Demand-Driven Structural Testing with Dynamic
Instrumentation

Jonathan Misurda', James A. Clause®, Juliya L. ReedT, Bruce R. Childers, and
Mary Lou Soffa¥

TDepartment of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
{imisurda, clausej, juliya, childers}@cs.pitt.edu

ABSTRACT

Producing reliable and robust software has become one
of the most important software development concernsin
recent years. Testing is a process by which software
quality can be assured through the collection of infor-
mation. While testing can improve software reliability,
current tools typically are inflexible and have high over-
heads, making it challenging to test large software
projects. In this paper, we describe a new scalable and
flexible framework for testing programs with a novel
demand-driven approach based on execution paths to
implement test coverage. This technique uses dynamic
instrumentation on the binary code that can be inserted
and removed on-the-fly to keep performance and mem-
ory overheads low. We describe and evaluate implemen-
tations of the framework for branch, node and def-use
testing of Java programs. Experimental results for
branch testing show that our approach has, on average, a
1.6 speed up over static instrumentation and also uses
less memory.

Categories and Subject Descriptors

D.2.5. [Software Engineering]: Testing and Debug-
ging—Testing tools; D.3.3. [Programming Lan-
guages]: Language Constructs and Features—Program
instrumentation, run-time environments

General Terms
Experimentation, Measurement, Verification

Keywords

Testing, Code Coverage, Structural Testing, Demand-
Driven Instrumentation, Java Programming Language

Permission to make digital or hard copies of al or part of thiswork for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or afee.

ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

156

*Department of Computer Science
University of Virginia
Charlottesville, Virginia 22904
soffa@cs.virginia.edu

INTRODUCTION

In the last several years, the importance of produc-
ing high quality and robust software has become para-
mount [15]. Testing is an important process to support
quality assurance by gathering information about the
behavior of the software being developed or modified. It
is, in general, extremely labor and resource intensive,
accounting for 50-60% of the total cost of software
development [17]. Given the importance of testing, it is
imperative that there are appropriate testing tools and
frameworks. In order to adequately test software, a
number of different testing techniques must be per-
formed. One class of testing techniques used extensively
is structural testing in which properties of the software
code are used to ensure a certain code coverage.Struc-
tural testing techniques include branch testing, node
testing, path testing, and def-use testing [6,7,8,17,19].

Typically, a testing tool targets one type of struc-
tural test, and the software unit is the program, file or
particular methods. In order to apply various structural
testing techniques, different tools must be used. If atool
for aparticular type of structural testing is not available,
the tester would need to either implement it or not use
that testing technique. The tester would aso be con-
strained by the region of code to be tested, as deter-
mined by the tool implementor. For example, it may not
be possible for the tester to focus on a particular region
of code, such as a series of loops, complicated condi-
tionals, or particular variables if def-use testing is
desired. The user may want to have higher coverage on
frequently executed regions of code. Users may want to
define their own way of testing. For example, all
branches should be covered 10 times rather than once in
all loops.

In structura testing, instrumentation is placed at
certain code points (probes). Whenever such a program
point is reached, code that performs the function for the
test (payload) is executed. The probes in def-use testing
are dictated by the definitions and uses of variables and
the payload is to mark that a definition or use in a def-
use pair has been covered. Thus for each type of struc-
tural testing, there is a testing “plan”. A test plan is a

1.

“recipe”’ that describes where probes should be placed and
what should be done when a probe is reached.

In most tools, the instrumentation is placed in the binary
code before execution and remains in the code until execu-
tion terminates. This type of instrumentation can be expen-
sive in both time and space. The instrumentation causes code
growth and thus instrumenting a complete program may not
be possible. Also, even though coverage may only require
oneinstantiation of a code element, the instrumentation stays
in the code, causing unnecessary time overhead.

In this paper, we describe a testing framework that
addresses both flexibility and scalability for structural test-
ing. Our approach enables testers to use different testing
strategies, including custom testing, in an efficient and auto-
matic way. The key ideas in our approach are a test planner
that generates a plan from a test specification and an instru-
menter that (1) inserts instrumentation when needed in a
demand-driven fashion as the program executes and (2)
deletes the instrumentation when no longer needed, accord-
ing to a test plan. The approach is path specific and uses the
actual execution paths of an application to drive the instru-
mentation and testing. The granularity of the instrumentation
is flexible and includes statement level and structure level
(e.g., loops, methods, program).

To ensure flexibility, we developed a specification lan-
guage from which atest plan can be automatically generated
by atest planner. The test specification describes what tests
to apply and under what conditions to apply them. The spec-
ification language has both a visual representation and tex-
tual form. The visual language is expressed through a
graphical user interface (GUI). The GUI is aso able to dis-
play test results and present them to the user with a test ana-
lyzer, highlighting relevant parts of the application with the
test results.

We implemented the test framework—the GUI, test
planner, dynamic instrumenter, and test analyzer—and
incorporated them into the Eclipse integrated devel opment
environment [5] and the IBM Jikes Java Research Virtual
Machine [2]. Our prototype tool, called Jazz, can perform
branch, node and def-use coverage testing over multiple
code regions in a Java program, as desired by the tester. The
prototype demonstrates the feasibility and practicality of our
approach. Our results are very encouraging, with both very
low run-time overhead and memory usage.

This paper makes several contributions, including:

» A novel and low cost approach for instrumenting a
program along an execution path to perform differ-
ent types of tests;

* A new framework for generating structural software
testing tools that use dynamic instrumentation;

e A technique that enables dynamic insertion and
removal of test instrumentation on demand; and

* An implementation and experimental evaluation of a
tool that implements our approach for testing Java
programs.

In the next section, we give an overview of our frame-
work including a user scenario. In Section 3, we discuss the
test planner and the dynamic instrumenter. Section 4
describes particular test planners, and experimental results

157

are presented in Section 5. The paper concludes with related
work and a summary.

2. FRAMEWORK OVERVIEW

Our test framework is designed to be scalable and flexi-
ble, alowing the development of tools that can implement
structural tests, using a path-specific approach. Figure 1
shows the major components in the framework, including a
test specifier, a test planner, a dynamic instrumenter, and a
test analyzer. The framework includes a language, testspec,
for specifying a software test process. The specification
includes the relevant parts of the program to be tested and
the actions needed in the testing process. Testers can either
write a specification in testspec or, better, use the GUI,
which automatically generates a specification in testspec. A
test planner consumes the testspec specification and gener-
ates a test plan for testing the program given the specifica-
tion. Using the generated plan, the dynamic instrumenter
inserts probes into a program at run-time to conduct the
specified tests. Finally, the framework has a test analyzer for
reporting results to the user. In this paper, we focus on the
novel aspects of the framework, which are the test planner
and dynamic instrumenter.

Test GUI

‘ (Program
¥)

Test Specification l

Test Planner
Test Plan
A

‘ Test Dynamic Instrumenter & Run-Time System ‘
¥
Test Results

Test Analyzer and Result Reporter ‘

‘

D

_4

() Program code
[] standard

Figure 1. Framework for Demand-Driven Testing

() Generated output
[F7 7] Customized (new test)

2.1. Usage Scenario

In this section, we provide an example of using the
framework. Assume atester, Tracy, wantsto test alarge pro-
gram using different testing strategies. Assume she wants to
first test the entire program using branch testing. Using the
GUI, Tracy specifies that branch testing is to be applied to
the entire program. Our framework will automatically set up
the correct instrumentation for this testing strategy. Because
the instrumentation is dynamically inserted and deleted in a
demand-driven fashion, branch testing can be performed on
the entire program. Tracy then decides to further test a
selected set of classes (a “test region”) using def-use testing
with high coverage. Thistesting is also carried out automati-
cally by our framework. Then Tracy usesthe GUI to indicate
that a selected loop is to be tested using branch coverage but

defines coverage to be 10 instances of the loop. She also
decides to test a function using def-use testing at the same
time. Our framework automatically places the correct instru-
mentation to accomplish this. Lastly, Tracy designs a unique
form of atesting strategy that has not been implemented. She
uses the specification language to define the testing strategy.
Using this specification, the planner generates plans to
accomplish this, alowing Tracy to then test the program
using a new testing strategy. This scenario indicates that our
framework enables testing that is both scalable because of
the demand-driven instrumentation and flexible due to the
planner. More detail about the GUI and the overal frame-
work isavailablein [3] and [14].

2.2. Demand-Driven I nstrumentation

A unique characteristic of our framework, and the rea-
son it is scalable, is the way that instrumentation is inserted
in the executing program. Rather than insert al of the instru-
mentation befor e the program executes (static), we insert the
instrumentation during program execution and only the nec-
essary instrumentation. Likewise, we dynamicaly delete
instrumentation when it is no longer needed. Thus, both
insertion and deletion are done in a demand-driven fashion.
The demand is guided by the paths that the program takes
during execution. When an instrumentation point is reached,
it is responsible for documenting the coverage, inserting
other instrumentation, and deleting instrumentation. The
insertion and deletion processis described in Section 3.3.

(a) Shaded block
is stranded

(b) Shaded blocks
are singletons

Figure 2: Example control flow graphs

Consider the control flow graph (CFG) of basic blocks
for aprogram segment in Figure 2(a) and assume that branch
testing is being performed. Before this code segment exe-
cutes, one instrumentation point is placed at block 1 (either
statically if the code segment is the initial block or by
another block when it is executed). When the probe in block
1 is reached, the payload is responsible for inserting instru-
mentation in both blocks 2 and 3 since one of these blocks
has to be on the executing path. Assume block 2 is reached.
The instrumentation at block 2 would insert instrumentation
at blocks 4 and 5. In addition, it would remove the instru-
mentation in block 2 sinceit is no longer needed, as the edge
between 1 and 2 is covered. When the execution traverses

158

the path from block 1 to block 3, then both the instrumenta-
tion at blocks 1 and 3 would be removed. Block 1 no longer
needs to be instrumented as there are no other edges from
block 1 that can be reached. Thus, the instrumentation is
both inserted when needed and removed when no longer
needed. Experimental results indicate less overhead in space
because of fewer instrumentation points at any one time than
static instrumentation. It is also less time expensive because
instrumentation is only hit when it is needed. In the next sec-
tion, we discuss the test planner and its generation of the test
plan in detail.

3. TEST PLANNER

The main function of the test planner is to determine
where and how to test a code region. Using the specification
and the intermediate code for a test region, the test planner
determines the actions necessary to carry out tests. These
actions are the run-time activities that collect coverage infor-
mation and instrument the test region. The actions form the
basis for the test plan. In the next sections, we discuss some
of the test planner challenges and implementation strategies.

3.1. Challenges

To generate a test plan, a planner needs to determine
when to insert probes, where to instrument a test code
region, and what to do at a probe. There are three cases the
planner has to consider when deciding when to insert and
delete instrumentation. First, it must identify which probes
are seeds. Seeds are those probes which are initially inserted
in atest region. Second, it needs to determine which probes
are used for coverage and can be inserted and removed on-
demand along a path. Finally, the planner has to determine
the lifetime of a probe and whether it must be re-inserted
after being hit by its “control flow successor” basic blocks.

The test planner also must identify the locations of
probes in a test region. These locations correspond to seed,
coverage, and control flow probes. Seed |ocations are blocks
where control enters atest region. Coverage locations corre-
spond to basic blocks that have coverage probes. Finaly,
control flow locations are successors to blocks that have cov-
erage probes which need to be re-inserted. Seed locations
must be marked in a table to tell a dynamic instrumenter
where probes should be inserted initially. Coverage and con-
trol flow locations also have entries in a table to hold infor-
mation needed by the probes. Coverage locations usually
have an entry in aresultstable to hold coverage information.

The last task of the planner is to determine what actions
should take place at a probe. In some cases, different pay-
loads or combinations of payloads may be used at different
probes and the planner needs to select the appropriate pay-
load.

3.2. Planner Actions

Actionsin atest plan are implemented with a test probe
and payload. Probes can be inserted in a code region at any
basic block where test actions need to take place. A test plan

may have multiple payloads, which can beinvoked by differ-
ent probes, and multiple probes may be inserted at the same
location to call different payloads. The test plan uses a probe
location table (PLT) to encode probes and their locations. A
PLT entry has a probe type, a payload, and alist of probesto
insert (and in some cases, to remove). Additional fields can
be added to the PLT by the planner. The test plan aso has
data storage, including global memory that is persistent with
program scope (i.e., thereis asingle global storage area) and
local storage with method scope. Global storage is used to
hold test results for multiple testing runs (i.e., what has been
covered) and the local storage is used to hold temporary val-
ues needed by a payload. Other storage scopes can also be
incorporated into a plan (e.g., thread or class scope).

As an example, consider node coverage, which records
the basic blocks that are executed in a test region. Figure
2(b) shows an example test region and Figure 3(a) shows A
corresponding testspec specification. The specification indi-
cates that node testing should be done on the method
counter in class counter from the Java source file
Counter.java. Figure 3(b) shows the test plan for the test
specification in (a). As shown, the test plan has a global
array, covered, that records which blocks are executed. The
PLT lists the basic blocks to instrument and the probes in
these blocks call node () to update covered, insert probes
in successor blocks and remove the current probe.

Oncethe test plan is created, it is passed to the dynamic
instrumenter, which automatically inserts probes at locations
that are marked as seedsin the PLT. For this example, an ini-
tial probeisinserted in block 1. Now, consider what happens
when 1 is hit: node () executes, which inserts probes into
successors blocks 2 and 3, marks 1 as covered, and removes
block 1'spraobe. If block 2 executes next, then it is marked as
covered, a probe inserted in 4, and 2 probe removed. When
control exits, covered lists 1, 2, and 4 as covered.

The test planner automatically generates the PLT, deter-
mines global and local storage, and links payloads to probes.
A test planner is implemented by a tool developer and the
framework allows a developer to build alibrary of planners,
which can be selectively invoked. A test planner can be
developed to integrate different tests into a single plan. To
ease the development new planners, the framework has a
parser and intermediate representation for testspec, and
interfaces for inserting and removing probes in binary code,
managing test plan memory, and generating test result
reports.

From our experience, we have found that the frame-
work’s capabilities significantly ease the development of a
test planner. For example, our def-use planner took two
weeks to develop and debug by a graduate student that had
no previous experience with the framework. The node plan-
ner took a half-day to develop and debug.

3.3. Dynamic Instrumenter

Dynamic instrumentation requires probes that can be
inserted and removed on the binary machine code. The
dynamic instrumenter provides an application programmer
interface (API) that abstracts and hides instruction and

159

DEFINITIONS
NAME: c_method, REGION_D,
LOCATION: FILE Counter.java {
CLASS Counter, METHOD count
}
}

BODY {
DO NODE_TEST ON REGION c_method UNTIL:

}

85%

(a) Example testspec specification

GLOBALS PROBE LOCATION TABLE
hit type payload insert
1 1| seed | node 2,3
2 2 node 4
3 3 node 4
4 4 node
covered PLT

TEST PAYLOAD

node(Block current) begin
covered[current] « true
forall Block b in PLT.insert[current] do
if covered[b] = false then
insertProbe(b)
end if
end forall
removeProbe(current)
end

(b) Test plan for the example specification
Figure 3: Exampletest plan for node coverage

machine details about instrumentation. It provides for the
dynamic insertion and deletion of probes and the manage-
ment of global and local storage in a test plan. This API
allows for flexible instrumentation that can be specified in a
variety of ways. The instrumentation constructed with the
API isaso highly scalable since only relevant portions of the
program are instrumented for only as long as needed.

The interfaces for insertion and removal of test probes
provide several capabilities. With the interface, probes can
be associated with particular basic blocks in a test region.
The interface hides and automatically handles program
instruction addresses, modification of the binary instructions
to insert/remove a probe, and the insertion/removal of multi-
ple probes at the same location. The interface also provides
for inserting seed probes in a test region.

The management of global and local memory is simi-
larly abstracted. A test plan can alocate and deallocate and
access elements in the global storage with simple interfaces.
The instrumenter will also automatically allocate local mem-
ory on method entry and deallocate on method exit. Other
aspects such as handling multithreaded programs are simi-
larly hidden from the test plan and the developer of the test
planner.

4. TEST PLANNERS

In this section, we first discuss using our framework for
branch testing because branch testing illustrates many of the
issues for demand-driven testing. Next, we briefly discuss
node and def-use testing.

4.1. Branch Coverage Planner

The branch coverage test planner instruments a region
to ensure that all edges can be marked as covered when they
are traversed. The planner generates a test plan that instru-
ments on-demand along an execution path and removes
instrumentation as soon as possible. To generate the test
plan, the planner has to determine which blocks are seeds,
when to insert and permanently remove probes, and what
payload to use at a probe.

For branch coverage, the seed blocks are the entry
points into a test region. These seed blocks insert instrumen-
tation when control passes through an entry. Seeds are iden-
tified as basic blocks that have one or more predecessors
outside of the test region.

A more difficult issue is how to record which edges are
executed, and when probes need to be inserted and removed.
To cover an edge, two probes are executed: one in the edge's
source and one in the sink node. The probe in the source
records the beginning of an edge and the probe in the sink
marks the edge as covered. The difficulty isidentifying what
instrumentation to insert and delete when a block is hit.

In general, when a probe in a source node is executed, it
inserts a probe into its successors of uncovered edges and
removesitself. The successors are determined by the planner
and added to the PLT entry for anode. In thisway, as control
flows through a test region, probes are inserted and deleted
to follow execution paths. Although in many cases this strat-
egy issufficient, in other cases a probe hasto remain until all
edges from itself to its successors are covered. As an exam-
ple, consider the CFG in Figure 2(a) and assume that block 1
is a seed. The approach as described cannot mark some
edges as covered when the loop executes several iterations
and takes certain paths, such as:

(152—4—6)—>(1—->3—-5—6) >(1—-2—-5—6)

In the first iteration, block 1 inserts probes in 2 and 3 and
removes itself. The payload for the probe in 2 marks the
edge 1—2 as covered and inserts probes in blocks 4 and 5.
The probe in 2 is dso removed. Similarly, 4 and 6 mark
edges 2—4 and 4—6 as covered, insert probes in successors,
and remove themselves. At the end of thefirst iteration, there
are probesin 1, 3, and 5.

When the second iteration begins, block 1 is hit,
removes itself, and does not insert any probes: edge 12 is
already covered and there is a probe in 3. Block 3 executes
and marks edge 1—3, but it does not insert a probe in 5.
When block 5 executes, it marks edge 3—5 and inserts a
probe in block 6. Finally, when block 6 executes, it marks
edge 5—6. However, it will not insert a probe in block 1
because 6—1 was already covered by the previous iteration.
Hence, on the third iteration, when control flows reaches
25, no instrumentation has been inserted to capture that
edge.

The problem is block 2 needs a probe to record it as a
predecessor to block 5. Block 5 is stranded because an edge
to it cannot be covered. Stranded blocks occur when a block
has multiple predecessors and at least one of those predeces-
sors has multiple successors.

160

The planner identifies stranded blocks by inspecting the
CFG. If ablock is stranded, then the probes in the stranded
block’s predecessors can not be removed until all outgoing
edges of the predecessor are covered. The planner ensures
that these probes are permanent by marking them in the test
plan that they have to be re-inserted until the stranded block
isfully covered.

Another problem occurs for singleton blocks, as shown
in Figure 2(b). In this case, edge 1—3 is not marked as cov-
ered when path 1—-2—4 isfollowed by path 1—-3—4. When
execution reaches block 1 on path 1—-3—4, its entry edgeis
aready covered and no instrumentation is inserted in block
1. That is, there will be no probein 1 to record the successor
to block 3. Hence, edge 1—3 cannot be marked as covered.

To handle singleton basic blocks, the planner identifies
blocks with a single predecessor and inserts a probe that
encodes the edge. In the figure, when block 1 first executes,
it inserts a probe in block 3 that knows predecessor is block
1. When path 1—-3—4 executes, the probe at 3 is hit, records
edge 1—-3 as covered, and inserts aprobe in block 4 to cover
edge 3—4.

Line Pseudocode

1 CFG G « buildCFG(testRegion)

2 forall Block b in G.nodes do

3 PLT[b].insert < b.successors

4 PLT[b].payload « regularPayload

5 /I Check if block b is an entry block (a seed)

6 if b.predecessors ¢ G.nodes then

7 PLT[b].seed « true

8 /I Check if block b is a singleton

9 else if |b.predecessors| = 1 then

10 GLOBAL[sources][b] « b.predecessors

11 PLT[b].payload « singletonPayload

12 end if

13 /I Check if block b is stranded

14 forall Block p in b.predecessors do

15 if |p.successors|>1 A |b.predecessors|>1 then
16 PLT[b].insert «- PLT[b].insert U b.predecessors
17 end for

18 end for

Table 1: Branch coverage planner

The algorithm for the branch coverage planner is shown
in Table 1. For brevity, we do not show the payloads—their
actions are as described in this section. The planner creates a
CFG for the test region on line 1. Next, it iterates over basic
blocks to determine whether they are a seed, a singleton,
stranded, or a regular block. Initialy, on lines 3 and 4, a
block is treated as a regular block that inserts probes in its
successors blocks. Lines 6 and 7 check whether the block
has any predecessors that are not in the test region and sets
the PLT field seed to true, if so. When a block has a single
predecessor and it is not a seed, then it is a singleton, as
shown on lines 9-12. In this case, the singleton’s predecessor
is recorded in a table in global memory. At run-time, when
the payload singletonPayload () isinvoked, it accesses
the table to get its predecessor. Finaly, lines 14 to 17 check
for stranded basic blocks. The planner treats stranded blocks
asregular blocks (i.e., it uses the normal payload), except its
predecessor are added to the insertion list to ensure they are
re-inserted at run-time.

4.2. Node Coverage Planner

The node coverage planner is the simplest of the plan-
ners described in this paper. The planner iterates over basic
blocks in a test region, adding each block to the PLT and
marking each one as a seed. That is, all probes are inserted
before the test region is executed. The planner links a pay-
load with each probe that records coverage. When a probeis
hit, the payload marks the block covered and deletesitself on
demand. In this way, the deletion of probes is demand-
driven, but the insertion of probes is not. In comparison to
the node coverage approach in Section 3, this approach
reduces payload complexity.

4.3. Def-use Cover age Planner

The goal of def-use testing is to determine the coverage
among pairs of variable definitions and uses. The def-use
coverage planner inserts probes at definitions to record when
a variable is assigned a value. Probes are also inserted at
locations where variables are used. These probes mark a def-
use pair as covered by examining which definition was the
most recently executed.

To instrument a test region for def-use, the planner first
determines all definitions in aregion and inserts seed probes
at those definitions. When a definition is hit, its payload
inserts probes at all reachable uses. Probes at definitions
must remain in the test region until al reachable uses are
covered. These probes are needed because they record which
definition has been recently executed. To keep a probe at a
definition, the planner generates atest plan that re-inserts the
probe. The test plan puts probesin control flow successors of
blocks with definitions, which re-insert the original probe
and remove themselves.

Probes at uses can be deleted immediately once they are
hit. When a probe for a use, say uq, of variable x is inserted,
there must have been a definition of x, called d,, because the
probe at u, is inserted by d;. Hence, once the def-use pair
(dq, uy) is covered, the probe at u; can go away. If another
definition, d,, of x also reaches u;, then a new probe is
inserted at Uq by d2.

A challenge for the def-use planner is that a CFG node
can have many definitions and uses of different variables.
The node may even be a control flow successor to several
nodes with definitions. The planner treats al definitions,
uses, and control flow probes independently, and in effect,
inserts several probes in a block. The effect of multiple
probes is done by combining the probes into one probe that
invokes several payloads.

Table 2 shows the agorithm for the def-use planner
without support for composite data structures (payloads are
not shown). The algorithm first constructs the CFG and def-
use chains for atest region (lines 1 and 2). Then, it proceeds
in two passes. In the first pass, the planner iterates over the
def-use chains to process and group definitions and usesin a
basic block (lines 4-16). Each definition is marked as a seed
on line 6 and the definitions and uses are grouped on lines 9-
11. Online 9, the variable name for the definition in the cur-

161

rent chain is recorded in the defining block. Line 10 records
a use of the variable in the block that reads it. Because
probes need to be inserted at uses, a set of blocks and vari-
able names is maintained to track the locations where those
probes should be placed (line 11). Lines 12-15 determine
control flow successors for re-insertion of probes at defini-
tions.

Line Pseudocode

1 CFG G « buildCFG(testRegion)

2 DUChains chains « buildDUChains(G)

3 /I Pass 1: Group definitions, uses, & successors
4 forall Chain c in chains do

5 Block defBlk « c.defBlock()

6 PLT[defBIk].seed « true // mark all defs as seeds
7 Block useBlk « c.useBlock()

8 Variable v « c.variableName()

9 defBlk.recordDefs « defBlk.recordDefs U v
10 useBlk.recordUses « useBlk.recordUses U v
1 defBlk.placeUses « defBlk.placeUses U (useBIK, v)
12 forall Block b in defBlk.successors() do

13 defBlk.placeSucc « defBlk.placeSucc U b
14 b.placeDefs « b.placeDefs U (defBIk, v)

15 end for

16 end for

17 // Pass 2: Build PLT and payloads

18 forall Block bin G do

19 Trampoline tramp « new Trampoline()

20 forall Variable v in b.recordUses do

21 emitRecordUse(tramp, b, v)

22 forall Variable v in b.recordDefs do

23 emitRecordDef(tramp, b, v)

24 forall (Block b2, Variable v) in b.placeDefs do
25 emitPlaceDef(tramp, b2, v)

26 PLT[b].insert «- PLT[b].insert U b2

27 end for

28 forall (Block b2, Variable v) in b.placeUses do
29 emitPlaceUse(tramp, b, b2, v)

30 PLT[b].insert «- PLT[b].insert U b2

31 end for

32 if |b.placeSucc| > 0 then

33 emitPlaceSuccessors(tramp, b)

34 PLT[b].insert « PLT[b].insert U b.placeSucc
35 end if

36 PLT[b].payload « tramp

37 end for

Table 2: Def-use cover age planner

Once the definitions, uses, and control flow successors
are grouped, the second pass traverses the basic blocks to
construct the PLT and combine payloads (lines 18-37). The
payloads are actually created for each payload by generating
code for a “trampoling” that has calls to functions that per-
form actions at a probe.

To construct the trampoline, the algorithm emits calls to
functions that mark uses in a block as covered (lines 20-21)
and record definitions (lines 22-23). Next, a call is emitted
that re-inserts probes at definitions when the current block is
acontrol flow successor (lines 24-27). Calls are also emitted
to functions that (1) insert probes for variable uses (lines 28-
31), and (2) insert probes in control flow successors (lines
32-35). Finaly, on line 36, the generated trampoline is
recorded in the PLT as the payload. Although not shown, the
algorithm aso handles definitions and uses of variables in
the same block.

5. JAZZ: A STRUCTURAL TESTING TOOL

To investigate the efficiency and effectiveness of
demand-driven structura testing, we implemented our
framework and built atool with it, called Jazz. The tool does
branch, node, and def-use coverage and implements a GUI,
test planners, dynamic instrumentation, and a test analyzer.
Jazz isincorporated in Eclipse [5] and Jikes for the Intel x86

[2].
5.1. JikesRVM

To integrate the framework into Jikes, we had to address
how the test planner gets control, multi-threading, and the
interaction of garbage collection (GC) and instrumentation.
The first issue was handled by adding a callback to Jikes
just-in-time compiler to invoke the planner. The planner is
called after the bytecode has been trandated into x86 instruc-
tions. At this point, a method's CFG, symbol table, and line
number map are available. Once a plan is generated, the
dynamic instrumenter inserts seed probes on the binary code.

Jazz supports multi-threading as found in Java pro-
grams. Because test information may be local to a thread, it
has to be saved and restored at a thread switch. For example,
when marking edges in branch coverage, two successive
probes pass information to indicate the edge. If a thread
switch happens in between the probes, then this information
needs to be saved. The test plan indicates what information
to switch by allocating it in local memory. For branch cover-
age, the “previous hit block” is alocal and saved/restored at
a context switch.

To switch the test plan’s local memory, our dynamic
instrumenter modifies amethod’s activation frame to include
a hidden variable, called 1ocal pool, that is a pointer to a
separate memory pool. Loca information in a test plan is
kept in this buffer and referenced as offsets from
local pool. The memory pool is managed as an activation
stack: An activation is allocated and deallocated in a
method’s prologue and epilogue, and 1ocal pool issetto
the current activation. On athread switch, the RVM switches
athread’s stack, and hence, 1ocal pool will be switched,
causing the memory pool to also be switched.

The concern with GC is where to allocate data and code
space for the instrumentation. If the storage is allocated as
part of the application context, then there may be interac-
tionswith GC. In particular, it isdifficult for GC to track ref-
erences involving binary-level instrumentation inserted
without its knowledge. To avoid this problem, the dynamic
instrumenter allocates its own memory from the operating
system to hold instrumentation code and data. This memory
buffer is not visible to the RVM and avoids any interactions
with GC.

5.2. Dynamic Instrumentation for the x86

To implement test probes, the dynamic instrumenter
uses fast breakpoints [12]. A fast breakpoint replaces an
instruction in the target machine code with a jump to a
breakpoint handler. The breakpoint handler calls the test

162

payload and it executes the origina instruction that was
replaced by the jump. We use fast breakpoints because they
have low overhead and can be easily inserted and removed
on binary code. When implementing fast breakpoints there
are essentially two choices. The first choice is to execute the
original instruction as part of the breakpoint handler. The
second choice copies the instruction back to its origina loca-
tion where it is executed when the breakpoint handler com-
pletes. Hence, these breakpoints are “transient” and similar
to the invisible breakpoints used by debuggers to transpar-
ently track program values and paths.

A conseguence of transient breakpoints is probes do not
remain in atest region once executed. If a permanent probe
is needed, then the test planner hasto re-insert the probe. Re-
insertion can be done by placing probesin the successorsto a
block that needs a permanent probe. The successor probes
re-insert the original probe when executed and remove them-
selves and their siblings. While fast breakpoints can be
implemented to make them permanent, variable length
instruction sets complicate the implementation. Instead, tran-
sient breakpoints simplify and increase the portability of the
instrumentation interfaces.

On the x86, copying the instrumented instruction back
to its origina location works better than executing the
instruction in the handler. If the instrumented instruction is
executed in the handler, then instructions have to be decoded
to find instruction boundaries because an entire instruction
must be copied to the handler. Indeed, in some cases, multi-
ple instructions may have to be copied and executed in the
handler because the breakpoint jump can span severa
instructions. The breakpoints do not know anything about
the instructions where a breakpoint is inserted, which signif-
icantly simplified their implementation. The trade-off isfor a
breakpoint to remain, it must be re-inserted after the original
instruction is executed.

6. EXPERIMENTS

Using SPECjvm98 benchmarks [20], we performed
experiments to measure Jazz's performance and memory
needs. The experiments were run on a unloaded 2.4 GHz
Pentium 1V with 1 GB of memory and RedHat Linux 7.3.
All results are averages over three program runs. The test
specification for the experiments covers all loaded methods.
For def-use testing, the specification selects all variables and
all def-use pairs. The test inputs are the data sets provided in
SPECjvm98.

6.1. Branch Coverage Testing

To investigate the efficiency of demand-driven testing,
we compared the performance and memory requirements of
our technique to atraditional approach based on static instru-
mentation. For branch testing, the coverage on the bench-
marks was 38.9% to 58%. Both approaches reported the
same coverages.

The performance and memory demands of the two
approaches are shown in Table 3. The second column is the
run time of the benchmark without instrumentation. The

Base Per formance Memory
Program Time (slowdown) (kilobytes)

(Sec)) |[Demand] Satic |[Demand] Satic
compress 28.1 1.1 342 7.9 7.5
jess 215 1.19 171 50.2 60.3
db 447 0.98 112 9.7 8.9
javac 26.2 1.23 1.38 1789 186.0
mpegaudio || 254 101 2.2 247 295
mtrt 138 156 2.3 224 230
jack 17.8 1.16 1.16 73.4 78.0

Table 3: Branch coverage over head

third and fourth columns compare the slowdown of demand-
driven testing along apath (“ Demand”) and static instrumen-
tation (“Static”). The slowdown is the ratio of the run time
with testing over the run time without instrumentation. The
fifth and sixth columns compare the memory requirements
of the two approaches.

The results for static instrumentation were gathered
from a tool that we implemented. This tool instruments a
program’s binary code before run time and does not remove
the instrumentation. It is similar to tools such as Rational
PurifyPlus [10], JCover [11], and Clover [4]. We imple-
mented our own tool to make it easier to compare the perfor-
mance and memory overheads of the demand-driven and
static instrumentation approaches on the same framework
and benchmarks. Both tools do the same actions at a probe,
except the tool with static instrumentation does not insert or
remove probes.

The memory results in Table 3 include the space for
local and global storage, the PLT, and the breakpoint handler
and payload code. Because the memory demands change as
probes are inserted and removed in the demand-driven
approach, the memory sizes are maximums over a program
run.

Performance. The slowdown over uninstrumented code
for the demand-driven approach varies from 0.98 on db to
1.56 on mitrt, with a 1.18 average slowdown. The perfor-
mance overhead is related to how quickly branches are cov-
ered. The benchmarks with the best performance, compress,
db, and mpegaudio, have tight loops that cover edges
quickly. In other cases, such as mtrt, many edges can be cov-
ered (50% for mtrt), but some probes are not as removed
quickly and incur overhead. For example, a probe in mirt
stays 27 times longer than a probe in mpegaudio. Programs
with many try-catch blocks, such as mtrt, can exhibit this
behavior.

In comparison to branch testing with static instrumenta-
tion, the demand-driven techniqueis 1.01 to 3.11 times faster
(average is 1.63). The ability to remove probes is important
to reducing overhead, particularly in loops and when cover-
age converges quickly (i.e, the same paths are taken).
Indeed, probes in the dynamic approach have a much higher
cost (average 806 ns) than the static probes (average 32 ns),
which can be inlined and do not modify instructions at run
time. Yet, the ability to remove the probes far outweighs
their higher cost.

Memory Requirements. Table 4 shows that the demand-
driven approach needs 7.9 to 178.9 (average 52.5) kilobytes

163

of memory. The memory requirements depend on two fac-
tors. Firdt, the size of the result and PLT tables is important.
The table sizes are determined by the number of basic blocks
and how many probes are inserted/removed in a block. Sec-
ond, the requirements depend on the total size of the break-
point handlers, which is determined by the maximum
number of probes that are active in the program at any one
time. For example, javac has 1,116 active probes, where
each probe needs 31 bytes and the memory footprint of the
breakpoint handlers is 34,596 bytes. compress, on the other
hand, has only 71 active probes, requiring 2,201 bytes.

As Table 3 shows, demand-driven testing usualy has
smaller memory requirements than the static approach.
Although PLTs are larger with the dynamic technique, there
are many fewer active probes, resulting in a smaller memory
footprint. In fact, the ability to both insert and remove probes
on-demand keeps the number of active probes low. For
example, jack has 2,025 active probes in the static technique
and requires 78 KB of memory, while with dynamic instru-
mentation, it has a maximum of 473 active probes and 73
KB of memory.

From the results in this section, we conclude that
demand-driven branch coverage testing is effective in both
performance and memory demands. The technique has much
less performance overhead than an equivalent approach with
static instrumentation and its memory needs are on par or
better than the static technique.

6.2. Node and Def-Use Testing

To show the flexibility of our approach to support other
structural tests, we implemented test planners for node and
def-use coverage. For these tests, our tool reported 75% to
90.6% node coverage and 66.9% to 90.5% def-use coverage.
We also measured performance and memory requirements,
asshown in Table 4.

Performance. Node testing has a small performance
impact, with a maximum slowdown of 1.04 and an average
of 1.03 (excluding mpegaudio). In this test, the overhead is
minimal because probes are removed on-demand and exe-
cuted only once. Similar to branch testing, tight loops with
large iteration counts quickly amortize the cost of executing
a probe only once. In mpegaudio, performance is improved
dlightly because the execution of probes positively affected
machine behavior, such as the instruction cache hit rate.

Def-use has slowdowns from 1.04 to 3.79, with an aver-
age of 2.27. The slowdown depends on how quickly probes
for definitions can be removed. A probe at a definition
remains until all reachable uses are covered. A probe for a
use, on the other hand, can be removed immediately once it
is hit. Hence, probes at definitions cause most of the test
overhead. The number of def-use pairsisalso afactor; it typ-
ically take longer to cover alarger number of pairs. Finally
def-use probes are more expensive (1065 ns average cost vs.
780 ns for branch coverage), which aso contributes to the
overhead.

Interestingly, def-use pairs can take along time to cover,
even when nodes and branches are covered quickly.
Although jess has a 1.04 slowdown for node testing and 1.19

Performance Memory

Program (slowdown) (kilobytes)
Node Def-Use Node Def-Use

compress 1.0 141 44 43
jess 1.04 3.79 341 258.9
db 1.0 1.04 5.0 77.2
javac 1.04 3.07 107.3 1332.7
mpegaudio 0.99 2.45 15.0 114.0
mirt 1.03 2.05 125 90.4
jack 1.03 2.05 46.5 405.6

Table 4: Node and def-use overhead

for branch testing, it has a 3.79 slowdown for def-use. This
benchmark has a large number of variables with many def-
use pairs that are never covered, which causes probes to
remain and incur overhead. Indeed, jess executes 47 times
more probes per second of run-time than db, leading to a
larger slowdown.

Memory Requirements. Node coverage has small mem-
ory demands (4.4-107.3 KB, average 32.1 KB) because its
PLT issmall. Def-use has larger memory requirements, rang-
ing from 43 to 1,332.2 KB (average 332 KB). Typically, def-
use inserts and removes more probes at a location than
branch or node coverage, and hence, the size of a PLT entry
and breakpoint handler is larger. It also takes longer for
probes to be removed, which results in more active probes
(eq., javac has 1,116 active probes in branch testing and
1,663 probes in def-use testing) and higher memory
demands.

As this section has demonstrated, our approach is flexi-
ble and can accommodate several types of coverage testing.
The overheads are particularly encouraging for such a gen-
eral and flexible framework.

7. RELATED WORK

There are a number of commercia tools that perform
coverage testing on Java programs, including JCover [11],
Clover [4] and IBM's Rational PurifyPlus [10]. Of these
tools, only Clover does both branch coverage and statement
coverage; none do def-use coverage. Unlike our framework,
these tools statically instrument a program with probes that
remain for the entire execution of the tested program. Our
demand-driven approach does not modify the program
source code or classfiles. Instead, it operates on binary code,
enabling the use of dynamic instrumentation. Our frame-
work also avoids unnecessary overhead due to static instru-
mentation by removing instrumentation as soon as it is not
needed.

Tikir and Hollingsworth [21] use a dynamic technique
for node coverage with Dyninst [9]. As in Jazz, the Dyninst
tool dynamically inserts instrumentation on method invoca-
tions for node coverage. Unlike our approach however,
instrumentation is only removed via a garbage collection
process. Instead of removing instrumentation as soon as pos-
sible, a separate thread periodically removes the instrumen-
tation. However, this instrumentation remains until
collected, even when it is not needed. In comparison to their
coverage tool, Jazz works well. They report slowdowns of

164

1.001 to 2.37 (average 1.36) for C programs, while Jazz's
slowdowns are 0.99 to 1.04 (average 1.03) for Java pro-
grams. Although it is difficult to directly compare these
results, the demand-driven technique has better performance
because instrumentation is inserted on paths and removed
immediately rather than periodically.

Path profiles can be used to compute code coverage [1].
Path profiling transforms a CFG into adirected acyclic graph
(DAG) and assigns values to the nodes so that each unique
path from the entry to the exit of the DAG produces a unique
sum. However, the instrumentation needed path profiling
cannot be removed. Because the results presented in [1] do
not include the overhead for edge labeling, instrumentation
insertion, or path regeneration, a performance comparison is
difficult.

The concept of fast breakpoints was pioneered by
Kessler [12] but these breakpoints were not applied in a gen-
eral manner to dynamically instrument programs for struc-
tural testing. Dynamic instrumentation systems like PIN
[18], Dyninst [9] and Paradyn [13] used a technique similar
to ours to instrument a program. Like our framework, Dyn-
inst isintended to be general, with a language for specifying
instrumentation [9]. However, their instrumentation tech-
nigques were not designed to support test devel opment.

8. SUMMARY

This paper addresses the need for scalable and flexible
testing tools by developing a framework where test specifi-
cations are automatically converted to an implementation of
the specifications. The framework is flexible in that both
standard and custom structural tests can be incorporated into
tools created through the framework. Different tests, code
regions, code granularities, and coverages can al be incorpo-
rated. The framework also generates tools that are scalable
because the instrumentation is dynamicaly inserted on
demand as the program executes. Instrumentation is also
deleted at the time it is no longer needed. Experimental
results indicate savings in both time and memory over stati-
cally placing instrumentation before program execution.

9. ACKNOWLEDGEMENTS

This research has been supported in part by the National
Science Foundation, Next Generation Software, award
CNS-0305198. The project was also supported in part by an
IBM Eclipse Innovation Grant (2003).

10.REFERENCES

[1] T.Ball and J. R. Larus, “Efficient path profiling”, Int'l. Symp.
on Microarchitecture, 1996.

M. Burke, }D. Choi, S. Sink, et a., “The Jalapeno dynamic
optimizing compiler for Java’, ACM Java Grande Conference,
1999.

B. Childers, M. L. Soffa, J. Beaver et d., “ SoftTest: A frame-
work for software testing of Java programs”, Eclipse Technol-
ogy eXchange Workshop, 2003.

(2

(3]

Clover, http://www.cenqua.com/clover/.

Eclipse Integrated Development
www.eclipse.org

P. G Frankl and E. J. Weyuker, “An applicable family of data
flow testing criteria’, IEEE Trans. on Software Engineering,
14(10), October 1988.

P. G Frankl, S. N. Weiss, and E. J. Weyuker, “ASSET: A sys-
tem to select and evaluate tests’, Proceedings of the |IEEE
Conference on Software Tools, 1985.

M. J. Harrold and M. L. Soffa, “Interprocedural data flow test-
ing”, Testing, Analysis and \erification Symp., 1989.

J. Hollingsworth, B. Miller, M. Goncalves, et al., “MDL: A
language and compiler for dynamic program instrumentation”,
Conf. on Parallel Architecture and Compilation Techniques,
1997.

[10] IBM, Rational PurifyPlus, http://www.ibm.com/rational.
[11] JCover, http:/iww.codework.com/JCover/

[12] P Kesder, “Fast breakpoints: Design and implementation”,
ACM SIGPLAN Conf. on Programming Languages, Design
and Implementation, 1990.

Environment, http:/

(9

165

[13] B. P. Miller, M. D. Calaghan, J. M. Cargille, J. K. Holling-
sworth, et al., “The Paradyn parallel performance measure-
ment tools’, IEEE Computer, 11(28), 1995.

[14] J. Misurda, J. Clause, J. Reed, B. R. Childers, and M. L. Soffa,
“Jazz: A Tool for Demand-Driven Structural Testing”, Inter-
national Conference on Compiler Construction, 2005.

[15] L. Osterweil et a., “Strategic directions in software quality”,
ACM Computing Surveys, Vol. 4, 1996.

[16] C. Pavlopoulou and M. Young, “Residual test coverage moni-
toring”, Int’l. Conf. on Software Engineering, 1999.

[17] W. Perry, Effective Methods for Software Testing, John Wiley
& Sons, Inc., New York, New York, 1995.

[18] Pin, http://rogue.col orado.edu/Pin/

[19] S. Rapps and E. Weyuker, “Selecting software test data using
data flow information”, IEEE Trans. on Software Engineering,
11(4):367-375, 1985.

[20] Standard Performance Evaluation
WWW.Spec.org/jvm9o8

[21] M. Tikir and J. Hollingsworth, “Efficient instrumentation for
code coverage testing”, Int'l. Symp. on Software Testing and
Analysis, 2002.

Corporation, http://

	Demand-Driven Structural Testing with Dynamic Instrumentation
	Jonathan Misurda†, James A. Clause†, Juliya L. Reed†, Bruce R. Childers†, and Mary Lou Soffa‡
	†Department of Computer Science
	University of Pittsburgh
	Pittsburgh, Pennsylvania 15260
	{jmisurda, clausej, juliya, childers}@cs.pitt.edu
	‡Department of Computer Science
	University of Virginia
	Charlottesville, Virginia 22904
	soffa@cs.virginia.edu
	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. Framework Overview
	Figure 1: Framework for Demand-Driven Testing
	2.1. Usage Scenario
	2.2. Demand-Driven Instrumentation
	Figure 2: Example control flow graphs

	3. Test Planner
	3.1. Challenges
	3.2. Planner Actions
	Figure 3: Example test plan for node coverage

	3.3. Dynamic Instrumenter

	4. Test Planners
	4.1. Branch Coverage Planner
	Table 1: Branch coverage planner

	4.2. Node Coverage Planner
	4.3. Def-use Coverage Planner
	Table 2: Def-use coverage planner

	5. Jazz: A Structural Testing Tool
	5.1. Jikes RVM
	5.2. Dynamic Instrumentation for the x86

	6. Experiments
	6.1. Branch Coverage Testing
	Table 3: Branch coverage overhead
	Performance
	Memory Requirements

	6.2. Node and Def-Use Testing
	Performance
	Table 4: Node and def-use overhead

	Memory Requirements.

	7. Related Work
	8. Summary
	9. Acknowledgements
	10. REFERENCES
	[1] T. Ball and J. R. Larus, “Efficient path profiling”, Int’l. Symp. on Microarchitecture, 1996.
	[2] M. Burke, J-D. Choi, S. Sink, et al., “The Jalapeno dynamic optimizing compiler for Java”, ACM Java Grande Conference, 1999.
	[3] B. Childers, M. L. Soffa, J. Beaver et al., “SoftTest: A framework for software testing of Java programs”, Eclipse Technology eXchange Workshop, 2003.
	[4] Clover, http://www.cenqua.com/clover/.
	[5] Eclipse Integrated Development Environment, http:// www.eclipse.org
	[6] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow testing criteria”, IEEE Trans. on Software Engineering, 14(10), October 1988.
	[7] P. G. Frankl, S. N. Weiss, and E. J. Weyuker, “ASSET: A system to select and evaluate tests”, Proceedings of the IEEE Conference on Software Tools, 1985.
	[8] M. J. Harrold and M. L. Soffa, “Interprocedural data flow testing”, Testing, Analysis and Verification Symp., 1989.
	[9] J. Hollingsworth, B. Miller, M. Goncalves, et al., “MDL: A language and compiler for dynamic program instrumentation”, Conf. on Parallel Architecture and Compilation Techniques, 1997.
	[10] IBM, Rational PurifyPlus, http://www.ibm.com/rational.
	[11] JCover, http://www.codework.com/JCover/
	[12] P. Kessler, “Fast breakpoints: Design and implementation”, ACM SIGPLAN Conf. on Programming Languages, Design and Implementation, 1990.
	[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, et al., “The Paradyn parallel performance measurement tools”, IEEE Computer, 11(28), 1995.
	[14] J. Misurda, J. Clause, J. Reed, B. R. Childers, and M. L. Soffa, “Jazz: A Tool for Demand-Driven Structural Testing”, International Conference on Compiler Construction, 2005.
	[15] L. Osterweil et al., “Strategic directions in software quality”, ACM Computing Surveys, Vol. 4, 1996.
	[16] C. Pavlopoulou and M. Young, “Residual test coverage monitoring”, Int’l. Conf. on Software Engineering, 1999.
	[17] W. Perry, Effective Methods for Software Testing, John Wiley & Sons, Inc., New York, New York, 1995.
	[18] Pin, http://rogue.colorado.edu/Pin/
	[19] S. Rapps and E. Weyuker, “Selecting software test data using data flow information”, IEEE Trans. on Software Engineering, 11(4):367-375, 1985.
	[20] Standard Performance Evaluation Corporation, http:// www.spec.org/jvm98
	[21] M. Tikir and J. Hollingsworth, “Efficient instrumentation for code coverage testing”, Int’l. Symp. on Software Testing and Analysis, 2002.

