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Although optimizations have been applied for a number of years to improve the performance of

software, problems with respect to the application of optimizations have not been adequately ad-

dressed. For example, in certain circumstances, optimizations may degrade performance. However,

there is no efficient way to know when a degradation will occur. In this research, we investigate

the profitability of optimizations, which is useful for determining the benefit of applying optimiza-

tions. We develop a framework that enables us to predict profitability using analytic models. The

profitability of an optimization depends on code context, the particular optimization, and machine

resources. Thus, our framework has analytic models for each of these components. As part of the

framework, there is also a profitability engine that uses models to predict the profit. In this paper,

we target scalar optimizations and, in particular, describe the models for partial redundancy elim-

ination (PRE), loop invariant code motion (LICM), and value numbering (VN). We implemented

the framework for predicting the profitability of these optimizations. Based on the predictions, we

can selectively apply profitable optimizations. We compared the profit-driven approach with an

approach that uses a heuristic in deciding when optimizations should be applied. Our experiments

demonstrate that the profitability of scalar optimizations can be accurately predicted by using mod-

els. That is, without actually applying a scalar optimization, we can determine if an optimization

is beneficial and should be applied.

Categories and Subject Descriptors: D3.4 [Programming Languages]: Processors—Compiler;
Optimization

General Terms: Performance, Design and Experimentation

Additional Key Words and Phrases: Profitability, prediction, profit-driven

1. INTRODUCTION

Optimizations, introduced in the late 1950s, have become essential components
of compilers. Although concentrated research efforts have been devoted to the
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development of particular optimizations, certain problems with respect to the
application of optimizations have yet to be adequately addressed. First, it is rec-
ognized that optimizations may degrade performance in certain circumstances
[Briggs and Cooper 1994; Zhao et al. 2003]. So far, we have no efficient way of de-
termining the impact of optimizations and choosing not to apply optimizations
to avoid performance degradation. Second, we also know that optimizations en-
able and disable other optimizations, so the order of applying optimizations can
have an impact on performance (i.e., phase-ordering problem) [Whitfield and
Soffa 1997; Triantafyllis et al. 2003; Almagor et al. 2004; Kulkarni et al. 2004].
However, typically, compilers apply optimizations in a predetermined order.
The choice of the order is guided by a compiler writer’s expertise and used
for all programs. Because of these problems, compilers are not achieving the
maximum benefits from applying optimizations.

A number of events are occurring that demand systematic solutions to these
problems. Because of the continued growth of embedded systems and the crit-
ical importance of time-to-market in this domain, there is an energetic move-
ment to write embedded software in high-level languages. The use of high-level
languages in this area requires a high-quality optimizing compiler that can in-
telligently apply optimizations to achieve the best performance improvement.
Another activity that has brought optimization problems to the forefront is the
trend toward dynamic optimization. To be effective, dynamic optimization re-
quires a good understanding of the benefit and cost of applying optimizations.
Currently, it is unclear when and where to apply optimizations dynamically
and how aggressive optimizations can and still be profitable after factoring in
the cost of applying optimizations.

Traditionally, heuristics have been used to address some of the problems of
applying optimizations. In general, heuristics can work well. However, heuris-
tics tend to be ad hoc and focus specifically on a single or a small class of
optimizations. Heuristics also require tuning parameters to select appropriate
threshold values. The success of a heuristic can depend on these values and the
best choice can vary for different optimizations and code contexts.

To systematically tackle these problems, we need to better understand the
profitability of optimizations. An experimental approach has been used in pre-
vious research to address the profitability [Cooper et al. 2001; Kisuki et al.
2000; Almagor et al. 2004; Kulkarni et al. 2004; Chen et al. 2005]. That is, the
profitability is evaluated by actually applying optimizations and executing the
optimized code. Based on the evaluations, the order and the configuration (e.g.,
tile size for loop tiling) to apply optimizations are determined.

Because of the high cost of applying optimizations and executing the op-
timized code, our research focuses on determining the profitability of opti-
mizations through analytic models. In this paper, we present a framework of
analytic models for predicting the profitability of scalar optimizations. In par-
ticular, we address the specific problems of how scalar optimizations impact
registers, computation (i.e., functional units), and overall performance. Opti-
mization profitability depends on code context, particular optimizations and
machine resources, all of which need to be modeled. As part of the framework,
there is a profitability engine that uses the models to predict the profitability
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of applying an optimization at any code point where the optimization is
applicable.

We have developed models for a number of scalar optimizations, including
copy propagation, constant propagation, dead code elimination, partial redun-
dancy elimination (PRE), loop invariant code motion (LICM), and value num-
bering (VN). In this paper, we focus on the models for PRE, LICM, and VN.
Models for the other optimizations are useful when considering the impact of
an optimization sequence, which is beyond the scope of this paper. We imple-
mented the models and the profitability engine, which are used to predict the
profitability of PRE, LICM, and VN. Based on the prediction, we either apply
the optimization or not. We compare our profit-driven PRE and LICM with a
heuristic-driven approach that considers the register pressure when applying
an optimization. We also compare profit-driven PRE, LICM, and VN with an ap-
proach that always applies the optimization if it is safe (i.e., applicable). Exper-
imental results demonstrate that our model-based framework can accurately
predict the profitability of scalar optimizations with reasonable overhead. That
is, without actually applying a scalar optimization, we can predict whether it
is beneficial and then selectively apply it.

The contributions of this paper include:

� Analytic models for code, optimizations, and machine resources;
� A framework that uses models to predict the profitability of scalar optimiza-

tions;
� An implementation of the framework and an experimental evaluation demon-

strating that the model-based approach for predicting the profitability of
scalar optimizations is effective and efficient.

In Section 2, we show the conceptual structure of our model-based profitabil-
ity framework. A framework instance to determine the impact of PRE, LICM,
and VN on registers and computation is described in Section 3. Experimental
results are presented in Section 4, followed by related work and future work.
Section 7 concludes the paper.

2. PROFITABILITY FRAMEWORK

To determine the profitability of an optimization, we require models that are
useful for predicting the impact of the optimization on performance (i.e., exe-
cution time). Performance is generally affected by registers, computation, and
other resources (e.g., cache). Thus, we need to determine the profit of an opti-
mization for each resource and then combine the profits. Importantly, to deter-
mine profitability, we do not require exact profit numbers but numbers accurate
enough that the right decision as to when and what optimizations to apply can
be made.

Our framework, given in Figure 1, has three types of analytic models (code,
optimization, and resource models) and a profitability engine that processes
the models and computes the profit. The models are plug-and-play components.
When new models for the code, optimizations, or machine resources are needed,
they can be developed and easily added into the framework.
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Fig. 1. A model-based framework for predicting the profitability.

2.1 Code Models

The code model expresses those characteristics of the code segment that are
changed by an optimization and impact a machine resource. In our framework,
there is a code model for each machine resource. For example, there is a reg-
ister code model to express live range information, because live ranges can be
changed by an optimization and impact the registers. There is also a computa-
tion code model to specify the frequency of the occurrence for operations. In some
cases where optimizations (e.g., loop optimizations) have a significant impact
on cache, a code model for cache is also needed to specify the array reference se-
quence [Zhao et al. 2005a]. In this paper, we focus on scalar optimizations, which
have negligible effect on cache (i.e., loop behavior dominates cache performance
[McKinley et al. 1996]) and we consider only registers and computation.

The code models are extracted from the low-level intermediate representa-
tion of the program. When safe conditions for applying an optimization are
detected, the code models are automatically generated by the optimizer. Note,
in this work, we assume that data flow information is available to determine if
an optimization is legal. If legal, we then apply profitability analysis. However,
we could also do the reverse: we could determine the hot regions of the code and
the profitability of an optimization in a region and, if the transformation is prof-
itable, use data-flow analysis (in particular, demand-driven data flow analysis
[Duesterwald et al. 1997]) to determine if the optimization is legal.

2.2 Optimization Models

Optimization models are written by the compiler engineer when developing a
new optimization. An optimization model expresses the semantics (i.e., effect)
of an optimization, from which the impact of the optimization on each resource
can be determined. For example, the PRE optimization model describes the
semantics of PRE, from which we can infer how PRE changes the code models
under consideration.

The effect of an optimization is determined from the code changes that the
optimization introduces. Optimizations can cause nonstructural and structural

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 3, September 2006.



An Approach Toward Profit-Driven Optimization • 235

code changes, which can be expressed by editing changes on a control flow
graph. These edits are Insert/Delete a statement (including its operation and
operators), Insert/Delete a block, and Insert/Delete an edge. All optimization
code changes can be expressed in terms of these edits [Bivens and Soffa et al.
1990]. Thus, the code changes of a particular optimization can be described as
a series of basic edits. For example, constant propagation can be represented
as “Delete variable v at statement P ; insert constant c at statement P .”

To determine the impact of an optimization on registers, an optimization
model for the register allocator must be developed (shown as “RA” in Figure
1). The characteristics of the register allocator that need to be modeled are
whether the allocator is local or global and how it spills the live ranges (i.e., the
number of additional loads and stores that are inserted into the code). A model
for the register allocator can be constructed that approximates a particular
register allocation scheme, say graph coloring [Chaiten 1982] or linear scan
[Poletto and Sarkar 1989]. In this work, we are interested in the impact of
other optimizations on registers rather than the impact of a particular register
allocation scheme. Hence, we only need a representative register allocation
model, such as one for coloring.

2.3 Resource Models

The framework has a model for each machine resource, which describes the
resource configuration and benefit/cost information in using the resource. A
resource model is developed based on a particular platform. For example, to de-
termine the register profit, we need to know the number of available hardware
registers and the cost of memory accesses (loads and stores). When consider-
ing computation, the computational operations available in the architecture
and their execution latencies are needed. Since we do not consider instruction
scheduling, the profit deduced using the computational resource model is an
approximation, as is true for most of the resource models.

2.4 Profitability Engine

The models in the framework are descriptive and provide the information
needed to compute profitability. The other important component of our frame-
work is the profitability engine. When conditions for an optimization are de-
tected, the code, the optimization, and the resource models are input into the
profitability engine. The engine uses the information in the models to compute
the profit of an optimization at a program point. The profit can be computed
for one resource or for combined resources. From an optimization model, the
engine determines the code model changes caused by the application of the
optimization. It then applies these changes to the code model and generates a
new code model that represents the effect of the optimization. Finally, it uses
the resource model to determine the impact of the changes on the resource. The
profit engine can also use profile information (e.g., the basic block frequencies)
in computing the profits.

For example, assume the impact of an optimization on registers is desired.
The engine inputs the register code model, an optimization model, a register
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Fig. 2. An example of PRE impacting registers.

allocation model, and a register resource model. It then determines the changes
on the live ranges (i.e., the register code model) based on the optimization model.
Since an optimization model expresses the semantics of the optimizations as
basic edits, the engine takes the edits and computes the changes on the live
ranges using an incremental data-flow algorithm [Pollock and Soffa 1989]. The
profitability engine then uses a register allocation model to determine how
the spills (i.e., loads and stores) are changed according to these live range
changes. Finally, the engine computes the profit associated with the change
in the spills.

Using our framework, the optimizer can perform profit-driven scalar opti-
mization. Once it is known that an optimization (i.e., a single instance of an
optimization) is applicable, the optimizer generates the code models involved in
the optimization and triggers the profitability engine to predict the profit of the
optimization. When the engine is triggered, it takes the code models, optimiza-
tion models, and resources models, updates the code models and determines
the profit on resources under consideration (i.e., registers and computation for
scalar optimizations). Based on whether there is a benefit or not, the optimizer
applies the optimization accordingly.

3. FRAMEWORK INSTANCE

In this section, we describe an instance of our framework for predicting the
profitability of PRE, LICM, and VN. The impact of PRE, LICM, and VN on
computation is clear: they insert or delete operations at some program points.
Their impact on registers is more complicated and depends on the code context.
Sometimes they may introduce register spills, while in other cases they may
decrease the number of spills.

In Figure 2, we show an example where PRE increases register pressure
by introducing one more spill. The PRE algorithm is lazy code motion, which
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inserts the computation as late as possible [Knoop et al. 1992]. In the figure,
PRE moves the use of a and b at statement 10 up in the code. Because aand
b are used after statement 10, their live ranges remain the same. PRE also
introduces a new live range for the temporary variable, v. Thus, if there are
seven hardware registers, the inserted live range will cause a spill to memory.
However, if a and b were not used after statement 10, their live ranges would
be shortened. In that case, the total number of live ranges would be decreased
by one, leading to fewer spills.

3.1 Code Models for Registers and Computation

The register code model represents the code as live ranges of global and local
variables (including temporaries and parameters). We represent a live range by
LRx

[n,...,m], where x is a variable name and [n , . . . , m] is the range of statements
over which x is defined and referenced. The live range of a variable is not
necessarily contiguous. For example, in Figure 2 after PRE, the live range of
v consists of two parts and can be expressed as LRv

[3..4, 6′..10], where [6’..10] is a
shorthand to represent a contiguous range. When a variable v is defined outside
a loop at n and used inside the loop at m, we still use [n , . . . , m] to represent
its live range for the simplicity of the notation. However v’s live range includes
the whole loop.

The computation code model represents the frequency of occurrence for each
operation in the code. For an operation op, its frequency is represented as a
sequence

〈
f B1, f B2, . . . , f Bn

〉op
, where fBi is the number of op in block Bi and

opappears in blocks B1, B2, . . . ,Bn.

3.2 Optimization Models

An optimization model expresses the semantics (i.e., code changes) of the op-
timization as a series of basic edits. We represent a basic edit by its action
and code location. For example, we represent “insert a statement x ← a + b at
code location S” by “Insert < DEF x USE a, b OP add > @S.” In some cases,
only a part of a statement is involved in a basic edit. For example, to replace
the statement “x ← a + b” at code location S with the statement “x ⇓ v,”
only the use variables and the operations are involved in the replacement. We
represent the replacement by: “Delete < USE a, b OP add > @S;” “Insert <

USE v OP copy > @S.”
Next, we describe the optimization models for PRE, LICM, VN, and register

allocation.

3.2.1 PRE Optimization Model. PRE inserts and deletes computations in
the flow graph so that after PRE each path contains no more occurrences of the
computation than before. The PRE algorithm that we model is lazy code motion
(LCM), which takes register pressure into account by hoisting an expression no
earlier than necessary [Knoop et al. 1992]. Although LCM considers register
pressure, there are still cases where PRE introduces more register spills (as
shown in Figure 2).
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Fig. 3. PRE optimization model.

PRE has three semantic actions that create code changes:

� Insert a statement: inserts the redundant expression EXP and introduces a
temporary v to hold the result at a destination code location;

� Replace the computation: replace EXP with a copy from the temporary v at
the source code position; and

� Update the same expressions (that have the same operation and operands
as EXP): replace each same expression’s destination with the temporary and
insert a copy statement following it.

The PRE optimization model showing these code changes is given in Figure 3.
A code movement or replacement can be expressed as a deletion of the statement
at the source location and an insertion of a statement at the destination location.
For clarity, we use Ss to represent the source location and Sd for the destination
location.

In the figure, an assignment from the expression EXP to a temporary v is
inserted at a destination code location after Sd . That is, the variables of EXP
are inserted as uses and the temporary v is inserted as the definition with the
operation op at S′

d , where S′
d = Sd + 1. We use S′ to represent the new code

location. At the source code location Ss, the expression EXP is deleted and a copy
from the temporary v is inserted. The definition variable is unchanged. Finally,
for each expression T that has the same computation at the code location Sw,
the destination w is replaced by the temporary v and a copy from v to w is
inserted at the new location S′

w.
After PRE, the temporary v can be propagated and copy statements can be

deleted by applying copy propagation, which is modeled by a separate optimiza-
tion model for copy propagation.

3.2.2 LICM Optimization Model. LICM moves a statement from a loop
body to the outside of the loop. There are certain conditions that must be met
to safely apply LICM. An example is shown in Figure 4, where the invariant
statement “a ← b+ 1” is moved out of the loop body, because each of its operands
is either defined outside of the loop or a constant.
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Fig. 4. An example of LICM.

Fig. 5. LICM optimization model.

The semantic action of LICM is simply a code movement. The optimization
model for LICM is shown in Figure 5. At the destination code location (i.e.,
the loop preheader), an invariant statement can be inserted and at the source
location (i.e., inside the loop), the invariant statement is deleted.

3.2.3 VN Optimization Model. VN tries to find and remove redundant ex-
pressions that are equivalent based on their values (unlike PRE which considers
the lexically equivalent expressions). It assigns an identifying number to each
expression in a particular way and then uses the number to find and remove
redundant computations.

We model dominator-based VN, which is a global technique that uses hashing
to discover redundant computations and to fold constants [Briggs et al. 1997].
It works on Static Single Assignment (SSA) intermediate code. An example of
VN is shown in Figure 6. Because the expression “d0 + c0” at statement 4 has
the same value number as “a0 + c0” at statement 2, it is redundant and can be
replaced by the destination of “a0 + c0”. Thus, statement 4 is replaced by a copy
from b0 to e0.

VN has three actions for a basic block: (1) it removes redundant or
meaningless�-instructions (�-instruction is a pseudo-assignment that intro-
duces a new definition point at the merge point in the control-flow graph
[Briggs et al. 1998]); (2) it simplifies computation (constant folding) or removes
the redundant computation; and (3) it adjusts the inputs of �-instructions in
successor blocks. When converting SSA to non-SSA intermediate code, some

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 3, September 2006.



240 • M. Zhao et al.

Fig. 6. An example of VN.

�-instructions should be replaced by copy instructions in predecessor blocks.
Because the inputs of the�-instructions have been adjusted, they do not show
where they were originally defined (i.e., where the copy should be inserted).
A general algorithm can be used to replace the �-instructions with copy in-
structions [Briggs et al. 1998] and to accurately predict the impact of VN, the
replacement algorithm should be modeled.

A simplification is to incrementally add the copy statements as VN pro-
gresses. In our VN implementation, we replace the redundant computations
with copy statements (instead of removing them) and retain the inputs of �-
instructions when processing each basic block. We then use �-instructions to
keep the useful copy statements and remove the useless ones. In this way, no
copy statements will be inserted when converting SSA to non-SSA code.

The VN optimization model describes the code changes from VN. The model
is given in Figure 7. In the figure, VN[x] is the value number of x, where x
can be a variable, an expression, or a �-instruction. Each value number is a
variable name. For an expression, its value number is the variable name of the
first occurrence of the expression in this path in the dominator tree.

In Figure 7, if an expression EXP ( y op z) at Ss is redundant, it is replaced
by a copy from its value number v. That is, the variables of EXP are deleted as
uses with the operation op at Ss. The expression’s value number v is inserted
as a use with the operation copy at Ss. All uses of the defined variable x are also
replaced by v. In the example shown in Figure 6, at statement 4, the redundant
expression d0 + c0 is deleted and a copy from its value number b0 is inserted.
At statement 5, the definition variable e0is used and is replaced by b0.

In our VN algorithm, we also find statements for constant folding. The sec-
ond rule in Figure 7 shows if an expression EXP ( yop z) at Ss can be simplified
by constant folding, EXP is deleted. The third rule shows if a redundant �-
instruction is deleted, all the uses of the defined variable x are also replaced
by the value number v. Thus, at the statement Su where the defined vari-
able x is used, x is deleted as a use and v is inserted as a use. The last rule
models the deletion of a useless copy statement, which is inserted in the re-
placing the computation step. Here, the variable y is deleted as a use and
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Fig. 7. VN optimization model.

the defined variable x is deleted as a definition with the operation copy at the
location Ss.

3.2.4 Register Allocation Optimization Model. To determine the impact of
scalar optimizations on registers, we also need a model for register allocation.
By applying register allocation, hardware registers are assigned to live ranges.
If the number of hardware registers is not enough, the register allocator selects
live ranges to spill to memory, which impact the overall performance. Thus, to
predict the impact of optimizations, we need to compute spills for the original
live ranges and the live ranges changed by the optimization and compare them.
This is a time-consuming process. Instead, we use an incremental approach
that computes how spills are changed because of to each live range change. Our
register allocation model reflects this incremental approach.

We model a global graph coloring register allocator. Figure 8 shows the reg-
ister allocation optimization model. For each changed live range LRc

[n,...,m], we
determine how spills are changed. If LRc

[n,...,m]is inserted or lengthened, it may
introduce one more spill. Within the range [n , . . . , m], if the insertion of a new
live range causes the number of live ranges to exceed the number of available
hardware registers (HR), we select a live range to spill to memory, which in-
troduces more loads and stores. We use LRall

[n,...,m]to represent the live ranges in
[n, . . . , m]. To select a live range to spill, we choose the one that has the least
number of uses and definitions within the range, under the assumption that
the register allocator typically performs well. Thus, we need to represent all
variables’ uses and definitions within the range. Suppose, LRs

[n,...,m]is selected
to be spilled. If there is no definition of s before a use of s or there is no use
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Fig. 8. Register allocation optimization model.

of s within the range [n , . . . , m], a store or load is inserted at the boundary
of [n , . . . , m]. If the boundary of [n , . . . , m] is within a loop, a store or load is
inserted outside the loop. Otherwise, at all the uses or definitions of swithin
[n , . . . , m], a load or store will be inserted. Alternatively, if LRc

[n,...,m] is deleted
or shortened, it may decrease one spill. This register allocation model is input
to the profitability engine (see the next section) to predict the impact of the
other optimizations on registers.

3.3 Profitability Engine

The profitability engine inputs the code models, optimization models, resource
models, and profiles. It then determines the changes on the code models (for both
registers and computation) and generates the optimized code models. Finally,
it computes the profit on registers and computation.

From an optimization model, the profitability engine determines how the
optimization changes the register code model with an incremental data-flow
algorithm [Pollock and Soffa 1989]. Table I shows how to incrementally com-
pute the new register code model (i.e., live ranges) for each edit given by the
optimization model. In this table, post-s means the point immediately after
statement s. We use n to represent a statement where there is a definition of
the variable v and use mto represent a statement where there is a use of the
variable v. For example, the effect on the live ranges from inserting a use of v
(1st row of the table) depends on the current code. If v is already live at post-s,
there is no change. Otherwise, the original live range LRv

[n,...,m], is lengthened.
If the inserted use at statement s is the last use (i.e., s postdominates other
uses), the new live range for v becomes LRv

[n,...,s]. Otherwise, the new live range
consists of the original live range and a range to the use statement s. This range
is represented as LRv

[n,...,m,...,s].
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Table I. Incremental Computation of the New Register Code Model

Code Change Incrementally Compute the New Register Code Model

Insert a use of variable v
at statement s

IF v is live at post-s THEN no change;

ELSE /* lengthen v’s live range*/
The original live range LR v

[n,...,m] changes to

LR v
[n,...,m] ∪ [n,...,s]

=
{

LR v
[n,...,s] s postdominate other uses

LR v
[n,...,m,...,s] otherwise

Insert a definition of

variable v at statement s
IF v is not live at post-s THEN no change;

ELSE /* shorten v’s live range*/

The original live range LR v
[n,...,m] changes to LR v

[n,...,m]∩[s,...,m]
={

LR v
[s,...,m] s postdominate other definition

LR v
[n,...,s,...,m] otherwise

Delete a use of variable v
at statement s

IF v is live at post-s and v is not only use in a loop THEN no change;

ELSE /* shorten v’s live range*/

The original live range LR v
[n,...,s] changes to

LR v
[n,...,s]∩[n,...] =

{
LR v

[n,...,m] m postdominate other uses

LR v
[n,...,m,...,] otherwise

Delete a definition of

variable v at statement s
IF v is not live at post-s THEN no change;

ELSE /* lengthen v’s live range*/

The original live range LR v
[s,...,m] changes to

LR v
[s,...m]∪[...,m]

=
{

LR v
[n,...,m] n postdominate other definition

LR v
[...,n,...,m] otherwise

Delete an edge from block

Bs to bloc Bd

Delete all uses of any variable that is live at the beginning of Bd
from the Bs and all predecessors of Bs where the variable is no

longer live by any path.

Insert an edge from block

Bs to bloc Bd

Insert all uses of any variable that is live at the beginning of Bd to

the Bs and all predecessors of Bs.

Table II. Updates of the Computation Code Model

Code Change Update the Computation Code Model

Insert an operation op at

block Bs

The original operation list
〈
fB1, fB2, . . . , fBs, . . . , fBn

〉op

changes to
〈
fB1, fB2, . . . , fBs + 1, . . . , fBn

〉op

Delete an operation op at

block Bs

The original operation list
〈
fB1, fB2, . . . , fBs, . . . , fBn

〉op

changes to
〈
fB1, fB2, . . . , fBs − 1, . . . , fBn

〉op

The profitability engine also infers how an optimization changes the compu-
tation code model. As shown in Table II, the code changes from an optimization
that can be classified as either inserting or deleting an operation. If an oper-
ation op is inserted at a block Bs, the number of op in block Bs(i.e., f Bs) is
increased by one. If an operation op is deleted at a block Bs, f Bsis decreased by
one. Thus, the profitability engine can determine the impact of an optimization
on the computation.

For example, the impact of PRE on computation can be determined by the
profitability engine, as shown in Figure 9. To insert a statement, the operation
op is inserted at block Bd (the destination code location Sd is in block Bd ). To
replace the computation, the operation op is deleted at block Bs and a copy is
inserted at block Bs (the source location Ss is in block Bs). Finally, to update
the same expression T at the code location Sw, a copy is inserted in block Bw,
where Sw is in block Bw.
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Fig. 9. Impact of PRE on computation code model.

After determining the changes on the code models, the profitability engine
generates the optimized code model and computes the profit for the resource
under consideration. For example, to compute the profit for registers, the engine
computes the benefit/cost in terms of spills (i.e., loads and stores) based on
the register allocation model. That is, for each live range change, the engine
determines the impacted region and compares the total number of live ranges
with the available hardware registers. If the total number of live ranges is
larger, inserting a live range will introduce one more spill. To select a live
range to spill to memory, the engine records the uses and definitions of all
variables in the region and chooses the one that has the least number of uses
and definitions. The benefit/cost associated with the spill is the profit of the
optimization on registers.

To compute the profit of an optimization on overall performance Ptotal, the
profitability engine needs to combine the effects of the optimization on registers,
Rtotal and computation, Ctotal. To compute Rtotal, the profitability engine sums
the register profit associated with every step in the optimization model. Simi-
larly, to compute Ctotal, the profitability engine sums the computation profit for
every step. Table III shows how to compute Rtotal and Ctotal for PRE, LICM, and
VN. For example, to compute the profit of eliminating a redundant expression in
VN (3rd row in Table III), the engine needs to compute the register profit, which
includes the register profit of replacing the computation Rreplacecomp and updat-
ing of the uses of the defined variable Rreplaceuse. Further, Rreplacecomp is computed
by deleting a use, Rdeleteuse(EXP, Ss) and inserting a use, Rinsertuse(v, Ss). The en-
gine also needs to compute the computation profit of replacing the computation
Creplacecomp (i.e., removing the computation and inserting a copy). However, the
inserted copy statement may be deleted later as a useless statement if it is not
an argument of a �-instruction. The engine should also consider the deletion.
Thus, the engine multiplies Rinsertuse(v, Ss) and Cinsert(copy , Bs) by a factor of α.
α is a number between zero and one and can be determined by profiling.

To combine the profits for registers and computation, they must have the
same metric. If the computation profit considers the frequency of a node, the
register profit also needs to consider the execution frequency of the loads or
stores.
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Table III. Computation of Profitability for Registers (Rtotal ) and Computation (Ctotal )

Optimization Compute the Profit on Registers and Computation

PRE: eliminate a redundant

expression
Rtotal = Rinsertstat + Rreplacecomp + Rupdate exp

= Rinsertuse(EXP, Sd ) + Rinsertdef(v, Sd )

+Rdeleteuse(EXP, Ss) + Rinsertuse(v, Ss)

+
∑
w

(Rdeletedef(w, Sw) + Rinsertdef(v, Sw)

+Rinsertdef(w, Sw + 1) + Rinsertuse(v, Sw + 1))

Ctotal = Cinsertstat + Creplacecomp + Cupdate exp

= Cinsert(op, Bd )

+ Cdelete(op, Bs) + Cinsert(copy, Bs)

+
∑
w

Cinsert(copy, Bw)

LICM: move an invariant statement Rtotal = Rinsertstat + Rdeletestat

= Rinsertuse(EXP, Sd ) + Rinsertdef(x, Sd )

+Rdeleteuse(EXP, Ss) + Rdeletedef(x, Ss)

Ctotal = Cinsertstat + Cdeletestat

= Cinsert(op, Bd ) + Cdelete(op, Bs)

VN: eliminate a redundant expression Rtotal = Rreplacecomp + Rreplaceuse

= Rdeleteuse(EXP, Ss) + α × Rinsertuse(v, Ss)

+
∑

u
(Rdeleteuse(x, Su) + Rinsertuse(v, Su))

Ctotal = Creplacecomp + Creplaceuse

= Cdelete(op, Bs) + α × Cinsert(copy, Bs)

VN: fold constant a statement Rtotal = Rdeletecomp

= Rdeleteuse(EXP, Ss)

Ctotal = Cdeletecomp

= Cdelete(op, Bs)

3.4 An Example of Selectively Applying VN

To illustrate how our framework works, we show an example of profit-driven
VN applied to a code segment, shown in Figure 10a. Figure 10b gives the cor-
responding register code model, where all the live ranges are expressed.

VN processes each block in the dominator tree. The first block processed will
be B1. Since none of the expressions in B1are in the hash table, the value num-
ber of the defined variables and the expressions will be the defined variables
themselves. For example, VN[u0] is u0 and VN[a0+b0] is u0.

The next block processed is B2. Since the expression c0 + d0 is defined in block
B1, the first redundant expression, x0 ← c0 + d0, is found. The optimizer calls
the profitability engine to predict the profit of eliminating this redundancy. The
profitability engine computes the profit on both registers and computation. To
predict the profit on registers, the engine first takes the register code model
(shown in Figure 10b) and the VN optimization model. The engine generates
the optimized code model using the incremental data-flow algorithm (shown
in Table I). In this case, c0 and d0 are deleted as uses. Because c0 and d0 are
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Fig. 10. An example of profit-driven VN.
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live after statement 4, there is no change on the register code model for the
deletions. Also, v0 is inserted as a use. Thus, the live range of v0 is lengthened
from LRv0

[2]to LRv0

[2..4]. Figure 10d shows the updated register code model after
replacing this redundancy.

Using the register allocation optimization model, the engine determines how
the spills changed based on the live range updates. For this example, there is
no spill change from deleting c0 and d0. However, inserting v0 will increase
the spills by one if the number of hardware registers is less than 8. Indeed,
the number of live ranges at statement 3 changes from 7 to 8. Choosing which
variable to spill depends on the register allocator’s spill strategy. In our regis-
ter allocation model, we pick the one that has the fewest number of uses and
definitions, which is u0. This introduces a store before statement 2 and a load
after statement 4. The cost associated with the inserted load and store is the
profit on registers as predicted by the engine.

The profit on computation is more easily predicted, which includes the ben-
efit of removing an add statement and the cost to insert a copy statement. To
compute the overall profit, the profitability engine uses the functions described
in the previous section. If the overall profit is positive, redundancy elimination
is applied. Otherwise, it is not applied.

There are six redundant expressions that can be eliminated in this example.
For every redundant expression, the profitability engine is triggered to predict
the profit of applying the redundancy elimination. Figure 10e shows the code
after VN (assuming all six redundant expressions are profitable). The register
code model after VN is shown in Figure 10f, where all the live ranges are
changed except for LR z0

[12].

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness and usefulness of our framework, we implemented
our models and the profitability engine for copy propagation, constant propa-
gation, dead-code elimination, PRE, LICM, and VN. We integrated our models
into the Mach SUIF compiler [Smith and Holloway]. For the implementation, we
used the dead-code elimination pass from Mach SUIF, extended the PRE pass
from Rolaz, and implemented copy propagation, constant propagation, LICM,
and VN. We compared the performance and compile-time of profit-driven PRE
and LICM with always applying PRE and LICM and a heuristic-driven PRE and
LICM. Because the heuristic used for PRE and LICM is not useful for VN, we
compared profit-driven VN only with always applying VN.

For the experiments, we used several SPEC2K benchmarks (gzip, vpr, mcf,
parser, vortex, andtwolf) and Mibench benchmarks (bitcount, dijkstra, fft, jpeg
and sha). We run our experiments on a Pentium III 1.4G machine, with 512 MB
of memory and an AMD Athlon MP 1800 1.4 GHz machine, running RedHat
Linux. The experimental results show the same trend for both machines. For
brevity, we only report the results on the Pentium III machine. Complete results
can be found in [Zhao et al. 2005b]. We performed node profiling on the train-
ing data sets with the HALT library (included in Mach SUIF) to get the basic
block frequency counts used in the profitability engine. In all experiments, each
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Fig. 11. Improvement of heuristic-driven PRE with different limits.

benchmark was run three times on a lightly loaded machine and the average
execution time was computed to factor out system effects.

4.1 Heuristic-Driven Approach

Always applying an applicable optimization can sometimes lead to a perfor-
mance degradation. Such a simple heuristic of “always applying” is not suffi-
cient in making decisions about when to apply an optimization. Previous work
has focused on developing heuristics to decide when to apply optimizations, such
as register pressure-sensitive redundancy elimination, which sets upper limits
on allowable register pressure and performs redundancy elimination within
these limits [Gupta and Bodik 1999]. We implemented a similar heuristic. We
set the upper limit on allowable live ranges at the places where the redundant
expressions will be moved. Redundancy elimination is performed only when the
number of live ranges is within the limit. In VN, we eliminate full redundancies
and there is no code movement. Thus, the heuristic described here is not useful
for VN. In this section, we show the experimental results for heuristic-driven
PRE and LICM.

One problem with a heuristic-driven approach is how to select a limit that can
achieve good performance across all the benchmarks. Our experiments show
that different benchmarks need different limits to achieve the best performance.
Figures 11 and 12 show the runtime performance improvement of heuristic-
driven PRE and LICM over the baseline. The baseline compiler applies register
allocation and simple instruction scheduling. To enable more opportunities for
PRE and LICM, we also apply copy propagation, constant propagation, and
dead-code elimination before applying PRE and LICM. We varied the limit on
register pressure from zero to sixteen. For PRE, if the limit is zero, only full
redundancies are eliminated. In practice, the limits are usually chosen to be
the number of available hardware registers. Hence, eight may be a good limit
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Fig. 12. Improvement of heuristic-driven LICM with different limits.

because there are eight hardware registers that can be allocated for a byte-type
variable on x86. Four and sixteen are used to examine stricter or looser limits.

From the figures, we can see that different benchmarks need different limits
to perform the best. For example, for PRE, gzip can achieve an improvement of
5.25% when the limit is set to sixteen, while mcf needs the limit set to zero to
achieve the best improvement of 3.01%. Also, some benchmarks are sensitive
to the limit (e.g., bitcount), while others are not (e.g., mcf). Further, we see that
different optimizations may need different limits for the same benchmarks. For
example, gzip needs the limit set to sixteen for PRE, but needs the limit set to
four for LICM. If we fix the limit, then we can not always achieve the best
improvement with a heuristic.

4.2 Performance Benefit of Profit-Driven PRE, LICM, and VN

Using our model-based framework, we can determine the profitability of an
optimization and selectively apply it. The cases where optimizations degrade
performance can be avoided. In this section, we first compare profit-driven PRE
and LICM with always applying PRE and LICM and the heuristic-driven PRE
and LICM. We then compare profit-driven VN and always applying VN.

Figures 13 and 14 show the comparisons of several PRE approaches, in terms
of the improvement in the dynamic number of memory accesses and run-time
performance over the baseline. We also compared the improvement in dynamic
instruction count for the different approaches. It shows the same trend as the
run-time performance improvement. Thus, we omit the results for brevity (see
[Zhao et al. 2005b] for all the results). In the figures, A-PRE is the improve-
ment of always applying PRE when it is applicable. Heuristic-driven PRE is
described as above and has two versions based on the register pressure al-
lowed. Best-heuristic is the best case among the limits for each benchmark,
while Heuristic-8 uses a fixed limit of eight. Lastly, P-PRE is the performance
benefit of profit-driven PRE. Figure 15 and 16 show the comparisons with the
same configurations except for LICM.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 3, September 2006.



250 • M. Zhao et al.

Fig. 13. Memory access improvement for PRE.

Fig. 14. Run-time performance improvement for PRE.

Fig. 15. Memory access improvement for LICM.
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Fig. 16. Run-time performance improvement for LICM.

As Figure 13 shows, the problem with always applying PRE when it is ap-
plicable is that it may increase register pressure and incur more spills. In most
cases, A-PRE increases the number of memory accesses. For example, in vpr,
A-PRE increases the memory accesses by 5.11%. Both the heuristic approach
and P-PRE can avoid the unprofitable instances of PRE, thus decreasing the
memory accesses. However, P-PRE considers the registers in a more accurate
way (as demonstrated by the prediction accuracy in Section 4.4). It improves
the memory access count more than the heuristic approach. For example, in
gzip, the best-heuristic increases the memory access by 1.1%, while P-PRE de-
creases the memory accesses by 0.82%. Because of the mispredictions, P-PRE
increases the memory accesses more than the heuristic approach for mcf and
bzip2.

Figure 14 shows the run-time performance improvement for different PRE
approaches over the baseline. Both H-PRE and P-PRE achieve performance
benefits over always applying PRE. However, the choice of the limits in
heuristic-PRE (H-PRE) is very important (as described in Section 4.1). For ex-
ample, in vortex, when the limit is set to four, H-PRE improves performance by
5.61%. While when the limit is eight, H-PRE improves performance by 4.89%.
P-PRE considers both register pressure and computation to predict the prof-
itability of PRE. Thus, in the case where P-PRE increases memory accesses
more than H-PRE (mcf), P-PRE still improves the overall run-time performance.
P-PRE consistently performs as good as or better than the best-heuristic for
PRE, except for bzip2, where predictions are sometimes incorrect. In the cases
where P-PRE decreases the number of memory accesses, it improves the run-
time performance more (e.g., gzip, twolf, and jpeg). That is, the performance
benefit comes from the careful consideration of register pressure. On a register
limited machine, like x86, it is particularly important to consider the register
pressure as these results indicate.

Figures 15 and 16 show a comparison of the different approaches for applying
LICM. As shown in Figure 15, A-LICM can increase register pressure greatly.
For example, in sha, A-LICM increases the memory accesses by 19.17%. Heuris-
tic LICM and profit-driven LICM selectively choose profitable LICM instances
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Fig. 17. Memory access improvement for VN.

to apply. Thus, in sha, best-heuristic LICM decreases the memory accesses by
0.74% and P-LICM decreases the accesses by 1.24%.

Figure 16 shows the run-time performance improvement for different LICM
approaches over the baseline. From the figure, we can see that the overall
performance of A-LICM can be improved by not applying unprofitable ones.
Although the heuristic-driven LICM achieves a performance improvement over
always applying LICM, it is important to choose the right limit. For example,
in vortex, with a register pressure limit of eight, the heuristic-driven LICM is
worse than always applying LICM. While in the best-heuristic (where the limit
is sixteen), it is better than always applying LICM. P-LICM can perform at least
as well as the best-heuristic LICM in most cases, without tuning the parameters
used in H-LICM. However, in one case (gzip), because of incorrect predictions,
P-LICM has worse performance than the heuristic-driven approach.

Figures 17 and 18 show the improvement of memory accesses and run-time
performance of profit-driven VN over the baseline, compared to always apply-
ing VN. Unlike PRE and LICM, we did not apply other optimizations (e.g.,
copy propagation or constant propagation) before VN, because VN eliminates
redundancies by value, not by name. Constant or copy propagation cannot en-
able more opportunities for VN. Always applying VN-degraded performance,
in some cases, because of the increased register pressure, caused by eliminat
some redundancies, as shown in Figure 17. For example, for vortex, A-VN in-
creases the memory accesses by 1.46% and, thus, the run-time performance was
degraded by 1.37%. However, using our framework, profit-driven VN can selec-
tively apply only profitable redundancy elimination, achieving a performance
benefit. For vortex, profit-driven VN decreases the memory accesses by 0.91%
and, thus, improves run-time performance by 1.28% over the baseline.

From these figures, we see that our framework is useful for a variety of opti-
mizations, whether the optimization operates on SSA or non-SSA intermediate
code formats. We conclude that a model-based approach can be effectively used
to explore and determine the profitability of optimizations. The profitability
property is useful in deciding when to apply optimizations.
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Fig. 18. Run-time performance improvement for VN.

Table IV. Compile-Time for PRE

Full Compile-Time One Pass Compile-Time

Benchmark A-PRE H over A% P over A% A-PRE H over A% P over A%

gzip 44.99 9.18 17.63 10.44 36.78 65.90

vpr 142.46 52.23 61.86 37.61 77.45 103.56

mcf 21.84 37.36 48.49 4.68 57.39 72.91

parser 106.74 25.10 34.00 26.7 69.06 94.23

vortex 518.5 19.11 29.64 88.49 56.78 79.76

bzip2 35.58 22.85 27.15 10.77 68.25 86.56

twolf 767.27 46.05 58.24 199.49 90.29 104.82

bitcount 6.59 7.13 10.93 1.79 56.98 61.45

dijkstra 1.15 11.30 13.91 0.29 24.14 48.28

FFT 4.61 8.89 13.02 1.07 41.12 55.14

jpeg 35.08 40.34 53.62 7.49 80.32 104.74

sha 3.04 10.53 15.13 0.66 21.21 36.36

average – 24.17 31.97 – 56.65 76.14

4.3 Compile-Time

Because our approach uses models to make decisions, we investigated how
compile-time is impacted by profit-driven optimization. We need to ensure that
evaluating the models does not overly increase compile-time. Tables IV, V, and
VI show the compile-time for different optimization strategies for PRE, LICM,
and VN. In the tables, the compile-time for all compilation passes, including
the front-end, optimizations, and back-end passes (“Full Compile-Time”), and
for the optimization pass under consideration (“One Pass Compile-Time”) are
shown.

From Table IV, the full compile-time for A-PRE varies from approximately
1.2 to 767.3 s. The compile-time shown for the heuristic approach is the av-
erage for the different limits. It increases from 7 to 52% over A-PRE, with an
average of 24%. Here the heuristic-driven PRE has to compute and update live
range information, which causes the compile-time increase. The compile-time
for profit-driven PRE increases over A-PRE by 11 to 62%, with an average of
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Table V. Compile-Time for LICM

Full Compile-Time One Pass Compile-Time

Benchmark A-LICM H over A (%) P over A (%) A- LICM H over A (%) P over A (%)

gzip 45.97 23.65 27.65 12.94 57.26 69.63

vpr 127.84 18.80 27.35 32.36 58.19 79.49

mcf 20.51 32.42 39.10 4.73 49.89 72.94

parser 106.08 21.86 30.82 29.53 58.42 88.93

vortex 511.8 11.34 15.48 98.87 36.41 47.25

bzip2 34.63 22.81 30.26 11 57.55 79.55

twolf 579.97 37.73 55.50 165.49 88.14 132.64

bitcount 6.63 4.52 7.39 1.88 16.49 25.53

dijkstra 1.19 7.56 10.08 0.35 11.43 14.29

FFT 4.58 35.37 41.48 1.21 60.33 85.12

jpeg 25.26 20.23 28.82 6.38 56.99 70.82

sha 2.78 17.63 25.90 0.81 38.27 54.32

average – 21.16 28.32 – 49.11 68.38

Table VI. Compile-Time for VN

Full Compile-Time One Pass Compile-Time

Benchmark A-VN P over A (%) A-VN P over A (%)

gzip 47.02 15.82 6.82 26.83

vpr 127.93 14.88 18.17 26.25

mcf 25.98 15.97 3.61 22.44

parser 97.2 17.78 13.56 33.48

vortex 511.68 14.72 61.95 27.44

bzip2 28.59 17.59 3.47 48.99

twolf 284.34 16.93 40.4 34.16

bitcount 7.33 12.55 1.81 26.52

dijkstra 1.67 13.17 0.25 24.00

FFT 5.66 17.49 0.84 44.05

jpeg 29.11 15.94 4.27 37.24

sha 3.58 12.29 0.55 27.27

average – 15.43 – 31.56

32%. Because P-PRE considers computation and register pressure in a more
precise way than the heuristic-driven PRE, it incurs a modest overhead in-
crease over the heuristic approach. Table IV also shows compile-time for only
the PRE optimization pass. The one-pass compile-time for A-PRE varies from
approximately 0.3 to 199.49 s. The compile-time for H-PRE increases from 21 to
90% over A-PRE, with an average of 57%. The compile-time for P-PRE increases
over A-PRE by 36 to 105%, with an average of 76%.

Similar compile-time trends can be seen for A-LICM, H-LICM, and P-LICM
in Table V. The full compile-time for A-LICM varies from approximately 1.2 to
579.9 s. The heuristic-driven LICM increases compile-time over A-LICM from
5 to 38% (average 21%) and profit-driven LICM increases compile-time over A-
LICM by 7 to 56% (average 28%). The one-pass compile-time for A-LICM varies
from approximately 0.35 to 165.49 s. The compile-time for H-LICM increases
from 11 to 88% over A-LICM, with an average of 49%. The compile-time for
P-PRE increases over A-PRE by 14 to 132%, with an average of 68%.
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From Table VI, the full compile-time for A-VN varies from 1.7 to 512 s. The
profit-driven VN increases the compile-time over always applying VN from 12
to 18%, with an average of 15%. The one pass compile-time for A-VN is from
0.25 to 21 s. The P-VN increase compile-time over A-VN from 22 to 49%, with an
average of 32%. Compared with P-PRE and P-LICM, the compile-time increased
by P-VN is smaller. One reason is that there are fewer instances of VN than
PRE and LICM (shown in the next section). The overhead of the profit-driven
approach depends on how many instances of the optimization appear in the
code and the impact of every instance.

As the tables show, the increase in compile-time of our profit-driven approach
is modest and about the same as the heuristic-driven approach. These small
increases show that our approach is feasible and efficient. However, our proto-
type has several implementation artifacts that hurt performance; a production
implementation could decrease the compile-time further. We conclude that the
compile-time increase is worth the benefit of applying the optimizations more
effectively without tuning parameters.

4.4 Model Verification

We validated our models by determining their accuracy when predicting the
profitability of an optimization. We validated the prediction accuracy by con-
sidering only registers. We did not evaluate the computation profit because the
computation is exact in terms of instruction count, given relative node frequen-
cies from a profile. If the relative frequencies in the profile do not match what
happens in an actual run, then there can be inaccuracy in predicting the com-
putation profit. However, this inaccuracy is a property of the profile—not of the
models to compute the computation profit.

For deciding when to apply optimizations, a correct prediction is one in which
we predict there is a benefit/cost for registers (i.e., if register profit is positive,
it indicates a spill reduction; otherwise, it shows a spill increase) and actual
execution has the same result. For those cases where the actual execution shows
there was no impact on registers, we consider the prediction to be correct. The
accuracy prediction is measured by how often we make a correct prediction. To
validate the prediction accuracy, we checked every prediction and compared the
value predicted with the actual execution (i.e., we use the number of memory
accesses before and after applying an optimization to reflect the spill changes).

Tables VII and VIII show the prediction accuracy of PRE, LICM, and VN. In
the tables, “TP” is the total number of predictions and “% accuracy” is the predic-
tion accuracy for both heuristic and profit-driven approaches. In the heuristic-
driven PRE and LICM, we set the limit to eight.

As Table VII shows, in some cases heuristic-driven pre had a different num-
ber of predictions than profit-driven PRE, because of the interactions among
PRE instances. The prediction accuracy for heuristic-driven PRE varies from
75 to 100%, with an average of 82.5%. Compared with heuristic-driven PRE,
profit-driven PRE generally makes more correct predictions, with the predic-
tion accuracy from 78 to 100% (average 92.6%). Profit-driven PRE considers
the impact on register pressure in a more precise way. In some cases, like mcf,
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Table VII. Prediction Accuracy of H-PRE and P-PRE

Heuristic-8 PRE Profit-Driven PRE

Benchmark TP % accuracy TP % accuracy

gzip 43 79.07 48 89.58

vpr 290 80.34 303 96.04

mcf 51 88.23 51 86.27

parser 239 75.73 293 87.87

vortex 513 79.72 530 81.13

bzip2 58 81.03 56 78.57

twolf 484 76.03 475 91.12

bitcount 5 100 5 100

dijkstra 2 100 2 100

FFT 3 33 3 100

jpeg 58 96.55 58 100

sha 5 100 5 100

average – 82.48 – 92.55

Table VIII. Prediction Accuracy of H-LICM and P-LICM

Heuristic-8 LICM Profit-Driven LICM

Benchmark TP % accuracy TP % accuracy

gzip 53 88.68 45 84.44

vpr 251 75.70 230 94.35

mcf 68 76.47 52 82.69

parser 89 79.78 75 90.67

vortex 361 77.56 346 87.57

bzip2 92 82.60 88 89.77

twolf 367 77.93 345 88.70

bitcount 3 66.67 3 100

dijkstra 5 40 5 80

FFT 23 86.96 23 95.65

jpeg 82 97.56 79 100

sha 21 76.19 21 95.24

average – 77.18 – 90.76

although the prediction accuracy of P-PRE is lower than H-PRE, P-PRE
achieves a better performance benefit than H-PRE, because P-PRE also consid-
ers the computation (shown in Figure 14).

A similar trend can be seen in Table VIII for LICM. The prediction accuracy
for heuristic-driven LICM varies from 40 to 97%, with an average of 77. Profit-
driven LICM has a higher prediction accuracy, varying from 82 to 100% (average
91%). Because profit-driven PRE and LICM can make more correct predictions
than the heuristic-driven approach, the performance improvement of P-PRE
and P-LICM is generally better than heuristic-8 PRE and heuristic-8 LICM.
Table IX shows the prediction accuracy of our framework for profit-driven vn.
It varies from 81 to 100%, with an average of 87%. In some cases, VN had no
effect, so no accuracy is reported (i.e., bitcount, dijkstra, and sha).

On average, our framework made inaccurate predictions 10% of the time.
The inaccuracy is primarily from a simplified assumption used in the regis-
ter optimization model about how the register allocator spills registers. The
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Table IX. Prediction Accuracy of P-VN

Profit-Driven VN

benchmark TP % accuracy

gzip 30 93.33

vpr 77 87.01

mcf 35 82.86

parser 32 84.38

vortex 71 94.37

bzip2 48 87.5

twolf 101 81.19

bitcount 0 –

dijkstra 0 –

FFT 4 75

jpeg 1 100

sha 0 –

average – 87.29

model assumes that the allocator will select the spill priority based solely on
the number of uses and definitions in a live range. However, Mach SUIF’s regis-
ter allocator also uses the number of conflicting edges in the interference graph
to make spill decisions. Even without detailed implementation information,
our models achieve good accuracy. If greater accuracy is needed, the models
can be improved by incorporating more implementation information. In our
framework, the prediction inaccuracy also does not accumulate. The profitabil-
ity engine incrementally updates the code models. The incremental update is
accurate. That is, the updated code model is the same as performing the opti-
mization and reconstructing the code models. The inaccuracy of the prediction
only comes from computing the profit associated with every update in an opti-
mization. Thus, the prediction of an optimization does not impact the prediction
accuracy of later optimizations.

5. RELATED WORK

There has recently been a flurry of research focusing on optimization properties.
We categorize optimization properties as either semantic or application. Seman-
tic properties deal with the semantics of the optimizations and include correct-
ness, soundness, and optimization specification. Application properties include
profitability, interaction, and automatic generation of the optimizations. There
are two approaches to explore these properties. One is through formal tech-
niques, which include developing formal specifications, analytic models, and
proofs with model checking and theorem provers [Lacey et al. 2002; Lerner et al.
2003; Necula 2000; Whitfield and Soffa 1997; Jaramillo et al. 1999; Whitfield
and Soffa 1990]. Another approach is experimental, which is mostly used for
exploring application properties. In the introduction, we indicated the previous
work that uses this approach for determining the order and the configuration
to apply optimizations.

In this paper, we extend our previous paper [Zhao et al. 2003] by unifying the
model notations, providing a simpler interface for a compiler engineer to develop
optimization models, adding a new optimization model for VN, and presenting
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more experimental results. In our current research, we use analytical models
to predict the profitability of optimizations. Thus, in this section, we focus on
discussing the prior work that relates to using models (including analytical or
experimental models) to address the problems of the application of optimiza-
tions. To our knowledge, ours is the first work that uses analytical models to
predict the impact of scalar optimizations on registers and computation.

Our previous paper developed a framework that had code, loop optimization,
and cache models and demonstrated that the benefit of applying loop optimiza-
tions on cache could be predicted [Zhao et al. 2003]. The work relied on models
that had already been developed for modeling the cache and array access se-
quences [Ghosh et al. 1999; Hu et al. 2002]. It did not consider scalar optimiza-
tions, registers or computation. In this paper, we develop a more powerful and
general framework that has a profitability engine, as well as models, and thus
can be used for many types of optimizations.

An approach to discover a best optimization configuration uses an analytic
model of machine resources to statically estimate the performance of the opti-
mized code instead of executing it [Triantafyllis et al. 2003, 2005]. Our approach
is different, because we also model the code and the optimizations. Although
optimization writers have to develop models for each optimization, they are
valuable because they enable us to predict profitability without actually ap-
plying them. Thus, there is no need to roll back an optimization if not prof-
itable. To determine whether an optimization should be applied or not using
Triantafyllis’ approach, one needs to apply the optimization in consideration,
followed by register allocation and then estimate the performance using pro-
file information. Applying register allocation for every optimization and the
optimization itself is expensive. Instead, we use models and an incremental
approach to determine the impact of the optimizations. The benefit of the in-
cremental approach has been demonstrated in the previous work. Thus, the
compile-time overhead of prediction in our approach is less than Triantafyllis’
approach.

Another approach is to select an optimization level to recompile the meth-
ods based on an experimental resource model [Arnold et al. 2000; Hölzle and
Ungar 1996]. The optimizer uses a simple benefit–cost analysis to decide
whether to recompile a method at a higher optimization level. The benefit of
an optimization level is estimated as a constant by offline experiments. How-
ever, this model does not include some aspects of optimization behavior (e.g.,
the effect of optimizations depends on the code context).

The last approach uses analytic models of code, optimizations and resources
[Wolf and Lam 1991; Wolf et al. 1996; Pugh 1991; McKinley et al. 1996; Coleman
and McKinley 2005; Sarkar 1997; Chandramouli et al. 2001; Kandemir et al.
1999; Ghosh et al. 1999; Sarkar and Megiddo 2000; Yotov et al. 2003]. The idea
is to use a resource cost model (e.g., cache cost) and optimization models (e.g.,
unimodular matrix transformations) to select a program-specified sequence or
configuration to apply optimizations that maximizes, the benefit. These tech-
niques demonstrate that analytic models are efficient in driving the applica-
tion of optimizations. However, all these techniques use models that express
only a small set of optimizations (loop optimizations and data optimizations)
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and mainly attack a single problem, i.e., to improve the performance of cache
[Cooper et al. 2001].

Another related work is the register pressure-sensitive PRE [Gupta and
Bodı́k 1999]. It sets upper limits on allowable register pressure and then per-
forms redundancy elimination within these limits. In this paper, we develop in-
dependent models of optimizations, while register pressure-sensitive PRE uses
data-flow analysis to determine register pressure, which is integrated with the
PRE algorithm and only works for PRE. They also do not consider the impact
of PRE on computation.

6. FUTURE WORK

The goal of our work is to use models to systematically investigate optimiza-
tion properties and to find a better way to apply optimizations. In this paper,
we present the models that can be used to predict the profitability of scalar op-
timizations. Based on the profit, the optimizer can selectively apply profitable
optimizations. Our model-based approach can be used for other problems re-
garding the application of optimizations. In the future, we can extend our work
in the following ways.

6.1 Using the Profitability Models

One recent research direction uses heuristic search to find program-specific
optimization sequences [Almagor et al. 2004; Kulkarni et al. 2004]. In this
approach, a large number of optimization sequences are applied and each is
evaluated. When the evaluation involves dynamic measures (e.g., dynamic in-
struction count or cycle count), the execution of the program for all sequences
is required. Thus, the search time can be significant. With our model-based
approach, we do not have to actually apply the optimizations or run the re-
sulting code to evaluate the profitability. We can use our framework to im-
prove the search performance by avoiding the execution of the programs. Be-
cause the prediction of an optimization does not impact the prediction accuracy
of the later optimizations (as described in section 4.4), the models are suitable
for predicting the profit of a sequence of optimizations.

6.2 Modeling More Resources and Optimizations

In this paper, the resources that we model are registers and computation with-
out code scheduling. In our previous work, we modeled the cache [Zhao et al.
2003]. Our models for the registers are more suitable for x86 and other pro-
cessors where there are few registers. In the future, we may need to model
more resources based on different machine architectures (for example, compu-
tation with code scheduling). To predict the profit on computation with code
scheduling, a code model (e.g., dependence graph), a resource model, and an
optimization model for code scheduling are needed. The profitability engine
should also be able to infer the changes of an optimization on the computation
code model directly from the optimization model. For some architecture, we
may also need to combine all the resources (cache, registers, and computation)
to make more accurate predictions.
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6.3 Modeling Optimization Interactions

Another important problem is to model optimization interactions. Optimiza-
tions can interact with each other through shared resources. For example, in
our experiments, we found a case where applying one optimization prevents
the application of another because the first one increases the register pressure.
If the second optimization has more benefits, we will miss the performance
improvement opportunity. If we can detect the interfering transformations, or-
der their profitability, and make decisions considering the interactions, we will
achieve more performance benefits. Interactions also interact with each other
in enabling and disabling ways. To determine the enabling and disabling inter-
actions, we need to model the conditions under which an optimization can be
applicable (i.e., precondition) and the impact of the optimization (i.e., postcondi-
tion). The existence of optimization interactions also depends on code context,
which should be modeled as well. The optimization interactions can then be
used to drive the search for a program-specific optimization sequence.

7. CONCLUSIONS

In this paper, we presented a novel model-based framework that can be used to
predict the profitability of scalar optimizations. This work coupled with prior
work, which considered loop optimizations, has a wide range of applicability
in terms of optimizations and machine resources. Our model-based technique
can make accurate predictions without applying and executing the optimized
code. Using the framework, the optimizer can selectively apply an optimization
based on whether the optimization is profitable or not. We implemented the
framework for predicting the profitability of several scalar optimizations. We
compared the profit-driven approach with an approach that uses a heuristic in
deciding when optimizations should be applied. Our experiments demonstrate
that the profitability of scalar optimizations can be predicted by using models
and it is useful for selectively applying optimizations.
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