the first level cache has a 30% miss rate and the second
level cache has a 31% miss rate), so memory performance
dominates in this case. Because this benchmark is memory
bound, a small number of instructions is actually skipped by
applying trace reuse. Only 21.6% instructions are skipped
for the best case for art, while the harmonic mean across
all benchmarks is 63.7% instructions skipped. The small in-
cidence of branches (13% of instructions) is also a factor
in minimizing the performance gain of RST and DTM for
art. Reuse can significantly reduce branch mispredictions,
and thus applications with more branches are more likely to
present better performance improvements.

While m88ksim and art are outlying cases, performance
across the other benchmarks is improved, with a speedup
ranging from 1.2 to 2.5 for RST and from 1.3 to 3.25 for
RST-M. It is clear from these speedups that RST offers
much performance potential in many benchmarks.

Although RST has performance benefits, another ques-
tion is whether the performance improvement is coming pri-
marily from trace reuse or from the combination of specu-
lation and trace reuse. Our experiments showed that many
traces that could be reused were not because some of their
input operands were not ready to be compared when the
traces were scheduled to execute, which would suggest
speculation is important. Figure 3 shows the percentage of
traces for DTM that are reused or not, because some of the
trace inputs are unavailable by the time the reuse test is
done [12]. Thus, a significant number of traces with correct
input contexts (average of 68%) were not reused. This sit-
uation occurs because trace reuse is very conservative and
does not allow reuse until all the trace inputs are known and
match previously computed values.

We also compared our RST and DTM performance re-
sults to compute the performance improvement of RST over
DTM. Figure 4 shows the speedups over DTM. Without
memory reuse, RST has a speedup of 1.43 times over DTM.
When loads and stores are reused, the speedup is 1.57 times
for RST-M. From the figure, it is clear that including spec-
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ulation to trace reuse is important.
Figure 4 also shows the performance improvement of

DTM-M over DTM. In this case, DTM-M improves perfor-
mance by 17.5% over DTM. However, in most cases, RST
has a better speedup than DTM-M. This result indicates that
speculation is more important than adding memory opera-
tions to the reuse domain. Also, including memory opera-
tions as part of the reuse domain is likely to be more com-
plex than including speculation of trace input values. Hence,
RST may be a better choice from both a performance and
implementation complexity perspective. RST has the disad-
vantage that it requires a confidence mechanism to mitigate
the impact of value mispredictions and this mechanism adds
cost and complexity. Later in the paper, we discuss the de-
gree of confidence that is needed to get good performance
from RST.

art-2K cc1-2K compress-95 ijpeg-95 li-95 m88ksim-95 perl-95 vortex-2k HM
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Figure 4. Speedup over DTM

While the figure shows that adding speculation and
memory reuse helps, the amount of improvement varies
for the benchmarks. For example, in the case of m88ksim,
adding memory reuse to DTM does not significantly im-

prove performance (1.5%). But adding speculative reuse
(RST) improves performance by 119% and RST-M im-
proves performance by 153.3%. For this benchmark, pre-
dicting trace inputs is more important than adding memory
reuse and memory reuse only shows its real potential when
combined with speculation. Likewise, compress gets lit-
tle improvement from memory reuse, but is helped by
speculation. vortex gets some improvement from mem-
ory reuse, but is really helped by combining memory reuse
and speculation. From these results, we can infer two con-
clusions. First, as stated above, speculation of trace inputs is
generally beneficial for most benchmarks. Second, the im-
pact of adding memory reuse is mixed and varies based
on the importance and ability to reuse memory opera-
tions for individual benchmarks. A purely unrestricted
form of memory reuse may not be worth its likely com-
plexity with such varied results. Instead, a limited form
of memory reuse with less complexity may be worth-
while. We explore such a form of memory reuse later in
this paper.

4.2. Factors involved in reuse

We next wanted to understand what are the factors that
influence the performance gains of speculative reuse. For
example, when we introduce speculation, are there more in-
structions skipped and what happens to trace size? Does the
performance improve because there are smaller traces that
are reused more often or is it the case that longer traces are
effectively created and reused?

We first experimented with the number of skipped in-
structions to investigate why performance is improved with
trace reuse. Figure 5 shows the percent of reused (skipped)
instructions in each benchmark, with the last column be-
ing the harmonic mean of percentages. The skipped instruc-
tions include instructions reused in traces or individually
reused. For most benchmarks, reusing loads and stores in-
creased the percent of skipped instructions, but not for all
cases. In compress95, there were fewer instructions skipped
in RST-M than RST, but the performance of RST-M is bet-
ter than RST (see compress95 in Figure 2). This improve-
ment can be explained by the fact that fewer but more ex-
pensive instructions are being skipped in RST-M.

perl is another interesting case. Using RST-M, perl has
a higher percentage of instructions skipped than m88ksim,
but the performance improvement of m88ksim is better than
perl. This is due to the fact that m88ksim skips a lot of loads
and stores, which have high latency. The benchmark vor-
tex is also interesting. For DTM, vortex had a slight per-
formance degradation (about 1%), yet 25% of instructions
were skipped in this benchmark. In this case, the traces are
relatively small and the overhead associated with trace reuse



to redirect the fetch unit (when applying reuse) overwhelm
the benefit of reusing instructions.

The conclusion to be drawn from these experiments is
that the percentage of improvement does not simply cor-
relate to the number of skipped instructions but it also de-
pends on the type of instructions that are skipped.

art-2K cc1-2K compress-95 ijpeg-95 li-95 m88ksim-95 perl-95 vortex-2k HM
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Figure 5. Percent of skipped instructions, un-
constrained architecture

We also wanted to explore what happens to the trace
length when we add speculation. That is, are we reusing
longer traces less frequently or shorter traces more fre-
quently when we add speculation?

Figure 6 shows the average trace lengths for the two ver-
sions of DTM and RST. On average, the trace size increases
40% for DTM-M and 27% for RST-M. The difference in
trace length from DTM to RST is 15%, and only 4% from
DTM-M to RST-M. Therefore, traces are longer in RST
than in DTM.
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Figure 6. Distribution of trace lengths using
baseline

The termination condition is a also a factor in trace
length. For DTM and RST, traces are formed dynamically

by adding instructions that can be reused (that are redun-
dant). The trace terminates when an instruction is encoun-
tered that is not redundant or not part of the reuse domain.
Traces may also be terminated by reaching a maximum
length of 64 instructions (an artificial restriction imposed
by the simulation environment). For this latter case, less
than 0.5% of all traces in the benchmarks had 64 instruc-
tions, so this restriction plays a negligible part in determin-
ing trace length. The other two aspects of trace termination
play a more important role in trace length.

loads stores syscalls other
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Figure 7. Trace termination conditions

Figure 7 shows the average termination condition for all
benchmarks. When memory reuse is not employed, loads
and stores finish most traces: about 65% for DTM and 67%
for RST. When memory reuse is used, loads and stores
are reused when they are redundant and thus become part
of the trace. System calls then become the major termi-
nation condition. With DTM about 32.7% of all reused
traces are finished by system calls and for RST, the num-
ber is 26.5%. When memory reuse is employed, the per-
centages increase to 78.2% for DTM-M and 76.8% for
RST-M. Also, the percentage of non-redundant instruc-
tions finishing traces (others in the graph) increases from
1.9% (DTM) to 21.7% (DTM-M) and from 6.4% (RST)
to and 23.1% (RST-M). These results show why includ-
ing memory operations in the reuse domain can help per-
formance for some benchmarks. Including loads and stores
on traces ensures that traces are not terminated too early,
which can result in longer traces and better performance.
The results also show the importance of skipping redundant
memory operations, which can have large execution laten-
cies.

5. Constrained models

We now describe our experimental results that were ob-
tained by constraining some of the parameters to explore a
more limited and potentially less complex model of RST.



We studied how the number of inputs and outputs, the loads
and stores and the confidence level impacts performance
gains.

5.1. Constraining inputs and outputs

The number of trace inputs and outputs, including both
registers and memory locations, impacts the size of the un-
derlying reuse tables. We first wanted to know how many
memory references are included in a reused trace on aver-
age. From this number, we can get an estimate of the size of
the contexts for including memory operations as part of the
reuse domain.

Figure 8 shows the cumulative distribution of loads and
stores when memory reuse is used. Almost all reused traces
have at most 3 loads and stores. The average number of
loads per reused trace is 1.13 loads for DTM and 0.94 loads
for RST. For stores, the average number is 0.37 for DTM
and 0.55 for RST. The increase in the number of stores and
the decrease in the number of loads reflects a larger redun-
dancy for stores than for loads. Overall, these small aver-
ages indicate that including memory operations as part of
the reuse domain requires a relatively small amount of stor-
age in the reuse tables.
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Figure 8. Distribution of number of loads and
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Because the number of input and output registers for a
trace effects the size of the reuse tables, we also investigated
how performance changes when the input and output con-
text sizes are restricted. We first found that the maximum in-
put and output context sizes for all benchmarks never went
above 16 registers. We then constrained the input and out-
put context sizes to each be 16, 8, and 4 registers.

Figure 9 shows the performance of RST with the con-
strained input and output context sizes. In the cases of 4 and
8 context sizes, traces were terminated when adding more
instructions caused a trace’s context size to exceed the limit.
From the figure, when the number of inputs and outputs is

restricted to 4, there is only a 10% performance degrada-
tion in RST’s performance (a decrease from an 85% perfor-
mance improvement to a 68% improvement.) For RST-M,
the performance does not change when the size of the in-
put and output contexts are restricted.
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Figure 9. Speedup over baseline with con-
strained input context size

From the results in figures 8 and 9, we can infer that 4 in-
puts, 4 outputs and 3 memory values are enough for most
traces, providing almost the same performance with a re-
alizable cost. Previous work on DTM [4] showed a similar
trend for the number of inputs and outputs.

5.2. Constraining table sizes

In our next experiments, we constrained the size
of both the trace and instruction memoization tables
(Memo Table T and Memo Table G ). In the limit study,
the size of each table was 16 K and we varied the ta-
ble size from 128 to 16 K entries. Figure 10 shows
speedups when both history tables are constrained to dif-
ferent sizes for RST and Figure 11 shows the same for
RST-M.

In both figures, 8 K and 16 K tables have approximately
the same performance. There is a slight change in perfor-
mance when table size is constrained to 4 K entries. RST
with 8 K tables is only 4.3% faster than the 4 K configura-
tions and RST-M with 8 K tables is only 5% faster. We also
see a similar change in performance when going to 1 K ta-
bles.

The figure also shows that different benchmarks favor
different table sizes. For example, in the case of RST-M and
perl, 1 K tables do as well as 8 K tables. However, li favors
8 K tables for RST-M. The performance behavior is also
very interesting for some benchmarks at very small table
sizes. For example, m88ksim has better performance with
128 entries than 256 entries for both RST and RST-M. Such



16K 8K 4K 1K 512 256 128
Table Sizes

1

2

3

4
art (2K)
cc1 (2K)
compress95 (95)
ijpeg (95)
li (95)
m88ksim (95)
perl (95)
vortex (2K)
HM

SPEEDUPS OF RST OVER SS
VARYING MEMOIZATION TABLES

Figure 10. Speedups for RST over baseline
with constrained table sizes
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Figure 11. Speedups for RST-M over baseline
with constrained table sizes

behavior can be explained by the fact that table size influ-
ences what traces actually get captured and are reused. In
this case, it happens that more profitable traces are formed
with 128 entry tables, rather than 256 entry tables.

Behavior is relatively stable and regular for 512-entry
and larger tables. We also varied the size of each table
independently and found that a good combination was a
relatively small 512-entry Memo Table T and a 4K-entry
Memo Table G . This combination reduces hardware cost
while also achieving good performance, with an average
speedup of 1.5 for RST.

5.3. Constraining confidence hit rate

To estimate the impact that the accuracy of the confi-
dence mechanism has on performance, we simulated an ad-
justable, variable confidence mechanism. The goal of this
experiment was to see what level of confidence would be
needed to get good performance from trace reuse with spec-

ulation. A low level of confidence with good performance
would imply that a simple confidence mechanism might be
effective at avoiding mispredictions of trace inputs.

We introduced the confidence mechanism as a parame-
ter in our simulations that provided the ability to vary the
percentage of accuracy of confidence. We used 100%, 99%,
97%, 95%, 90%, 85%, 80%, 75%, and 70% confidence val-
ues. We compared each of the memory models to the same
model in non-speculative trace reuse. Such a variable confi-
dence mechanism is useful in determining coarse estimates
of the impact of mispredictions on performance, but it is not
entirely representative of what would happen in an actual
implementation. For this experiment, we assume an uniform
distribution of mispredictions and an implementation is not
likely to follow such a distribution.

Figure 12 shows the impact of different confidence rates
on average performance. The results in the figure are nor-
malized to DTM. The figure shows that at high confidence
rates, RST-M has the best performance, followed by RST-R,
and then RST. When the confidence rate drops to 99%, there
is a drop in performance, as expected. This initial drop is
due to the inclusion of mispredictions and the impact of the
misprediction penalty.
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Figure 12. Effect of confidence hit rates on
speedups

Across all confidence levels, RST-M has the best per-
formance and continues to show a performance improve-
ment until confidence reaches 75%. The irregular behavior
of RST-M can be explained by our simple uniform model
for varying the confidence rate. However, the general trend
is accurate and reflects that as confidence drops, the impact
of mispredictions begins to overwhelm the benefit of trace
reuse. RST-R and RST have similar performance at confi-
dence levels of 99% and below. In both cases, there is a per-
formance improvement over DTM until a confidence level
of 90%.

The figure shows two important trends. First, to get the
most from adding speculation to trace reuse, we need ac-



curate and good confidence mechanisms. Some method to
constrain predictions for trace inputs is important to avoid
over-speculating. Also, when the confidence mechanism
is considered, RST is a better choice than RST-R since
the latter does not offer any performance advantages (but
adds complexity). However, there is still much potential for
memory reuse even when the confidence mechanism is in-
cluded, as demonstrated by RST-M.

6. Conclusion

This paper explored the potential of adding value pre-
diction and memory reuse to instruction trace reuse in
deeply pipelined superscalar processors with a new tech-
nique called Reuse through Speculation on Traces (RST).
The paper showed that adding speculation to trace reuse im-
proves the amount of reuse and overall performance. It also
demonstrated that including memory operations as part of
reused traces offers further performance for some bench-
marks. We also evaluated the impact of constraining specu-
lative trace reuse with small hardware structures, including
the size of the input and output contexts and memoization
tables, and limited memory reuse. In particular, our study
showed that:

� Adding speculation to trace reuse can improve perfor-
mance by harmonic mean of approximately 1.7 times
over non-speculative trace reuse,

� Including memory operations in the reuse domain with
speculation can improve performance by a harmonic
mean of 1.85 times,

� 4 input and output registers and 3 load and store con-
texts are enough for most traces,

� Reuse tables with 512 to 4K entries had good perfor-
mance and where competitive with much larger tables,

� Confidence levels of 90% to 99% are needed to avoid
over-speculating input values.

From this study, we believe that Reuse through Specu-
lation on Traces has much performance potential and our
current work is focusing on integrating and developing
the hardware structures required for a complexity-effective
RST architecture.
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