
Time-Aware Test Suite Prioritization

Kristen R. Walcott
Mary Lou Soffa

Department of Computer Science
University of Virginia

{walcott, soffa}@cs.virginia.edu

Gregory M. Kapfhammer
Robert S. Roos

Department of Computer Science
Allegheny College

{gkapfham, rroos}@allegheny.edu

ABSTRACT
Regression test prioritization is often performed in a time
constrained execution environment in which testing only oc-
curs for a fixed time period. For example, many organiza-
tions rely upon nightly building and regression testing of
their applications every time source code changes are com-
mitted to a version control repository. This paper presents
a regression test prioritization technique that uses a genetic
algorithm to reorder test suites in light of testing time con-
straints. Experiment results indicate that our prioritiza-
tion approach frequently yields higher average percentage
of faults detected (APFD) values, for two case study appli-
cations, when basic block level coverage is used instead of
method level coverage. The experiments also reveal funda-
mental trade-offs in the performance of time-aware prioriti-
zation. This paper shows that our prioritization technique
is appropriate for many regression testing environments and
explains how the baseline approach can be extended to op-
erate in additional time constrained testing circumstances.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Verification, Experimentation

Keywords
test prioritization, coverage testing, genetic algorithms

1. INTRODUCTION
After a software application experiences changes in the

form of bug fixes or the addition of functionality, regression
testing is used to ensure that changes to the program do
not negatively impact its correctness. However, regression
testing can be prohibitively expensive, particularly with re-
spect to time [13], and thus accounts for as much as half the
cost of software maintenance [14, 24]. In one example, an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06, July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

industrial collaborator reported that for one of its products
of approximately 20,000 lines of code, the entire test suite
required seven weeks to run [8]. Since there is usually a lim-
ited amount of time allowed for testing [19], prioritization
techniques can be used to reorder the test suite to increase
the rate of fault detection earlier in test execution [8, 24].
However, no existing approach to prioritization incorporates
a testing time budget.

As frequent rebuilding and regression testing gain in pop-
ularity, the need for a time constraint aware prioritization
technique grows. For example, popular software systems like
PlanetLab [3] and MonetDB [2] use nightly builds, which in-
clude building, linking, and unit testing of the software [19].
New software development processes such as extreme pro-
gramming also promote a short development and testing cy-
cle and frequent execution of fast test cases [23]. Therefore,
there is a clear need for a prioritization technique that has
the potential to be more effective when a test suite’s allowed
execution time is known, particularly when that execution
time is short. This paper shows that if the maximum time
allotted for execution of the test cases is known in advance,
a more effective prioritization can be produced.

The time constrained test case prioritization problem can
be reduced to the NP-complete zero/one knapsack problem
[10, 24], which can often be efficiently approximated with a
genetic algorithm (GA) heuristic search technique [6]. Just
as genetic algorithms have been effectively used in other soft-
ware engineering and programming language problems such
as test generation [22], program transformation [9], and soft-
ware maintenance resource allocation [5], this paper demon-
strates that they also prove to be effective in creating time
constrained test prioritizations. We present a technique that
prioritizes regression test suites so that the new ordering (i)
will always run within a given time limit and (ii) will have
the highest possible potential for defect detection based on
derived coverage information. This paper also provides em-
pirical evidence that the produced prioritizations on average
have significantly higher fault detection rates than random
or more simplistic prioritizations, like the initial order or
a reverse reordering. In summary, the important contribu-
tions of this paper are as follows:

1. A technique that uses a genetic algorithm to prioritize
a regression test suite that will be run within a time
constrained execution environment (Section 2 and Sec-
tion 3).

2. An empirical evaluation of the effectiveness of the re-
sulting prioritizations in relation to (i) GA-produced
prioritizations using different parameters, (ii) the ini-

tial test suite ordering, (iii) the reverse of the initial
test suite ordering, (iv) random test suite prioritiza-
tions, and (v) fault-aware prioritizations, showing that
the GA-produced prioritizations are superior to the
other test suite reorderings (Section 4).

3. An empirical evaluation of the time and space over-
heads of our approach. This evaluation reveals that
the technique is especially applicable when (i) there is
a fixed set of time constraints, (ii) prioritization occurs
infrequently, or (iii) the time constraint is particularly
small (Section 4).

4. A discussion of enhancements to the baseline approach
that reduce the time overhead required to perform pri-
oritization and extend the technique’s applicability to
other time constrained testing situations (Section 5).

2. TIME-AWARE TEST PRIORITIZATION
CHALLENGES

Test prioritization schemes typically create a single re-
ordering of the test suite that can be executed after many
subsequent changes to the program under test [7, 24]. Test
case prioritization techniques reorder the execution of a test
suite in an attempt to ensure that defects are revealed earlier
in the test execution phase. If testing must be terminated
early, a reordered test suite can also be more effective at
finding faults than one that was not prioritized [24]. Prob-
lem 1 defines the time-aware test case prioritization problem.
Intuitively, a test tuple σ earns a better fitness if it has a
greater potential for fault detection and can execute within
the user specified time budget.

Problem 1. (Time-Aware Test Suite Prioritization)
Given: (i) A test suite, T , (ii) the collection of all permu-
tations of elements of the power set of permutations of T ,
perms(2T), (iii) the time budget, tmax, and (iv) two func-
tions from perms(2T) to the real numbers, time and fit.
Problem: Find the test tuple σmax ∈ perms(2T) such that
time(σmax) ≤ tmax and ∀σ′ ∈ perms(2T) where σmax 6=
σ′ and time(σ′) ≤ tmax, fit(σmax) > fit(σ′).

In Problem 1, perms(2T) represents the set of all possi-
ble tuples and subtuples of T . When the function time is
applied to any of these tuples, it yields the execution time
of that tuple. The function fit is applied to any such tu-
ple and returns a fitness value for that ordering. Without
loss of generality, we assume that an awarded higher fitness
is preferable to a lower fitness. In this paper, the func-
tion fit quantifies a test tuple’s incremental rate of fault
detection. Our technique considers the potential for fault
detection and the time overhead of each test case in order
to evaluate whether the test suite achieves its potential at
the fastest rate possible.

For example, suppose that regression test suite T con-
tains six test cases with the initial ordering for T that con-
tains 〈T1, T2, T3, T4, T5, T6〉, as described in Figure 1. For
the purposes of motivation, this example assumes a pri-
ori knowledge of the faults detected by T in the program
P . As shown in Figure 1(a), test case T1 can find seven
faults, {φ1, φ2, φ4, φ5, φ6, φ7, φ8}, in nine minutes, T2 finds
one fault, {φ1}, in one minute, and T3 isolates two faults,
{φ1, φ5}, in three minutes. Test cases T4, T5, and T6 each
find three faults in four minutes, {φ2, φ3, φ7}, {φ4, φ6, φ8},
and {φ2, φ4, φ6}, respectively.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

T1 X X X X X X X
T2 X
T3 X X
T4 X X X
T5 X X X
T6 X X X

Faults Time Cost(Mins) Avg. Faults per Min.
T1 7 9 0.778
T2 1 1 1.0
T3 2 3 0.667
T4 3 4 0.75
T5 3 4 0.75
T6 3 4 0.75

(a)

Time Limit: 12 minutes
Fault Time APFD Intelligent
(σ1) (σ2) (σ3) (σ4)
T1 T2 T2 T5

T3 T1 T4

T4 T3

T5

Tot. Faults 7 8 7 8
Tot. Time 9 12 10 11

(b)

Figure 1: Comparison of Prioritizations.

Suppose that the time budget for regression testing is
twelve minutes. Because we want to find as many faults
as possible early on, it would seem intuitive to order the
test cases by only considering the number of faults that
they can detect. Without a time budget, the test tuple
〈T1, T4, T5, T6, T3, T2〉 would execute. Out of this, only the
test tuple σ1 = 〈T1〉 would have time to run when under a
twelve minute time constraint and would find only a to-
tal of seven faults, as noted in Figure 1(b). Since time
is a principal concern, it may also seem intuitive to order
the test cases with regard to their execution time. In the
time constrained environment, a time-based prioritization
σ2 = 〈T2, T3, T4, T5〉 could be executed and find eight de-
fects, as described in Figure 1(b). Another option would be
to consider the time budget and fault information together.
To do this, we could order the test cases according to the
average percent of faults that they can detect per minute.
Under the time constraint, the tuple σ3 = 〈T2, T1〉 would be
executed and find a total of seven faults.

If the time budget and the fault information are both
considered intelligently, that is, in a way that accounts for
overlapping fault detection, the test cases could be better
prioritized and thus increase the overall number of faults
found in the desired time period. In this example, the test
cases would be intelligently reordered so that the tuple σ4 =
〈T5, T4, T3〉 would run, revealing eight errors in less time
than σ2. Also, it is clear that σ4 can reveal more defects
than σ1 and σ3 in the specified testing time. Finally, it is
important to note that the first two test cases of σ2, T2 and
T3, find a total of two faults in four minutes whereas the
first test case in σ4, T5, detects three defects in the same
time period. Therefore, the “intelligent” prioritization, σ4,
is favored over σ2 because it is able to detect more faults
earlier in the execution of the tests.

3. TIME-AWARE PRIORITIZATION
The presented prioritization technique uses both testing

time and potential fault detection information to intelli-
gently reorder a test suite that adheres to Definition 1. We
require that each test in T be independent so that we can

guarantee that for all Ti ∈ 〈T1, . . . , Tn〉, ∆i−1 = ∆0, and
thus there are no test execution ordering dependencies [14].
This requirement enables our prioritization algorithm to re-
order the tests in any sequence that maximizes the suite’s
ability to isolate defects.

Definition 1. A test suite T is a triple
〈∆0, 〈T1, . . . , Tn〉 , 〈∆1, . . . , ∆n〉〉, consisting of an ini-
tial test state, ∆0, a test case sequence 〈T1, . . . , Tn〉 for
some initial state ∆0, and expected test states 〈∆1, . . . , ∆n〉
where ∆i = Ti(∆i−1) for i = 1, . . . , n.

3.1 Overview
A genetic algorithm is used to solve Problem 1. First, the

execution time of each test case is recorded. Because a time
constraint could be very short, test case execution times
must be exact in order to properly prioritize. Care is taken
to ensure that only the execution time of the test case was
included in the recorded time and not that of class loading.
Timing information additionally includes any initialization
and shutdown time required by a test. For example, if Ti

requires an open a network connection, this is performed be-
fore test execution and is added into Ti’s overall execution
time. Similarly, the shutdown time of Ti could include a sub-
stantial amount of time to store ∆i for subsequent analysis
after testing. Inclusion of initialization and shutdown time
is necessary because these operations can greatly increase
the execution time required by the test case.

The program P and each Ti ∈ 〈T1, . . . , Tn〉 are input
into the genetic algorithm, along with the following user
specified parameters: (i) s, maximum number of candidate
test tuples generated during an iteration, (ii) gmax, maxi-
mum number of iterations, (iii) pt, percent of the execution
time of T allowed by the time budget, (iv) pc, crossover
probability, (v) pm, mutation probability, (vi) pa, addition
probability, (vii) pd, the deletion probability, (viii) tc, the
test adequacy criterion, and (ix) w, the program coverage
weight. We require that all probabilities and percentages
pt, pc, pm, pa, pd ∈ [0, 1]. The genetic algorithm uses heuris-
tic search to solve Problem 1 and to identify the test tuple
σmax ∈ perms(2T) that is likely to have the fastest rate of
fault detection in the provided time limit. In general, any
σj ∈ perms(2T) has the form σj = 〈Ti, . . . , Tu〉 where u ≤ n.

3.2 Genetic Algorithm
The GAPrioritize algorithm in Figure 2 performs test

case prioritization on T based on a given time constraint
pt, as desired by Problem 1. On line 1, this algorithm cal-
culates pt percent of the total time of T , and stores the
value in tmax, the maximum execution time for a tuple. In
the loop beginning on line 3, the algorithm creates a set
R0 containing s random test tuples σ from perms(2T) that
can be executed in tmax time. R0 is the first generation
of s potential solutions to Problem 1. Once a set of test
tuples is created, coverage information, which is explained
in Section 3.2.1, is used by the CalcF itness(P, σj , pt, tc, w)
method on line 10. The CalcF itness(P, σj , pt, tc, w) method
is discussed in Section 3.2.2, and it is used to determine the
“goodness” of σj . To simplify the notation, we denote Fj

the fitness value of σj , where Fj = fit(P, σj , tc, w). We also
use F = 〈F1, F2, . . . , Fs〉 to denote the tuple of fitnesses for
each σj ∈ Rg , 0 ≤ g ≤ gmax.

The SelectTwoBest(Rg, F) method on line 11 chooses the
two best test tuples in Rg to be elements in the next gener-

Algorithm GAPrioritize(P, T, s, gmax, pt, pc, pm, pa, pd, tc, w)

Input: Program P

Test suite T

Number of tuples to be created per iteration s

Maximum iterations gmax

Percent of total test suite time pt

Crossover probability pc

Mutation probability pm

Addition probability pa

Deletion probability pd

Test adequacy criteria tc

Program coverage weight w

Output: Maximum fitness tuple Fmax ∈ F in set σmax

1. tmax ← pt ×
Pn

i=0
time(〈Ti〉)

2. R0 ← ∅
3. repeat

4. R0 ← R0 ∪ {CreateRandomIndividual(T, pt)}
5. until |R0| = s

6. g← 0;
7. repeat

8. F ← ∅
9. for σj ∈ Rg

10. F ← F ∪ {CalcF itness(P, σj , pt, tc, w)}
11. Rg+1 ← SelectTwoBest(Rg, F)
12. repeat

13. σk, σl ← SelectParents(Rg, F)
14. σq, σr ← ApplyCrossover(pc, σk, σl)
15. σq ← ApplyMutation(pm, σq)
16. σr ← ApplyMutation(pm, σr)
17. σq ← AddAdditionalTests(T,pa, σq)
18. σr ← AddAdditionalTests(T, pa, σr)
19. σq ← DeleteATest(pd, σq)
20. σr ← DeleteATest(pd, σr)
21. Rg+1 ← Rg+1 ∪ {σq} ∪ {σr}
22. until |Rg+1| = s

23. g ← g + 1
24. until g > gmax

25. σmax ← FindMaxFitnessTuple(Rg−1, F)
26. return σmax

Figure 2: The GA Prioritization Algorithm.

ation Rg+1 of test tuples. The two best tuples are chosen in
order to guarantee that Rg+1 has at least one “good” pair.
It is important to carry these highly fit tuples into Rg+1

as they are in Rg because they are most likely very close
to exceeding tmax. Any slight change to these test tuples
could cause them to require too much execution time, thus
invalidating them. Since the GA is trying to identify one
particular test tuple, this elitist selection technique ensures
that the best tuple in Rg survives on to Rg+1 [11].

On line 13, SelectParents(Rg, F) identifies pairs of tuples
{σk, σl} from Rg through a roulette wheel selection tech-
nique based on a probability proportional to |F |. The fitness
values are normalized in relation to the rest of the test tuple
set by multiplying each Fj ∈ F by a fixed number, so that
the sum of all fitness values equals one [11]. The test tuples
are then sorted by descending fitness values, and accumu-
lated normalized fitness values are calculated. A random
number r ∈ [0, 1] is next generated, and the first individ-
ual whose accumulated normalized value is greater than or
equal to r is selected. This selection method is repeated un-
til enough tuples are selected to fill the set Rg+1. Candidate
test tuples with higher fitnesses are therefore less likely to

be eliminated, but a few with lower fitness have a chance to
be used in the test tuple set as well [11].

The ApplyCrossover(pc, σk, σl) method on line 14 may
merge the pair {σk, σl} to create two potentially new
tuples {σq , σr} based on pc, a user given crossover
probability, as explained in Section 3.2.3. Each tu-
ple in the pair {σq , σr} may then be mutated based
on pm, a user provided mutation probability, as de-
scribed in Section 3.2.4. Finally, Section 3.2.5 explains
how a new test case may be added or deleted from
σq or σr using the AddAdditionalTests(T, pa, σr) and
DeleteATest(pd, σr) methods. The crossover operator ex-
changes subsequences of the test tuples, and the mutation
operator only mutates single elements. Test case addition
and deletion are needed because no other operator allows
for a change in the number of test cases in a test tuple.

After each of these modifications have been made to the
original pair, both tuples σq and σr are entered into Rg+1,
as seen on line 21. The same transformations are applied
to all pairs selected by the SelectParents(Rg, F) method
until Rg+1 contains s test tuples. In total, gmax sets of s

test tuples are iteratively created in this fashion as specified
in Figure 2 on lines 7–24. When the final set Rgmax has
been created, the test tuple with the greatest fitness, σmax,
is determined on line 25. This tuple is guaranteed to be the
tuple with the highest fitness out of all g sets of size s.

3.2.1 Test Coverage
Since it is very rare for a tester to know the location of

all faults in P prior to testing, the prioritization technique
must estimate how likely a test is to find defects, which
factors into the function fit of Problem 1. Recall that the
function fit yields the fitness of the tuple σj based on its
potential for fault detection and its time consumption. As it
is impossible to reveal a fault without executing the faulty
code, the percent of code covered by a test suite is used to
determine the suite’s potential. In this paper, two forms of
test adequacy criteria tc are considered: (i) method coverage
and (ii) block coverage [7, 14, 25]. A method is covered
when it has been entered. A basic block, a sequence of
instructions without any jumps or jump targets, is covered
when it is entered for the first time. Because several high
level language source statements can be in the same basic
block, it is sensible to keep track of basic blocks rather than
individual statements at the time of execution [7, 25].

Our genetic algorithm accepts coverage information based
on the code covered in an application by an entire test suite.
As noted by Kessis et al., this is the form that many tools
such as Clover [15], Jazz [20], and Emma [25] produce. The
presented prioritization approach can reorder a test suite
without requiring coverage information on a per-test basis.
While the genetic algorithm handles the common case, its
calculation of test tuple fitness could be enhanced to use
coverage information on a per-test basis, similar to [7]. In-
formation revealing the impact of a test case Ti’s test cov-
erage on any other test case’s coverage would also further
improve the performance of the fitness function. This and
other enhancements are explained in Section 5.

3.2.2 Fitness Function
The CalcF itness(P, σj , pt, tc, w) method on line 10 uses

fit(P, σj , tc, w) to calculate fitness. The fitness function,
represented by fit in Problem 1, assigns each test tuple a

fitness based on (i) the percentage of code covered in P by
that tuple and (ii) the time at which each test covers its as-
sociated code in P . It is then appropriate to divide fit into
two parts such that fit(P, σj , tc, w) = Fpri(P, σj , tc, w) +
Fsec(P, σj , tc). The primary fitness Fpri is calculated by
measuring the code coverage cc of the entire test tuple σj .
Because the overall coverage of the test tuple is more im-
portant than the order in which the coverage is attained,
Fpri is weighted by multiplying the percent of code cov-
ered by the program coverage weight, w. The selection of
w’s value should be sufficiently large so that when Fpri and
Fsec ∈ [0, 1] are added together, Fpri dominates the result.
Formally, for some σj ∈ perms(2T),

Fpri(P, σj , tc, w) = cc(P, σj , tc)×w (1)

The second component Fsec considers the incremental code
coverage of the tuple, giving precedence to test tuples whose
earlier tests have greater coverage. Fsec is also calculated in
two parts. First, Fs−actual is computed by summing the
products of the execution time time(〈Ti〉) and the code cov-
erage cc of the subtuple σj{1,i} = 〈T1 . . . Ti〉 for each test

case Ti ∈ σj . Formally, for some σj ∈ perms(2T),

Fs−actual(P, σj , tc) =

|σj |
X

i=1

time(〈Ti〉)× cc(P, σj{1,i}, tc) (2)

Fs−max represents the maximum value that Fs−actual could
take (i.e., the value of Fs−actual if T1 covered 100% of the
code covered by T .) For a σj ∈ perms(2T),

Fs−max(P, σj , tc) = cc(P, σj , tc)×

|σj |
X

i=1

time(〈Ti〉) (3)

Finally, Fs−actual and Fs−max are used to calculate the
secondary fitness Fsec. Specifically, for σj ∈ perms(2T),

Fsec(P, σj , tc) =
Fs−actual(P, σj , tc)

Fs−max(P, σj , tc)
(4)

As an example of a fitness calculation, let the program cov-
erage weight w = 100, P be a program, and tc be a test ad-
equacy criterion (e.g., method or block coverage). Suppose
σj = 〈T1, T2, T3〉. Also, assume we have execution times
time(〈T1〉) = 5, time(〈T2〉) = 3, and time(〈T3〉) = 1, and
test tuple code coverage cc(P, σj , tc) = 0.20. Then,

Fpri(P, σj , tc, w) = 0.2 × 100

= 20

Fsec next gives preference to test tuples that have more code
covered early in execution. To calculate Fsec, the code cov-
erages of σj{1,1} = 〈T1〉, σj{1,2} = 〈T1, T2〉, and σj{1,3} =
〈T1, T2, T3〉 must each be measured. Suppose for this ex-
ample that cc(P, σj{1,1}, tc) = 0.05, cc(P, σj{1,2}, tc) = 0.19,
and, as already known, cc(P, σj{1,3}, tc) = cc(P, σj , tc) =
0.20. Fsec is calculated as follows,

Fs−actual(P, σj , tc) = (5× 0.05) + (3× 0.19) + (1 × 0.20)

= 1.02

Fs−max(P, σj , tc) = 0.2(5 + 3 + 1)

= 1.8

Fsec(P, σj , tc) =
1.02

1.8
= 0.567

Figure 3: Crossover with Random Crossover Point.

Adding Fpri and Fsec gives the total fitness value Fj of σj .
Therefore, in this example,

fit(P, σj , tc, w) = Fpri(P, σj , tc, w) + Fsec(P, σj , tc)

= 20 + 0.567

= 20.567

If a test tuple execution time time(σj) is greater than
the time budget tmax, Fj is automatically set to -1 by the
CalcF itness(P, σj , pt, tc, w) method. Because such a tuple
violates the execution time constraint, it cannot be a so-
lution and thus receives the worst fitness possible. While a
tuple σj with Fj = −1 could simply not be added to the next
generation Rg+1, populations with individuals that have a
fitness of -1 can actually be favorable. Since the “optimal”
test tuple prioritization likely teeters on the edge of exceed-
ing the designated time budget, any slight change to a σj

with Fj = −1 could create a new valid test tuple. Therefore,
some σj ’s with Fj = −1 are maintained in the next gener-
ation. If the test tuple execution time time(σj) <= tmax,
Equations 1–4 are used.

3.2.3 Crossover
Crossover is used to vary test tuples from one test tu-

ple set to the next through recombination. It is unlikely
that the new test tuples after recombination will be iden-
tical to a particular parent tuple. As explained in the in-
troduction to Section 3.2, pairs of test tuples {σk, σl} are
selected out of Rg. The ApplyCrossover(pc, σk, σl) method
performs crossover to create two potentially new hybrid test
tuples from {σk, σl}. First, a random number r1 ∈ [0, 1]
is generated. If r1 is less than the user provided value for
pc, the crossover operator is applied. Otherwise, the parent
individuals are unchanged and await the next step, muta-
tion. If crossover is to occur, the ApplyCrossover(pc, σk, σl)
method on line 14 selects another random number r2 ∈
[0, min(|σk|, |σl|)] as the crossover point, where |σk| and |σl|
are the number of test cases in σk and σl, respectively. The
subsequences before and after the crossover point are then
exchanged to produce two new offspring, as seen in Figure 3.

If crossover causes two of the same test cases to be in
the same test tuple, another random test not in the current
tuple is selected from T instead of including the duplicated
test case. Although a test case may be run more than once
in a test suite with all independent test cases, there is rarely
a benefit to executing it again. We assume that multiple
executions of a test case will produce the same results and
that there is no benefit to multiple execution. However, the
ApplyCrossover method can be easily reconfigured to allow
for duplicate test cases if there is a testing benefit. If the
new tuple already includes all tests, no additions are made.

3.2.4 Mutation
The use of the ApplyMutation(pm, σj) method on lines 15

and 16 of Figure 2 also provides a way to add variation to a

Figure 4: Mutation of a Test Tuple.

new population. The new test tuple is identical to the prior
parent tuple except that one or more changes may be made
to the new tuple’s test cases. All test tuples that are selected
on line 13 are first considered for crossover. Then they are
subject to mutation at each test case position with a small
user specified mutation probability pm. If a random number
r3 ∈ [0, 1] is generated such that r3 is less than pm for test
case Ti, a new test not included in the current test tuple is
randomly selected from T to replace Ti, as demonstrated for
T2 in Figure 4(a). Figure 4(b) also shows that if there are
no unused tests in T when T9 is chosen for mutation, the
test tuple is still mutated. Instead of replacing the test with
a random test, the test to be mutated is swapped with the
test case that succeeds it.

3.2.5 Addition and Deletion
Test cases can also be added to or deleted from the test

tuples using the AddAdditionalTests(T,pa, σj) method on
lines 17 and 18 or the DeleteATest(pd, σj) method on lines
19 and 20. As in messy genetic algorithms [12], the sets of
tuples Rg must be allowed to grow beyond the initial set R0.
Addition and deletion ability permits such growth. While
the crossover operator exchanges subsequences, it does not
increase the number of test cases within an individual. Sim-
ilarly, the mutation operator only mutates single elements
at each index within the test tuple. Although addition and
deletion operations are necessary, they should be performed
infrequently so as to not violate the principle of the genetic
algorithm. If a random number r4 ∈ [0, 1] is generated such
that r4 < pa, a random test case is removed from the indi-
vidual. If another random number r5 ∈ [0, 1] is generated
and r5 < pd, a random test case not yet executed in the
individual is added to the end of the test sequence.

4. EMPIRICAL EVALUATION
The primary goal of this paper’s empirical study is to

identify and evaluate the challenges that are associated with
time-aware test suite prioritization. We implemented the

Figure 5: Overview of Prioritization Infrastructure.

approach described in Section 3 in order to measure its ef-
fectiveness and efficiency. The goals of the experiment are
as follows:

1. Analyze trends in the average percent of faults de-
tected by prioritizations generated using different GA
parameter values.

2. Determine if the GA-produced prioritizations, on av-
erage, outperformed a selected set of other prioriti-
zations according to the average percent of faults de-
tected.

3. Identify the trade-offs between the configuration of the
genetic algorithm and the time and space overheads as-
sociated with the creation of the prioritized test suite.

4.1 Experiment Design
All experiments were performed on GNU/Linux worksta-

tions with kernel 2.4.20-8, a 1.80 GHz Intel Pentium 4 pro-
cessor1 and 1 GB of main memory. The genetic algorithm
was implemented in the Java programming language, and it
prioritizes JUnit test suites. Figure 5 provides an overview
of the test prioritization implementation with edges between
interacting components. The test suite is first transformed
into a set of test cases and test case execution times. JU-
nit’s test execution framework provides setUp and tearDown

methods that execute before and after a test case and can
be used to clear application state, transforming ∆i−1 into
∆0. The tearDown operation could also be used to store
application state ∆i prior to deletion. Thus, this paper’s
assumption of test independence in Section 3 is acceptable.
To begin GA execution, the test cases and program infor-
mation are input into the genetic algorithm along with the
other nine parameters for the GA, as depicted in Figure 5.

4.1.1 Implementation
As the genetic algorithm executes, coverage information is

gathered at most |σj | times whenever the fitness of test tuple
σj is calculated. Fitness is calculated before any test tuple
is added to the next test tuple set Rg. Note that for the

1
“Intel” and “Pentium” are registered trademarks of Intel Corpora-

tion.

Gradebook JDepend

Classes 5 22
Functions 73 305
NCSS 591 1808
Test Cases 28 53
Test Exec. Time 7.008 s 5.468 s

Figure 6: Case Study Applications.

fitness function calculations, the program coverage weight
w was set to 100 for all experiments because this would en-
sure that fit(P, σj , tc, w) ∈ [0, 100]. Emma, an open-source
toolkit for reporting Java code coverage, is used to calculate
test adequacy. Emma can instrument classes for method
and block coverage, as described in Section 3.2.1. Coverage
statistics are aggregated at method, class, package, and all
classes levels for the application under test, and Emma, like
most tools, only reports coverage for the entire test tuple.
The overall runtime overhead of instrumentation added by
Emma is small and the bytecode instrumentor itself is very
fast, mostly limited by file input/output (I/O) speed [25].

Coverage calculation is expensive due to the number of
times it must be gathered. In order to prevent redundant
coverage calculations, memoization is performed [18]. This
is especially useful in the calculation of the secondary fitness
function Fsec, which requires the code coverage information
for up to |σj | subtuples of test cases for each σj ∈ Rg . Cov-
erage information is used in the fitness function to calculate
a fitness value fit(P, σj , tc, w) for every σj ∈ Rg. Based on
this value, the GA creates gmax sets of s test tuples. From
the last generated test tuple set, the test tuple with the max-
imum fitness σmax is returned. As seen in Figure 5, σmax is
then used in the new test suite T ′.

4.1.2 Case Study Applications
Figure 6 reviews the two case study applications.

Gradebook provides functions to perform typical grade book
tasks including adding student homework grades, adding lab
grades, and calculating curves. JDepend is used to traverse
directories of Java class files and generate design quality
metrics for Java packages. It allows the user to automati-
cally measure the quality of a design in terms of its exten-
sibility, reusability, and maintainability to manage package
dependencies effectively [1]. The test cases of Gradebook

differ from those in JDepend in that they are I/O-bound
by their frequent interactions with a database. On average,
Gradebook’s test cases take longer to run, while JDepend’s
test cases have very short execution times.

4.1.3 Evaluation Metrics
In order to evaluate the effectiveness of a given tuple of

test cases, prior knowledge of the faults within the program
under test is assumed. A regression test suite prioritization
can be empirically evaluated based on the weighted average
of the percentage of faults detected over the life of the test
suite, or the APFD [8, 14]. Preference is given to prioritiza-
tion schemes that produce test suite tuples with high APFD
values. Definition 2 shows how APFD can be calculated us-
ing notation introduced in [14].

Definition 2. Let σj be the test tuple under evaluation,
Φ the set of faults contained in the program under test P ,
|σj | the total number of test cases, and reveal(φf , σj) the
position of the first test in σj that exposes fault φf ∈ Φ.

Faults Test Cases
T1 T2 T3 T4 T5 T6 T7

φ1 X X
φ2 X
φ3 X X
φ4 X
φ5 X X

Table 1: Faults Detected by T = 〈T1, . . . , T7〉.

Then APFD(σj , P, Φ) ∈ [−1

2|σj |
, 1] can be defined as

APFD(σj , P, Φ) = 1 −

P

φf ∈Φ
reveal(φf , σj)

|σj ||Φ|
+

1

2|σj |
.

Since σj is a subtuple of T , it may contain fewer test
cases than T . Moreover, σj may not be able to detect all
defects. Therefore, we define reveal(φf , σj) = |σj | + 1 if a
fault φf was not found by any test case in σj . This would
cause a prioritized test suite tuple that finds few faults to
possibly have a negative APFD. Suites finding few faults are
penalized in this way. For example, suppose that we have the
test suite T = 〈T1, . . . , T7〉 and we know that the tests detect
faults Φ = {φ1, . . . , φ5} in P according to Table 1. Consider
the two prioritized test tuples σ1 = 〈T3, T2, T1, T6, T4〉 and
σ2 = 〈T1, T5, T2, T4〉. Incorporating the data from Table 1
into the APFD equation yields

APFD(σ1, P, Φ) = 1 −
3 + 1 + 2 + 5 + 2

5× 5
+

1

2× 5
= 0.58

and

APFD(σ2, P, Φ) = 1−
1 + 5 + 3 + 4 + 3

4× 5
+

1

2 × 4
= 0.325

Note that σ2 is penalized because it fails to find φ2. Accord-
ing to the APFD metric, σ1 with APFD(σ1, P, Φ) = 0.58
has a better percentage of fault detection than σ2 with
APFD(σ2, P, Φ) = 0.325 and is therefore more desirable.

To evaluate the efficiency of our approach, time and space
overheads are analyzed by using a Linux process tracking
tool. This tool supports the calculation of peak memory use
and the total user and system time required to prioritize
the test suite. The time overhead comprises user and sys-
tem time overheads, where total time equals user time plus
system time. User time includes the total time spent in user
mode executing the process or its children, whereas system
time incorporates the time that the operating system spends
performing program services such as executing system calls.

4.2 Experiments and Results
Experiments were run in order to analyze (i) the effec-

tiveness and the efficiency of the parameterized genetic al-
gorithm and (ii) the effectiveness of the genetic algorithm
in relation to random, initial ordering, reverse ordering, and
fault-aware prioritizations. For all experiments, the result-
ing test tuples were run on programs that were seeded with
faults using Jester [21]. Each source file in JDepend and
Gradebook was seeded with faults multiple times as deter-
mined by a mutation configuration file, which contains value
substitutions. For example, ‘+’ is replaced by ‘-’, ‘>’ is re-
placed by ‘<’, and so on [21]. 40 errors that could be found
by at least one Ti ∈ T were randomly selected for each ap-
plication. 25, 50, and 75% of the 40 possible mutations were
seeded into each program P , where the larger mutation sets
were supersets of the smaller mutation sets.

GA parameters
P Gradebook, JDepend
(gmax, s) (25, 60), (50, 30), (75, 15)
pt 0.25, 0.50, 0.75
pc 0.7
pm 0.1
pa 0.02
pd 0.02
tc method, block
w 100

Table 2: Parameters used in GA Configurations.

Block Method
Gradebook 0.638993 0.573982
JDepend 0.715984 0.630298

Table 3: Gradebook and JDepend APFD Values.

4.2.1 GA Effectiveness and Efficiency
The first experiment compares the GA execution results

and overheads when different GA parameter configurations
are used. The genetic algorithms were run with the pa-
rameters described in Table 2. In order to run all possible
configurations, 36 experiments were completed: 18 using
Gradebook and 18 using JDepend. Thirty-six identical com-
puters were used, each running one trial with one unique
configuration. For example, one computer ran a genetic al-
gorithm on the test suite T of the Gradebook application cal-
culating gmax = 25 generations of tuple sets, each of which
contained s = 60 test tuples. In this configuration, the pri-
oritization was created to be run with pt = 0.25, requiring
solution test tuples to execute within 25% of the total ex-
ecution time of T , and fitness was measured using method
coverage.

Effectiveness. As observed in Table 3, on average, the
prioritizations created with fitnesses based on block cover-
age outperformed those developed with fitnesses based on
method coverage. In Gradebook, use of block coverage pro-
duced APFD values 11.32% greater than the use of method
coverage, and in JDepend, block coverage APFD values in-
creased by 13.59% over method coverage due to block cov-
erage’s finer level of granularity.

As the time budget is increased, the APFD values in-
crease as well for both Gradebook and JDepend, although the
amount of increase for a JDepend prioritization is less than
that of the Gradebook prioritizations. This trend, which is
due to the nature of the applications’ test cases, can be ob-
served in Figure 7(a). The Gradebook test cases that find
the most faults take a significantly longer time to execute
than the test cases of JDepend. A few other short tests exist
in Gradebook’s test suite, but these are not the most crucial
test cases in terms of defect detection. Thus, fewer influen-
tial Gradebook test cases can be executed within a shorter
time budget of 25%. When pt is increased to 50%, the ma-
jority of the test cases that find the most faults are able to
be run within the time budget, which greatly increases test
tuple APFD values. An increase to pt = 0.75 allows for the
inclusion of the shorter, less useful test cases.

Since these new test cases are unlikely to find many new
faults, changes to the overall APFD of the test tuples are mi-
nor. JDepend’s test cases all have very short execution times,
and many of them cover about the same amount of code. As
in Gradebook, the longer running JDepend test cases gener-
ally detect more faults than the shorter tests. However,
because the execution time difference between JDepend test

Code Coverage: Block vs. Method

25% 50% 75%

Percent of Total Time

0

0.2

0.4

0.6

0.8

A
PF

D

JDepend, Method

JDepend, Block

Gradebook, Method

Gradebook, Block

(a)

User Time Overhead

(25,60) (50,30) (75,15)
Nuumber of Generations, Population Size

20000

30000

40000

50000

60000

70000

T
im

e
(s

)

JDepend, Method

JDepend, Block

Gradebook, Method

Gradebook, Block

(b)
Figure 7: GA APFDs and Time Results.

cases is much smaller than that of Gradebook test cases, we
observe a less drastic APFD increase in JDepend’s prioritiza-
tions as pt grows. This can be seen in Figure 7(a), especially
between pt = .25 and pt = .50.

Modification of the number of faults seeded and of
(gmax, s) led to APFD values that were nearly constant in
terms of block and method coverage in the test prioritiza-
tions for Gradebook and JDepend. This provides confidence
in the results generated by the genetic algorithm because
about the same percentage of defects can be found by any
of the prioritizations in spite of how many faults there are
or how the GA created the prioritizations. Just as in Ta-
ble 3 and Figure 7(a), prioritizations based on block coverage
slightly outperformed those using method coverage.

Efficiency. Space costs were insignificant, with the peak
memory use of all experiments being less than 9344 KB.
Most experiments ran with peak memory use of approxi-
mately 1344 KB. As is seen in Figure 7(b), the number of
generations and the number of tuples per generation greatly
impact the time overhead. For example, using block cov-
erage, the genetic algorithm’s prioritization of Gradebook’s
test suite executed for 13.8 hours of user time on average
when creating 25 generations of 60 test tuples. On the other
hand, if 75 generations with 15 test tuples were created, the
GA only required 8.3 hours of user time to execute. Due
to memoization, many of the fitness values of test subtuples
created in later GA iterations were already recorded from
earlier iterations. Thus, the fitness of the subtuples did not
need to be calculated again. In the experiments that created
25 generations of 60 test tuples, there is likely to be more
genetic diversity. Thus, there are more subsequences that
are likely to be found than when prioritization is performed
with 75 generations of 15 test tuples. In this circumstance,
Emma must be run many more times, and this increases the
prioritization time overhead.

The same trend observed in Figure 7(b) occurs when the
system time values for Gradebook and JDepend are com-
pared. For example, a GA executing Gradebook’s test suite
with 25 generations of 60 test tuples using block coverage
requires 13.8 hours of user time and 0.78 hours of system
time. However, a GA running Gradebook’s test suite with 75
generations of 15 individuals using block coverage required
only 8.3 hours of user time and 0.44 hours of system time,
a vast improvement over the (25, 60) configuration. Time-
aware prioritization of JDepend test suites consumed 18.0
hours of user time and 2.1 hours of system time when using
the (25, 60) configuration but only 12.5 hours of user time

and 1.38 hours of system time using (75, 15). A GA priori-
tizing the test suite of JDepend requires a longer execution
time than a GA prioritizing the Gradebook test suite due
to JDepend’s larger test suite. Since there are more possi-
ble subtuples that can be generated, on average, the fitness
function had to be calculated more times.

As the percent of total test suite execution time was in-
creased for both Gradebook and JDepend, the number of
fitness function calculations also increased due to the fact
that more test cases could be included in the prioritiza-
tions. Since the fitness function demonstrates itself to be
the main bottleneck of the technique, when the genetic al-
gorithm needs to run the fitness function calculator less fre-
quently, less time is required overall to reach a result. This
confirms the trend seen in Figure 7(b) as well. We also
note that no significant difference was observed between the
time overheads of test suite prioritization using block versus
method coverage.

Discussion. Results indicate that the APFD values for
Gradebook were similar irregardless of the value that was
used for (gmax, s). However, Figure 7(b) reveals that a
change in (gmax, s) had a significant impact on the time
overhead of time-aware test suite prioritization. It is also
clear from Figures 7(a) and (b) that on average block cov-
erage outperformed method coverage in relation to APFD
while not increasing the time overhead of test suite prior-
itization. Based on our empirical data, a configuration of
GAPrioritize that uses (gmax, s) = (75, 15) and tc = block

would yield the best results in the shortest amount of time.
Even though the time required to perform test suite pri-

oritization is greater than the execution time of the test
suite itself, a given prioritization can be re-used each time
a software application is changed. In this way, the cost of
the initial prioritization is amortized over the period of time
during which the prioritized test suite is used. Furthermore,
the experiment results clearly indicate that the prioritized
tests will detect more faults earlier than a non-prioritized
test suite that was executed over the same extended time
period. Even in light of the time required for prioritization,
the experiment results suggest that it might be advanta-
geous to use the presented technique when there is a fixed
set of short testing time constraints.

4.2.2 Alternative Prioritization Comparisons
Random Prioritizations. According to Do et al., ran-

domly ordered test cases are useful because they redis-
tribute fault-revealing test cases more evenly than origi-

Gradebook Prioritization: GA vs. Random

(25%,10)
(50%,10)

(75%,10)
(25%,20)

(50%,20)
(75%,20)

(25%,30)
(50%,30)

(75%,30)

(Percent of Total Time, Number of Faults)

-0.5

0

0.5
A

PF
D GA Tuple

Random Tuple

(a)

JDepend Prioritization: GA vs. Random

(25%,10)
(50%,10)

(75%,10)
(25%,20)

(50%,20)
(75%,20)

(25%,30)
(50%,30)

(75%,30)

(Percent of Total Time, Number of Faults)

0

0.5

A
PF

D GA Tuple

Random Tuple

(b)
Figure 8: GA vs. Random Ordering APFDs.

nal, untreated test case orderings [7]. Using 18 comput-
ers, 10,000 prioritizations were randomly created on each
machine. Three elements were varied to create the 18 con-
figurations: (i) the percent of total test suite execution time
pt, (ii) number of faults |Φ|, and (iii) the application P . A
building approach was used to create the test tuples. For
each prioritization, a test case would be added that was not
previously used in the tuple. Randomly selected test cases
were incrementally added until the next tuple to be added
caused the test tuple to exceed tmax. Each of the generated
prioritizations therefore would nearly fill the time limit but
would not go over that limit.

Success of the genetic algorithm prioritizations is mea-
sured by comparing the prioritized test suites’ APFD values
to the APFD values of the other reorderings. A compar-
ison between the APFD values, percent of total test suite
execution time, and the number of faults seeded can be ob-
served for GA-produced prioritizations in relation to ran-
domly produced permutations in Figure 8. The comparison
is described for the Gradebook application in Figure 8(a)
and for the JDepend application in Figure 8(b). Each bar
in the graphs represents the average of the APFD values of
10,000 random prioritizations, and the error bar represents
the standard deviation from the mean APFD.

In the case of Gradebook, the GA-produced prioritizations
performed extremely well in comparison to the randomly
produced prioritizations. All APFD values from prioriti-
zations based on the Gradebook application fell more than
one standard deviation above the mean of the randomly pro-
duced prioritizations. Because the tests that detect the most
faults in Gradebook are longer in execution time and fewer
in number with regard to the other test cases, there was a
greater probability of creating weak test tuples using ran-
dom prioritization. As depicted in Figure 8(a), the test tu-
ples executing with pt = 0.25 had negative APFD values
on average because they were only able to find a few of the
seeded faults. Thus, there is a clear benefit to using intelli-
gently prioritized tests instead of random prioritizations.

In the case of JDepend, the GA-produced prioritizations
on average did not perform as well as the prioritizations
of the test suite for Gradebook. This was anticipated be-
cause of the nature of JDepend’s test cases, which are much
more interchangeable with respect to fault detection poten-
tial than those of Gradebook. As can be seen in Figure 8(b),
on average, all GA-produced prioritizations that ran within
25% of the total test suite execution time had APFD values
more than one standard deviation above the mean APFD

value of the same set of randomly produced prioritizations.
GA-produced prioritizations that ran within 50% and 75%
of the total test suite execution time also had APFD val-
ues within one standard deviation above the mean of the
randomly produced prioritizations.

Because the test cases of JDepend all have about the same
adequacy and take around the same amount of time to exe-
cute, many different test subtuples have the same APFD. As
observed in Figure 8(b), the average APFD for test tuples
that are allowed to run in 75% of the total test suite exe-
cution time is likely to be closer to the best possible APFD
value than that of test subtuples that are allowed to run in
only 25% of the total test suite execution time. In other
words, it is much easier for random prioritizations to have
high APFD values when more of the original test suite can
be run, particularly in the case of JDepend.

Overall, the GA-produced prioritizations performed ex-
tremely well in comparison to randomly generated priori-
tizations. Nearly all results were more than one standard
deviation from the mean APFD values calculated for pri-
oritizations that were produced randomly. All results had
APFD values that were greater than the mean APFD values
of random prioritizations. Note also from Figure 8(a) and
Figure 8(b) that APFD values for the percent of total test
suite execution time groups are all very similar. This again
provides confidence in the results generated by the genetic
algorithm because about the same percentage of faults can
be found by any of the prioritizations in spite of how many
defects there are or how the GA created the prioritizations.

Additional Prioritizations. Two simple forms of pri-
oritization include those that execute test cases in the or-
der in which they are written or the reverse of that or-
der. Table 4 compares GA-produced prioritizations to initial
and reverse ordering prioritizations. The genetic algorithm
produced prioritizations that were up to a 120% improve-
ment over initial orderings. For example, Gradebook’s ini-
tial tuple created using pt = 0.25 and |Φ| = 30 had APFD
= −0.892 whereas the associated intelligently produced tu-
ple had APFD = 0.457, as shown in Table 4. The time-aware
prioritizations were also an improvement over all reverse or-
dering prioritizations in both JDepend and Gradebook.

Of course fault-aware prioritization cannot be performed
in practice, but these reorderings are useful for comparison
purposes. The fault-aware prioritizations were constructed
by calculating the APFD for each test case and ordering
the test cases accordingly until the addition of the next test
would exceed the time limit. The JDepend GA-produced

Initial Reverse Fault Aware GA Initial Reverse Fault-Aware GA
pt |Φ| Gradebook Gradebook Gradebook Gradebook JDepend JDepend JDepend JDepend

0.25 10 -0.6 -0.233 0.66 0.428 0.525 -0.300 -0.05 0.567
0.25 20 -0.863 -0.208 0.72 0.412 0.478 -0.275 0.05 0.649
0.25 30 -0.892 -0.006 0.453 0.457 0.473 -0.133 0.083 0.617
0.50 10 -0.042 0.16 0.869 0.741 0.873 0 0.2 0.678
0.50 20 -0.192 0.167 0.873 0.737 0.819 0.013 0.175 0.690
0.50 30 -0.308 0.284 0.782 0.722 0.842 0.1 0.208 0.719
0.75 10 0.314 0.478 0.906 0.73 0.878 0.492 0.59 0.775
0.75 20 0.124 0.433 0.926 0.707 0.826 0.608 0.283 0.773
0.75 30 0.049 0.516 0.88 0.703 0.848 0.534 0.25 0.788

Table 4: Initial, Reverse, Fault-Aware, and Genetic Algorithm Prioritization APFDs.

test tuples performed much better than the fault-aware pri-
oritizations described in Table 4. This is likely because most
of the test cases in JDepend cover the same code segments.
While the genetic algorithm identifies the overlap in test
code coverage (and thus the fault detection potential), the
fault-aware prioritization does not. Thus, the GA produced
markedly better results for JDepend.

On the other hand, the prioritizations produced by the
GA for Gradebook were not quite as good at finding defects
quickly when compared to the fault-aware prioritizations for
Gradebook, as noted in Table 4. This is because Gradebook’s
test cases have little coverage overlap, causing few test cases
to detect the same faults. Because the fault-aware prioriti-
zation technique has actual knowledge of all faults, it could
specifically organize the test cases to best find the known
faults without concern for fault detection overlap. Although
the genetic algorithm’s results did not have as high of APFD
values in this case, its prioritizations are more general be-
cause they are not based on specific faults. Thus, they have
the potential to perform well no matter where the defects in
the code may exist.

4.3 Threats to Validity
Internal Validity. Threats to internal validity concern

the factors that might have impacted the measured variables
that were described in Section 4.1.3. The first threat to in-
ternal validity is related to potential faults within our test
prioritization infrastructure. We controlled this threat by
using a test coverage monitoring tool, Emma, and a test
suite execution framework, JUnit, that have been exten-
sively tested and are frequently used by software testing
practitioners. We have a confidence in the correctness of
these tools and we judge that they did not negatively im-
pact the validity of our empirical study. We also tested each
component of the genetic algorithm (e.g., the fitness function
and the mutation and crossover operators) in isolation and
we monitored the execution of the GA over an extended pe-
riod of time in order to further verify that these components
produced the correct output. The final threat to internal va-
lidity is related to the fact that we seeded a relatively small
number of application faults using a mutation testing tool.
However, it is important to observe that the experiment re-
sults in Section 4.2 indicate that the measured variables are
not overly sensitive to the number of seeded faults.

External Validity. Threats to external validity would
limit the generalization of the experiment results to new case
study applications. External validity threats include (i) the
size of the selected case study applications and (ii) the num-
ber of case study applications used in the empirical study.
Yet, if we compare our case study applications to those that
were used in other studies by Tonella [27] (mean size of

607.5), McMinn and Holcombe [17] (mean size of 119.2), and
the Siemens application suite [24] (mean size 354.4), the av-
erage size of our programs and test suites (mean size 860.5)
is greater than the size of the other applications. Since both
Tonella and McMinn and Holcombe report a lines of code
(LOC) size metric instead of NCSS, it is possible that the
difference in case study application size is even greater.

We did not incorporate additional applications into the
empirical study because Gradebook and JDepend served to
identify the relevant challenges associated with time-aware
test prioritization. Of course, future experiments with more
large-scale case study applications will serve to confirm the
results in Section 4.2. Finally, the use of a mutation testing
tool to automatically generate the seeded faults is an addi-
tional threat to external validity. Even though this threat
can be controlled by conducting additional case studies with
a greater number of both seeded and real-world faults, it is
interesting to remark that preliminary empirical studies sug-
gest that mutation faults do correspond to the faults found
in real-world applications [4].

Construct Validity. Threats to construct validity con-
cern whether the experiment metrics accurately reflect the
variables that the experiments were designed to measure.
As discussed in Section 4.1.3, the APFD metric is our pri-
mary measure of the effectiveness of a test prioritization.
Our formulation of APFD is limited because it does not in-
corporate the severity of the faults that are isolated by a test
case. Also, the APFD metric does not measure whether a
test can effectively support other important software main-
tenance activities such as debugging and automatic fault
localization. However, it is important to note that recent
empirical studies of test prioritization techniques also use
the APFD metric [7, 13, 24]. Finally, it is unlikely that
our metrics for time and space overhead introduce threats
to construct validity since they directly measure values that
would be useful to software testing practitioners.

5. ENHANCEMENTS
The time overhead results discussed in Section 4.2.1

should be evaluated in the context of other techniques that
use genetic algorithms to approximate NP-complete prob-
lems. For example, Kulkarni et al. report that the use of
a standard GA to identify compiler optimization sequences
required on average, across six programs, a total of 26.68
hours [16]. The empirical study in this paper reveals that
the calculation of Fs−actual and the consideration of the in-
cremental coverage of each test sub-tuple improves the effec-
tiveness of the prioritized test suite and increases the time
overhead of prioritization. The calculation of Fs−actual is
necessary because it accommodates the coverage overlap be-

tween the individual tests. If T was initially reduced in order
to remove the majority of test coverage overlap and coverage
was reported on a per-test basis, Treduce could be prioritized
using the presented approach and the modified fitness func-
tion Fit described in Equation 5. The fitness of test tuple
σj could be calculated with Fit whenever time(σj) ≤ tmax

and if σj exceeds the testing time limit we require that
Fit(P, σj , tc) = 0.

Fit(P, σj , tc) =

|σj |
X

i=1

cc(P, Ti, tc)

time(〈Ti〉)
(5)

Since Fit does not need to consider the incremental code
coverage of the σj that was derived from Treduce, we
judge that it will significantly decrease the time overhead
of GAPrioritize. The performance of the baseline fit-
ness function fit can also be improved if test suite re-
duction is not desirable because of concerns about dimin-
ishing the suite’s potential to reveal faults. For example,
during the calculation of Fs−actual, each computation of
time(〈Ti〉)× cc(P, σj{1,i}, tc) could be performed on a sepa-
rate computer. If test execution histories are available, fit

could be modified to focus on tests that have recently re-
vealed faults. When test prioritization has been previously
performed, the fitness of test tuple σmax can be recorded
and all subsequent executions of GAPrioritize could be
terminated when the algorithm generates a tuple that has
fitness greater than the prior σmax.

6. RELATED WORK
There are many existing approaches to regression test pri-

oritization that focus on the coverage of or modifications to
the structural entities within the program under test [7, 8,
24, 26]. Yet, none of these prioritization schemes explicitly
consider the testing time budget like the time-aware tech-
nique presented in this paper. Similar to our approach, El-
baum et al. and Rothermel et al. focus on general regression
test prioritization and the identification of a single test case
reordering that will increase the effectiveness of regression
testing over many subsequent changes to the program [8,
24]. Do et al. present an empirical study of the effective-
ness of test prioritization in a testing environment that uses
JUnit [7]. This paper is also related to our work because
Do et al.’s prioritization technique uses coverage informa-
tion at the method and block levels. Recent research by
Memon et al. implicitly assumes that testing is constrained
by the amount of time available in an evening [19]. While
their infrastructure is highly automated, it does not directly
consider the time constraint and thus cannot guarantee that
testing will complete in the allotted time.

7. CONCLUSIONS AND FUTURE WORK
This paper describes a time-aware test suite prioritiza-

tion technique. Experimental analysis demonstrates that
our approach can create time-aware prioritizations that sig-
nificantly outperform other prioritization techniques. For
one case study application, our technique created prioriti-
zations that, on average, had up to a 120% improvement in
APFD over other prioritizations. This paper identifies and
evaluates the challenges associated with time-aware prioriti-
zation. We also explain ways to reduce the time overhead of
prioritization. In future work, we intend to examine the en-
hancements to our approach that are discussed in Section 5.
These improvements to our algorithm have the potential to
increase the applicability of the presented technique.

8. REFERENCES
[1] http://www.clarkware.com/software/JDepend.html.

[2] http://monetdb.cwi.nl/.

[3] http://www.planet-lab.org/.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proc. of 27th
ICSE, pages 402–411, 2005.

[5] G. Antoniol, M. D. Penta, and M. Harman. Search-based
techniques applied to optimization of project planning for a
massive maintenance project. In Proc. of the 21st ICSM, pages
240–249, Washington, DC, USA, 2005.

[6] P. Chu and J. Beasley. A genetic algorithm for the
multidimensional knapsack problem. Journal of Heuristics,
4(1):63–86, 1998.

[7] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test
case prioritization in a JUnit testing environment. In Proc. of
15th ISSRE, pages 113–124, 2004.

[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans.
Softw. Eng., 28(2):159–182, 2002.

[9] D. Fatiregun, M. Harman, and R. M. Hierons. Evolving
transformation sequences using genetic algorithms. In Proc. of

4th SCAM, pages 66–75, 2004.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1979.

[11] D. E. Goldberg. The Design of Innovation: Lessons from and
for Competent Genetic Algorithms. Addison-Wesley, Reading,
MA, 2002.

[12] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex
Systems, 3(5):493–530, 1989.

[13] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test selection
techniques. ACM Trans. on Softw. Eng. and Meth., 10(2),
2001.

[14] G. M. Kapfhammer. Software testing. In The Computer
Science Handbook, chapter 105. CRC Press, Boca Raton, FL,
second edition, 2004.

[15] M. Kessis, Y. Ledru, and G. Vandome. Experiences in coverage
testing of a Java middleware. In Proc. of 5th SEM, pages
39–45, 2005.

[16] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W.
Davidson, and D. L. Jones. Fast and efficient searches for
effective optimization-phase sequences. ACM Trans. Archit.
Code Optim., 2(2):165–198, 2005.

[17] P. McMinn and M. Holcombe. Evolutionary testing of
state-based programs. In Proc. of GECCO, pages 1013–1020,
2005.

[18] P. McNamee and M. Hall. Developing a tool for memoizing
functions in C++. ACM SIGPLAN Not., 33(8):17–22, 1998.

[19] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. DART:
A framework for regression testing “nightly/daily builds” of
GUI applications. In Proc. of ICSM, 2003.

[20] J. Misurda, J. Clause, J. L. Reed, P. Gandra, B. R. Childers,
and M. L. Soffa. Jazz: A tool for demand-driven structural
testing. In Proc. of 14th CC, 2005.

[21] I. Moore. Jester- a JUnit test tester. In Proc. of 2nd XP, pages
84–87, 2001.

[22] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data
generation using genetic algorithms. Soft. Testing, Verif. and

Rel., 9(4):263–282, 1999.

[23] C. Poole and J. W. Huisman. Using extreme programming in a
maintenance environment. IEEE Softw., 18(6):42–50, 2001.

[24] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing. IEEE Trans. on Softw. Eng.,
27(10):929–948, 2001.

[25] V. Roubtsov. Emma: a free java code coverage tool.
http://emma.sourceforge.net/index.html, March 2005.

[26] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proc. of ISSTA, pages 97–106,
2002.

[27] P. Tonella. Evolutionary testing of classes. In Proc. of ISSTA,
pages 119–128, 2004.

