Using Component Metadata to Support the Regression Testing of
Component-Based Software

Mary Jean Harrold Alessandro Orso David Rosenblurh Gregg Rothermél
harrold@cc.gatech.edu orso@cc.gatech.edu dsr@ics.uci.edu grother@cs.orst.edu
Mary Lou Soffd Hyunsook D&
soffa@cs.pitt.edu dohy@cs.orst.edu
Abstract 1 Introduction

. based sof . Interest in component-based software continues to grow
Interest in component-based software continues to grow, i, e recognition of its potential in managing the growing

wlth the recognition of its potentialin managing the increas- complexity of software systems [15, 22, 24]. With increas-
ing complexity of software systems. However, the use of

I ided h . drawbacks. i ing frequency, software engineers are building systems by
externally-provide componeqts as serious arawbacxs, Inintegra’ting externally-developed software components with
most cases due to the lack of information about the compo-

; id f activities in th : . ¢ application-specific code [4, 15, 24]. Although the use of
hents, for a wide range o .act|V|t|es n the engineering o components provides many advantages, serious drawbacks
component-based applications. Consider the activity of re-

: X i : in that use are becoming apparent. These drawbacks im-
gression testing, whose high cost has been, and continues t%inge on a wide range of software engineering activities.

be, a prpblem. .In the ce:)se of component-bas.ed as\?rl]lcatlonsFor example, component usage threatens our ability to val-
regression testing can be even more expensive. €N aNefiate software [26] and assess reliability [4], complicates

version of one or more components is integrated into an nintenance [24], causes problems in program understand-
application, the lack of information about such externally- ing [9], and introduces threats to security [14]

developed components makes it difficult to effectively deter- In many cases, the drawbacks of component-based soft-

mmF thg teslt cases that sf;ould be rerug (;n the refsultlngware technologies ariseebause of the lack of information

Spp |ca:1|.ork11. n pr%\gpgs Wlodr We prg(g)o(jse : :1 euse ofmeta- 5, ¢ externally provided components. Providing the com-
ata, which are additional data provided with a component, ponent's source code is not a viable solution to this problem

to support software engineering tasks. In this paper, we because of intellectual .)
; property issues: Quament devel-
present two new metadata-based techniques that addressthgpers often will be unwilling to provide the required infor-

prob!em' of regression test selection for Compone’:nt'ba%dmation unless they can do so without revealing source code
applications: a cod'e-base.d approach and a s'peCIflcanon- or other sensitive details. Furthermore, not all the required
based approach. First, using an example, we illustrate thg information can be (easily and efficiently) derived from the
two techniques. Theq, we present a case study that app“eﬁode alone: Some information, such as data dependences or
the code-based technique to a real component-based SySten&omplexity metrics, may be expensive to compute; other in-
The results of the study indicate that, on average, 26% of theformation such as aocumentation or changes With,respect to
overall testing effort can be saved over seven releases of th%revious \;ersions must be provided in addition to the code.
component-based system studied, with a maximum saving Existing compo,nent standards, including DCOM [5] and
of 99% of the testing effort for one version. This reduction Enterprise JavaBeans [10] alrea,dy supply some additional
demonstrates that metadata can produce benefits in regres; formation about a compohent through the use of metadata
sion testing by reducing the costs related to this activity. that are packaged with the component. In general, meta-
data can belata about componentend metamethod$or
calculating or retrieving those data. The metadata avail-

*College of Computing, Georgia Institute of Tewlogy able so far are typically limited to information that is use-

ll(:?”eget‘_’f CO”;pg“”gv‘feoég'? '”S“tﬂte_ OfTF:“"Cf’%’ ormia. v ful for compile-time and run-time type-checking (e.g., the
nformation and Computer Science, University of California, Irvine , ; .

§ Department of Computer Science, Oregon State University name of the component S cla'ss, the names of its funCt'Qns'

YDepartment of Computer Science, University of Pittsburgh and the types of the functions’ parameters), and for design-

I Department of Computer Science, Oregon State University time customization (e.g., the shape or color of a graphical

user interface component, and the maximum size of the in-demonstrate that there can be significant savings in the num-
ternal buffer of a data storage component). Researcherser of test cases that must be rerun for regression testing
have proposed extending the use of such information forwhen component metadata are available, and thus indicate
specific tasks [6, 12, 18, 23, 25, 28], but the varieties of the usefulness of metadata for regression testing.

metadata currently supported address only a limited range The main contributions of the paper are the following:

of software engineering problems, such as providing de-
ployment descriptions of components [6, 18] or enhancing
self-documentation [28]. In particular, none of the metadata
proposed has addressed the important software engineering
task of regression testing of component-based software.

1. identification and use of metadata for regression test
selection using a code-based technique;

2. identification and use of metadata for regression test
selection using a specification-based technique; and

3. demonstration of the usefulness of metadata in regres-
In previous work, we introduced a general framework for sion test selection for a real program.

producing and consuming metadata whose goals are (1) to i

support the broad range of software engineering tasks that " the next section, we present the use of metadata for
depend on and can benefit from information about external"€9"€ssion test selection for the two testing techniques. In
components, and (2) iccommodate coponent providers' Section 3, we describe our empirical study and prgsent our
intellectual-property concerns [16]. This paper explores the results. Sec'tlon 4 presents a summary and conclusion of our
application of our metadata framework to the problem of re- WOk, and discusses some future work.

gression test selection for component-based software. That]

is, given (1) an application that uses a set of externally-2 Component Metadata for Regression Test
developed components and has been tested with a test suite, Selection

and (2) a new version of this set of which test cases from Thi . hes f idi q
the test suite must be rerun to exercise the changes in the IS section presents two approaches for providing an

external components? Test cases in the suite that are nd¢Sing component met.qdat.a for regression test selection:
impacted by the changes need not be rerun code-based and specification-based. The approaches ad

) . dress the general case of an applicatibthat uses a se&f'
To determine the usefulness of metadata for regression¢ components. To illustrate these two approaches, we use

test selectiqn, there are a number of problems that must be,, example consisting of a component and an application
resolved. First, we mustidentify the metadata needed to peryh 5t uses it. (For space reasons, the example is limited to a

form the chosen task. To be able to perform regression testsingle component.) The componeBispenser , and the
selection, we need information about the coverage aChievedapplicationVendingMachine are presented in Figure 1:

by the test suite on the original version of the software. We nqte that whereas we show the source codpispenser

also need information about the changes made to the set of, e figure, for the sake of this example we assume that the
components. Second, we must determine how to adapt ex-

-] ; i X source code dbispenser is unavailable to the developer
isting regression test selection techniques to incorporate the VendingMachine

use of metadata. Different types of techniques must be con- g gpplication models a typical vending machine that is
sidered to demonstrate the general applicability of the ap- e to dispense specific items to a user. In particular, a user

proach. Finally, we must demonstrate the value of using .5, (Ljinsert coins into the machine, (2) ask the machine

metadata for regression test selection on component-baseg, ;aturn the coins inserted and not consumed, and (3) ask
software. That is, we have to study how much we can save,ihe machine twend a specific item. If the requested item

in terms of the number of test cases that must be rerun, wheng ot available, if the credit is insufficient, or if the selection
using the regression test selection technique proposed.

is invalid, the machine prints an error message and does not
In this paper, we present metadata and techniques thatlispense the item.

use metadata for regression test selection on component- We developed a test suite fovendingMachine

based software for two different types of approaches: code-(shown in Table 1). Each test case is a sequence of method

based regression test selection, based on statement-level arwlls! The test cases are grouped into three sets (1-16, 16—

method-level regression test selection algorithms [3, 8, 20],20, 21-25) based on the value of paramesteection

and specification-based regression test selection, based othat is passed to methdtendingMachine.vend . The

the category-partition method [17]. For both types of ap- table indicates whether the test case passed or failed. Test

proaches, we (1) identify the metadata necessary to detercases 4 and 14 failed because of an error in method

mine the test cases to rerun and (2) present techniques foDispense.dispense . If an available item is se-

using the metadata for regression test selection. We also delected and the credit is insufficient, but greater than zero,

scribe the results of a study, performed on areal cqmponent- L For the sake of brevity, in the call sequences we do not show the initial

based system, that compares the costs of regression test Sgg o the constructor of clas¢endingMachine , which is implicitly

lection with and without metadata. The empirical results invoked when the class is instantiated.

. public class VendingMachine {

final private int COIN = 25;
final private int VALUE = 50;
private int totValue;
private int currValue;
private Dispenser d;

public VendingMachine() {
totValue = 0;

currValue = 0;

d = new Dispenser();

public void insert() {
currValue += COIN;

System.out.printin("Current value ="

1

2

3

4

5

6

7

8

9
10
11
12.
13. }
14

15

16

17 + currValue);
18

19

20

public void return() {

. if (currValue == 0)
22. System.err.printin("no coins to return");
23. else {
24. System.out.printin("Take your coins");
25. currValue = 0}
26. }
27.
28. public void vend(int selection) {
29. int expense;
30. expense = d.dispense(currValue, selection);
31. totValue += expense;
32. currValue -= expense;
33. System.out.printin("Current value = " + currValue);
34.
35. } /I class VendingMachine
36.
37. public class Dispenser {
38.
39. final private int MAXSEL = 20;

final private int VAL = 50;
private int[] availSelectionVals = {2,3,13};

43. public int dispense(int credit, int sel) {

44, int val=0;

45, if (credit == 0)

46. System.err.printin("No coins inserted");

47. else if (sel > MAXSEL)

48. System.err.printin("Wrong selection "+sel);
49. else if (lavailable(sel))

50. System.err.printin("Selection "+sel+" unavailable");
51. else {

52. val = VAL;

53. if (credit < val)

54. System.err.printin("Enter "+(val-credit)+" coins");
55. else

56. System.err.printin("Take selection”); }

57. return val;

58. }

59.

60. private boolean available(int sel) {

61 for (int i = O; i<availSelectionVals.length; i++)
62 if (availSelectionVals[i] == sel) return true;
63. return false;

64. }

65. } /I class Dispenser

Figure 1. Application VendingMachine and

componenDispenser

then variablevalue (set to VAL at line 52) is not re-
set to zero; consequently, when control returns from
Dispense.dispense to VendingMachine.vend
currValue is erroneously decremented.

Table 1. Test suite used to te$tendingMachine

[TestCase# TestCase Result
Value passed to vend: 3(i.e., valid selection, available item)
1 return Passed
2 vend Passed
3 insert, return Passeg
4 insert, vend Failed
5 insert, insert, return Passqd
6 insert, insert, vend Passqd
7 insert, insert, insert, return Passed
8 insert, insert, insert, vend Passed
9 insert, insert, insert, insert, return Passed
10 insert, insert, insert, insert, vend Passed
11 insert, insert, return, vend Passed
12 insert, insert, vend, vend Passed
13 insert, insert, insert, return, vend Passed
14 insert, insert, insert, vend, vend Failed
15 insert, insert, insert, insert, return, vend Pasged
16 insert, insert, insert, insert, vend, vend Passed
Value passed to vend: 9(i.e., valid selection, unavailable item
17 vend Passeq
18 insert, vend Passegd
19 insert, return, vend Passed
20 insert, vend, vend Passed
Value passed to vend: 35(i.e., invalid selection)
21 vend Passeq
22 insert, vend Passegd
23 insert, insert, vend Passed
24 insert, insert, insert, vend Passed
25 insert, insert, insert, insert, vend Passed

“val = 0; " after statement 54, and releases a new ver-

sion Dispenser ' of the component. When we integrate
Dispenser '’ into VendingMachine , we want to re-
gression test the resulting application. For efficiency, we
want to rerun only those test cases in our test suite that ex-
ercise modifications fronDispenser to Dispenser .
However, without information about the modifications to
Dispenser and how they relate to our test suite, we will
be forced to run all or most of the test cases in the test suite.
Ata minimum, we will need to select all test cases in the test
suite that exercise the component (20 of the 25 test cases).

2.1 Metadata for Code-based Selection

In this section, we illustrate a metadata-based technique
for regression test selection defined for code-based ap-
proaches. Code-based testing techniques select test cases
based on a coverage goal expressed in terms of some aspect
of the code. There are many entities that can be selected
for coverage, such as statements, branches, decisions, paths,
methods, or classes [1]. Such coverage is usually used as an
adequacy criterion for a test suite: the higher the coverage
achieved, the higher the adequacy of the test suite.

In particular, for branch coverage techniques, the pro-
gram is instrumented so that, when it executes, it records

Suppose that the component developer finds andthe branches traversed by each test cagg itme test suite.

fixes this error in Dispenser by adding statement

With this information, it is possible to associate a subset of

We will use DejaVu as a representative of these code-
Table 2. Branch coverage fovendingMachine . based approaches [19]. In particular, the DejaVu approach
uses a control-flow graph as the representation, and the en-
tities are the branches in the graph. To select test cases to

TestCase# Branches Covered |
(9,10), (20,21), (21,22)

; (9.10), (28.29) be rerun, DejaVu performs a synchronous traversal of the
3 (9.10), (15,16), (20,21), (21,23) control-flow graph (CFG) fo® and the control-flow graph

4 (9,10), (15,16), (28,29) (CFG) for P/, identifies branches modified from CFG to
5 (9.10), (15,16), (20,21), (21,23) CFG, and selects the test cases that cover such branches as
6 (9,10), (15,16), (28,29) h '

7 (9.10), (15.16). (20.21), (21,23) the test cases to be rerun. _ '

8 (9,10), (15,16), (28,29) For example, to perform regression test selection
9 ((9,10)), (égig)) (ég;l;)) (21,23) on application VendingMachine when component

10 9,10), (15,16), (28, . .) p :)

1 (9.10), (15.16). (20.21), (21.23), (28.29) Dispenser is changed toDispenser 5 DeJa\(u co/n

12 (9.10), (15,16), (28.29) structs a control-flow graph CF@r VendingMachine .

13 (9,10), (15,16), (20,21), (21,23), (28,29) However, because the code fDispenser is unavail-

14 (9,10), (15,16), (28,29) able to the developer afendingMachine , DejaVu can-

12 81838218 gg,gég,(zl,zs),(zs,z;) not construct control-flow graphs for any of the meth-
17 (9.10), (28.29) ods in Dispenser . Therefore, DejaVu can only se-
18 (9,10), (15,16), (28,29) lect test cases based on the analysis of CFG and’CFG
19 (9,10), (15,16), (20,21), (21,23), (28,29) for VendingMachine by conservatively considering each
;2 Eg‘igg’ gg;g; (28,29) branch that represents a call to compor@ispenser to

29 (9.10), (15.16), (28,29) be modified. In this case, when DejaVu performs its syn-
23 (9,10), (15,16), (28,29) chronous traversal of CFG and CK@& finds that branch

24 (9.10), (15,16), (28,29) (28,29) is affected by the change, and the algorithm selects
25 (9,10), (15,16), (28,29)

all test cases that exercise this brancf24,6,8,10-25.

To achieve better regression test selection when the
the branches i, the program under test, wittach test source code of the component is unavailable, we can use
case irl". The branches of interest endingMachine component metadata. To support test selection for code-
are (1) entries into each method (i.e., branching becausehased regression testing, we need three types of metadata
of a method call) and (2) branches from decision state- for each corponent. First, we need to know the branch cov-
ments: Branches (9,10), (15,16), (20,21), and (28,29) repre-erage achieved by the test suite with respect to the com-
sent the former; branches (21,22) and (21,23) represent thgonent so that we can associate test cases with branches.
latter. Because there are no decision statements in construGecond, we need to know the component version. Third, we
tor VendingMachine , branch (9,10) represents the call need a way to query the component for the branches affected
to Dispenser in statement 12, and because there are nopy changes in the component between two given versions.
decision statements in methwend , branch (28,29) repre- The component developer can provide this information in
sents the call tdispense in statement 30. Table 2 shows the form of metadata and metamethods, and package them
the branches iivendingMachine exercised by each of with the component.
our test cases. We could then construct, for example, a metadata-aware

Code-based regression test selection techniques (e.gversion DejaVu, 4 of DejaVu. This tool would build the
[8, 11, 19, 21, 27]) construct some representation, such as anatrix “test cases’—“branches covered” by gathering the
control-flow graph, a call graph, or a class-hierarchy graph, component coverage data feach test case. According
for a programP and record the coverage achieved by the tg the framework presented in Reference [16], a possible
original test suitel” with respect to some entities in that interaction of DejaVu; 4 with component: for incremen-
representation. When a modified versiBhof P becomes tally populating the matrix “test cases”—“branches covered”
available, these techniques construct the same representaould consist of the following step’s:
tion for P’ that they constructed foP. The algorithms

. 1. Get the list of types of coverage metadata provided by the
then use the representations foand P’ and compare them P g P y

component:

to select the test cases framfor use in testing?”, bas?d List Imd = c.getMetadata(*analysis/dynamic/coverage”)
on (1) differences betwgen the rgpresentaﬂorﬁ@ndP, . 2. Check whetheiimd contains the metadata needed (i.e.,
with respect to the entities considered, and (2) information “analysis/dynamic/coverage/branch”); assume that it does.

about which test cases cover the modified entities. _ _
the test suite must be augmented by developing new test cases that cover

2Regression test selection selects test cases from the original test suitéhese unexercised parts of the program.
for use in testing the modified progra®. However, modified or new 3Note that this scenario assumes the existence of some hierarchical
code fromP to P’ may not be exercised by test case§inIn this case, scheme for naming and accessing available metadata, as described in [16].

3. Get information on how to access the metadata through fynctionalitydispense
metamethods:
MetadataUsage mu = c.getMetadataUsage(“analysis/dynam-
ic/coverage/branch”)

4. Based on information imu, fetch the coverage metadata by

e Params:
credit
— zero [if Available]
— insufficient [if Available]

first enabling the built-in coverage facilities: — sufficient [if Available]
c.enableCoverage(“analysis/dynamic/coverage/branch”) — over [if Available]
5. At this point, the built-in coverage facilities provided with selection
component are enabled, so we can start producing coverage — correct [property Correct]
information; for each test cagen the test suite: o Incorrect [error]
o e Environment
e Reset the built-in coverage to get the coverage for availability
c.resetCoverage(“analysis/dynamic/coverage/branch”) — available [if Correct] [property Available]
e Runtest case — unavailable [if Correct] [error]

e Get the coverage far.
Metadatum md = getCoverage(“analysis/dynamic/cov-

Figure 2. A possible set of categories, choices, and
erage/branch”).

constraints for the componehtispenser.

Now, whenDispenser ' is acquired, DejaVira (1) parameter and environment entity into mutually exclusive
retrieves fromDispenser its version, (2) using this in- choices. In the third phase, the tester identifies constraints
formation querieDispenser ' about which branches are among choices, based on their mutual interactions. Finally,
affected by the changes between it @idpenser , and n the fourth phase, the tester develops a set of test frames
(3) selects the test cases to rerun, based on the affectegbr each unit by computing the crossepluct of the differ-
branches and the matrix. In this case, the differences be-ent choices; in this phase, the constraints among choices
tweenDispenser andDispenser ' affect only branch are used to eliminate meaningless or contradictory combina-
(53,54), which is exercised only by test cases 4 and 14.tions and to reduce the number of frames, possibly through
Therefore, only test cases 4 and 14 are selected to be rere-jteration of the third phase.
run, which is a substantial savings over the approach that
does not use metadata.

The technique for code-based regression testing that w

Analogous to code-based regression test selection tech-
éﬁiques, specification-based techniques record the coverage

have just illustrated is defined at the branch level. When theOf tht? orllglnal test fut'.tg W'tlh rtispect to efnttlﬁes 'rlt the
size of the code increases, the statement-level approach mzég‘mc lonal representation. 1In the case of the category-

become impractical. However, the technique can be define artition method, we can consider the test frames as the en-
at different levels of granularity. In particular, possible al- tities to be covered. Atest casedhcovers a test framé if

ternatives are to define the technique at the method level (1) the parameters of calls to single functionalities match the
‘corresponding choice itf, and (2) the state of the compo-

at the class level, or at the subsystem level. In such casesh nt matches the environment characteristidt ifio com
both the coverage and change information provided through € atcnes the environment characteris 0 co
pute the coverage of the component achieved by a given test

metamethods would be defined at the method, class, or sub! int ftest f th d t be inst ted
system levels, respectively, rather than at the branch level £S€ IN IErMS OT1estirames, the code must be instrumente

In our experiments, we used the method-level approach asaccording to the identified test frames. In this way, for each
described in Sectio,n 3 " “test case irl" we can identify the test frames that it cov-

ers. Therefore, we are able to associate a subsEtwaith
each test frame. This information can be used when per-
forming regression testing of componefit. If we know

In this section, we illustrate a second metadata-basedwhich frames are affected by the changes, then we can re-
technique for regression test selection, defined for arun only the test cases associated with such frames. Each
specification-based approach. Specification-based testingest frame identifies a family of test cases that satisfy it.
technigues develop test cases based on a functional deSuch test cases, in turn, identify a family of paths within
scription of the system. One such technique,daegory- the component—the paths traversed by the execution of the
partition method17], producegest frameghat represent a test cases. These paths can therefore be associated with the
test specification for the functional units in the system. The frame. We say that a changéfectsa test framef if at least
method is composed of several phases. In the first phasepne of the paths associated withtraverses a statement ei-
the tester analyzes the specification to identify the individ- ther changed or eliminated in the new version of the compo-
ual functional units in the system; for each unit, the tester nent. The component developer can, based both on analysis
identifies parameters (inputs to the unit) and environmentof the component and on his/her knowledge, identify which
factors (elements outside of the code that affect the behavioframes are affected by the changes between two versions of
of the unit). In the second phase, the tester partiteath a given component.

2.2 Metadata for Specification-based Selection

functionalitydispense

selection: incorrect, availability: X, credit: X Table 3. Test frames for thBispenser component

1 . ;
2 selection: correct, availability: unavailable, credit: X covered by the test cases for the vending machine.
3 selection: correct, availability: available, credit: zero
4 selection: correct, availability: available, credit: insufficient Test Test Frameg| Test Test Frames
5 selection: correct, availability: available, credit: sufficient Case# Covered Case# Covered
6 selection: correct, availability: available, credit: over 1 14 4,6
, . 2 3 15 3
Figure 3. Test frames for componeiltispenser 3 16 3,6
(value “X” indicates “don't care” values). 4 4 17 2
5 18 2
)] i] 6 5 19 2
Figure 2 illustrates, for methodispense , a possible 7 20 2
set of categories, choices, and constraints on the choices de- 8 6 21 1
rived by applying the category-partition method to the com- ?0 . ;g i
ponentDispenser . Figure 3 shows a set of test frames 1 3 24 1
derived from the test specifications in Figure 2. 12 3,5 25 1
For the specification-based approach, to perform regres- 13 3

sion test selection whebispenser is modified, we need
(1) to know the test frames for the component, (2) to 3. Get information on how to access the metadata through

have a way of computing which test cases for application metamethods:
VendingMachine cover which test frames of component MetadataUsage mu = c.getMetadataUsage(“analysis/dynam-
Dispenser , and (3) to have information about the test ic/coverage/testframes”)

frames affected by the changes in the component. In the 4. Basedoninformation imu, fetch the coverage metadata by
case in which a specification for the component is avail- ~firstenabling the built-in coverage facilties: .
able, we can define test frames for the component. How- c.enableCoverage(“analysis/dynamic/coverage/testframes”)
ever, because the code Mispenser is unavailable .We 5. At this point, the built-in coverage facilities provided with
h ’ f fi It)h inf t', b component are enabled, so we can start producing coverage
ave no way of computing the coverage information (be- information; for each test cagen the test suite:
cause we need access to the state of thepoment to check o -
which environmental conditions are satisfied by each test) » Reset the built-in coverage facilities to get the cover-

and no way of identifying which test frames are affected by age fo:é canalvsis/dvnanmic/ fest
the Changes iispenser g;(:::sn)overage(analysis/dynamic/coverage/test-

Therefore, to support test selection for specification- o Run test case
bgsed regression testing we need three types of metadata. e Get the coverage far
First, we need to know the coverage achieved by the test Metadatum md = getCoverage(“analysis/dynamic/cov-
suite with respect to the test frames for the component, so erageltestframes”).
that we can associate test cases with frames. Second, we i .)
need to know the component version. Third, we need away ~When a new version of the component is acquired, the
to query the component about the test frames affected by thd®0! (1) gathers the metadatum about the version from the
changes in the component between two versions. Again,°|d component, (2) using this information queries the new
the component developer will provide this information in component for the test frames affected by the changes be-
the form of metadata and metamethods, packaged with thdWeen its version and the version currently in the system,
component. and (3) selects the test cases to rerun, based on the affected
We could now construct a metadata-aware tool, analo-ffames and the matrix. _ _
gous to théDejaVuya tool of Section 2.1, that would build Suppose we apply this technique to thending-
the matrix “test cases’—“test frames covered” by enabling Machine example. First, we run the 25 test cases for the
the coverage computation and gathering the data for eacrPplication and gather the test-frame coverage information;
test case. LikdejaVuya, this tool would be based on the in Table 3, we show how the different test frames in Figure 3
framework presented in Reference [16], and could consistsare covered by the test cases for the vending machine. Sec-
of the following steps: ond, when we acquirBispenser ', we check which test
frames are affected by the changes between the two versions
component: of the component; we discover that only test frame 4 is af-
ListImd = c.getMetadata(“analysis/dynamic/coverage”) fected. Finally, we use the matrix “test cases”-"test frames
2. Check whetheimd contains the metadata needed (i.e., covered”to select the test cases to be rerun; according to the
“analysis/dynamic/coverage/testirames”); assume that it informationin Figure 3, we select test cases 4 and 14.
does. As with the code-based approach, the specification-

1. Get the list of types of coverage metadata provided by the

based approach provides a meaningful reduction in the3.2 Study Subject
number of test cases to be rerun for the new version of

VendingMachine As a subject for our study we used several versions of the

Java implementation of the®\A server [7]. SENA (Scal-
able Internet Event Notification Architecture) is an Internet-
3 Case Study scale event notification middleware for distributed event-
based applications deployed over wide-area networks, re-
i i _sponsible for selecting notifications that are of interest to
To investigate whether the use of metadata can benefityjionts (as expressed in client subscriptions) and then deliv-
regression testing of applications built with external com- ginq those notifications to the clients via access points.
ponents, we performed a case study. Specifically, we inves- 14 jnvestigate the effects of using component metadata

tigated the following research question: for regression test selection, we required an application pro-
gram, constructed using external components that could be
Let A be a program created by an application de- provided with metadata. 1ENA is logically divided into a
veloper using a set of externally-developed com- set of six components (consisting of nine classes of about
ponentsC. LetT be a test suite created to tekt 1.5KLOC), which constitute “a set of external components
Suppose a new versidlf of C is created through C.” and a set of 17 other classes of about 2KLOC, which
modifications to one or more of the components constitute an application that could be constructed using
in C, and suppose the developerathen wishes We obtained the source code for all the different versions
to adoptC” for use inA. If metadata are available of SIENA, from its first to its last release (about 15 differ-
with C andC’, can the developer reugeto re- ent releases), in the form of an RCS repository. We ex-
gression testd more efficiently than if metadata tracted, from the &NA repository, eight different sequen-
are not available? tially released versions af' (versions 1.8 through 1.15),
which we refer to ag’;, Cs, ..., Cs, respectively. Each

In this study, we restricted our attention to the use version provides enhanced functionality or bug fixes over
of metadata for code-based regression test selection techthe previous version. The net effect of this act was the provi-
niques, as described in Section 2, and we focused on twosion of eight successive versions 0EBA, Ay, As, ..., As,

specific regression test selection techniques: constructed using'i, Cs, . . ., Cs, respectively. These ver-
sions of SENA represent a succession of versions, each of

No metadata. The developer ofA knows only that one or ~ which the developer ofA would want to retest. The pairs
more of the components ifi have been modified, but ~ of versions @, Ax11), 1 < k < 7, formed the (version,
not which. Therefore, to selectively retessafely, the ~ modified-version) pairs for our study.

developer must rerun any test casé/ithat exercises To investigate the impact of metadata on regression test
code in one or more of the components’in We will selection we also required a test suite for our base version
refer to this as the NOMETA technique. A; of SIENA that could be reused in retesting subsequent
Metadata for method-level regression test selection. versions. Such a test suite did not already exist for the

The developer ofA possesses metadata provided by SIENA release we considered, so we created one. To pro-
the developer of”, sufficient to support selection of vide test cases in an unbiased manner, one of the authors
test cases that exercise methods changed in producingf this paper, who is involved in defining the requirements
C' from C using the procedure described in Section 2. and design of &NA but is unfamiliar with its implemen-

We will refer to this as the META technique. tation details, independently created a black-box test suite,
based on the functionality ofi&NA, that consists of 138 test
cases. This set of test cases served as the subject regression

A M I .
3 easures test suite for our study.

Regression test selection techniques achieve savings b% 3 Procedure
reducing the effort required to regression test a modified ™
program. Thus, one method used to compare such tech- Because the creation of metaimetls and support tools
niques [3] is to measure and compare the degrees to whicHor directly implementing our target techniques would be
the techniques reduce test suite size for given modified ver-expensive, our goal was to discover a way to address our
sions of a program. We adopt this approach. &ch re- research question without creating such infrastructure. We
gression test selection technigli¢hat we consider, and for designed a procedure by which we could determine pre-

each (version, subsequent-version) pa, ;1) of pro- cisely, for a given test suite and (program, modified-version)
gram P, whereP; is tested by test suité, we measure the pair, which test cases would be selected by our two tar-
percentage dl’ selected byR to testP,; ;. get techniques. For each (program, modified-version) pair

(P;, P;11), we used the Unixliff utility and inspection of

the code to locate differences betweerand P, 1, includ- 100

ing modified, new, and deleted code. In cases where vari- 90

able or type declarations differed, we found the methods in 5 80+

which those variables or types were used, and treated thos: § 70+

methods as if they had been modified. We used this informa- § 60+

tion to determine the methods i that would be reported 8 501

changed for the META technique. We instrumented each 5 49

such method so that, when executed, the method outputsth 8 30

text “selected”, and we then constructed an executable of 201

the application from this instrumented code. 10+

Given this procedure, to determine which test casés in 0- —

would be selected by the META technique fé?; (P;14) it e o C4_ _ © _ o
was sufficient to execute all test casesTiron our instru- modified version

mented version of’;, and record which test cases caused
P to output (one or more times) the text “selected”. By fjgyre 4. Test selection results for the NOMETA
construction, these are exactly the test cases that would be (p|ack) and META (grey) techniques.
selected by an implementation of the META technique.
Determining the test cases that would be selected by
the NOMETA technique required a similar, but simpler ap-
proach. We instrumented the application developer's por-
tion of the code foP, inserting code that outputs “selected”
prior to any invocation of any method i1, and then exe-
cuted the test cases Thon that instrumented version.
The foregoing procedures require us to execute all test

As the figure also shows, the META technique always
selected a smaller subset of the test suite than the NOMETA
technique. In the case of version C7, the difference was ex-
treme: the META technique selected only 1.5% of the test
cases in the test suite, whereas the NOMETA technique se-
lected 97% of the test cases. This large difference arose be-

: . : cause the changes within C7 are minor, involving few meth-
cases ifl" to determine which test cases would be selected
) . . ods, and methods encountered by only a few test cases. On
by an actual regression test selection tool; thus, the ap-
. . the other versions, differences in selection were more mod-
proaches are of use only for experimentation. However, the

. gst, ranging from 6% to 37% of the test suite.
approaches let us determine exactly the test cases that woul o , C3 C5 and C6. the META techni
be selected by the techniques. nversions L5, &5 an » the echnique se-

We applied this approach to each of the seven (program !ected identical test cases, even though the code changes

modified-version) pairs of thel&uA system with our given 'in those versions differed. This occurred because the code
test suite, and recorded, for each of the two regression tesf;hangr]]esalnvoldve(td :Ehe sa;nle S?ts of me'thO(tjs. tThIeortgtlca:g '
selection techniques, the percentage ofthetestsuiteselecte'tgiwte a usel stadefmetrrll-eve regressmnldei s¢ g‘%lon,d €
by that technique for that (program, modified-version) pair. est cases selected for tnese versions could have ditiered.

These percentages served as the data set for our analysis. The fact that a regression test selection technique reduces
the number of test cases that must be run does not guaran-

tee that the technique will be cost-effective. That is, even
though we reduce the number of test cases that need to be
Figure 4 contains a graph depicting the test selection re-rerun, if this does not produce savings in testing time, the re-
sults obtained in this study. In the graph, each modified duction in number of test cases will be meaningless. More-
version of SENA occupies a position along the x-axis, and OVver, savings in testing time might not be proportional to
the test selection data for that version are represented by &avings in number of test cases (if, for example, the test
vertical bar, black for the NOMETA technique and grey for cases excluded are all inexpensive, while those not excluded
the META technique. The height of the bar depicts the per- are expensive). (See [13] for an applicable cost model.)
centage of tests selected by the technique on that version. In the absence of implementations of the testing tech-
As the figure shows, the NOMETA technique always se- niques and measurements of analysis costs, we cannot de-
lected 97% of the test cases. Only 3% of the test cases ddermine such savings precisely for this case study; however,
not exercise components @@ (the set of external compo- we can still gain some insights by considering test execution
nents), and thus all others must be re-executed. Also, sincdimes. Thus, we recorded execution times for the test cases
the NOMETA technique selects all test cases that executedselected by each technique on each version. Table 4 shows
any components i, and the test cases in our test suite these times.
that encounte€ do not vary across versions, the NOMETA For each version, the table shows the minutes and sec-
technique selected the same test cases for each version. onds required to test that version. The columns show the

3.4 Results and Discussion

make up that program. Furthermore, we have considered

NOMETA META only one measure of test selection effectiveness: percentage

Version | Test Execution Time Test Execution Time reduction in test suite size (although we have buttressed this

C2 19:44 18:45 measure by also considering test execution cost data). Other

C3 19:51 16:57 costs, such as the cost of providing metadata and performing
C4 19:51 13:07

test selection, may be important in practice.

gg igg; ig;jg On the other hand, the program and modified versions
c7 19:51 00:15 we used are derived from an actual implementation, and
cs 19:49 19:26 our specification-based test suite represents a test suite that
average 19:50 14:07 could be used in practice. Furthermore, previous work
total 138:50 102:54 [3, 20] has illustrated the applicability of our cost measure.

Our results thus support an “existence argument”. Cases

exist in which metadata can produce benefits in regression
Table 4. Execution times (minutes:seconds) for test testing. Thus, these results motivate further research, and
cases selected by the NOMETA and META tech- the implementation of tools to support the techniques, fol-
niques. lowed by carefully controlled experimentation, to investi-

gate whether such results will generalize.

version number, the time required to run the test cases se-

lected by the NOMETA technique, and the time required to 4 Conclusion

run the test cases selected by the META technique. The last

two rows show average and total times. On average over i ,

the seven modified versions, the META technique reduced Ve have introduced two new techniques for regres-

testing time from 19 minutes and 50 seconds to 14 minutesSion testing of component-based applications. The first

and 7 seconds. The total time savings over the sequencd€chnique is code-based, and the second technique is

of seven versions was 35 minutes and 59 seconds (26% ofPecification-based. Both techniques are basgpl on the use of

total time.) In the worst case, for version C8, the META metadata and metamethods to package additional informa-

technique saved only 23 seconds (2%) of testing time. |ntion together with a component. The'pre'sence of metadata

the best case, for version C7, it saved 19 minutes and 3a?llows component developers to provide information useful

seconds (99%) of testing time. for regression test selection without disclosing the source
Note that these times do not factor in the cost of the anal- ¢0de of the components they distribute. In particular, only

ysis required to perform test selection, but in other studiesVersion information, coverage measurement facilities, and

of test selection those costs have been shown to be quiténformation about changes between versions of components
low [20]. Furthermore, these times include only the times

need be provided for the techniques to be applicable.
required to execute, and not validate test cases; validation 10 @ssess the applicability and effectiveness of the pro-
would further inflate the times, and increase the savings. P0oSed techniques in practice, we have presented a case study
Of course, savings of a few minutes and seconds, such agerformed on a real system. Although there are some limi-
those exhibited in the differences in testing time seen in this!ations to the results of our study, the study does show that
study, may be unimportant. In practice, however, regressioncaS€s exist in which the use of metadata can reduce the costs

testing can require hours, days, or even weeks of effort, anoqf regression testing compon.ent-based applications. In par-
much of this effort may be human-intensive. If results such Flcular, our code-based'technlque resulted in an average sav-
as those demonstrated by this study scale up, a savings of'9S 0f 26% of the testing effort over seven subsequent re-
26% of the overall testing effort for a sequence of seven |€ases of the considered set of components, with a maximum
releases may be substantial, and a savings of 99% of thé@Ving of 99% of the testing effort for one of the versions.
testing effort for a version may be a huge win. These results ~ Because of these promisingtial results, we plan to per-
thus provide good evidence that testing with metadata couldform further research on the use of metadata for regression
save significant costs and that metadata could be useful fofesting. Our first goalis to build a set of tools that allow us to

regression test selection in component-based software. ~ automate the application of the presented techniques and to
integrate them into the AISTOTLE analysis system [2] and

3.5 Limitations of this Study Deja\{u [19]. In this way, we will be able to run extensive
experiments to further validate the code-based approach. In
Like any empirical study, this study has limitations. We parallel, we will study the applicability of the specification-
have considered the application of only two regression testbased approach on real examples. Finally, we will study
selection techniques to a single program and test suite andther applications of component metadata and their effec-
seven subsequent modified versions of the components thativeness for software engineering tasks.

Acknow|edgements [10] Enterprise JavaBeans technology.
http://java.sun.com/pducts/ejb/index.html, October 2000.

[11] T. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test selec-
tion techniques. Iint'l. Conf. Softw. Eng.pages 188-197,

Antonio Carzaniga provided us with the source code for
the Siena system and helped with its installation. This work

was supported in part by grants from Boeing, Inc., and April 1998.

by NSF awards CCR-9707792 and CCR-0096321 to Geor-[12] F. Huber, A. Rausch, and B. Rumpe. Component inter-
gia Institute of Technology, by NSF Award CCR-9703108 face diagrams: Putting cguonents to work. Intgtutsbericht,

to Oregon State University, by NSF Award CCR-9808590 Technische Universitaet Muenchen, Institut fuer Informatik,
to the University of Pittsburgh, and by NSF Award CCR- December 1998.

9701973 to UC Irvine. The work was also supported by [13] H. K. N.Leungand L. J. White. A cost model to compare
the ESPRIT Project TWO (EP n.28940), by the Italian regression test strategies. @onf. Softw. Mainf.pages 201—

208, October 1991.
[14] U. Lindquistand E. Jonsson. A map of security risks associ-
ated with using COTSEEE Computer31(6):pages 60-66,

Ministero dell' Universita e della Ricerca Scientifica e Tec-
nologica (MURST) in the framework of the MOSAICO

Project. This effort was also sponsored by the Air Force June 1998.

Office of Scientific Research, Air Force Materiel Command, [15] P, M. Maurer. Components: What if they gave a revolution
USAF, under grant number F49620-98-1-0061to UC Irvine. and nobody cameEEE Computer33(6):28—34, June 2000.
The U.S. Government is authorized to reproduce and dis-[16] A. Orso, M. J. Harrold, and D. S. Rosenblum. Component
tribute reprints for governmental purposes notwithstanding metadata for software engineering tasks. In W. Emmerich
any copyright annotation thereon. The views and conclu- and S. Tai, editorsEDO '0Q Lecture Notes in Computer

sions contained herein are those of the authors and should ~ Sciénce. Springer-Verlag / ACM Press, November 2000. (to
not be interpreted as necessarily representing the official . 2PPean.

lici d ts. eith d or imolied. of th [17] T. Ostrand and M. Balcer. The category-partition method
POIICIES Or endorsements, elther expressed or implied, of the for specifying and generating functional tesBomm. ACM

Air Force Office of Scientific Research or the U.S. Govern- 31(6), June 1988.

ment. [18] G. Piccinelliand S. Lynden. Concept and tools for e-service
development. Ir¥th Workshop HP Openview Univesity As-

References sociation (OVUA'0Q)June 2000.

[19] G. Rothermel and M. Harrold. A safe, efficient regression
test selection technique ACM Trans. on Softw. Eng.and
Meth, 6(2):173-210, April 1997.

[20] G. Rothermel and M. Harrold. Empirical studies of a safe
regression test selection techniqleEE Trans. Softw. Eng.
24(6):401-419, June 1998.

[1] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky. Vali-
dation, verification, and testing of computer softwak€M
Computing Survey44(2):159-192, June 1982.

[2] Aristotle Research Group. ARISTOTLE: Software engi-

neering tools. http://www.cc.gatech.edu/aristotle/, 2000. [21] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test

[31 J. B_ible, G. Rotherme!, andD. Roser_lblum. Coarse- and fine- selection for C++ softwarel. Softw. Testing, Verif., and Rel.
grained safe regression test selectioACM Trans. Softw. 10(2), June 2000

Eng. and Meth.to appear.

[4] P. Brereton and D. Budgen. Component-Based Systems:
A Classification of IssueslEEE Computer33(11):54-52,
November 2000.

[5] N. Brown and C. Kindel. Distributed Component Object
Model protocol: DCOM/1.0January 1998.

[6] C. Canal, L. Fuentes, J. Troya, and A. Vallecillo. Extending
CORBA interfaces with p-calculus for protocol compatibil-
ity. In Technology of Object-Oriented Languages and Sys-
tems (TOOLS'0Qpages 208-225, June 2000.

[7] A. Carzaniga, D. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an internet-scale event no-
tification service. InNineteenth ACM Symp. Princ. Distr.
Computing pages 219-227, July 2000.

[8] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. 16th Int'l. Conf. Softw. Eng.
pages 211-222, May 1994.

[9] R. Cherinka, C. M. Overstreet, and J. Ricci. Maintaining a
COTS integrated solution — Are traditional static analysis
techniques sufficient for this new programming methodol-
ogy? Inint'l. Conf. Softw. Maint.pages 160-169, Novem-
ber 1998.

[22] C. SzyperskiComponent Oriented Programmingddison-
Wesley, first edition, 1997.

[23] J. Troya and A. Vallecillo. On the addition of properties to
components. In J. Bosch and S. Mitchell, editadhject-
Oriented Technology: ECOOP'97 Workshop Readei-
ume 1357 of_ecture Notes in Computer Scienpages 374—
378. Springer, 1997.

[24] J. Voas. The challenges of using COTS software
component-based developmetEEE Computer31(6):44—
45, June 1998.

[25] J. Voas. Maintaining component-based systeliBEE Soft-
ware, 15(4):22—-27, July 1998.

[26] E. Weyuker. Testing component-based software: A caution-
ary tale.IEEE Software15(5):54-59, Sept—Oct 1998.

[27] L. White and H. Leung. A firewall concept for both control-
flow and data-flow in regression integration testingClonf.
Softw. Maint, pages 262—270, November 1992.

[28] XOTcl - extended object Tcl. http://nestroy.wi-inf.uni-
essen.de/xotcl/, November 2000.

n

10

