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Abstract

Modern micro-architectures have embraced multi-core processors and thread-level

parallelism for performance growth, because of the difficulty of increasing single core

performance without significantly increasing processor power consumption. To meet

the ever growing need for speed, current large-scale computing platforms are Non-

uniform Memory Accesses (NUMA) architectures equipped with dozens of cores, while

the prediction is that future large scale systems will have hundreds or even thousands

of cores. The applications executing on these platforms are usually multi-threaded ap-

plications which create large numbers of threads to simultaneously utilize the massive

numbers of cores.

When executing multi-threaded applications on large-scale platforms, users and

run-time systems typically allocate all available cores to their applications. However,

because of the insufficient memory bandwidth on these large-scale platforms, many

multi-threaded applications achieve their best performance when using only a portion

of all available cores. Allocating all cores over-provisions these applications, degrades

performance, and reduces energy efficiency and system throughput. Therefore, it

is desirable to execute multi-threaded applications with the minimal core allocation

that achieves best performance. We call this allocation, the optimal core allocation.

However, determining the optimal core allocations for various applications on various

hardware is very difficult.

Because memory bandwidth is the primary determining factor of optimal core

allocations, we chose to predict optimal core allocations based on the prediction

of memory bandwidth usage of multi-threaded applications. Accurately predicting

memory bandwidth usage faces three major challenges: the random contention and

concurrency in DRAM; the inter-processor connections with unknown properties;

and the heterogeneity within the memory system. We thoroughly analyzed the mem-

ory system on large-scale NUMA platforms and discovered three important insights.

First, DRAM contention and concurrency have stable statistical distributions. Sec-

ond, inter-processor connections act like networks and have linear properties. Third,

the memory system can be modeled as an integer problem. These insights allowed

us to utilize probability theory and Mixed Integer Programming to predict memory



bandwidth usage with high accuracy and low-overhead. Based on the bandwidth pre-

diction, we are able to highly accurately predict optimal core allocations in a short

amount of time.

Our models predict optimal core allocations during application execution. There-

fore, applying our models requires an efficient technique to dynamically adapt an ap-

plication to its optimal core allocation during run-time. Moreover, our models require

run-time information about application memory behavior and hardware configuration

to make predictions. We designed a run-time technique that allows multi-threaded

applications to efficiently adapt to their optimal core allocations during execution.

To ensure low overhead and achieve near-ideal load-balancing on any core allocation,

this run-time technique employs massive concurrent threads and distributed synchro-

nization primitives. We also designed a low-overhead framework to support mem-

ory behavior profiling and hardware configuration detection at run-time by querying

hardware performance counters and registers.

Combining the models and run-time techniques, we developed the OptiCore run-

time system to automatically execute multi-threaded applications with their optimal

core allocations on large-scale NUMA platforms. Compared to use-all-cores alloca-

tions, OptiCore provides a maximum speedup of 4.84. Additionally, the minimal core

allocation used by OptiCore only allocates 12.5% of all cores. On average, OptiCore

allocates only 88.7% of all cores and achieves 34.6% performance improvement.
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Chapter 1

Introduction

For the past three decades, the growth of computing performance has followed two

powerful observations: Moore’s Law and Dennard Scaling. Moore’s law states that

for every 18 months, the size of the transistors shrinks and the number of transistors

on a new generation chip doubles [101]. Dennard Scaling states that, despite the

doubling of transistors on a new chip, its power consumption is reduced because of

smaller transistors [37]. This reduction in power consumption permits design of new

processors with increasing clock frequency. That is, thanks to Moore’s Law and Den-

nard Scaling, every new generation of processors has more transistors and higher fre-

quency, allowing commensurate performance improvement, without increasing power

consumption, and with no software changes required.

However, while Moore’s Law continues to hold to some extent, Dennard Scaling

has experienced gradual failure [22]. Because of the difficulty of continuously in-

creasing the frequency without significantly increasing power consumption, processor

designers have shifted to increasing core count (multi-core processors) to continue

exploiting Moore’s Law [49]. With these multi-core processors, the focus of perfor-

mance improvement has switched from single core execution to the parallel execution

on multiple cores. In the wake of this shift, software applications are switching to the

multi-threaded execution paradigm – executing multiple threads on multiple cores to

increase application execution speed. During the past several years, more and more

applications, from high performance computing applications and data center appli-

cations, to general-purpose applications, and to even computer games, have switched

to a multi-threaded execution approach [10, 15, 52, 69, 75, 135, 150, 153].

Driven by the ever growing need for speed, architectures and applications are now

aiming at many-core and massive parallelization for performance improvement [23].

1
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Figure 1.1: A NUMA machine with four-processors/eight-nodes.

That is, dozens, hundreds or even thousands of cores will be available, and a com-

parable number of threads will be executed, in one machine. However, the increased

core/thread count renders other hardware resources scarce, and in particular, memory

bandwidth is a limited resource [23]. Because DRAM speed is significantly slower than

processor speed, one DRAM connection is not large enough to satisfy the bandwidth

need of machines with large numbers of cores and threads.

To address this discrepancy, non-uniform memory access (NUMA) architectures

have been developed [61]. A modern large-scale NUMA machine typically consists

of multiple multi-core processors, with each processor having its own DRAM con-

nection. Consequently, multiple DRAM modules can be accessed simultaneously,

allowing a much higher aggregated bandwidth. Figure 1.1 is a sketch of a NUMA

machine with four processors. In this figure, because each of the four processors has

its own DRAM connection, the aggregated memory bandwidth is four times larger

than a single DRAM connection shared by all four processors. Additionally, as illus-

trated in Figure 1.1, processors on NUMA machines are also connected together using

inter-processor connections so that a thread running on one processor can access the

memory of another processor. These inter-processor connections provide the illusion

of a single DRAM connection shared by all processors, which greatly simplifies the

programming of multi-threaded applications.

1.1 The Processor Over-provisioning Problem

When executing a multi-threaded application on a NUMA machine, a key issue is to

determine the number of cores that should be allocated to an application. Currently,

2
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Figure 1.2: Speedup (over using one core) of PARSEC benchmark streamcluster run-
ning on the NUMA machine in Figure 1.1.

users and run-time systems tend to allocate all available cores for the execution of

their applications, based on the naive assumption that more cores translates to in-

creased performance [7, 68, 69]. Unfortunately, despite the huge aggregated memory

bandwidth increase on NUMA machines, the bandwidth is still limited and is still

insufficient for some applications. This insufficiency can significantly limit the scala-

bility of multi-threaded applications and cause performance degradation when using

large numbers of cores and threads.

Figure 1.2a shows the performance of a PARSEC benchmark streamcluster running

on a 48-core NUMA machine, using one to forty-eight cores [15]. This NUMA machine

has four processors, with each processor containing twelve cores. As the figure shows,

streamcluster has the highest speedup of 4.64x when using six cores, while the speedup

of using all forty-eight cores is only 1.39x. In other words, streamcluster only requires

six cores to achieve its best performance on this NUMA machine. Allocating more

cores than necessary, or over-provisioning processors, degrades performance.

The primary scalability limitation that prevents streamcluster from achieving

higher performance when using more than six cores is memory bandwidth. Fig-

ure 1.2a also shows the memory bandwidth usage of streamcluster, which peaks when

using six cores. After the maximum bandwidth, or the bandwidth limit, is reached,

adding more cores does not improve performance because the hardware cannot pro-

vide data fast enough to satisfy the needs of the additional cores. In fact, using

additional cores degrades performance, as the extra memory resource contention in-

troduced by these additional cores reduces the total bandwidth usage. Furthermore,

the additional threads increase the amount of communication among the threads and

3



degrade performance.

More importantly, core allocation on large-scale NUMA platforms is not only

about the total number of cores, but also about the location (which processor) of the

cores. Figure 1.2b shows the speedup of streamcluster using six cores on the same

NUMA machine with two different allocation configurations. In the first configura-

tion, all six cores are allocated on one processor. In the second configuration, the

six cores are allocated on four processors. As the figure shows, although the two

configurations have the same core count, their performance differs considerably. This

performance difference is caused by streamcluster’s communication pattern. Stream-

cluster uses more memory bandwidth on some processors than the others. Therefore,

the cores on processors with high bandwidth usages need to be allocated differently

from those on processors with low bandwidth usages.

In addition to negatively impacting performance, processor over-provisioning neg-

atively impacts power efficiency and system throughput. Although the pipelines of

the over-provisioned cores are stalled for data, the cores are still in a high power state

and consume considerable amount of energy. Therefore, processor over-provisioning

also leads to poor energy efficiency [39, 88]. Furthermore, over-provisioned cores can

be released to execute other applications to boost overall system throughput and

improve system utilization.

Because processor over-provisioning degrades performance, energy-efficiency, through-

put and system utilization, it is important that multi-threaded applications are ex-

ecuted with the minimum core allocations in the right configuration that maximizes

their memory bandwidth usages and performance. We call such a core allocation the

optimal core allocation.

The overall goal of this research is to provide a practical solution that can au-

tomatically execute large-scale multi-threaded applications with their optimal core

allocations on any large-scale NUMA platform.

Note that, besides memory bandwidth, there are other factors that affect the scal-

ability of multi-threaded applications. Notably, synchronization, cache contention

and insufficient parallelism can affect scalability. Nonetheless, our experimental re-

sults show that, for large-scale applications that are typically executed on large-scale

NUMA platforms, memory bandwidth is the primary limitation. There are many

studies addressing the problem of synchronization, cache contention and insufficient

parallelism [25, 54, 56, 60, 79, 86, 99, 123, 132, 144]. However, the scalability limita-

tion of memory bandwidth on large-scale NUMA machines has not been adequately
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addressed. Consequently, this research focuses on the memory bandwidth limitation.

The studies on the other scalability limitations can be used in conjunction with this

research to provide a comprehensive solution for multi-threaded applications of any

scale.

1.2 Research Challenges

To achieve the goal of automatically executing multi-threaded applications with their

optimal core allocations on large-scale NUMA machines, there are five challenges to

overcome. These challenges involve determining the memory bandwidth usages, the

optimal core allocations, as well as the efficient execution and adaptation of multi-

threaded applications with a run-time system.

1.2.1 Challenge 1: Prediction of Memory Bandwidth Usage

For large-scale applications on NUMA platforms, scalability is primarily limited by

memory bandwidth. Consequently, determining the optimal core allocation involves

predicting the memory bandwidth of an application. Indeed, the memory bandwidth

usage of a multi-threaded application needs to be predicted before the prediction of its

optimal core allocation. For accurate optimal core allocation prediction, the memory

bandwidth usage must be accurate.

Unfortunately, accurately predicting memory bandwidth usage is very difficult

because of the complex interference and contention among concurrently executing

threads. On a NUMA platform, threads share various memory resources, including

the DRAM modules, the DRAM connections, and the inter-processor connections.

These threads contend for these shared memory resources, which significantly affects

the actual memory bandwidth usage obtainable. Consequently, to accurately predict

the memory bandwidth usage, the impact of the memory resource contention must be

precisely determined. Additionally, the severity of the memory resource contention

varies considerably with the application, input set, and hardware configuration.

There has been several approaches for predicting the memory bandwidth usage of

a multi-threaded program [30, 60, 81, 86, 144, 164]. However, these approaches are

inaccurate, because they did not consider contention in the memory resources.
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1.2.2 Challenge 2: Prediction of Optimal Core Allocation

With the accurate prediction of memory bandwidth usage, optimal core allocation

can be determined naively by comparing the bandwidth usage of different core allo-

cations and selecting the minimum core allocation with the highest memory band-

width. However, this comparison-based approach can be heavy-handed. As stated in

section 1.1, even though two core allocations have the same number of cores, the two

allocations can still have significantly different performance and bandwidth usages,

if the locations (processors) of the cores are different. As a result, on a large-scale

NUMA machine, there can be millions of core allocations to compare. For example,

on an existing AMD NUMA machine of eight processors with six cores each, the total

number of possible core allocations is 78 = 5, 764, 801. Comparing millions of core

allocations is impractical. Therefore, a technique must be designed to determine the

optimal core allocation from millions of candidates within reasonable amount of time.

To the best of our knowledge, there is no research that predicts the optimal core

allocation by predicting memory bandwidth usage. However, there have been studies

that directly predicted optimal core allocations without predicting the memory band-

width [31, 39, 77, 114, 123, 138]. These studies failed to accurately predict optimal

core allocations because they did not considered the memory resource contention.

Some of these studies also have high overhead because of the heavy-handed search

for the optimal solution.

1.2.3 Challenge 3: Run-time Core Reallocation

Because optimal core allocations vary with the application, input set and hardware

configuration, they are best (most accurately) predicted using the actual applica-

tion memory behavior obtained during execution. This observation implies that a

run-time solution is most suitable to solve the processor over-provisioning problem.

With a run-time solution, a multi-threaded application will start with a suboptimal

core allocation for memory behavior profiling. After the profiling and the optimal

core allocation prediction, the application can then be adapted to use this optimal

allocation. This adaption of core allocation during execution requires a solution that

can remap the executing threads to any core allocation at run-time. Additionally,

many multi-threaded applications have phases during their execution. These phases

usually have different memory behavior, and thus require different core allocations.

The changing of core allocation from one phase to another also requires an efficient
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run-time reallocation solution. Unfortunately, the rigidity of current thread libraries

prevents multi-threaded applications from being reconfigured to use the optimal core

allocation at run-time without considerable performance penalty.

Consider the case where a multi-threaded application runs on a machine with 16

cores. Initially, this application uses all 16 cores with 16 threads. After a period of

time, it is predicted that 10-core allocation is the optimal. Therefore, the application

has to adapt to 10 cores. Ideally, the application should be reconfigured to run

with 10 threads. However, running 16 threads on 10 cores can cause an unbalanced

load on the cores and performance degradation. Furthermore, many user programs

are rigid in that their thread count cannot be changed at run time. The inability

to efficiently reconfigure a multi-threaded application limits previous run-time core

allocation solutions to only data-parallel loops, where the workload can be easily

repartitioned after one loop iteration ends [32, 33, 60, 144].

There has been research on enabling multi-threaded applications to adapt to any

core allocation during execution [86, 104, 138]. However, some of these techniques

require modification of application source code, which can be difficult [86, 104]. Other

techniques have high overhead on large-scale NUMA machines, because they introduce

considerable synchronization overhead [86, 138].

1.2.4 Challenge 4: Low Overhead Run-time Solution

As stated in the previous challenge, addressing the processor over-provisioning prob-

lem is best solved with a run-time solution. This run-time solution needs the following

three steps, at least:

1. application memory behavior profiling;

2. optimal core allocation prediction; and,

3. dynamic core reallocation.

A run-time solution inevitably adds overhead because it introduces an extra layer

into the system to monitor and manage executing applications. These three steps

can further increase this overhead. Therefore, it is important that these steps are

carried out in a way that minimizes overhead as much as possible.
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1.2.5 Challenge 5: No User-involvement and Source Code

Independent

Many existing multi-threaded applications have complex code bases. If a solution

of the processor over-provisioning problem requires source code modification, the

difficulty of applying this solution to complex source code may prevent it from being

employed. Furthermore, users of multi-threaded applications do not always have

access to the source code of their applications. Consequently, in order for a solution

to be applied to existing applications, this solution should be carefully designed so

that it does not require modifications to, or knowledge of, application source code.

Moreover, as stated above, predicting the optimal core allocations requires detailed

information about the underlying hardware configuration. However, the complexity

and the variety of hardware configurations make it very difficult for ordinary users

to comprehend these configurations. A solution that requires users to input the

information of hardware configurations may prevent ordinary non-expert users from

employing this solution. Hence, in order for the solution to be employed by ordinary

users, this solution should be carefully designed so that it does not require user

involvement.

1.3 General Approach

This dissertation presents a comprehensive solution to the processor over-provisioning

problem on large-scale NUMA machines by addressing the challenges discussed in the

previous section.

Because memory bandwidth is the determining factor of scalability and optimal

core allocation on large-scale NUMA platforms, we chose to predict the memory

bandwidth usage of an application before predicting its optimal core allocation, so

that highly accurate optimal core allocation predictions can be achieved. That is, we

develop two models: one predicts the memory bandwidth usage, while the other one

predicts optimal core allocations based on the predicted bandwidth usage.

However, models cannot directly benefit ordinary users because they cannot be

directly applied to applications with run-time support. Consequently, in this disser-

tation, we also provide run-time techniques to support the adoption of our models.

Finally, we combine our models and run-time techniques into one run-time system

which can automatically execute multi-threaded applications with their optimal core
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allocations on large scale NUMA machines.

These models and run-time techniques are carefully designed and combined so

that they have low run-time overhead, and they require no user-involvement and no

source-code modification. In order to demonstrate that our solution is practical and

readily-applicable, we evaluated our models, run-time techniques and the final run-

time system on real large-scale NUMA platforms. More specifically, we developed

the following models and run-time techniques to address the challenges discussed in

Section 1.2:

1. A model that predicts the memory bandwidth usages of multi-threaded appli-

cations when they execute with different core allocations. Because bandwidth

usage is determined by the memory resource contention, this model first pre-

dicts the contention at DRAM module, DRAM connection and inter-processor

connection. Then, based on the contention prediction, the model predicts the

memory bandwidth usages. Because memory resource contention is explicitly

modeled, this two-step procedure ensures highly accurate prediction results.

2. A model that predicts the optimal core allocation of multi-threaded applica-

tions. This model makes predictions using the results from the above bandwidth

usage model. In order to find the optimal solution from millions of possible

core allocations, Mixed Integer Programming (MIP) is employed. To be more

specific, this model converts the optimization goal (maximize bandwidth and

minimize core allocation) and the bandwidth usages into linear functions. Then

it uses an MIP solver to find the optimal core allocation.

3. A run-time technique that remaps the application threads to a new core allo-

cation efficiently during execution. This technique makes use of the fact that

current multi-threaded applications can partition their work into fine-grained

small jobs when they are instructed to create and utilize a large number of

threads, with one thread assigned to process one job. When a multi-threaded

application adapts to a new core allocation, this technique redistributes all jobs

to this new allocation in a way that ensures each core gets similar load (similar

number of jobs). Because one thread is responsible for one job, redistributing

a job to a new core is equivalent to re-mapping its corresponding thread to the

new core. The downside of creating numerous threads is that it increases the

number of synchronization operations. This increase can introduce significant
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overhead. To reduce this overhead, distributed synchronization primitives are

employed.

4. A run-time framework that communicates with the operating system (OS) to

provide basic services that are required by the dynamic core reallocation tech-

nique. This framework also provides services to profile application memory

behavior. These profiling data are used as inputs by the bandwidth and op-

timal core allocation models. This framework is also responsible for detecting

the phase changes within an application. A phase change may alter the appli-

cation’s memory behavior, and potentially calls for a different core allocation.

This run-time framework is carefully designed such that it has low overhead

and can be applied to existing application without source code modification.

1.4 Contributions

The contributions of this research include the models for the prediction of memory

bandwidth usage and optimal core allocation, the novel run-time techniques and

framework for on-line performance profiling and application execution management,

the complete run-time solution for the processor over-provisioning problem, as well

as the experimental evaluations of our models and solutions on two real large-scale

NUMA platforms with 19 benchmarks. The detailed contributions are described as

follows.

1.4.1 Contribution 1: The Memory Bandwidth Model

The first contribution is a practical and highly accurate memory bandwidth model,

DraMon, for predicting the DRAM module contention, DRAM connection contention

and memory bandwidth usages of multi-threaded applications. DraMon was evalu-

ated on a large-scale NUMA machine with AMD processors, using 22 benchmarks

from PARSEC and NBP benchmark suites [15, 75]. Experimental results show that

DraMon has an average accuracy of 98.6% for DRAM contention predictions, and

an average accuracy of 93.4% for memory bandwidth usage predictions. Addition-

ally, DraMon has very low overhead, and requires a short amount of time to make

predictions.

In addition to addressing the processor over-provisioning problem, DraMon can

be used for other DRAM-related optimization research, such as providing perfor-
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mance estimations for novel memory allocation algorithms and parallel algorithms.

Moreover, the development of DraMon reveals that DRAM contention has a stable

statistical distribution, allowing it to be quickly predicted. This dissertation also

provides an analysis of the factors related to bandwidth usage and their application

for bandwidth prediction.

1.4.2 Contribution 2: The Optimal Core Allocation Model

The second contribution is an optimal core allocation model, NuCore, for predicting

the maximum bandwidth usages and optimal core allocations of multi-threaded ap-

plications on large-scale NUMA machines. NuCore was evaluated on two large-scale

NUMA machines, using 19 PARSEC and NBP benchmarks [15, 75]. Experimental

results show that NuCore has an average accuracy of 90% for memory bandwidth

usage predictions. Our experiments also show that NuCore can correctly predict

the optimal core allocation of 19 benchmarks out of a total of 22 benchmarks. For

the other three benchmarks, NuCore’s predictions differed by at most one core per

processor from the experimentally determined optimal core allocation. Additionally,

these results show that NuCore is very fast and has over low overhead.

These predictions can also be used by application developers, computer architects

and system administrators to study and improve the performance of their large-scale

applications and machines. The development of NuCore reveals interesting charac-

teristics of the various types of memory contention on NUMA machines. NuCore is

the first analytical model to mathematically express the NUMA bandwidth limiting

factors and predict bandwidth usage and optimal core allocation. The technique of

expressing non-linear memory bandwidth limiting factors and memory contentions

as linear constraints, and expressing prediction or optimization goals as objective

functions may also apply to other memory-related optimization problems.

1.4.3 Contribution 3: The Run-time Core Reallocation Tech-

nique

The third contribution is an efficient run-time technique, FlexThread, for dynamic

core reallocation at run-time. FlexThread enables a run-time system to adapt a

multi-threaded application to any core allocation efficiently. Experimental results

from two large-scale NUMA machines with 19 PARSEC and NPB benchmarks show

that FlexThread has a maximum overhead of only 5% [15, 75].
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FlexThread’s dynamic and efficient core re-allocation required by various run-time

optimization algorithms. Additionally, FlexThread provides significant performance

improvement even without optimization algorithms, because it helps applications

improve cache and processor utilization, provides better load balancing, and employs

distributed synchronization primitives. This better management provides up to 1.9

times speedup over GNU PThread and OpenMP libraries. FlexThread is carefully

designed so that it is readily applicable to existing applications without the need to

change application source code. This dissertation also provides detailed experimental

and theoretical analysis of FlexThread’s overhead to help users determine the best

configuration of FlexThread for their applications and platforms.

1.4.4 Contribution 4: The Low Overhead Run-time Frame-

work

The fourth contribution is a run-time framework, REEact, for writing user-specific,

application-specific and platform-specific policies to manage applications and hard-

ware resources. REEact provides a wide range of services to support run-time mon-

itoring of application behavior and hardware status. It also provides services to

adapt application execution, change resource allocation, and reconfigure hardware

components. All these services are exported to users through easy-to-use Application

Programming Interfaces (API). REEact is portable, and has low overhead. These

services and properties make REEact ideal for testing, designing and deploying novel

run-time systems. Experiment results on two large-scale NUMA machines with 13

PARSEC benchmarks show that REEact has a maximum overhead of only 3% [15].

1.4.5 Contribution 5: The Complete Run-time Solution

The last contribution is the complete run-time solution, OptiCore, which automati-

cally executes multi-threaded application with their optimal core allocations. Com-

bining DraMon, NuCore, REEact and FlexThread, OptiCore offers a complete, low-

overhead, user-involvement-free and application-source-code-independent solution for

the processor over-provisioning problem on large-scale NUMA platforms.

When evaluated on two large-scale NUMA platforms with 19 benchmarks from

PARSEC and NAS Parallel benchmark (NPB) suites, OptiCore provides an average

performance improvement of 34.6%, over use-all-cores allocations. The maximum

speedup is 4.84 times. Moreover, the overhead of OptiCore is less than 5%.
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1.5 Dissertation Organization

The rest of this dissertation is organized as following: Chapter 2 discusses related

work. Chapter 3 discusses NUMA architectures and the impact of memory band-

width on scalability. Chapter 4 presents the DraMon model which predicts DRAM

contention, DRAM request overlapping and local memory bandwidth usage. Chap-

ter 5 presents the NuCore model which predicts total memory bandwidth usage and

optimal core allocation. Chapter 6 presents the FlexThread technique for efficient

run-time core reallocation. Chapter 7 presents the REEact framework for run-time

application monitoring and management. Chapter 8 presents the OptiCore run-time

system that automatically executes applications with their optimal core allocation to

address the processor over-provisioning problem. Finally, Chapter 9 summarizes this

research and provides directions for future exploration.
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Chapter 2

Related Work

This chapter discusses related research work. Research on addressing the processor

provisioning problems is discussed first, after which, research related to each compo-

nent of OptiCore is discussed.

2.1 Processor Over-provisioning

Scalability Analysis

These are many studies on analyzing the scalability of multi-threaded applications.

These studies reveal that many multi-threaded applications suffer performance loss

when using large numbers of cores and threads. Bienia et al. investigated the scalabil-

ity of PARSEC benchmark suites [16]. However, because of the small scale machine

used, they found PARSEC benchmarks scaling well. Heirman et al. analyzed the scal-

ability of several multi-threaded programs using cycle stacks [59]. They found mem-

ory bandwidth, synchronizations and unbalanced workloads are the major scalability-

limiting factors. Mandal et al. analyzed scientific workloads and concluded that these

workloads could easily saturate the memory bandwidth on multi-core platforms [96].

Pusukuri et al. studied the impact of synchronizations and context switches [123].

They discovered that synchronization operations could significantly limit scalability

when large numbers of threads were used. Du Bios et al. proposed a novel tool set

to visualize scalability bottlenecks [42]. They analyzed Java applications using the

new visualization tool set, and discovered that data sharing among garbage collector

threads might limit scalability. Liu et al. developed a new tool for analyzing the per-

formance bottleneck of multi-threaded applications on NUMA platforms [90]. They
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reported that memory bandwidth is the primary scalability limitation on NUMA

platforms. A similar observation was also made by Boyd-Wickizer et al. on large-

scale many-core systems [23]. These studies on scalability corroborate our finding

that memory bandwidth is the primary scalability limitation. These studies provide

valuable insights which helped us design our models.

Predicting Optimal Core Allocations

There are also several studies focused on determining optimal core allocations for

multi-threaded applications. One group of studies employed a search-based solution.

Nyuyen et al. proposed a framework to dynamically detect the optimal core allocation

by searching and sampling different core allocations [114]. To reduce the number of

allocations to sample, they used an extrema searching algorithm called the Method

of Golden Sections. Corbalan et al. proposed a similar searching solution that tried

different core allocations [31]. To reduce the number of trials, they set a performance

target, and would stop searching when the target was met. Pusukuri et al. proposed

a method that searches different core allocations and thread counts for the optimal

one based on OS observations, such as context switch counts and synchronization

operations [123]. Unlike other research, Pusukuri el al. focused more on the search

of optimal thread counts instead of the optimal core count. Similar to our research,

they also observed that executing more threads than cores could be beneficial for

certain applications. Li et al. also used a search-based algorithm to dynamically

change core allocation to reduce power consumption [88]. They employed binary

search and hill-climbing optimization to prune the search space. Depending on the

strategies employed to reduce sample counts, the search-based techniques either could

not predict the optimal core allocation (up to 24% slower than the optimal), or

incurred high searching overhead (up to fifty samples required). Because of the high

overhead and the mispredictions, our research in this dissertation does not use the

search-based approach.

Another group of studies employed a regression-based solution. Jung et al. built

a model based on regression to predict the performance for a particular core alloca-

tion [77]. This model used instructions per cycle (IPC) and cache misses as inputs.

Ding et al. also employed regression to predict the performance and energy-delay-

product (EDP) for different numbers of cores [39]. This work primarily focused on

energy consumption instead of performance, and it did not aim at optimal results.

Sridharan et al. proposed a resource-agnostic model based on Amdahl’s law to predict
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optimal thread count [138]. This work only predicted the total thread count and did

not consider the non-uniform memory topology of NUMA machines. Sasaki et al. in-

vestigated node allocations on NUMA machines [130]. They sampled the instructions

per second for different core allocations. Then they built a model based on Amdahl’s

law to predict to optimal numbers of nodes. In conclusion, the authors predicted

that allocations based on cores instead of nodes might provide better performance,

which corroborates our findings. Limited by the number of available samples and the

hardware resources considered, these regression-based solutions usually cannot pro-

vide an accurate prediction. The predictions they made were up to 65% slower than

the optimal core allocations. To provide more accurate predictions, our research in-

dividually considers the hardware resources which potentially limit scalability, rather

than combining them into one regression model.

The last group of studies developed a model for each scalability-limiting factor.

Suleman et al. investigated the scalability-limiting factors of memory bandwidth and

critical sections [144]. They provided a predictive model for each factor. For memory

bandwidth, a simple linear model was employed. Lee et al. studied the scalability-

limiting factors of memory bandwidth and cache size [86]. However, they also used

linear models for memory bandwidth. Heirman et al. investigated under-subscription

of threads on SIMD processors due to cache contention [60]. Because SIMD archi-

tecture is drastically different than NUMA architecture, their approach cannot be

applied to NUMA platforms. More importantly, the models developed by these stud-

ies are inaccurate because they failed to model the thread interference at DRAM

and inter-processor connections, which are two primarily scalability limiting factors

on large-scale NUMA machines. Because we carefully model the DRAM contention

and inter-processor connection contention, our OptiCore run-time system has better

performance.

Moore and Childers proposed a novel model to predict the thread counts of mul-

tiple co-running multi-threaded applications [102, 103, 107]. They first profiled each

application offline to build a utility model. Then the models were used in multi-

programmed workloads to determine the best thread count for each application for

various optimization goals. There are two major differences between this work and

our research. First, we choose a completely online (run-time) approach, while their

work took an approach that combined both offline and online techniques. Second,

we focus on optimal performance, while their work aimed at multiple optimization

goals.
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2.2 DRAM Contention and DRAM Bandwidth Mod-

eling

OptiCore’s component DraMon focuses on the modeling and prediction of DRAM

contention and DRAM bandwidth. In the past years, there are several studies that

modeled DRAM analytically. Choi et al. modeled the time that a DRAM bank was

busy processing data [30]. Similar to our work, their model considered row buffer

misses and hits. However, their model requires memory traces, and the goal was to

provide guidelines for DRAM design rather than predicting bandwidth usage. Wang

et al. analyzed the DRAM internal components and presented a simplified DRAM

resource model for high-level performance analysis [152]. This resource model includes

DRAM banks, row buffers, data bus and command bus. Although this resource model

does not predict DRAM contention or bandwidth usage, it greatly helped us in the

design of DraMon. Yuan et al. modeled the DRAM busy time on GPGPUs [164]. This

model used application memory traces to predict the amount of time that a DRAM

bank was servicing data. Kim et al. proposed a model to predict the impact of bank

partitioning [80]. Ahn et al. modeled bandwidth usage of programs with regular

memory access patterns [4]. These two models did not consider DRAM contention,

which is the determining factor of DRAM bandwidth usage. Subramanian et al.

proposed a performance model to estimate the slowdown due to DRAM contention,

which required hardware modification [143]. Du Bois et al. proposed novel hardware

counters to estimate performance interference from memory resource contention [41].

Adding these counters also requires modifying existing hardware. Additionally, all

of these studies were conducted using simulators, while DraMon is evaluated on real

machines and existing hardware.

A linear bandwidth model was first proposed by Snavely et al. for multi-processors

systems [136]. This model assumed that the memory bandwidth usage increases

linearly with the number of cores. It was later applied to multi-core systems [86, 127,

144]. To improve accuracy, the linear model was also extended with a roof-line, i.e.,

the maximum peak bandwidth [157]. Kim et al. proposed modeling bandwidth with

multiple linear and logarithmic regressions [81]. This model using either linear or

logarithmic regressions for different core allocations (more accurately, the numbers of

cores). As demonstrated in this dissertation, both the linear model and regression-

based model have low accuracy, because several important factors are overlooked.

Cache reuse distance has been used to predict cache miss rate by many studies.
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The idea of whole program cache reuse distance was first used by Ding and Zhong to

predict cache performance [38]. They predicted the cache performance of large input

sets based on profiling data of smaller data sets. Chandra et al. were the first to

employ cache reuse distance to address the cache contention problem on multi-core

processors [26]. They sampled the cache reuse distances for different single-threaded

programs. Then they used these samples to predict the cache contention among these

programs. Xiang et al. extended this idea into online models, allowing more accurate

run-time management of cache contention [159]. The authors of this work simplified

the sampling of cache reuse distances, allowing run-time prediction of cache contention

for multi-threaded programs. The contention in DRAM row buffer is similar to cache

contention in that row buffers are also used to temporarily hold data and are also

sensitive to data locality. These research efforts inspired us to use bank reuse distance

in DraMon. Note that, the different between DRAM and cache allows us to predict

DRAM contention with extremely low overhead, which is currently impossible for

cache contention prediction.

2.3 NUMA Memory Bandwidth Modeling

Besides predicting optimal core allocation, OptiCore’s component NuCore also pre-

dicts the inter-processor and total memory bandwidth usages of multi-threaded appli-

cations on large-scale NUMA machines. To the best of our knowledge, there is no prior

research that models the inter-processor memory bandwidth. However, there are sev-

eral studies that analyzed the impact of inter-processor memory accesses. In a recent

work, Blagodurov et al. discovered that the contention for the inter-processor memory

connection could impact the memory bandwidth usage on that connection [19]. Be-

cause of their work, we paid special attention to the contention at the inter-processor

memory connections. Majo et al. further noticed that the outgoing memory band-

width from a processor is affected by the processor’s local memory accesses [92–95].

Because of these studies, we considered the contention among local and remote mem-

ory accesses in NuCore.

Additionally, NuCore employs Mixed Integer Programming (MIP) to make pre-

dictions. MIP has long been used to solve scheduling problems on computer systems

with linear properties [84, 151]. Nowatzki et al. proposed a generic MIP frame-

work for scheduling programs on spatial architectures [117]. These studies inspired

us to employ integer programming. However, Nowatzki et al. pointed out that MIP-
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based solutions were limited to problems with “directly expressible” and linear-only

constraints [117]. However, the core of the memory bandwidth problem — the dy-

namic contention in the memory system — is neither linear nor directly expressible.

Our insights of NUMA characteristics in Chapter 5 and our technique of converting

non-linear constraints to linear make it possible to apply MIP to memory-related

problems.

2.4 Dynamic Core Reallocation

Previous research that requires dynamically reconfiguring a program to its optimal

core allocation is limited to data parallel loops, where workload repartition is per-

mitted at the boundary of loop iterations [32, 33, 39, 77, 114, 137, 144]. Moore and

Childers proposed a method to dynamically reconfigure an application to use any

number of cores at run-time [104]. They proposed a novel inflate/deflate program-

ming model which allowed run-time system to dynamically control the parallelism

of an application. The proposed programming model enables various application-

specific management techniques during execution. However, this method requires

modification to a program’s source code. Lee et al. developed a solution to dynam-

ically reconfigure a program without source code modification [86]. Similar to our

research, they proposed to create large numbers of threads to help load-balancing

various core allocations. Nonetheless, this solution still needs source code to analyze

communication patterns. It also requires expensive off-line profiling. However, in

order to work with existing applications, we believe it is better to directly manage

binary executables, because it may not always be feasible to modify existing source

code. Sridharan et al. proposed a dynamic core reallocation solution that does not

require source code modification [138]. However, their solution increases the num-

ber of synchronizations performed by an application, and thus degrades performance.

FlexThread in this dissertation, on the other hand, provides a low-overhead dynamic

core reconfiguration solution that does not require application source code.
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2.5 Run-time System and Virtual Execution En-

vironments

Similar to REEact framework, there has been much work in designing and imple-

menting run-time systems and virtual execution environments (VEEs) for various

purposes. Nesbit et al. proposed virtual private machine (VPM) as an abstraction

for managing spatial and temporal resources in multicore systems [113]. These VPMs

consisted of several software policies for managing resources which translated system-

level requirements into different hardware mechanisms. Cuvillo describes a Thread

Virtual Machine (TVM) in the form of a thread library to allow applications to achieve

full resource utilization [35]. TVM aimed at providing user-level hardware resource

management for Cyclops-64 many-core processors. AKULA was a tool-set for exper-

imenting and testing cache-contention-aware scheduling algorithms [169]. AKULA

was primarily aimed at providing performance estimations for scheduling algorithms

on future large-scale many-core processors. Noll et al. described a virtual machine

called CellVM to allow programmers to use higher-level programming constructs and

mimic the behavior of a homogeneous shared memory multiprocessor, hiding the het-

erogeneity in the underlying Cell processors [116]. Because efficiently programming

Cell processors required detailed understanding of this architecture, OpenMP was

used to decouple the low-level architecture resource management from application al-

gorithms. CellVM aimed at providing a novel middle-ware to replace OpenMP with

better abstraction and performance. Similar to these researchers, we advocate the

use of run-time systems and VEEs to dynamically manage applications and hardware

resources on multi-core and many-core platforms. However, these VEEs are usually

specialized for a particular purpose (mostly for shared resource management) or an

architecture, while REEact is designed to provide a generic framework and a wide

variety of services that can be used for a range of diverse purposes.

The Multikernel Operating Systems shared the same application and architecture-

specific management spirit with us [13]. However, that work focused on improving

the OS kernel design instead of providing a flexible run-time on top of existing OS,

which is the approach taken by REEact. Log-based architecture (LBA) is similar to

REEact in that LBA also constantly monitors on-line applications [28]. The difference

is that LBA focuses more on application security and correctness. REEact shares the

concept of user-level application management with scheduler activation [8] and shares

the spirit of application-specific resources management with exokernel [47]. However,
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for multi-core platform resource/application management, extensive user-level/kernel-

level thread interactions and application-specific resource abstractions are not always

necessary.

There has been prior work on virtualization and hypervisors. Xen is a hypervi-

sor that allows the existance of large number of guest OSes on the same machine

with low overhead and safe resource isolation [12]. In another work, the Xen hyper-

visor was extended to create a framework called VT-ASOS, for application-specific

resource management in many core systems [115]. VT-ASOS allowed the incorpora-

tion of application-specific components, such as schedulers and memory allocators,

into traditionally hypervisors. Haase et al. described a scalable dataflow-driven

and self-distributing virtual machine for multicore-FPGAs [57]. This virtual ma-

chine allowed transparent runtime configuration of the underlying hardware to adapt

dynamically to the changing environment. Kauer et al. presented a virtualization ar-

chitecture consisting of a microhypervisor and environment that provides operating

system functionality including virtual-machine monitors (VMM) in user-level [140].

This user-level VMM enabled the execution of unmodified guest OSes in the virtual

machine. Unlike these studies, REEact focus on run-time management of applica-

tions (instead of OSes) and provides supports for customizable user-level resource

management policies.

2.6 Other Related Work

There are studies investigating the application affinity problem, which is related to the

core allocation problem. Moore and Childers et al. proposed a novel online technique

called AutoFinity to dynamically determine the application affinity (thread-to-core

mapping) for multi-threaded applications [105]. AutoFinity utilizes machine learning

methods to construct an action table which provides hints for thread-to-core map-

pings. During execution, applications are first profiled using PMUs. Then the profil-

ing data are used to locate the corresponding hints for the application, and a proper

thread-to-core mapping is determined based on the hints. In a recent work, Moore

and Childers also proposed to build application-specific and thread-count-specific

models for the application affinity problem [106]. These offline models are more accu-

rate because they consider a wide ranges of features (properties of the hardware and

software), and they consider the varying requirements of different applications and

thread counts. The problem of application affinity is different than the problem of
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core allocation. The optimal core allocation problem requires determining how many

cores (threads) to use, while the application affinity problem requires determining

which cores to use given a specific number of threads. Additionally, our model can be

modified (by adding another constraint about total core count) to address the appli-

cation affinity problem when memory bandwidth is the primary factor that impacts

the mapping of threads.

There are several studies aimed at improving memory allocation algorithms to mit-

igate DRAM contention. Liu et al. improved Linux memory allocation algorithm [89].

They employed page-coloring to partition DRAM banks and their associated mem-

ory pages among co-running threads. Mi et al. studied the potential (i.e., maximum

speedup) of bank partitioning [100]. They observed that with ideal hardware and

software, up to 14% speedup could be achieved. Park et al. observed that mem-

ory requests with regular access patterns degraded performance because of DRAM

contention [118]. Based on this observation, they argued that memory allocation

algorithms should allocate a new page from a randomly selected bank. Because of

the energy limitation, only four banks in a DRAM module can be active simulta-

neously. Therefore, these techniques cannot dramatically reduce DRAM contention

and increase total memory bandwidth usage. Hence, they cannot eliminate the band-

width saturation problem on large-scale NUMA platforms. Additionally, our memory

models can be revised to predict the DRAM contention and bandwidth usage under

these new allocation algorithms by updating their functions that consider memory

allocation schemes.

Observing that inter-processor memory accesses affect performance, many studies

aimed at reducing the number of these accesses. Awasthi et al. improved data place-

ment with adaptive first-touch policy and page migration on NUMA machines [11].

This work dynamically analyzed page accesses to allocate a page only on the node

that was predicted to use it. And it migrated pages if remote accesses were frequent.

Dashti et al. proposed using memory page migration and replication to address mem-

ory traffic congestion [34]. They migrated a page to the node that actually accessed

it, or duplicated a page if multiple nodes used it. These two techniques aim to reduce

memory latency rather than reducing bandwidth usage. In fact, the reduced memory

latency improves performance and potentially increases bandwidth usage. Therefore,

OptiCore is complementary to these techniques.

Novel hardware were also proposed to improve memory system. Fang et al. pro-

posed a new memory controller design to reduce the number of coherence messages
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over inter-processor connections [51]. This new design could increase the maximum

available bandwidth of inter-processor connections. Hardavellas et al. designed tech-

niques to optimize the data placement on Non-Uniform Cache Access (NUCA) ar-

chitectures [58]. They categorized applications based on their data access patterns,

and dynamically chose data placement strategies for different patterns. Ipek et al.

proposed using reinforcement learning to improve memory controllers [70]. Using rein-

forcement learning, memory controllers could learn to optimize its scheduling policy

on the fly. Jia et al. investigated memory request scheduling for massive parallel

processors (GPUs) [73]. They employed request reordering and cache bypassing to

prioritize memory requests. Jiang et al. studied granularity of DRAM caches [74].

They argued that DRAM caches should only cache hot memory pages. Qureshi and

Loh investigated the trade-off of latency and hit rate of DRAM caches [125]. Their

results showed that DRAM cache should optimize for latency first. Ghose et al. inves-

tigated prioritizing critical loads with processor hints [55]. They monitored the loads

that stalled processors for the longest times, and instructed memory controllers to

prioritize these loads. Mukundan and Martinez proposed a reconfigurable MC for dif-

ferent optimization purposes [108]. They designed configurable memory controllers to

serve three different goals, performance, energy efficiency and fairness. Herrero et al.

proposed per-thread row buffers to improve DRAM hit ratio [63]. Noticing that co-

running threads contended for DRAM row buffers, the authors proposed to add row

buffers dedicated to each thread to mitigate this contention. Islam and Stenstrom de-

signed a strategy to eliminate unnecessary memory accesses [71]. They proposed new

architecture design to eliminate various unnecessary loads, such as forwarded loads

and zero-value loads. Mutlu et al. proposed improvements to memory controllers on

multi-core platforms [110, 111]. Their improved memory controllers scheduled mem-

ory requests to ensure the fairness among co-running threads. Zhang et al. studied the

problem of varied write recovery time in future DRAM chips [167]. They proposed to

employ chunk-specific write recovery control and chunk remapping to exploit perfor-

mance benefits of fast chunks. Chatterjee et al. proposed a technique called “Staged

Reads” to process reads and writes simultaneously [27]. “Staged Reads” issued reads

to idles banks that were not processing writes to parallelize the processing of reads

and writes. Du et al. proposed a hardware-software co-design technique to allocate

superpages in physical memory with retired physical pages [40]. Retried physical

pages put holes in continues physical address space and prevents the allocation of su-

perpages. The authors designed new page table formats which allow the allocation of
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superpages even when retired physical pages exist. Stuecheli et al. reduced the num-

ber of write-to-read switches with virtual write queues [141]. They proposed a method

to coordinate the cache write-backs with memory controllers. More specifically, they

let memory controllers initiate write-backs to group writes and reduce write-to-read

switches. Unlike these hardware techniques, our models and run-time systems do

not require any hardware modification. Therefore, our models and run-time systems

work on existing platforms. Additionally, these hardware techniques mainly affect

DRAM timing, DRAM row buffer hit ratios and memory bandwidth utilization. Our

memory models can be revised to consider these new hardware designs by updating

their probability equations or constraints accordingly.
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Chapter 3

Memory Bandwidth Limitation on

Large-scale NUMA Platforms

This chapter provides a detailed analysis on the memory bandwidth limitation on

NUMA platforms. We begin this chapter with a thorough description of NUMA

architectures. We then discuss how memory bandwidth is a key factor in determining

optimal core allocations. This chapter also discusses the major technical challenges

that must be addressed to predict optimal core allocations on large scale NUMA

machines.

3.1 The NUMA Architecture
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Figure 3.1: A NUMA machine with AMD Opteron 6174 processors. This machine
has eight nodes on four 12-core processors. The numbers on the inter-node links
represents their maximum bandwidth (GB/s).
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With the ever growing need for speed, modern computer platforms are required

to provide dozens or hundreds of cores to continuously provide better performance.

However, because of the huge speed discrepancy between CPU and DRAM, a sin-

gle DRAM connection can never provide enough memory bandwidth to satisfy the

need of large numbers of cores. As a result, systems with large numbers of cores

are designed as Non-uniform Memory Access (NUMA) architectures, which provide

multiple DRAM connections to increase maximum memory bandwidth.

More specifically, large-scale NUMA platforms are composed of several multi-core

processors that are attached to different sockets. A multi-core processor is usually

composed of one or more groups of cores, which are called nodes. A node is configured

to connect to its own set of DRAM modules. This configuration allows the simul-

taneous access of multiple DRAM modules which increases the aggregate memory

bandwidth. The nodes are also connected using high-speed inter-node connections,

allowing one processor to access the DRAM modules of another node [66, 148].

Figure 3.1 gives an example of a NUMA machine with four AMD Opteron 6174

processors on four sockets [6]. Each processor consists of two nodes of six cores. In

total, there are 48 cores. Each node is connected to its own memory controller and

DRAM modules.

The lines in Figure 3.1 also illustrate the inter-node connections (HyperTransport

links [148]). Note that, because the number of inter-node connection ports per node

is limited, not all nodes are directly connected, and the connection topology is not

uniform. Additionally, the inter-node connections are heterogeneous in that they have

different bit widths, and thus different maximum bandwidth.

Figure 3.1 also shows the maximum inter-node memory bandwidth (GB/s) of the

inter-node connections. There are two reasons for the differences in the maximum

bandwidth between nodes. First, the inter-node connection between two nodes within

one processor is always faster than the connection of two nodes on two different

processors. Second, different inter-node connections have different bit widths. An

AMD Opteron 6174 node has only two 32-bit HyperTransport ports. In order for a

node to connect to more than four other nodes, one 32-bit port can be partitioned

into several 16-bit or 8-bit links. Obviously, a connection with wider connection (i.e.,

more bits) offers more bandwidth than a narrower connection.

Figure 3.2 gives another example of a NUMA machine. This machine has four Intel

Xeon X7550 processors, where each processor has one node of eight cores. Again, the

lines and the numbers in Figure 3.2 also show the connection topology and maximum
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Figure 3.2: A NUMA machine with Intel Xeon X7550 processors. This machine has
four nodes on four 8-core processors. The numbers on the inter-node links represents
their maximum bandwidth (GB/s).

bandwidth of the inter-node connections.

On the Intel platform, the nodes are connected with QuickPath Interconnect

(QPI) [66]. Unlike the AMD NUMA machine in Figure 3.1, this Intel NUMA machine

has fewer nodes. Therefore, there are enough QPI ports so that all nodes are directly

connected, and the inter-node connections have the same maximum bandwidth.

3.2 Memory Bandwidth Impact on Core Alloca-

tion

To understand how memory bandwidth limitation impacts the optimal core alloca-

tions on large-scale NUMA machines, we conducted a series of experiments using

PARSEC, NPB and BLAS benchmarks on the two NUMA machines described pre-

viously in Section 3.1 [7, 15, 75]. Our experimental results show that there are three

memory bandwidth factors that impact core allocation and limit scalability. This

section discusses these three factors in detail. In this dissertation, a core allocation is

described using a vector {a0, a1, a2, · · · , ai, · · · , an}, where ai represents the number

of cores allocated on node i.

3.2.1 Factor 1: Local Memory Bandwidth Limitation

Local memory bandwidth usage refers to the memory bandwidth that is consumed

by application threads when they access the DRAM modules that are directly con-

nected to the cores on which these threads are executing. Depending on the memory

bandwidth demand, the local memory bandwidth can limit core allocation.
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Figure 3.3: Benchmark mg.D is limited by local memory bandwidth on the Intel
NUMA machine. The number on each node represents the optimal number of cores
should be allocated on that node. A “cross” indicates a saturated memory connection.

For example, the core allocation for NPB benchmark mg.D on the Intel NUMA

machine is limited by local memory bandwidth when it is in the phase of executing

function resid. The optimal core allocation for mg.D and the saturated memory con-

nections are illustrated in Figure 3.3. As the figure shows, the optimal core allocation

for mg.D is {7, 7, 7, 7}, i.e., seven cores per node. Mg.D has only local memory ac-

cesses when executing the function resid. Because the local DRAM modules cannot

provide enough bandwidth, only seven cores (out of eight) have to be allocated to

achieve the best performance. The optimal core allocation of {7, 7, 7, 7} performs

10% faster than the use-all-cores allocation (using all eight cores on all four nodes).

3.2.2 Factor 2: Inter-node Memory Bandwidth Limitation

Inter-node memory bandwidth usage refers to the usage that is consumed by ap-

plication threads when they communicate with threads running on other nodes to

collaborate on a task. The inter-node connections usually have limited maximum

memory bandwidth. If the data demand for inter-node communication is high, then

the inter-node connections may not be able to provide enough bandwidth to satisfy

the need of all cores.

Fore example, the NPB benchmark mg.D requires many inter-node communi-

cations when it is executing the function rprj3. In this function, mg.D’s threads

communicate in a ring fashion as illustrated in Figure 3.4, i.e., the threads on node0

send data to node1, the threads on node1 send data to node2, etc.

Recall that in Section 3.1, we discussed that different inter-node connections have
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Figure 3.4: NPB benchmark mg.D is limited by inter-node memory bandwidth on
the AMD NUMA machine when executing the function rprj3. The number on each
node represents the optimal number of cores that should be allocated on each node.
A “cross” indicates a saturated memory connection. Note that the amount of local
data usage is limited. However, for clearer illustration, local data accesses and unused
inter-node connections are omitted.

different maximum bandwidths. Because of this difference, nodes connected to dif-

ferent inter-node connections have different core allocations. More specifically, node0,

node2, node4, and node6 can only send data through high-bandwidth inter-node links

which are within processors. Therefore, all cores on these nodes can be allocated.

Because the connection between node1 and node2 is cross-processor and has limited

bandwidth, only five cores can be allocated on node1. Node3 also sends data using

cross-processor inter-node connection to node4. However, because the connection be-

tween node3 and node4 has high bit-width, this connection also has high bandwidth

as shown in Figure 3.1. This high bandwidth allows all six cores of node3 to be used.

For node5 and node7, not only do they send data cross-processor, but they also use

multiple hops of connections to send data. Consequently, only fours cores on each

of node5 and node7 should be allocated. In summary, the optimal core allocation for

this case is {6, 5, 6, 6, 6, 4, 6, 4} on the AMD platform, which is 9% faster than use-

all-cores allocations. It also worth noting that, because the inter-node connections

on the Intel platform have higher bandwidth, the same benchmark performs the best

with use-all-cores allocation on the Intel platform.
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3.2.3 Factor 3: Interference of Local and Inter-node Memory

Accesses

Not only do local memory accesses and inter-node memory accesses impact core al-

locations independently, they may also interfere with each other. This interference

can also impact core allocations. Because this interference varies with the locations

of data, there are two interference cases that have to be considered.

Case 1: Fully Shared Data

For some multi-threaded applications, the data are shared by all threads, and all of

the data are held in the DRAM modules of one single node. Without loss of generality,

let the node with shared-data be nodei. Because all of the data are located on nodei’s

DRAM modules, these DRAM modules have to perform two tasks: they must send

data to the cores on nodei to satisfy these cores’ computation needs, and they must

also send data to the cores on the other nodes to satisfy their needs. However, if the

data demand is high, the maximum output bandwidth of nodei’s DRAM may not be

large enough to satisfy the needs of all cores. As a result, some of the cores cannot

be allocated. In this case, because all data are located on nodei, it is better to satisfy

the needs of nodei’s cores first. After the needs of nodei’s cores are met, we can use

the remaining bandwidth to satisfy the needs of some cores on the other nodes.

Node1:8

Node0:8 Node3:0

Node2:2

DRAM

DRAM

DRAM

DRAM

Figure 3.5: Benchmark streamcluster is limited by inter-node memory bandwidth on
the Intel NUMA machine. The number on each node represents the optimal number of
cores that should be allocated on that node. A “cross” indicates a saturated memory
connection.

For example, the PARSEC benchmark streamclsuter is an application with this

all-data-shared behavior. Figure 3.5 gives the optimal core allocation for stream-
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cluster and the saturated memory connections when it executes on the Intel NUMA

machine. As the figure shows, the maximum output memory bandwidth of node0,

which contains shared data, cannot satisfy the needs of all cores on all nodes. After

meeting the needs of all eight cores on node0, the remaining memory bandwidth can

only support the execution of eight cores on node1 and two cores on node2. There-

fore, the optimal core allocation for streamcluster on the Intel NUMA platform is

{8, 8, 2, 0}, which is 79% faster than the use-all-cores allocation.

Case 2: Partially Shared Data

There are also applications where the majority of their data are local to their threads,

while only a small portion of the data is shared by all threads. That is, most data are

distributed among all nodes, and these data are only accessed by the threads running

on these data’s local (home) nodes, while some data are held in one node for sharing.

Without loss of generality, let the node with shared-data be nodei. Because nodei’s

DRAM modules have both local data and shared data, these DRAM modules have

to satisfy two data needs: they must send data to the cores on nodei to satisfy these

cores’ needs for the local data, and they must also send data to the cores on the

other nodes to satisfy their needs for the shared data. However, if the data demand

is high, the maximum output bandwidth of nodei’s DRAM may not be large enough

to satisfy both needs. As a result, some of the cores cannot be allocated. Unlike case

1, in this case (case 2), because most data are located on the nodes other than nodei,

it is better to satisfy the needs of the other nodes’ cores first. After the needs of the

other node’s cores are met, we can use the remaining bandwidth to satisfy the needs

of some cores on nodei.

For example, the BLAS routine dgemm implemented by AMD Core Math Library

(ACML) is an application with this partial-data-sharing behavior [7]. Figure 3.6

gives the optimal core allocation for dgemm and the saturated memory connections

on the AMD NUMA machine. As the figure shows, the threads of dgemm access local

memory, as well as the shared memory on node0. Because of the high data demand,

the DRAM connection of node0 cannot provide enough bandwidth for both local-data

and shared-data requests. To reduce this contention, either some cores on node0 or

some cores on the other nodes should not be allocated. Because most data are local,

every thread has more local-data requests than shared-data requests. Consequently,

reducing the core allocations on the other nodes (nodes other than node0) does not

significantly reduce shared-data requests, unless significant numbers of cores on these
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Figure 3.6: BLAS routine dgemm is limited by inter-node memory bandwidth on the
AMD NUMA machine. The number on each node represents the optimal number of
cores that should be allocated on that node. A “cross” indicates a saturated memory
connection.

nodes are not used, which slows down the processing of the local data on these nodes

and hurts performance. On the other hand, not-allocating a few cores on node0 can

significantly reduce the local requests on node0, and thus significantly mitigate the

local/shared-data contention, without hurting performance. That is, the best core

allocations for partial-data-shared applications are to limit the core allocation on the

shared data node. For this specific application of dgemm, the optimal core allocation

is {3, 6, 6, 6, 6, 6, 6, 6}, which is 12% faster than use-all-cores allocation.

3.3 Summary of Insights

Based on the hardware configurations in Section 3.1 and the examples in Section 3.2,

the following insights can be summarized:

1. Both local DRAM connections and inter-node connections can affect optimal

core allocations. Therefore, both local bandwidth usage and inter-node band-

width usage have to be predicted and considered for optimal core allocation

prediction.

2. Local and inter-node memory accesses can interfere with each other. This inter-

ference limits memory bandwidth usage and impacts core allocations. There-

fore, the local and inter-node contention must be accurately estimated for band-

width usage and optimal core allocation prediction.
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3. Application communication patterns and memory behaviors also greatly affect

memory bandwidth usage and optimal core allocations. As a result, the predic-

tions for bandwidth usages and optimal core allocations should be made based

on real application behavior observed at run-time.

4. Hardware configuration is another determining factor of memory bandwidth

usages and optimal core allocations. Consequently, the predictions for band-

width usage and core allocations should be made based on the actual hardware

configuration.

5. The inter-node connections on a NUMA machine can be heterogeneous, and

the connection topology may be non-uniform. This heterogeneity and non-

uniformity dictates that different nodes may have different numbers of cores

allocated in an optimal core allocation. Hence, each inter-node connection and

each node must be treated differently when predicting optimal core allocations.

Armed with the above insights, this research focused on the prediction of local

and inter-node memory bandwidth, the run-time prediction of optimal core allocation

for each node, and the run-time adaption to optimal core allocations.
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Chapter 4

Predicting the Local Memory

Bandwidth Usages

4.1 Introduction

As discussed in Chapter 3, the local memory bandwidth alone can limit the scala-

bility of multi-threaded applications. Therefore, for applications that are limited by

local memory bandwidth, the prediction of their optimal core allocations requires the

prediction of their local memory bandwidth usages.
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Figure 4.1: Memory bandwidth usage of facesim on one node of an AMD Opteron
6174 processor with linear prediction model and a regression-based model.

Unfortunately, the memory bandwidth models used in previous research have low

accuracy. They rely on simple mathematical models or regression analysis, and only

consider samples of bandwidth usage for prediction. DRAM contention and DRAM

concurrency, as well as other important factors (e.g., program memory behaviors) are
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overlooked. Figure 4.1 gives the bandwidth usage of a PARSEC benchmark facesim

running on an AMD 6-core node [15], as well as the bandwidth predictions of two

popular models. One is a linear model that assumes memory bandwidth usages

increase linearly with the number of cores [86, 136, 144]. The other is based on

multiple logarithmic and linear regressions [81]. As the figure shows, both models

have low accuracy. The linear model has an average accuracy of 14% while the

regression-based model has an average accuracy of 44% in this example.

To the best of our knowledge, no existing model can provide highly accurate

local memory bandwidth usage predictions on real machines, because of four major

challenges,

• The first challenge is to accurately predict the contention for DRAM resources

from co-running threads. The severity of DRAM contention varies with pro-

gram behavior in a complicated manner. However, because DRAM contention

significantly impacts bandwidth usage, it must be correctly predicted.

• The second challenge is to accurately predict the DRAM concurrency. DRAM

requests accessing different banks can be served simultaneously and overlap with

each other. This overlapping further complicates the prediction of the latency

of DRAM requests.

• The third challenge is to consider the large variety of hardware and software

factors that affect bandwidth usage besides contention and concurrency. These

factors have to be clearly identified and carefully considered.

• The last challenge is to develop a model that can be computed in a short amount

of time. Some uses (e.g., resource contention management) require a fast model

that can be applied during execution to handle dynamic workloads without

incurring too much overhead.

To address these challenges, this chapter presents DraMon, a highly accurate band-

width model that considers a wide range of factors. We demonstrate that predicting

bandwidth usages requires predicting DRAM contention (e.g., row buffer hit ratio)

and DRAM concurrency. We experimentally show that contention and concurrency

can be predicted with high accuracy and with low time overhead using probability

theory. We developed two versions of DraMon: DraMon-T, an offline memory-trace

based model, and DraMon-R, a run-time model which uses performance monitoring

units (PMUs) as inputs.
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Figure 4.2: Memory/DRAM systems.

The rest of the chapter is organized as follows. Section 4.2 discusses DRAM sys-

tems. Section 4.3 provides a high level overview of DraMon. Section 4.4 explains

DraMon in detail. Section 4.5 describes how to obtain input parameters. Section 4.6

evaluates DraMon on a real machine. Section 4.7 discusses other related issues. Sec-

tion 4.8 summarizes this chapter.

4.2 Memory System Background

Before introducing DraMon, this section describes the memory systems on contem-

porary multi-core platforms.

4.2.1 DRAM Architecture

Figure 4.2 depicts a generic memory system and DRAM structure. The on-chip

memory controller (MC) is connected to several channels. A DRAM request can

access one channel at a time, or it can access all channels at once, depending on

the configurations of the MC. A channel is composed of several ranks. A rank can

be roughly viewed as a memory module. Each rank has several memory chips. A

memory chip is composed of several banks. Each bank is essentially a cell array

where a cell is used to store 0 or 1. The banks with the same index on all chips form
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a conceptual bank of a rank. For example in Figure 4.2, the BANK0s of all chips of

RANK1 form its conceptual BANK0. When BANK0 is accessed, the BANK0s of

every chip on RANK1 are activated simultaneously.

4.2.2 DRAM Request Types

Each bank (both conceptual and physical) has a row buffer. When accessing a piece

of data, the row containing this data is read into the row buffer. Then the target data

is extracted and sent to MC. Figure 4.3 shows the operations of a DRAM read [72].

First, the connections between the row buffer and the cell array are precharged (PRE).

This precharge is crucial for stable reading, and it requires tRP time. Next, the MC

issues a row access (RA) command and reads the row into the row buffer in tRCD

time. After the row is ready, MC sends the column address (CA) and locates the

target data in tCAS time. Finally, the data is extracted and sent to MC using

tBurst time.

Depending on the status of the target bank, a DRAM request falls into one of

three categories [6]:

• Hit: The row buffer has the desired row. Only column access and data trans-

portation is required. Therefore, the latency of a hit is tCAS + tBurst.

• Miss: The bank is precharged, but the row buffer is empty. The desired row

has to be read into the row buffer. Therefore, the latency of a miss is tRCD +

tCAS + tBurst .

• Conflict: The bank is not yet precharged for this request. A precharge is

required. Therefore, the latency of a conflict is tRP + tRCD+ tCAS+ tBurst.

Note that although a conflict can be viewed as a miss, its service time is very different.

This difference is important for accurately predicting average DRAM request latency

and bandwidth usage.

4.2.3 DRAM Contention

If we compare a row buffer with a cache line, we can easily see similarities. They

are both used to temporarily store a copy of data. They are both rewritten to store

active data. And they are both shared by, and contended for, by co-running threads.

Consequently, similar to predicting cache contention, which is to predict the hit/miss
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Figure 4.3: A read cycle.

ratios, predicting DRAM contention is essentially predicting the ratios (percentages)

of the three types of DRAM requests: Ratiohit, Ratiomiss and Ratioconf .

4.2.4 DRAM Concurrency

The latencies discussed in Section 4.2.2 are single-request latencies. In practice, multi-

ple DRAM requests can be served simultaneously, which greatly reduces their average

latency. Figure 4.4 shows four consecutive hits, assuming both tCAS and tBurst are

4 cycles [72]. As the figure shows, the column open operation (tCAS) can overlap

with data transportation (tBurst). Therefore, it takes 21 cycles to serve all four

requests. Thus, the average latency of these hits is 21
4

= 5.25 cycles, while the full

single-request hit latency is tCAS + tBurst = 8 cycles.

Similarly, the operations of miss and conflict can also overlap with other DRAM

requests. Because this concurrency can significantly reduce average DRAM latency,

it must be carefully considered in a bandwidth model.

4.2.5 Memory Controller Optimizations

Because of the large differences between the latencies of hit, miss and conflict, memory

controllers employ several optimization techniques. Accurately predicting memory

bandwidth requires considering these optimizations.

The first common optimization is a closed or adaptive page policy, where an

opened row buffer is automatically closed and precharged if it is idle for some time [72].

Later, a request to the same bank can then proceed to open a new row without having

to wait for precharging. Four Bank Activation Window (FAW) also increases the

chance of automatic row buffer closing [72]. Because of power constraints, only four

banks can be activated in a rank within a certain time window. This relatively long

time window renders opened banks idle and more likely to be automatically closed.
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Figure 4.4: Four concurrent DRAM hits.

The second common optimization is request reordering [72]. If a request in the

MC queue hits an open row, the MC may issue it before the requests that are queued

earlier, to take advantage of the low latency of DRAM hits.

4.3 Overview of DraMon Model

As stated previously, accurately predicting bandwidth usage requires considering

DRAM contention and DRAM concurrency. This section theoretically connects

DRAM contention and DRAM concurrency to bandwidth usage, and serves as a

road map for the following sections.

4.3.1 Predicting Bandwidth from DRAM Contention and

Concurrency

Memory bandwidth (BW ) usage is basically the product of the number of channels,

chnl cnt, available, the memory request rate, Ratemem, per channel (the number of

requests finished per second), and the size of each request, Sizemem:

BW = chnl cnt×Ratemem × Sizemem. (4.1)

Memory request rate is determined by two factors: (1) Rateissue, the maximum

issue rate of DRAM requests limited by program behavior, and (2) Ratedram, the

DRAM service rate limited by DRAM contention. The actual memory request rate

is limited by the smaller of the two:

Ratemem = min(Rateissue, Ratedram). (4.2)

Therefore, predicting memory request rate is reduced to the problem of predicting

issue rate and DRAM service rate.
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Predicting DRAM service rate is equivalent to predicting the reciprocal of the

average DRAM request latency Latdram.1 DRAM latency can be further divided into

two components, the average read request latency (Latr) and the average write request

latency (Latw). As an optimization, modern MCs delay write requests and group

them together for issuing [27, 72]. Because reads and writes are processed separately

by MCs, their average latencies can be computed separately. Their weighted average

is then the average DRAM latency. Additionally, switching from writes to reads

requires stalling the data bus, which adds an extra overhead (Owtr). Similarly, when

multiple ranks are accessed, rank-to-rank switching also requires data bus stalls and

adds overhead (Ortr). Assume the read request ratio is Ratior and the write request

ratio is Ratiow. Summarizing the above, we have:

Ratedram =
1

Latdram
,

Latdram = Ratior × Latr +Ratiow × Latw +Owtr +Ortr.

(4.3)

Similar to predicting the average cache latency, the average read/write latency

can be computed using the following equations [62]:

Latr =Ratiohit × Latr,hit +Ratiomiss × Latr,miss+

Ratioconf × Latr,conf
Latw =Ratiohit × Latw,hit +Ratiomiss × Latw,miss+

Ratioconf × Latw,conf .

(4.4)

Note that the hit/miss/conflict (HMC) ratios here are the average ratios of both

reads and writes. The actual ratios of reads and writes are different. However, because

their latencies are close (differ by one cycle), using average HMC ratios for both reads

and writes is a an acceptable approximation.

1The DRAM latency here is not the single-request latency. It is rather the average latency of
multiple overlapped requests, which is the time between they are issued from the MC and the data
returned to the MC. It is only used to predict memory bandwidth.
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Combining the above equations gives the following equation,

BW =chnl cnt×min(Rateissue,
1

Ratior × Latr +Ratiow × Latw + Owtr + Ortr

)

× Sizemem,

Latx =
∑
ty

Ratioty × Latx,ty, where x ∈ {r, w}, ty ∈ {hit,miss, conf}.

(4.5)

This equation connects bandwidth usage to DRAM contention (HMC ratios, Ratioty)

and DRAM concurrency (HMC latencies, Latr/w,ty). Predicting bandwidth also re-

quires predicting the maximum issue rate Rateissue, the write-to-read switching over-

head Owtr and the rank-to-rank switching overhead Ortr. Four variables (chn cnl,

Sizemem, Ratior, Ratiow) are acquired from memory traces or PMUs.

4.3.2 Model Algorithm

Algorithm 1 Algorithm of DraMon

1: collect hardware related parameters (Sect. 4.5.2)
2: for all program p do
3: collect software related parameters (Sect. 4.5.3)
4: for all core/thread count n do
5: predict maximum issue rate Rateissue (Sect. 4.4.1)
6: predict HMC ratios Ratioty (Sect. 4.4.2)
7: predict HMC latencies Latr/w,ty (Sect. 4.4.3)
8: predict write-to-read overhead Owtr (Sect. 4.4.4)
9: predict rank-to-rank overhead Ortr (Sect. 4.4.5)

10: predict bandwidth usage BW (Eq. (4.5))
11: end for
12: end for

The steps of using DraMon are explained in Algorithm 1, which requires several

parameters as inputs, including parameters that describe a platform’s hardware con-

figuration and the parameters that describe a program’s memory behavior. With

these parameters, DraMon predicts the memory bandwidth for a multi-threaded pro-

gram running with a certain number of cores/threads using equations (4.5).
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4.4 The Bandwidth Model in Detail

This section discusses the prediction of the unknown components of equation (4.5).

Note that our prediction equations require several input parameters. Obtaining these

parameters is discussed in Section 4.5.

4.4.1 Predicting Issue Rate

For a multi-threaded program, if the issue rate of a single core/thread is Rateissue single

(input parameter obtained in Section 4.5), then its maximum possible issue rate when

running with n cores/threads is

Rateissue = Rateissue single × n. (4.6)

4.4.2 Predicting HMC ratios

Here we describe the prediction of the hit/miss/conflict (HMC) ratios of one thread

of a multi-threaded program. The same process can be applied to predict the HMC

ratios of others threads. The overall HMC ratios of the program is then the average

of all threads’ HMC ratios.

We first provide an example with two threads to illustrate the basic idea of our

DRAM contention prediction. Then we expand this idea to handle any number of

threads and describe the equations for predicting HMC ratios. For simplicity, we

focus on predicting hit ratio first.

A Two-thread Example

Consider a case where two threads T0 and T1 are executing simultaneously. First we

predict the T0’s hit ratio. Naturally, predicting the hit ratio requires identifying the

hits in T0’s requests and computing their percentage. However, this approach requires

processing millions of requests, which is time consuming. Here we use a key insight

into the relationship between hit ratio and hit probability.

Insight 1: The hit ratio of T0 is equivalent to the probability that one of its requests

is a hit. Conversely, predicting the hit ratio of T0 is equivalent to predicting the

probability that an arbitrary request of T0 is a hit.

This insight allows us to focus on one single request. It also permits predicting

the hit ratio using probability theory which greatly reduces prediction time. Without
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(c) Case 2: Request R0,k hits the row opened by R0,k−2.

Figure 4.5: Predicting the hit ratio of thread T0 when it is running with another
thread T1.

loss of generality, here we predict the hit probability of the k’th request of T0, denoted

by R0,k.

Whether R0,k is a hit, depends on its preceding requests. Figure 4.5a gives a

sequence of requests when T0 runs alone. The box under each request gives its bank

and row addresses. In this figure, R0,k−2 is the last request before R0,k that accesses

the same bank (Bank0) used by R0,k. Depending on R0,k−2’s row address, R0,k can be

a hit, miss or conflict. If R0,k−2 also accesses Row27, R0,k is a hit. If R0,k−2 accesses

a row other than Row27, R0,k is a conflict. If the row opened by R0,k−2 is closed by

the MC, then R0,k is a miss.

Similarly, when there is co-running thread T1, the type (hit/miss/conflict) of R0,k

depends on its preceding requests from both threads. However, there are billions of

requests preceding R0,k, and it is impossible to consider all of them. Here, we gain

our second key insight from Figure 4.5.

Insight 2: Only requests issued after R0,k−2 (including R0,k−2) have to be considered

when predicting the type of R0,k, because any change made to Bank0’s row buffer by

requests before R0,k−2 is reset by R0,k−2.

This insight greatly reduces the number of preceding requests that require consid-

eration. Figure 4.5b and 4.5c show the requests from both T0 and T1. In these two
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figures, only one of T1’s requests, R1,k−1, is issued between R0,k−2 and R0,k, and its

destination affects the type of R0,k.

There are two cases where R0,k is a hit. In case 1 (Figure 4.5b), R1,k−1 accesses

the same row (Row27) used by R0,k. Therefore, R0,k hits the row opened by R1,k−1.

In case 2 (Figure 4.5c), R1,k−1 does not access the same row (Row27) used by R0,k.

However, R0,k−2 accesses Row27. Therefore, R0,k hits the row opened by R0,k−2. If

the probabilities of case 1 and case 2 are P1 and P2, then the probability that R0,k is

a hit is P1 + P2, which is also the hit ratio of T0.

In summary, the two key insights above allow us to focus on one request and a

limited number of its preceding requests. By enumerating the destinations of the

preceding requests, we list all the cases which can produce a hit. Then we predict the

probabilities of these cases, the sum of which is then the hit ratio. Next we generalize

this example to any number of threads, and predict the case probabilities.

Generalizing to n threads

Consider the case where n threads are running simultaneously. Here we predict the

hit ratio of the i’th thread Ti. According to Insight 1, predicting Ti’s hit ratio is

equivalent to predicting the probability that its k’th request Ri,k is a hit.

Assume the nearest preceding request from Ti that accesses the same bank used by

Ri,k is Ri,k−∆. Insight 2 can be generalized as: only requests after Ri,k−∆ (including

Ri,k−∆) should be considered when determining the type of Ri,k. Moreover, we define

the Bank Reuse Distance (BRD) of Ri,k as ∆. In Figure 4.5, R0,k’s BRD is 2

because the nearest same-bank accessing request from T0 is R0,k−2.

Figure 4.6a gives the sequence of requests issued between Ri,k−∆ and Ri,k by all

n threads. Each row between Ri,k−∆ and Ri,k represents the requests issued from

one thread. Threads are depicted in independent rows because they execute in paral-

lel. The type (hit/miss/conflict) of Ri,k depends on preceding requests’ destinations,

which fall into four categories:

• SmRw, the same row used by Ri,k.

• SmBk, a different row on the bank used by Ri,k.

• SmCh, a different bank of the channel used by Ri,k.

• DfCh, a different channel than Ri,k’s channel.

44



→Ri,k→ 

Reqeust of T1: →R1,k-Δ →R1,k-Δ+1→ ...→ R1,K-1→

Dest: SmRw or SmBk or SmCh or DfCh

Dest: 
SmRw or
SmBk 

→Ri,k-Δ→

Reqeust of Ti: →Ri,k-Δ-1 →Ri,k-Δ+1→ ...→ Ri,K-1→

Dest: SmCh or DfCh

Reqeust of Tj: →Rj,k-Δ →Rj,k-Δ+1→ ...→ Rj,K-1→

Dest: SmRw

Reqeust of Tn: →Rn,k-Δ →Rn,k-Δ+1→ ...→ Rn,K-1→

Dest: SmRw or SmBk or SmCh or DfCh

hit

(a) Case 1: Request Ri,k is a hit when Tj ’s requests access the same
row used by Ri,k.

→Ri,k→ 

Reqeust of T1: →R1,k-Δ, →R1,k-Δ+1→ ...→ R1,K-1→

Dest: SmBk or SmCh or DfCh

Dest: 
SmRw

→Ri,k-Δ→

Reqeust of Ti: →Ri,k-Δ-1, →Ri,k-Δ+1→ ...→ Ri,K-1→

Dest: SmCh or DfCh

Reqeust of Tj: →Rj,k-Δ, →Rj,k-Δ+1→ ...→ Rj,K-1→

Dest: SmBk or SmCh or DfCh

Reqeust of Tn: →Rn,k-Δ, →Rn,k-Δ+1→ ...→ Rn,K-1→

Dest: SmBk or SmCh or DfCh

hit

(b) Case 2: Request Ri,k is a hit when Ri,k−∆ accesses the same row
used by Ri,k.

Figure 4.6: Predicting the hit ratio of thread Ti when it is running with n−1 threads.

To reduce computation time, we assume that all requests from the same thread

have the same destination, i.e., the same row. Because of data locality, this assump-

tion holds for most programs (more than 85% consecutive requests of our benchmarks

hit the same row). In Figure 4.6, the destination of one thread is marked above its

requests.

Similar to the example in Figure 4.5, there are two cases where Ri,k is a hit. In

case 1 (Figure 4.6a), at least one thread Tj has a destination of SmRw, and Ri,k hits

the row opened by Tj’s requests. In case 2 (Figure 4.6b) none of the middle threads

accessing SmRw. However, Ri,k−∆ accesses this row, and Ri,k hits the row opened

by Ri,k−∆.

The hit probability of Ri,k, which is also the hit ratio of Ti, is the sum of the

probabilities of these two cases. Additionally, the total number of preceding requests

have to be determined. Too many preceding requests may cause the MC to close the

bank accessed by Ri,k (recall the adaptive page policy). Next we discuss predicting

these values.
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Predicting the Number of Preceding Requests

From BRD’s definition, there are ∆ requests of Ti that should be considered when

predicting the type of Ri,k.

For a co-running thread Tj, the number of its requests to be considered depends

on its issue rate. Assume the single thread issue rate of Ti is Rateissue,i, and the single

thread issue rate of Tj is Rateissue,j. During the time when Ti issued ∆ requests, the

number of requests issued by Tj is

ReqCnt∆,j = ∆× Rateissue,j
Rateissue,i

. (4.7)

Predicting Case Probabilities and the Hit Ratio

Hit ratio prediction requires the following input parameters:

• the hit ratio of Ti when there are no co-running threads, Ratiohit,single,

• the probabilities, PSmRw, PSmBk, PSmCh and PDfCh, that a co-running thread

access SmRw, SmBk, SmCh and DfCh respectively,

• the number of requests after which an opened row-buffer is automatically closed,

Dac, and,

• the total number of threads, n.

Obtaining these parameters is discussed in Section 4.5. With these inputs, DraMon

predicts the probabilities of the two cases in Figure 4.6 and the hit ratio of Ti.

Case 1: At least one co-running thread has a destination of SmRw (Figure 4.6a).

This case can be further broken down into two sub-cases.

Sub-case A: No co-running thread has a destination of SmBk. The probability of

sub-case A is

PcaseA = P (∃SmRw∧ 6 ∃SmBk)

= P (6 ∃SmBk)− P (6 ∃SmRW∧ 6 ∃SmBk)

= (1− PSmBk)n−1 − (PSmCh + PDfCh)n−1.

(4.8)

Clearly, sub-case A is a hit:

Ratiohit,∆(caseA) = PcaseA. (4.9)
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Sub-case B: At least one co-running thread has a destination of SmBk. The

probability of sub-case B is

PcaseB = Pcase1 − PcaseA = P (∃SmRw)− P (caseA)

= (1− P ( 6 ∃SmRw))− PcaseA

= (1− (1− PSmRw)n−1)− PcaseA.

(4.10)

Sub-case B can be a hit or a conflict depending on whether the last access before

Ri,k is a SmRW or SmBk. Because the orders of the requests are random, the type

of the last request follows uniform distribution. Therefore, approximately half of the

permutations are hits:

Ratiohit,∆(caseB) =
1

2
PcaseB. (4.11)

Case 2: No co-running thread has a destination of SmRw. However, if Ri,k−∆ is

SmRw, Ri,k may still be a hit (Figure 4.6b). Ri,k−∆ is SmRw means Ri,k is hit when

there are no co-running threads. Therefore, the probability that Ri,k−∆ is SmRw is

actually Ti’s single thread hit ratio, Ratiohit,single.

Case 2 can be broken down into several sub-cases depending on whether a co-

running thread accesses the same channel of Ri,k. We represent each sub-case as a

vector. For example, the l’th sub-case is El,∆ = {el,1, ..., el,j, ..., el,n}. An element el,j

represents whether thread Tj accesses Ri,k’s channel: el,j = 1 means yes, and el,j = 0

means no. Clearly, there are 2n sub-cases (1 ≤ l ≤ 2n). In sub-case El,∆, the total

number of requests from co-running threads that access Ri,k’s channel is

ml,∆ =
∑

j
ReqCnt∆,j × el,j. (4.12)

The probability of sub-case El,∆ is then

Pl,∆ =Ratiohit,single ×
∏

j
(el,j × (PSmBk+

PSmCh) + (1− el,j)× PDfCh).
(4.13)

If there is no SmBk request, then El,∆ can be a hit if the row buffer is not

automatically closed. If there are SmBk requests, El,∆ can still be a hit if the row

buffer is not auto-closed and the MC reorders the requests. In short, El,∆ is a hit if
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the row buffer is not auto-closed:

Ratiohit,l,∆(case2) =

Pl,∆, if ml,∆ < Dac,

0, otherwise.
(4.14)

The hit ratio is then the sum of all sub-cases:

Ratiohit,∆ = Ratiohit,∆(caseA)+

Ratiohit,∆(caseB) +
∑

l
Ratiohit,l,∆(case2).

(4.15)

Note that different requests have different BRDs. In other words, for an arbitrary

request Ri,k, it may have different BRDs with different probabilities. Assume the

input parameter, the probability of BRD ∆ is P∆. Then the hit ratio of thread Ti is

the sum of the hit ratios of all its BRDs:

Ratiohit =
∑

∆

P∆ ×Ratiohit,∆. (4.16)

Predicting Miss/Conflict Ratios

The miss and conflict ratios can be predicted similarly.

4.4.3 Predicting Request Latencies

With HMC ratios determined, this section discusses the prediction of HMC latencies.

From Figure 4.4, we gain a third key insight into DRAM concurrency and HMC

latencies.

Insight 3: When there is large number of DRAM requests served concurrently,

the average latencies of hit/miss/conflict requests are approximately their maximum

latencies minus the time that they overlap with other requests’ data transfers.

Assume the maximum latencies of hit/miss/conflict areMaxty, ty ∈ {hit,miss, conflict},
Insight 3 is essentially

Latty = Maxty − overlapped data transfers. (4.17)

The maximum latencies are listed in Section 4.2.2. Therefore, we only have to

determine the overlapped data transers.
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Hit Latency (Read)

For a hit, the column access time (tCAS in Section 4.2.2) can overlap with any

request’s data transfer. However, its own data transfer (tBurst) requires exclusive

access to the data bus. Consequently, its average latency is

Latr,hit = Maxr,hit − overlapped data transfers

= (tCAS + tBurst)− tCAS = tBurst.
(4.18)

Miss Latency (Read)

Because a miss opens a new bank, and because of the FAW limit and adaptive page

policy, its overlapped data transfer time varies with the type of overlapped requests.

That is, we can rewrite equation (4.17) as

Latr,miss = Maxr,miss −
∑
ty

overlap trans timety. (4.19)

Because the overlapped data transfer time is the number of overlapped requests

multiplied by the data transportation time (tBurst), we can further rewrite the equa-

tion to

Latr,miss = Maxr,miss −
∑
ty

overlap reqty × tBurst. (4.20)

Here, the overlap reqty represents the number of type ty requests that overlap with

one miss request.

Now the problem of determining miss latency is reduced to the problem of deter-

mining the number of overlapped requests of each type. First, consider the case of

hits overlapping with a miss. Within a sequence of DRAM requests, Ratiohit of them

are hits and Ratiomiss are misses. Therefore, for one miss, there are at most Ratiohit
Ratiomiss

hits. Additionally, FAW limits the maximum number of banks (MaxBk) that can

be simultaneously accessed. Moreover, because concurrent hits are most likely from

different threads and do not access the same bank, the total number of concurrent hits

is also limited by MaxBk. Assume that the input parameter rk cnt is the number

of ranks being accessed. Combining all these arguments, we have

MaxBk = rk cnt× 4,

overlap reqhit = min(MaxBk − 1,
Ratiohit
Ratiomiss

).
(4.21)
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Unfortunately, the number of misses that overlap with another miss cannot be

determined using the same approach because there is only one Ratiomiss. Here,

we consider a sequence of n requests from n threads. In this sequence, there are

n × Ratiomiss misses. That is, one miss may overlap with n × Ratiomiss − 1 misses.

Additionally, FAW limit and MaxBk also apply to concurrent miss.

Furthermore, conflicts also require opening new rows, whereas the FAW and adap-

tive page policy also apply. Therefore, we compute the number of misses and conflicts

that overlap with a miss together,

overlap reqmiss+conf = min(MaxBk − 1,

n× (Ratiomiss +Ratioconf )− 1).
(4.22)

Combining equations (4.20) through (4.22), we have

Latr,miss = (tRCD + tCAS + tBurst)−

(min(MaxBk − 1,
Ratiohit
Ratiomiss

) +min(MaxBk − 1,

n× (Ratiomiss +Ratioconf )− 1))× tBurst.

(4.23)

Conflict Latency (Read)

We predict the average latency of conflicts using the same approach as the miss

latency:

Latr,conf = (tRP + tRCD + tCAS + tBurst)−

(min(MaxBk − 1,
Ratiohit
Ratioconf

) +min(MaxBk − 1,

n× (Ratiomiss +Ratioconf )− 1))× tBurst.

(4.24)

Write latencies

Write HMC latencies can be predicted similarly using the above equations with two

changes. First, one extra DRAM cycle besides tBurst is required for data trans-

fer [72]. Second, write recovery time (tWR) should be used as column access time

instead of tCAS.
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4.4.4 Write-to-Read Switching Overhead

When switching from write-to-read, the data bus has to be stalled for tWTR time.

Assume the ratio of requests that require a write-to-read switch is Ratiowtr (parameter

obtained in Section 4.5). The write-to-read overhead is

Owtr = Ratiowtr × tWTR. (4.25)

4.4.5 Rank-to-Rank Switching Overhead

When switching between ranks, the data bus has to be stalled for tRTRS time.

Assume the ratio of requests that require a rank-to-rank switch is Ratiortr (parameter

obtained in Section 4.5). The rank-to-rank overhead is

Ortr = Ratiortr × tRTRs. (4.26)

At this point we have predicted all unknown variables in equation (4.5), and

DraMon model is fully presented.

4.5 Obtaining Parameters

As discussed in Section 4.4, DraMon requires input parameters. This section discusses

the collection of these parameters. In general, hardware parameters can be collected

from data sheets and PCI configurations registers. Software parameters can be col-

lected from memory traces and PMUs. The values of certain software parameters can

be also be roughly estimated based on DRAM configuration.

4.5.1 Experimental Platform

To demonstrate parameter collection, we use a machine with an AMD Opteron 6174

Processor. This processor has two dies. Each die has six cores which share one 6MB

L3 cache and one MC. Each core has 128KB split L1 Cache and 256KB L2 cache.

Each MC is connected to two channels of total 12GB memory which is composed of six

Samsung M393B5273CH0YH9 DDR3-1333 memory modules. Because this research

focuses on predicting the bandwidth of one MC, here we use one-die/six-core of this

processor. The machine is running Linux 2.6.32.
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Parameters Description Value
Sizemem size of each DRAM request 64 Bytes
tRCD row activation time 13.5 ns
tCAS column access time 13.5 ns
tRP precharge time 13.5 ns
tBurst data transfer time 6 ns
tWR write recovery time 15 ns
tRTRS rank switching time 4.5 ns
tWTR write-to-read switching time 7.5 ns
chnl cnt number of channels 2
bk cnt number of banks per rank 8
Dac row buffer auto-close distance 4 requests

Table 4.1: Hardware Parameters

4.5.2 Hardware Parameters

Hardware parameters can be collected from data sheets and PCI configurations reg-

isters [6, 128]. Table 4.1 gives the description of the hardware parameters, as well as

their values of the AMD Opteron 6174 processor.

4.5.3 Software Parameters

Table 4.2 gives a list of software parameters. Here we describe two approaches to

collect their values. One offline approach that uses both memory-traces and PMU

readings. The other approach does not require traces. Instead, it uses PMUs, and it

can be applied during execution.

Offline Approach

To acquired the parameters of ∆, P∆, Ratiowr, Ratiowtr and Ratiortr, we run each

program with one thread and generate its memory trace using Pin [91]. This trace

contains the virtual addresses of memory requests, which are translated to physical

addresses using the page table exported by Linux kernel. Each physical address is

later translated to a DRAM address, which includes the channel, rank, bank, row and

column addresses [6]. This translated trace is input into an in-house cache simulator

to generate DRAM requests.

We analyze the DRAM request trace to collect bank reuse distances and their

probabilities (∆ and P∆), as well as Ratiowr, Ratiowtr, and Ratiortr. To acquire
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Parameters Description
Rateissue,single single thread issue rate
∆ and P∆ Bank reuse distances and their probs
Ratiohit,single single thread hit ratio
Ratiomiss,single single thread miss ratio
Ratioconf,single single thread conflict ratio
PSmRw same-row accessing probability
PSmBk same-bank-diff-row accessing prob.
PSmCh diff-bank-same-channel accessing prob.
PDfCh different channel accessing probability
Ratiowr Write request ratio
Ratiowtr write-to-read switching request ratio
Ratiortr rank switching request ratio
rk cnt number of ranks accessed

Table 4.2: Software Parameters

Parameters PMU
Rateissue,single DRAM ACCESSES PAGE, HW CPU CYCLES
Ratiohit,single DRAM ACCESSES PAGE:HIT
Ratiomiss,single DRAM ACCESSES PAGE:MISS
Ratioconf,single DRAM ACCESSES PAGE:CONFLICT
Ratiowr MEM CONTROLLER REQ:WRITE REQ
Ratiowtr MEM CONTROLLER TURN:WRITE TO READ
Ratiortr MEM CONTROLLER TURN:CHIP SELECT

Table 4.3: Collecting program parameters from PMUs

single thread HMC ratios, we input the trace into an in-house DRAM simulator.

To obtain PSmRw, PSmBk, PSmCh and PDfCh, we run the program with two threads

and collect their memory traces using the above approach. Then we run both traces

with our DRAM simulator to generate these probabilities. Currently, we collect traces

with up to 75 million requests. The recording and processing of a trace takes about

30 minutes. It may be possible to use shorter traces for online processing as suggested

by previous research [160].

For the last missing parameter, Rateissue,single , it can only be acquired using the

PMU. On the AMD processor we use, this PMU counter is DRAM ACCESSES PAGE.
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Benchmarks PSmRw PSmBk PDfCh BRDs
streamcluster. 0.01% 6.26% 49.67% 1(78%), 8(22%)
facesim 0.00% 5.57% 50.20% 1(90%), 2(10%)
canneal 0.01% 6.20% 50.67% 1(93%), 8( 7%)
fluidanimate. 0.01% 6.28% 48.93% 1(78%), 4(22%)

Table 4.4: PSmRw, PSmBk, PDfch and BRDs of four PARSEC benchmarks.

Run-time Approach

Most software parameters can also be collected from PMUs. Table 4.3 gives a list of

software parameters and their corresponding PMUs on the AMD processor we used.

Unfortunately, there is no PMU that provides values for PSmRw, PSmBk, PSmCh,

PDfCh and bank reuse distances. However, from memory traces, we discovered that

most programs share common values for these variables. Table 4.4 gives the values

of these parameters of four PARSEC benchmarks (for BRD values, a x(y) represents

a BRD of x with probability y). The table shows that all benchmarks have PSmBk

of around 6%. The reason for this similarity is the memory interleaving behavior of

the MC. Currently, when allocating memory pages, MC distributes the pages evenly

among the banks for better performance. For example, when there is only one con-

ceptual rank of memory used, there are 16 banks involved (8 per channel). Therefore,

the probability that one bank is accessed by a thread is 1
16

. And the probability

that two threads accessing the same bank is 1
16
· 1

16
· 16 = 6.25%. Because of this

memory interleaving behavior, we use 1
bk cnt·rk cnt·chnl cnt as PSmBk, where rk cnt can

be acquired from the OS. Similarly, we use 0% for PSmRw because two threads rarely

access the same row, and 50% for PDfCh because there are two channels. PSmCh is

1− PSmRW − PSmBk − PDfCh.

For BRDs, most programs have a BRD of one with a high probability. The reason

for this similarity is data locality, i.e., consecutive requests are likely to access the

same row. Consequently, we assume a sequential access pattern for DraMon-R. On

our machine, the channel-interleaving dictates that every eight consecutive same-row

requests start accessing a new channel. That is, among the eight requests, the first

request has a BRD of eight with probability 1
8

= 12.5%; the reset seven requests have

a BRD of one with probability 7
8

= 87.5%. That is, we use 1(87.5%) and 8(12.5%) as

BRDs for run-time prediction.
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4.6 Experimental Evaluation

We implemented both DraMon-R and DraMon-R models, and evaluated their accu-

racy and fidelity on a real multi-core machine. This section presents the evaluation

results.

4.6.1 Experimental Setup

Our goal is to evaluate the accuracy and fidelity of DraMon. Here we use the same

platform specified in Section 4.5.1. Our experiments use 10 benchmarks from PAR-

SEC2.1 and all 10 benchmarks from NPB-OMP3.3.1 [15, 75]. The results of three

PARSEC benchmarks bodytrack, dedup and x264 are not reported as they are I/O

bound and have very limited bandwidth requirement.

Two kernel benchmarks are also considered for their high bandwidth require-

ments and wide uses: fft, a Fast Fourier Transform program [149], and bw mem from

lmbench3 benchmark suite [98]. For PARSEC and NPB benchmarks, the largest

executable input sets, “native” and “D”, are used. All benchmarks are compiled

using GCC/GFortran 4.4.3. PARSEC and kernel benchmarks are compiled with O3

optimization flag, and NPB benchmarks are compiled with O1 flag. These bench-

marks cover a variety of memory access patterns, including read/write requests,

single-bank/multi-bank accesses and streaming/random accesses.

For each benchmark, we predict its HMC ratios and bandwidth usages when it

runs with two to six cores/threads using one MC. Then we compare the predicted

values with the real values obtained from PMUs (Table 4.2), and report the accuracy

of our predictions. Additionally, we compare DraMon to a state-of-the-art, multiple

linear and logarithmic regressions based bandwidth model [81].

We define the bandwidth prediction accuracy as

Accuracybw = 100%−
∣∣∣∣BWreal −BWpredicted

BWreal

∣∣∣∣ . (4.27)

For HMC ratios predictions, we leverage the multinomial likelihood L from the

likelihood theory [134],

DKL =
∑
ty

Ratioty,real × log2

(
Ratioty,real

Ratioty,predicted

)
,

L = 2−DKL , ty ∈ {hit,miss, conflict}.
(4.28)
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Benchmarks
Memory Accuracy L
behavior DraMon-T DraMon-R

streamcluster read, single-rank, streaming 99.83% 99.80%
facesim read, single-rank, streaming 99.34% 98.26%
canneal read/write, single-rank 98.65% 98.51%
lu.D read/write, multi-rank 98.50% 97.57%
mg.D read/write, multi-rank 99.64% 98.64%
sp.D read/write, multi-rank 99.07% 97.90%
fft read/write, single-rank, streaming 99.83% 99.80%
bw mem read, single-rank, streaming 99.83% 99.80%

Average 99.17% 98.55%

Table 4.5: DRAM contention (HMC ratios) prediction accuracy.

Intuitively, L represents the probability that a model is accurate if the model predicts

a probability distribution. Here, we simply refer to L as “HMC ratios prediction

accuracy.”

4.6.2 DRAM Contention (HMC Ratios) Prediction

Table 4.5 gives the accuracy of DRAM contention prediction for the eight most

memory-intensive benchmarks. As the table shows, DraMon is very accurate for

memory-intensive programs with a wide range of memory behaviors.

For the rest benchmarks (other than the eight in Table 4.5), the average ac-

curacy of DraMon-T is 96.99%, and the average accuracy of DraMon-R mode is

96.85%. The highest accuracy of DraMon-T is 99.53% (fluidanimate). The highest

accuracy of DraMon-R is 99.48% (raytrace). The lowest accuracy of both models

is 92.46%(blackscholes). The overall accuracies of DraMon-T and DraMon-R for all

benchmarks are 97.95% and 97.61%, respectively.

4.6.3 Bandwidth Usage Prediction

Bandwidth Results

Figure 4.7 composes the bandwidth prediction results for the eight memory-intensive

benchmarks. The result of facesim for five cores/threads is missing, because PARSEC

benchmark suite does not provide execution configuration for facesim to execute with

5 cores/threads.
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Figure 4.7: Bandwidth prediction results.
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DraMon-T has an average accuracy of 94.7%, and DraMon-R has an average

accuracy of 93.37%. These results demonstrate that DraMon can accurately predict

bandwidth usage for programs with a wide range of bandwidth requirements and

memory behaviors. The highest accuracies of DraMon-T and DraMon-R are 98.31%

(streamcluster) and 95.07% (mg.D), respectively. The lowest accuracies of DraMon-T

and DraMon-R are 91.49% (lu.D) and 90.30% (fft), respectively.

The bandwidth usages of the rest benchmarks increase linearly with the number

of cores/threads. Both models have a high average accuracy of 97.61%, with the

highest accuracy of 99.31% (blackscholes) and the lowest accuracy of 90.43% (bt.D).

The overall accuracies of DraMon-T and DraMon-R for all benchmarks are 96.32%

and 95.73%..

Comparing to Regression Model

In Figure 4.7, results labeled with “regres” are the predictions from a regression-based

model [81]. The average accuracy of this model is 77.61%, which is significantly lower

than DraMon. Its worst case accuracy is 44.37% (facesim), which is also lower than

DraMon’s lowest accuracy (90.30%). Except for lu.d and bw mem, six benchmarks

have higher accuracies using DraMon. For bw mem, the regression model has a higher

accuracy because it is trained using a micro-benchmark that has a similar behavior

as bw mem.

4.6.4 Execution Time of the Run-time Model

The run-time model requires reading seven PMUs (Table 4.3). We collect the PMU

readings for 0.5 seconds of execution. We implemented DraMon using C. The average

time for computing the bandwidth of one core/thread configuration is 0.03 seconds.

For each benchmark, five configurations are predicted. Including parameter collection,

the total prediction time is 0.65 seconds, which only adds 0.5% to the execution time

of our benchmarks in average.

4.7 Discussion

This section discusses issues that affect DraMon’s accuracy.
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4.7.1 Prefetcher Impact

In our experiments, the memory prefetcher is enabled. This prefetcher fetches a

stream of data from memory if a stride memory access pattern is detected [6]. We

observe that this prefetcher has a high prefetching accuracy. It also adaptively de-

creases the number of prefetching requests in case of heavy DRAM contention [6].

Therefore, the existence of this prefetcher does not affect DraMon’s accuracy. How-

ever, a less accurate or non-adaptive prefetcher may need to be modeled separately.

4.7.2 DRAM Refresh Impact

DRAM cells need periodical refreshing to retain their data, which can degrade DRAM

performance. The DRAM module used in our experiments requires that each bank

spend 160ns on refreshing every 7.8us [128]. Therefore, the DRAM refresh has a

theoretical overhead of 160ns
7.8us

= 2% [152]. This overhead may be lower than 2% if

rank-level parallelism happens [72]. This low overhead does not significantly impact

the accuracy of DraMon. Additionally, DRAM refresh overhead can be mitigated for

high density DRAM modules [109, 112, 142].

4.7.3 Cache Impact

Because this research focuses on DRAM, predicting cache performance is beyond

its scope. However, because DraMon is evaluated on a real machine, cache does

have some impact on our results. Fortunately, memory-intensive benchmarks already

have high cache miss rates, and their memory behaviors are not affected by cache

contention.2

However, four benchmarks, ferret, swaptions, freqmine, and ep.D which have very

low bandwidth requirements, are affected by cache contention or data sharing. Pre-

dicting their bandwidth usages requires a cache model [145, 159]. Because these

benchmarks’ bandwidth usages depend on cache, their results are not included in the

average accuracies in Section 4.6.

4.7.4 Generalization

Using DraMon on a new platform requires updating its input parameters accordingly.

The hardware parameters can be updated based on the new hardware configuration.

2These benchmarks are known as devils by previous research [161].
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For DraMon-T, the software parameters can still be obtained from memory traces.

For DraMon-R, the corresponding PMUs should be identified on the new platform.

Software parameters which cannot be obtained from PMUs (i.e., SmRw, SmBk, SmCh

and DfCh probabilities, and bank reuse distances) are determined by the DRAM

configuration (banks/ranks/channels), as well as the channel-interleaving scheme as

discussed in Section 4.5.3.

4.8 Summary

This chapter presented DraMon, a model that predicts the bandwidth usage of multi-

threaded programs on real machines with high accuracy. DraMon can be directly

employed to predict the optimal core allocation of local memory bandwidth limited

multi-threaded applications. It also can be used to improve DRAM system design

and memory allocation algorithms, as well as addressing other problems involving

DRAM contention.

We demonstrated that accurately predicting memory bandwidth requires predict-

ing DRAM contention and DRAM concurrency, which both can be predicted with

high accuracy and in short computation time using probability theory. We also iden-

tified the hardware and software factors that should be considered for bandwidth

prediction. These parameters can be collected from memory trace, as well as PMUs

for run-time prediction. When evaluated on a real machine, DraMon shows high

average accuracies of 98.55% and 93.37% for DRAM contention and bandwidth pre-

dictions, with only 0.50% overhead on average.
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Chapter 5

Predicting Inter-node Memory

Bandwidth Usages and Optimal

Core Allocations

5.1 Introduction

The previous chapter (Chapter 4) presented a model that predicts the optimal core

allocation for local memory bandwidth limited applications. However, there are also

applications that are limited by inter-node memory bandwidth as shown in Chapter 3.

For these applications, an optimal core allocation model that considers the inter-node

memory bandwidth is required. Designing such a model with high accuracy is very

challenging, because there are a large variety of bandwidth-impacting factors to be

considered. More specifically, the following challenges must be addressed:

1. The first challenge is to properly handle various bandwidth limiting factors for

high accuracy bandwidth usage prediction. The large variety of these interacting

factors, such as local-remote memory access contention and bit-width of a link,

makes prediction very difficult. The impact of these factors also varies with the

application and platform, further complicating this challenge.

2. The second challenge is to properly handle the heterogeneity and non-uniformity

within a program and a NUMA system for high accuracy bandwidth usage pre-

diction. As shown by Figure 1.2 on page 3, and by the examples in Section 3.2,

the heterogeneity and non-uniformity are one of the major determining factors

for bandwidth usages and optimal core allocations. They require that each
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inter-node connection and each node to be treated differently, which greatly

complicates the prediction problem.

3. The third challenge is to predict the optimal core allocation in reasonable time.

Because of the heterogeneity and non-uniformity, core allocation on NUMA

machines is not only about the numbers of cores, but also about the location

(which node) of the cores. There can be millions of different core allocations to

consider. For instance, an existing NUMA machine with eight six-core nodes

has about 78 = 5, 764, 801 possible core allocations.

In this chapter, we present two models, NuMem and NuCore, for memory-intensive

multi-threaded applications. NuMem predicts the inter-node and total memory band-

width usage of an application on a large-scale NUMA machine. It achieves high

accuracy and low overhead by reducing the prediction problem to a Mixed Integer

Programming (MIP) problem. It expresses the bandwidth limiting factors as linear

constraints. These factors include an application’s bandwidth requirements, the con-

tention between local and remote accesses, the contention for shared inter-node links,

and the physical limit (frequency and bit-width) of the inter-node links. Each link

is evaluated with its own constraints to reflect the heterogeneity and non-uniformity.

NuMem also expresses the memory bandwidth usage as an objective function of the

MIP problem, so that it can be predicted by solving the MIP problem with a MIP

solver.

Based on NuMem, we developed NuCore to consider additional non-linear con-

straints to predict the optimal core allocation with MIP. We present a technique that

can convert these non-linear constraints into linear constraints. NuCore also combines

the goals of minimizing core allocations and maximizing bandwidth usage into one

objective function. The optimal core allocation is then predicted using a MIP solver

without the need to examine all millions of core allocations.

We evaluated our models on two large-scale NUMA platforms presented in Sec-

tion 3.1. Experimental results show that NuMem is highly accurate with an average

bandwidth prediction error of less than 10% for memory-intensive benchmarks. Nu-

Core correctly predicted the optimal core allocations of 19 out of 22 benchmarks. For

the other three benchmarks, NuCore’s predictions differed by at most one core per

node from the experimentally determined optimal core allocations. The predicted

optimal core allocations perform within 1.0% of the real optimal on average. The

predicted core allocations provides up to 3.34 times speedup over the use-all-cores
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allocation, while using only 12.5% of all available cores. The average speedup of pre-

dicted core allocations is 1.27 for memory-intensive benchmarks. More importantly,

this speedup is achieved using much fewer resources, i.e., the predicted core alloca-

tions use only 75.6% of all available cores on average. The results also show that

NuCore can be solved by a MIP solver in 0.02 seconds, suggesting that NuCore can

be applied at run-time.

The contributions of this chapter include:

1. A model, NuMem, that predicts the memory bandwidth usage of one core allo-

cation with high accuracy using MIP.

2. A model, NuCore, that predicts the optimal core allocation with high accuracy

and low overhead using MIP.

3. To the best of our knowledge, NuMem and NuCore are the first analytical model

to mathematically express the NUMA bandwidth limiting factors to predict

bandwidth usage and optimal core allocation. The technique of expressing non-

linear bandwidth limiting factors and contentions as linear constraints, and

expressing prediction or optimization goals as objective functions may also apply

to other memory-related NUMA optimization problems.

4. A thorough experimental evaluation of the accuracy, overhead, and performance

benefits of our models, using two large scale NUMA machines with 22 bench-

marks.

This chapter is organized as follows. Section 5.2 provides an overview of our

models. Section 5.3 presents NuMem in detail. Section 5.4 describes NuCore in

detail. Section 5.5 gives the experimental evaluation of our models. Section 5.6

discusses related issues, and Section 5.7 summarizes the work.

5.2 Overview of NuMem and NuCore

This section gives an overview of NuMem and NuCore. NuMem predicts bandwidth

usages with a MIP formulation which consists of a set of constraint functions and an

objective function. Based on NuMem, NuCore predicts optimal core allocations by

considering additional constraint functions and objective functions.
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Figure 5.1: Overview of the NuMem model.

5.2.1 NuMem Overview

The bandwidth usage of an application is limited by various factors. Under these

constraints, the application uses as much bandwidth as possible. Similarly, in a

MIP problem, which is a linear programming problem with integer variables, the

maximum (optimal) value of a linear objective function is determined under a set

of linear constraints. This similarity makes it possible for NuMem to use MIP to

predict bandwidth usage. The challenge here is to express the bandwidth constraints

and bandwidth usage as linear functions.

Figure 5.1 gives the overview of NuMem. NuMem predicts the memory bandwidth

usage for a specific multi-threaded application executing on a specific NUMA machine

with a specific core allocation. The input parameters to NuMem are:

1. The configuration of the NUMA machine, denoted by M , such as the node

connection topology and the maximum bandwidth of the inter-node links.

2. Profiling data, denoted by P , that describes the memory access behavior of the

application. To collect profiling data, at the beginning of each program phase,

the application is allocated with one core per node on all nodes and executed

briefly, while hardware performance monitoring units (PMU) are used to collect

its bandwidth usage. This profiling can be performed online during application

execution. For this work, we found a phase detection technique similar to prior

work is sufficient [60]. More sophisticated phase-detection techniques can also

be used [129, 133].

3. The core allocation, denoted by A, used by the application. Recall that A is
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essentially a vector {a0, a1, . . . , ai, . . . , aN}, where ai represents the number of

cores allocated on nodei.

4. The prediction of the local memory bandwidth demand, denoted by LD, of

the application under core allocation A. A local bandwidth model, DraMon,

is used to obtain this prediction [154]. The local memory bandwidth usage

is then predicted based on the DraMon’s prediction with consideration of the

contention from remote memory accesses.

The values of M , P , A and LD, denoted by m, p, ~a and ld, describes the char-

acteristics of a particular application, machine and core allocation. These values are

passed into NuMem, which maximizes the total bandwidth subject to a set of band-

width constraints (denoted by fi in Figure 5.1), to predict the memory bandwidth

usages using a MIP solver.

5.2.2 NuCore Overview

Machine 
config M,
M = m

Profiling
data P,
P = p

NuCore Model:  

Maximize: Total BW =
   local BW Lbw+ Inter BW Ibw

Minimize: Alloc |A|
Subject to:
    f1(M, P, LD, A, Lbw, Ibw) ≤ 0
    f2(M, P, LD, A, Lbw, Ibw) ≤ 0
                 • • •
   g1(M, P, LD, A, Lbw, Ibw) ≤ 0,
   g2(M, P, LD, A, Lbw, Ibw) ≤ 0,
                • • •
  A ∈ {All Allocations}

MIP Solver
Prediction for Max BW and 
Optimal Core Allocation

m

p

p

Local BW demand 
LD form all 
allocations, LD = lD

→

lD
→

Figure 5.2: Overview of the NuCore model.

The naive method of predicting the optimal core allocation is to use NuMem to

predict the bandwidth usages of all possible core allocations to determine the mini-

mum core allocation with the maximum bandwidth usage. This approach, however,

has high overhead. Here, based on NuMem, we designed NuCore to consider all pos-

sible core allocations by including additional constraints and optimization objectives.

Figure 5.2 gives an overview of NuCore, where the additional constraints are denoted

by gi. The new constraints and objective are:
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1. The core allocation A is no longer an input, but a value to predict. Its value

can be any of the possible core allocations.

2. The prediction of the local memory bandwidth demand, LD, should consider

the predictions for all possible core allocations. However, these new predictions

introduce non-linear constraints, which can be converted into linear constraints

with a technique described in Section 5.4.

3. The optimization goals are to maximize bandwidth usage and minimize the core

allocation.

The actual values of M , P , and LD (i.e., m, p, and ~ld) are passed into NuCore to

predict the optimal core allocation with a MIP solver for a specific application and

machine. After an optimal core allocation prediction is made, the application can

be reconfigured to use the predicted core allocation with dynamic thread-changing

techniques [1, 68, 86, 104].

5.3 Predicting Bandwidth Usage

Memory Controller

Core1

Core3

Core0

Core2

DRAM

DRAM

Memory Controller

Core1

Core3

Core0

Core2

DRAM

DRAM

DRAM

DRAM
node0

node1

node2

Memory Controller

Core1

Core3

Core0

Core2
LocalMem

I02

I01

I10

L0

: Application Thread

Figure 5.3: A typical case with both local memory accesses and inter-node memory
accesses from different nodes.

A NUMA system typically has both local memory accesses and remote memory

accesses. The remote memory accesses can also use any link in the system. Figure 5.3

depicts a case where a multi-threaded application is running on a three-node NUMA

system. The application is using two cores on node0, three cores on node1 and one

core on node2. That is, its core allocation is {2, 3, 1}. The threads on node0 are

accessing node0’s local memory with a bandwidth usage L0. They are also accessing
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node1’s memory with a bandwidth usage of I10. The threads on node1 and node2 are

accessing the memory of node0 with a bandwidth usage I01 and I02. Here, predicting

the bandwidth usage involves predicting the values of L0, I10, I01 and I02, under

several bandwidth constraints.

Consider the general case where a multi-threaded application is executing on a

NUMA machine:

• Let N denote the number of nodes on the machine.

• Let A = {a0, . . . , aN} denote the core allocation of the application, where ai is

the number of cores allocated on nodei.

• Let Li denote the local bandwidth usage on nodei.

• Let Iji denote the inter-node bandwidth usage of the application when data is

sent from nodej’s memory to nodei.

Predicting the bandwidth usage of the application running with core allocation A is

essentially predicting the values of Li for each node nodei, and the values of Iji for each

node pair nodei and nodej. Previous research efforts showed that these bandwidth

usages have the following constraints [20, 94]:

1. The maximum rates that an application consumes and generates data when no

resource contention is considered.

2. The physical bandwidth limit of an inter-node link determined by its frequency

and bit-width.

3. The contention between the remote accesses that share a link. For example, the

I01 and I10 in Figure 5.3.

4. The contention between the local and remote memory requests accessing the

memory of the same node, e.g., in Figure 5.3, L0, I01 and I02 contend for node0’s

memory.

We express these factors and the bandwidth usages as linear constraint functions

and objective functions. The following sections discuss the impact of these factors

individually, and derive equations that express these factors and the bandwidth usages

as linear constraints and objective functions.
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5.3.1 Constraint 1: Maximum Data Rate

The bandwidth usage of an application depends on the maximum rates that it can

issue memory requests. The inter-node bandwidth usage from nodej to nodei, Iji,

includes the usages of the responses to the read requests from nodei, and the write re-

quests from nodej. Let Ir,ji,solo denote the bandwidth usage of an application running

on nodei and read-accessing nodej when it uses one (solo) core on nodei. The Ir,ji,solo

is acquired from profiling. Moreover, assume only one thread is executed on a core at

a time. Intuitively, if an application with one core/thread is using Ir,ji,solo bandwidth,

its bandwidth usage (Ir,ji) with ai cores/threads is no larger than ai times Ir,ji,solo:

Ir,ji ≤ ai × Ir,ji,solo. (5.1)

Similarly, if the threads on nodej are also writing to nodei, then the write-

bandwidth usage Iw,ji is limited by,

Iw,ji ≤ aj × Iw,ji,solo. (5.2)

The total inter-node bandwidth usage from nodej to nodei is the sum of the read

and write bandwidth:

Iji = Ir,ji + Iw,ji. (5.3)

Let LD,i denote the local bandwidth demand, which is predicted using the local

bandwidth model, DraMon [154]. The local bandwidth usage of nodei, denoted by

Li, is also limited by its local bandwidth demand:

Li ≤ LD,i, (5.4)

5.3.2 Constraint 2: Physical Limit

The bandwidth usage from nodej to nodei, Iji, is also limited by the frequency and

the number of bits of the inter-node link that connects nodej to nodei. Let UniMaxji

denote this physical limit. This constraint is

Iji ≤ UniMaxji, (5.5)

where UniMaxji is acquired from machine configuration, and its value can be deter-

mined theoretically based on the frequency and bit-width of the link. However, the
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practical maximum bandwidth is usually smaller than the theoretical value for two

reaons. First, there are overheads from the packet header and CRC code for each

data packet [66, 148]. Second, the link is also used to send snooping messages. There-

fore, we used the bandwidth measurement benchmark suite lmBench to determine the

value of UniMaxji experimentally [98, 120].

5.3.3 Constraint 3: Contention for Same Link

In a NUMA machine, nodei and nodej can access each other simultaneously over the

same inter-node link. These accesses contend for the shared link. That is, the sum

of the bandwidth usages of Iji and Iij are limited by this contention. Let BiMaxij

denote the maximum bi-directional bandwidth of the physical link between nodei and

nodej. This constraint is then

Iji + Iij ≤ BiMaxij. (5.6)

BiMaxij is acquired from the machine configuration. Its value is also determined

experimentally using the lmBench.

5.3.4 Constraint 4: Local/Remote Contention

For memory-intensive applications, because both the remote requests and local re-

quests to a node are accessing that node’s local memory, their bandwidth is limited

by the maximum available bandwidth of that node’s memory. Our experimental re-

sults reveal that the maximum of the sum of the outgoing inter-node bandwidth of a

node has a linear relationship with its local bandwidth demand. Figure 5.4 depicts

this linear relationship for an Intel X7550 processor. The y-intercept and the slope of

the linear equation, αi and βi, are 20.26 and 0.24 for this machine (determined with

lmbench). The correlation coefficient is 0.96 indicating a strong linear relationship.

Let N denote the number of nodes, and LD,i denote the local bandwidth demand

on nodei predicted with the DraMon model [154]. Based on this linear relationship,

the constraint of the local and remote access contention can be expressed as

N∑
j=1

Iij + βi × LD,i ≤ αi, (5.7)

We deduce that this linear relationship is a reflection of the processor’s attempt
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Figure 5.4: Linear relationship of the total outgoing bandwidth and the local band-
width demand of an Intel processor.

to ensure every requesting source, including the inter-node links and the local cores,

gets a fair share of its memory bandwidth. Intuitively, αi represents the maximum

bandwidth of nodei’s memory, and βi represents the lowest share of nodei’s bandwidth

reserved for local cores. This insight leads to another constraint that binds the local

bandwidth usage on any nodei, shown in Equation (5.8). Intuitively, the sum of

the total out-going bandwidth and the local bandwidth of nodei, cannot exceed its

maximum bandwidth αi.
N∑
j=1

Iij + Li ≤ αi. (5.8)

5.3.5 Handling Multi-hop Links

Two nodes of a NUMA machine can be indirectly connected through other nodes, i.e.,

these two nodes are indirectly connected through several physical links. The inter-

node memory accesses between these two nodes affect the bandwidth usages of the

links that connect them. For example, in Figure 5.3, node1 and node2 are indirectly

connected through node0.

Without loss of generality, assume two nodes nodel and nodek are connected using

a virtual link through d nodes l, l+1, ..., l+d, k. The bandwidth usage Ilk is also sub-

ject to the physical limit and bi-directional contention as described in Equation (5.5)

and (5.6). UniMaxlk and BiMaxlk are also determined experimentally using lm-

Bench. Note that UniMaxlk and BiMaxlk are smaller than any of its physical links

because the virtual link is slower than any of its physical links.

Additionally, because the virtual link sends data through its physical links, its
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bandwidth usage Ilk should also be added to its physical links:

Iji = Iji,r + Iji,w +
∑
l,k

Ilk,∀ nodel and nodek

connected through link j → i.

(5.9)

5.3.6 Objective Function

The objective function for maximizing the sum of local and inter-node bandwidth is

maximize:
∑
i

Li +
∑
i,j

Iij. (5.10)

5.3.7 NuMem Summary

Equation 5.11 summarizes the linear constraints and objective function of NuMem.

A MIP solver can solve this problem with predictions of the values of each Li and

Ii,j.

maximize:
∑
i

Li +
∑
i,j

Iij

subject to: ∀ i, j:

constraint1: Ir,ji ≤ ai × Ir,ji,solo,

Iw,ji ≤ aj × Iw,ji,solo,

Iji = Iji,r + Iji,w +
∑
l,k

Ilk,∀ nodel and nodek

connected through link j → i.,

constraint2: Iji ≤ UniMaxji,

constraint3: Iji + Iij ≤ BiMaxij,

constraint4:
M∑
j=1

Iij + βi × LD,i ≤ αi,

M∑
j=1

Iij + Li ≤ αi

(5.11)

5.4 Predicting Optimal Core Allocation

This section discusses the optimal core allocation prediction model, NuCore. NuMem

is only used to predict the inter-node bandwidth for one core allocation. As mentioned
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in Section 5.2, to predict the optimal core allocation, other core allocations must be

considered. More specifically, the following constraints and objective function are

needed:

1. The number of allocated cores of each node can be any number from zero to

the maximum available cores. Let ni denote the maximum number of cores on

nodei. The core allocation ai can be any number between 0 and ni, i.e.,

0 ≤ ai ≤ ni. (5.12)

2. The local bandwidth prediction should be extended to consider predictions to

other core allocations.

3. The objective function should reflect the goals of both maximizing total band-

width and minimizing core allocation.

Although Equation (5.12) alone suffices for the first set of additional constraints,

the last two additions require further discussion, which is provided in the following

sections.

5.4.1 Handling Local Bandwidth Demands
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Figure 5.5: The non-linear local bandwidth usage of streamcluster on an AMD six-core
node.

The local bandwidth demand LD,i of nodei is a function of the numbers of cores

used on nodei. Unfortunately, this function is not linear due to the contention for

DRAM row buffers [154]. Figure 5.5 gives an example of this non-linear function of
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the local bandwidth usage of streamcluster on an AMD six-core processor. Conse-

quently, we describe the local bandwidth demand LD,i with a discrete function given

in Equation (5.13), where bc,i represents the value of the local bandwidth demand

when c cores are used on nodei.

LD,i = f(ai) =



b0,i, if ai = 0

b1,i, if ai = 1
...

bni,i, if ai = ni

(5.13)

Unfortunately, discrete functions cannot be used as MIP constraints. We present

a novel technique which converts discrete functions to linear functions. First, we

convert Equation (5.13) into a linear function by introducing auxiliary variables yc,i.

LD,i = y0,i · b0,i + y1,i · (b1,i − b0,i) + · · ·+ yni,i · (bni,i − bni−1,i),

yc,i is an integer, 0 ≤ yc,i ≤ 1,

yc,i = 1 if ai ≥ c; else yc,i = 0; 0 ≤ c ≤ ni

(5.14)

When ai = c, Equation (5.14) is LD,i = b0,i + b1,i − b0,i + · · · + bc,i − bc−1,i = bc,i,

equivalent to Equation (5.13). Next, we use a common method to convert the if−else
condition in Equation (5.14) to linear constraints with Equation (5.15), where B and

ε are arbitrary constants, 0 < ε < 1, B � ni [83].

B · yc,i ≥ ai − c+ ε,

c · yc,i ≤ ai.
(5.15)

When ai ≥ c, Equation (5.15) is essentially (yc,i > 0) ∧ (yc,i ≤ 1) =⇒ yc,i = 1.

When ai < c, Equation (5.15) is essentially (yc,i ≥ 0) ∧ (yc,i < 1) =⇒ yc,i = 0. In

summary, Equations (5.14) and (5.15) convert the discrete local bandwidth demands

of Equation (5.13) into linear constraints.

5.4.2 Objective Function

Predicting the optimal core allocation requires satisfying two goals: maximizing the

total bandwidth usage and minimizing the core allocation. The first goal is expressed

with Equation (5.10). The second goal can be described as

minimize:
∑
i

ai. (5.16)
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Because minimizing a function is similar to maximizing the negative of it, we

combine Equation (5.10) and (5.16) into one objective function. To emphasize that

our priority is maximizing bandwidth, we multiply the bandwidth goal by a constant

C.

maximize: C · (
∑
i

Li +
∑
i,j

Iij)−
∑
i

ai. (5.17)

5.4.3 NuCore Summary

Equation (5.18) summarizes the linear constraints and objective function of NuCore,

including the constraints from NuMem.

maximize: C · (
∑
i

Li +
∑
i,j

Iij)−
∑
i

ai

subject to: ∀i, j:

constraint1: Ir,ji ≤ ai × Ir,ji,solo,

Iw,ji ≤ nj × Iw,ji,single,

Iji = Iij,r + Iij,w +
∑
l,k

Ilk, ∀ nodel and nodek

connected through link j → i.,

constraint2: Iji ≤ UniMaxji,

constraint3: Iji + Iij ≤ BiMaxij,

constraint4:
M∑
j=1

Iij + βi × LD,i ≤ αi,

M∑
j=1

Iij + Li ≤ αi,

constraint5: 0 ≤ ai ≤ ni,

constraint6: LD,i =

ni∑
c=0

yc,i · (bc,i − bc−1,i),

∀c,0 ≤ c ≤ ni:

B · yc,i ≥ ai − c+ ε,

c · yc,i ≤ ai

yc,i is integer, 0 ≤ yc,i ≤ 1

(5.18)
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5.4.4 Theoretical Complexity of NuCore

One of the major goals of NuCore is to predict the optimal core allocation with low

cost. Here, we briefly discuss the theoretical complexity of NuCore. Recall that N

denotes the total number of nodes, and n denotes the number of cores per node.

The MIP problem of Equation (5.18) has N2 variables for inter-node bandwidth, N

variables for local bandwidth and N variables for core allocations. Additionally, there

are n ·N variables for yc,i. Similarly, there are O(N2 +nN) constraints. That is, there

are O(N2 + nN) variables and constraints. Although the worst case complexity is

exponential, using the branch-and-bound method, most MIP problems can be solved

in polynomial time, i.e., the complexity is usually O((N2+nN)c) [87, 119]. Section 5.5

shows that a typical NuCore problem instance can be solved in less than a second

with state-of-the-art MIP solvers.

5.5 Experimental Evaluation

This section provides experimental evaluation of the accuracy and performance ben-

efits of our models.

5.5.1 Platforms, Benchmarks, Methodology and Metrics

Platforms We evaluated our models on the two large-scale NUMA platforms shown

in Chapter 3. The Intel platform has 32 cores on 4 nodes of Intel X7550 2.0GHz

processors. Each processor has eight cores sharing 18MB L3 cache and 64GB memory.

Each core also has 64KB split L1 cache and 256KB L2 cache. These nodes are fully

connected as illustrated in Figure 3.2 on page 27. All inter-node links are Quick Path

Interconnect 1.0 (QPI) [66]. Table 5.1a gives the values of the machine configurations

for this platform. This platform runs Linux 3.8.0.

The AMD platform has 48 cores on 8 nodes. This machine has four AMD Opteron

6174 2.2GHz processors in four sockets. Each processor has two six-core nodes sharing

6MB L3 cache and 12GB memory. Each core has 128KB split L1 Cache and 256KB

L2 cache (same as described in Section 4.5.1). Figure 3.1 illustrates the connection

topology of this platform, which is non-uniform [6]. There are several two-hop links.

All links are HyperTransport (HT) 3.0 [148]. However, because intra-socket and

inter-socket links have different bit-widths, the inter-node links are not homogeneous.

Table 5.1b gives the machine configurations for this platform. This platform runs
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Config Value
UniMaxij 10.8 Gb/s
BiMaxij 17.5 Gb/s
αi, βi 20.26 Gb/s, 0.24

(a) Platform with Intel nodes

Config Value

UniMaxij
1-hop intra-socket 4.9 Gb/s
1-hop inter-socket 2.1 Gb/s

2-hop 1.8 Gb/s

BiMaxij
1-hop intra-socket 8.5 Gb/s
1-hop inter-socket 4.1 Gb/s

2-hop 3.6 Gb/s
αi, βi 8.1 Gb/s, 0.40

(b) Platform with AMD nodes

Table 5.1: The values of the machine configurations of the experiment platforms.

Linux 2.6.23.

Benchmarks We used PARSEC 2.1 benchmarks and NPB-OMP 3.3.1 bench-

marks in our evaluation [15, 75]. We also used the BLAS matrix multiplication routine

dgemm in the Intel Math Kernel Library (MKL) 11.1 and AMD Core Math Library

(ACML) 5.3.1, because its wide application and high bandwidth usage [7, 18, 68]. The

evaluation included 22 benchmarks, among which 7 are memory-intensive (listed in

Table 5.2) and 15 are CPU-intensive. Three PARSEC benchmarks bodytrack, dedup,

and x264 are not used because they are I/O bound and have very limited memory

bandwidth usages. Because of the limited bandwidth usages, these three benchmarks

perform the best with all cores. For PARSEC, the “native” input sets are used.

For NPB, the largest executable input sets, “C” or “D” are used. For dgemm, two

1.6K×1.6K matrices with random values are multiplied to fully exercise the memory

system [5].

PARSEC and NPB benchmarks are compiled using GCC/GFortran 4.4.3 with the

optimization flags following the default configurations of the benchmark suites. For

dgemm, libraries compiled by Intel and AMD are used.

Bandwidth Prediction Evaluation As there are millions of possible core al-

locations, it is impractical to collect the actual bandwidth usages for all of them.

Therefore, for each benchmark, we predicted its bandwidth usages using NuMem for

ten randomly selected core allocations on each platform. We compare the predicted

values and the actual values obtained from PMUs, and report the mean absolute
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percentage error (MAPE) for each benchmark, which is defined as [64],

MAPE =
1

10

10∑
alloc=1

∣∣∣∣BWalloc,actual −BWalloc,predicted

BWalloc,actual

∣∣∣∣ . (5.19)

Core Allocation Prediction Evaluation For each benchmark, we also pre-

dicted the optimal core allocation using NuCore. We compared the performance of

the predicted core allocation with the use-all-cores allocation, and report the speedup

of the predicted core allocation. Each performance result is the average from six trials.

The speedup is defined as

SpeedUp =
ExecT imeuse−all−cores
ExecT imepredicted

. (5.20)
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Figure 5.6: Prediction results of the total and inter-node bandwidth usages of four
benchmarks on the Intel platform.

To verify the accuracy of the optimal core allocation prediction, we determined

the optimal core allocation experimentally. We first picked the best performing core
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Figure 5.7: Prediction results of the total and inter-node bandwidth usages of four
benchmarks on the AMD platform.

allocation from a large pool of core allocations: 2000 randomly selected allocations,

DraMon predicted optimal allocations, and some commonly-used core allocations

(where each node is allocated with same number of cores, or linearly allocating cores

from one core on node0 to all cores on all nodes). We then determined the optimal core

allocation experimentally by evaluating the performance of adjacent core allocations

of this best allocation. Two core allocations A and A′ are considered adjacent if they

differ by only one core:

A = {a0, a1, . . . , ai, . . . , aN} and A′ = {a′0, a′1, . . . , a′i, . . . , a′N}

are adjacent ⇐⇒ {∃!i, |ai − a′i| = 1}
∧
{∀j, j 6= i, aj = a′j}

(5.21)

A core allocation is considered optimal if it performs better than all of its adjacent

core allocations. We started with the predicted core allocation, and compare it with

its adjacent allocations. If the performance of all adjacent allocations is worse than
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Benchmark
MAPE

Intel Platform AMD Platform
Local Inter Total Local Inter Total

streamcluster 8.8% 5.8% 4.0% 16.1% 6.4% 8.0%
canneal 10.2% 2.4% 3.3% 12.9% 6.9% 6.4%
facesim 8.3% 6.8% 9.7% 3.3% 4.8% 2.1%

mg.D-resid 8.2% 0.0% 8.2% 7.8% 0.0% 7.8%
mg.D-psinv 6.9% 0.0% 6.9% 7.6% 0.0% 7.6%
mg.D-rprj3 1.9% 4.3% 2.0% 10.9% 4.9% 8.2%
mg.D-interp 10.5% 6.7% 7.5% 9.8% 6.9% 8.4%

sp.C-x/y/zsovle 10.1% 8.3% 5.1% 10.4% 5.4% 8.7%
sp.C-rhs 7.1% 4.8% 6.7% 6.5% 3.9% 5.3%

dgemm (MKL) 9.1% 2.1% 3.2% 5.2% 2.8% 4.3%
dgemm (ACML) 6.0% 6.5% 4.8% 5.7% 8.7% 5.6%

Average 7.9% 4.3% 5.6% 8.7% 4.7% 6.7%

Table 5.2: Average MAPE of bandwidth usage prediction for memory-intensive
benchmarks.

the predicted core allocation, then the prediction is correct. Otherwise, we selected

the adjacent core allocation with the best performance, and evaluate its adjacent

allocations until we find the optimal one.

Note that the above experimental optimal core allocation can be local optimal.

However, finding the global optimal from millions of core allocations experimentally

is impractical. Instead, we compared the performance of the predicted allocations

with the performance upper bound of all core allocations. If this upper bound has

a tight confidence interval with high confidence, it can be viewed as the real op-

timal performance. We determined this upper bound with Extreme Value Theory

(EVT) [14, 24, 126]. We sampled the performance of more than 2000 randomly

selected core allocations as previous work [126]. Based on the distribution of the

samples, the maximum value of the sample space, i.e., the performance upper bound,

can be estimated with EVT. For the rest of this chapter, we call this upper bound

the real optimal performance.
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Benchmark NuCore Alloc (%) Exp. Opt. Alloc (%) Constraint
streamcluster {8,8,3,0} (59.3%) {8,8,2,0} (56.3%) Max Out

canneal {8,8,8,4} (87.5%) {8,8,8,4} (87.5%) Max Out
facesim {8,8,0,0} (50.0%) {8,8,0,0} (50.0%) Max Out

mg.D-resid {7,7,7,7} (87.5%) {7,7,7,7} (87.5%) Local BW
mg.D-psinv {8,8,8,8} (100%) {8,8,8,8} (100%) None
mg.D-rprj3 {8,8,8,8} (100%) {8,8,8,8} (100%) None
mg.D-interp {8,8,8,8} (100%) {8,8,8,8} (100%) None

sp.C-x/y/zsovle {3,3,3,3} (37.5%) {3,3,3,3} (37.5%) Local/Remote Cont.
sp.C-rhs {8,8,8,8} (100%) {8,8,8,8} (100%) None

dgemm (MKL) {8,8,8,8} (100%) {8,8,8,8} (100%) None
dgemm (ACML) {8,8,8,8} (100%) {8,8,8,8} (100%) None

Average 83.8% 83.5%

Benchmark NuCore Spdup Exp. Opt. Spdup Real Opt. Spdup
streamcluster 1.79 1.79 1.79 (1.79∼1.80)

canneal 1.00 1.00 1.00 (1.00∼1.02)
facesim 1.13 1.13 1.13 (1.13∼1.13)

mg.D-resid 1.09 1.09 1.09 (1.09∼1.09)
mg.D-psinv 1.00 1.00 1.01 (1.00∼1.01)
mg.D-rprj3 1.00 1.00 1.01 (1.00∼1.01)
mg.D-interp 1.00 1.00 0.97 (0.97∼1.00)

sp.C-x/y/zsovle 1.46 1.46 1.45 (1.44∼1.46)
sp.C-rhs 1.00 1.00 1.00 (1.00∼1.00)

dgemm (MKL) 1.00 1.00 1.00 (1.00∼1.02)
dgemm (ACML) 1.00 1.00 1.00 (1.00∼1.01)

Average 1.13 1.13 1.13 (1.13∼1.14)

Table 5.3: Predicted and experimentally determined optimal core allocations for
memory-intensive benchmarks on the Intel platform (speedup baseline is use-all-cores
allocation)

5.5.2 Results for Bandwidth-limited benchmarks

Bandwidth Usage Prediction

Table 5.2 gives the average bandwidth prediction error for seven memory-intensive

benchmarks. NPB benchmarks have several phases and the predictions are made for

each phase. The function name of each phase is also supplied for NPB benchmarks in

Table 5.2. Note that there are several cases where the benchmarks have no inter-node

bandwidth usage, where NuMem has 0% inter-node bandwidth prediction error. To

illustrate the prediction accuracy for individual core allocations, Figure 5.6 and 5.7

shows the bandwidth prediction results of several core allocations for four benchmarks

(other benchmarks have similar results). The x-axes of both figures represent the

numbers of cores of the allocations, which are evenly spread on the nodes. The figures

and table show that NuMem is highly accurate for memory-intensive benchmarks.

The highest error on the Intel platform is 36.9% when predicting the local band-
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Benchmark Varuna Alloc (%) Varuna Spdup
streamcluster {8,8,8,8} (100%) 1.00

canneal {8,8,8,8} (100%) 1.00
facesim {4,4,4,4} (50%) 1.04

mg.D-resid {8,8,8,8} (100%) 1.00
mg.D-psinv {8,8,8,8} (100%) 1.00
mg.D-rprj3 {8,8,8,8} (100%) 1.00
mg.D-interp {8,8,8,8} (100%) 1.00

sp.C-x/y/zsovle {5,5,4,4} (78.3%) 1.21
sp.C-rhs {8,8,8,8} (100%) 1.00

dgemm (MKL) {8,8,8,8} (100%) 1.00
dgemm (ACML) {8,8,8,8} (100%) 1.00

Average 93.5% 1.02

Table 5.4: Predicted optimal core allocations for memory-intensive benchmarks on
the Intel platform by Varuna (speedup baseline is use-all-cores allocation) [138].

width usage of streamcluster with core allocation {8, 6, 3, 7}. On the AMD platform,

the highest error is 30.0% when predicting the local bandwidth usage of streamcluster

with core allocation {2, 2, 2, 2, 2, 2, 1, 1}. This high error is caused by the fluctuation

of the PMU readings, which is in turn caused by Streamcluster’s short memory bursts.

These bursts are too short to be stably caught by the PMUs [155]. This fluctuation

affects both profiling as well as the acquired real bandwidth usages. A better PMU

handling in the OS kernel can mitigate this problem [36].

Because it is impossible to evaluate NuMem for every core allocation, we only

predicted ten randomly-picked allocations for each benchmark. With Student’s test,

we can show that this experiment design is statistically sound: these results show that

NuMem’s average error is lower than 10% for local, inter-node, and total bandwidth

predictions on both platforms with 99% confidence.

Optimal Core Allocation Prediction

Table 5.3 and Table 5.5 give the optimal core allocation (and the percentage of cores

used) predicted by NuCore for seven memory-intensive benchmarks. It also gives the

experimentally determined optimal core allocation (“Exp. Opt. Alloc”). Table 5.3

and Table 5.5 show that NuCore can correctly predict the optimal core allocation for

most benchmarks. Only one benchmark, streamcluster, was mispredicted on the Intel

platform. Four benchmark phases, sp.C-rhs, mg.D-psinv,mg.D-rprj3 and mg.D-interp

were mispredicted on the AMD platform. All these mispredicted core allocations

differ only by one core per node with the experimentally determined optimal core

allocations.
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Benchmark NuCore Alloc (%) Exp. Opt. Alloc (%) Constraint
streamcluster {6,0,0,0,0,0,0,0} (12.5%) {6,0,0,0,0,0,0,0} (12.5%) Max Out

canneal {6,6,6,3,0,0,0,0} (43.8%) {6,6,6,3,0,0,0,0} (43.8%) Max Out
facesim {6,6,4,0,0,0,0,0} (33.3%) {6,6,4,0,0,0,0,0} (33.3%) Max Out

mg.D-resid {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) None
mg.D-psinv {5,5,5,5,5,5,5,5} (83.3%) {6,6,6,6,6,6,6,6} (100%) None
mg.D-rprj3 {6,5,6,6,6,4,6,4} (89.6%) {6,5,6,6,6,4,6,5} (91.7%) Inter-Comm
mg.D-interp {6,5,6,6,6,4,6,4} (89.6%) {6,5,6,5,6,4,6,5} (91.7%) Inter-Comm

sp.C-x/y/zsovle {1,1,1,1,1,1,1,1} (16.7%) {1,1,1,1,1,1,1,1} (16.7%) Local/Remote Cont.
sp.C-rhs {6,5,6,4,5,4,5,4} (81.3%) {6,5,6,5,5,4,4,4} (81.3%) Local BW

dgemm (MKL) {2,6,6,6,6,6,6,6} (91.7%) {2,6,6,6,6,6,6,6} (91.7%) Local/Remote Cont.
dgemm (ACML) {3,6,6,6,6,6,6,6} (93.8%) {3,6,6,6,6,6,6,6} (93.8%) Local/Remote Cont.

Average 66.9% 69.7%

Benchmark NuCore Spdup Exp. Opt. Spdup Real Opt. Spdup
streamcluster 3.34 3.34 3.33 (3.33∼3.34)

canneal 1.38 1.38 1.37 (1.37∼1.38)
facesim 1.18 1.18 1.19 (1.19∼1.20)

mg.D-resid 1.00 1.00 1.00 (1.00∼1.00)
mg.D-psinv 0.93 1.00 0.99 (0.99∼1.00)
mg.D-rprj3 1.08 1.11 1.10 (1.10∼1.10)
mg.D-interp 1.08 1.09 1.10 (1.10∼1.11)

sp.C-x/y/zsovle 1.59 1.59 1.59 (1.59∼1.59)
sp.C-rhs 1.24 1.30 1.30 (1.30∼1.30)

dgemm (MKL) 1.55 1.55 1.55 (1.55∼1.56)
dgemm (ACML) 1.15 1.15 1.15 (1.15∼1.16)

Average 1.41 1.42 1.42 (1.42∼1.43)

Table 5.5: Predicted and experimentally determined optimal core allocations for
memory-intensive benchmarks on the AMD platform (speedup baseline is use-all-
cores allocation)
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Benchmark Varuna Alloc (%) Varuna Spdup
streamcluster 2,2,1,1,1,1,1,1 (20.8%) 1.85

canneal {6,6,6,6,6,6,6,6} (100%) 1.00
facesim {2,2,2,2,2,2,2,2} (33.3%) 1.02

mg.D-resid {3,3,3,3,3,3,3,2} (47.9%) 0.62
mg.D-psinv {6,6,6,6,6,6,6,6} (100%) 1.00
mg.D-rprj3 {6,6,6,6,6,6,6,6} (100%) 1.00
mg.D-interp {6,6,6,6,6,6,6,6} (100%) 1.00

sp.C-x/y/zsovle {2,2,2,1,1,1,1,1} (22.0%) 1.29
sp.C-rhs {4,4,4,3,3,3,3,3} (56.3%) 1.14

dgemm (MKL) {6,6,6,6,6,6,6,6} (100%) 1.00
dgemm (ACML) {6,6,6,6,6,6,6,6} (100%) 1.00

Average 70.9% 1.13

Table 5.6: Predicted optimal core allocations for memory-intensive benchmarks on
the AMD platform by Varuna (speedup baseline is use-all-cores allocation) [138].

Table 5.3 and Table 5.5 also gives the primary bandwidth constraint for each

benchmark in the “Constraint” column. In this column, “Local BW” refers to the

benchmarks that are primarily local memory bandwidth limited as discussed in Sec-

tion 3.2.1. “Max Out” refers to the benchmarks whose data are fully shared, and

whose scalability is primarily limited by the maximum output bandwidth of the

shared-data-node, as discussed in Section 3.2.3. “Local/Remote Cont.” refers to

the benchmarks whose data are partially shared, and whose scalability is primarily

limited by the local and remote accesses on the shared-data-node, as discussed in Sec-

tion 3.2.3. “Inter-Comm” refers to the benchmarks with inter-thread communication,

and are limited by the inter-node memory bandwidth, as discussed in Section 3.2.2.

Table 5.3 and Table 5.5 also give the speedup of NuCore-predicted optimal core

allocations (“NuCore Spdup”) over use-all-core allocations. As the table shows,

NuCore-predicted core allocation has a maximum speedup of 3.34 using only 12.5%

cores when executing streamcluster on the AMD platform. On the Intel platform, the

average speedup for the memory-intensive benchmarks is 1.13. On the AMD plat-

form, the average speedup is 1.42. More importantly, these speedups are achieved

with much fewer resources. NuCore only allocates 82.7% of all available cores on the

Intel platform on average, and 67.3% of all available cores on the AMD platform. The

overall average speedup is 1.27 with only 75.6% cores allocated.

We observe that there are two reasons for the slowdown of allocating more cores

than optimal. The first reason is the increasing local-remote-access contention which

slightly reduces the total bandwidth usages for certain benchmarks. The second

reason is the data starvation caused by bandwidth over-saturation. We observe that
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some threads have lower share of bandwidth than the others. These threads become

bottlenecks and slow down the whole program.

Table 5.3 and Table 5.5 also show that NuCore’s core allocations perform closely

to the experimentally-determined optimal core allocations (“Exp. Opt. Spdup”).

The average performance difference between the two is only 0.5%. Table 5.3 and

Table 5.5 also give the real optimal performance (and its confidence interval with 95%

confidence) estimated using EVT (“Real Opt. Spdup”). The average performance

difference between real optimal and DraMon is only 1.0%.

Table 5.4 and Table 5.6 give the optimal core allocations predicted by the state-

of-art predictive technique, Varuna, along with the performance of these predicted

core allocations [138]. Varuna treats each node similarly. It only predicts the optimal

number of cores, and allocates cores evenly from each node based on the predicted

core count. As Table 5.4 and Table 5.6 show, Varuna mispredicted the optimal

numbers of cores for four phases on the Intel platform and seven phases on the AMD

platform. These results suggesting that the accuracy of Varuna is considerable lower

than NuCore, which only mispredicted one phase on the Intel platform and four

phases on the AMD platform. Additionally, the core allocations predicted by Varuna

performed 19% worse than the those predicted by NuCore on average. These results

indicates the importance of considering NUMA heterogeneity when predicting the

optimal core allocation.

5.5.3 Results for Not-bandwidth-limited Benchmarks

Although the primary goal of NuCore is to correctly predict the optimal core al-

location for bandwidth-limited applications, it is also very important that NuCore

does not mispredict a not-bandwidth-limited application as bandwidth limited. For

the rest of the benchmarks, NuCore correctly predicted that they were not mem-

ory bandwidth limited. That is, if no other significant scalability issues exist, these

benchmarks perform best using all cores. On our experiment platforms, these bench-

marks indeed perform best when using all cores (other scalability issues are discussed

in Section 5.6).

NuMem can also predict the bandwidth usages of non-bandwidth-limited bench-

marks with high accuracy. The average MAPE for local, inter-node and total band-

width predictions for all 22 benchmarks on the Intel platform are 11.8%, 6.0%, and

8.8%, respectively. The corresponding errors on the AMD platform are 13.2%, 6.0%,
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Nodes Cores/Node Total Core # Pred. Time (sec) Notes
4 8 32 0.02 the Intel platform
8 6 48 0.02 the AMD platform
8 128 1,024 0.17 hypothetical
10 128 1,280 0.21 hypothetical
100 128 12,800 21.85 hypothetical
100 512 51,200 237.93 hypothetical

Table 5.7: DraMon prediction time.

and 11.7%.

5.5.4 Prediction Time of NuCore

We used a state-of-the-art MIP solver, SCIP, to solve NuCore instances [2]. The

maximum time to solve a NuCore instance on both Intel and AMD platforms is 0.02

seconds. The profiling phase requires running a program with one thread/core per

node for 0.5 seconds to sample PMU readings. Therefore, the total prediction time

is 0.52 seconds, which adds 0.5% overhead to the execution time of our benchmarks

on average. This low overhead makes NuCore suitable for run-time optimization. To

understand NuCore’s performance for future large NUMA systems, we used DraMon

to make predictions for several hypothetical platforms. The results are summarized in

Table 5.7. Table 5.7 shows that NuCore’s prediction time remains low for extremely

large systems. Even in the case of a 100-node system with total 50K cores, a NuCore

instance can be solved in 237.93 seconds. We believe this is a reasonable time for a

large and long-running program that can utilize 50K cores.

5.6 Discussion

Impact of Program Parallelism, Cache Contention and Synchronization on

Core Allocation: The primary goal of NuCore is predicting the optimal core alloca-

tions for bandwidth-limited programs. Other scalability limitations, such as program

parallelism, cache contention and synchronization are beyond the scope of this dis-

sertation. Because of their distinct characteristics, different scalability limitations

should be modeled individually. Existing or new techniques that focused on other

scalability limitations can be used with NuCore to predict optimal core allocations

to all types of programs [25, 60, 79, 86, 123, 144].
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Additionally, the only scalability limitation that is significant enough to affect

core allocation decisions on our systems is memory bandwidth. Because we used

large input sets designed for evaluating large systems, our benchmarks have abun-

dant parallelism. We did observe that synchronization and cache contention affect

scalability. However, because of the large caches (18MB and 6MB), the fast inter-

node links and large input sets, the impact of synchronization and cache contention

is not significant enough to affect core allocation decisions on our systems. For sys-

tems having smaller caches, slower inter-node links or smaller workloads, parallelism,

synchronization and cache contention may be significant. However, as stated above,

they should be modeled separately.

Cache Impact on Bandwidth Prediction: For the seven bandwidth-limited

benchmarks which already have high cache miss rates, their memory behaviors are not

affected significantly by cache contention.1 Therefore, NuMem achieves high accuracy

for these benchmarks without a cache model.

Most of the not-bandwidth-limited benchmarks have very low cache miss rates,

and are also not affected significantly by the cache contention.1 As a results, Nu-

Core also works well with most not-bandwidth-limited benchmarks. There are two

benchmarks, freqmine, and ep.D, that are more sensitive to the contention and data

sharing in the cache than other benchmarks. Including a cache model can improve

the accuracy of the bandwidth usage prediction for them [45, 60, 145, 160].

Prefetcher Impact: The prefetchers of the AMD platform are enabled. AMD

prefetchers are less-aggressive and can reduce prefetching requests in case of con-

tention [6]. Therefore, these prefetchers do not affect our models’ accuracy.

The Intel prefetchers are more aggressive, and consume considerable amount of

memory bandwidth and cache space [44, 121]. Without detailed knowledge of the

proprietary prefetching algorithm, it is extremely difficult to predict the prefetcher’s

impact. Therefore, we disabled the prefetchers on the Intel platform. Note that

NuCore can still improve the performance of many benchmarks and correctly predict

the optimal core allocations of many benchmarks with Intel prefetchers enabled. We

plan to model Intel’s prefetcher in the future.

1 A similar observation was made by previous research [161, 165].
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5.7 Summary

This chapter presented two models, NuMem and NuCore, to predict the bandwidth

usages and optimal core allocation for multi-threaded programs. Both models convert

the prediction problems into Mixed Integer Programming (MIP) problems to make

predictions. When evaluated on two large scale NUMA machines, NuMem shows a

low average prediction error of 10% for bandwidth usage predictions. The optimal

core allocations predicted by NuCore provides 1.27 speedup with over use-all-cores

allocations on average, with only 75.6% of all available cores allocated. The use of

MIP ensures that NuCore can make predictions within 0.02 seconds.
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Chapter 6

FlexThread: A Low-overhead and

Efficient Run-time Thread

Manager

6.1 Introduction

Chapter 4 and Chapter 5 presented the models for predicting the optimal core alloca-

tions for multi-threaded applications on large-scale NUMA platforms. However, after

the online prediction of the optimal core allocations, multi-threaded applications have

to adapt to their changing optimal core allocations during execution, which is still a

challenge to overcome.

As stated in the Chapter 1, the rigidity of current thread libraries prevents multi-

threaded applications from being reconfigured to use their optimal core allocations

at run-time without incurring a high performance penalty. Recall the example of a

multi-threaded application running on a machine with 16 cores. Initially, because the

optimal core allocation is unknown, the application is executed using all 16 cores with

16 threads. After brief profiling and model calculation, the application is predicted to

perform best with only 10 cores. However, because of the rigidity of current applica-

tions, it is impossible to change the number of threads during execution. Therefore,

we have to execute 16 threads on 10 cores, causing an unbalanced load on the cores

and performance degradation.

The inability to change the thread count of an application restricts previous opti-

mal core allocation research to applications with data-parallel loops [32, 33, 60, 144].
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The techniques that aim at enabling run-time core reallocation for any type of ap-

plications, either require source code modification or incur high overhead on NUMA

machines. Hence, these techniques are not readily applicable to existing applications

or large-scale NUMA platforms.

This chapter presents a run-time technique, FlexThread, which enables the core

reallocation for any multi-threaded application during execution, without high per-

formance penalty. FlexThread makes use of the fact that current multi-threaded

applications can partition their work into fine-grained small jobs when they are in-

structed to create and utilize a large number of threads, with one thread assigned

to process one small job. When a multi-threaded application adapts to a new core

allocation, FlexThread redistributes all jobs to this new core allocation in a way that

ensures each core gets similar load (similar number of jobs). Because one thread is

responsible for one job, redistributing a job to a new core is equivalent to re-mapping

its corresponding thread to the new core. The downside of creating numerous threads

is that it increases the number of synchronization operations. This increase can intro-

duce significant overhead. To reduce this overhead, FlexThread employs distributed

synchronization primitives.

We evaluated FlexThread on our two large-scale NUMA platforms (described in

Section 5.5.1) using PARSEC and NPB benchmarks [15, 75]. The experiment results

show that, compared to executing these benchmarks using one thread per core with

their optimal core allocations, FlexThread has less than 5% overhead. This low over-

head suggests that FlexThread can efficiently support the execution of multi-threaded

applications with varying optimal core allocations. Moreover, our results show that,

by improving load balancing, data sharing and processor utilization, FlexThread can

improve the performance of multi-threaded applications (over using just one thread

per core) by up to 382.9%. This performance improvement suggests that FlexThread

is actually a better option for executing multi-threaded applications.

The rest of this chapter is organized as follows. Section 6.2 discusses the load-

balancing problem in depth and presents our solution to this problem. Section 6.3

analyzes the potential overhead of our solution and discusses how to mitigate this

overhead. Section 6.6 analyzes how to determine the exact number of threads to

created. Section 6.7 presents the implementation of FlexThread. Section 6.8 evalu-

ates the performance and overhead of FlexThread, and Section 6.9 summarizes this

chapter.
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Figure 6.1: An example of a multi-threaded application starts with four threads on
four cores, which is adapted to use three-core optimal allocation during execution.

6.2 Solving Load-balancing Problem

This section quantitatively evaluates the performance penalty of current run-time

core reallocation techniques, and provides a solution to mitigate this performance

penalty.

6.2.1 The Load-Balancing Problem

As discussed in Section 6.1, the inability to change thread count during execution

causes unbalanced core loads among cores when adapting from one core allocation

to another. This unbalanced load can incur a high performance penalty. Figure 6.1

gives an example to illustrate the severity of this performance penalty. Note that

although the example in Figure 6.1 utilizes only one node of a NUMA machine, the

problem is universal and exists in use cases with multiple nodes. In Figure 6.1, a

multi-threaded application is executed on a quad-core processor. Because the opti-

mal core allocation of this application is unknown at the start-up time, four threads

are created to utilize all four cores. During execution, it is predicted that using three

cores is the best core allocation. Therefore, the application has to be adapted to use

three cores. However, because the thread count cannot be changed during execution,

the application is forced to execute four threads on three cores, which implies that

one core has to execute two threads, causing an unbalanced load. To estimate the

performance penalty caused by this unbalanced load, assume the sequential (single-

thread) execution time of this application is T . Ideally, when the application executes

on three cores, only three threads have to be created. As a result, the ideal execution

time on three cores is T
3

(assuming even job partitioning). However, in Figure 6.1,

four threads are running on three cores, with two threads running on one core. Con-

sequently, the execution time in Figure 6.1 is 2T
4

, which is 52% slower than the ideal

execution time of T
3
. That is, because of the rigidity of thread count, there is a 52%
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Figure 6.2: An example of a multi-threaded application starts with sixteen threads
on four cores, which is adapted to use three-core optimal allocation during execution.

performance penalty when adapting from one core allocation to another, for this ex-

ample. Similarly, on a NUMA machine with 32 cores, this performance penalty can

be as high as 75% in theory.1

6.2.2 Solution to the Load-Balancing Problem

Although many multi-threaded applications do not allow changing thread count dur-

ing execution, nearly all multi-threaded applications allow users to specify the num-

bers of threads to use for execution. Based on the numbers of threads specified, the

algorithms of these applications partition their work (roughly) evenly into equal num-

bers of small jobs, and assign one job to one thread. Consequently, if an application is

instructed to create a large number of jobs, it can partition its work into fine-grained

small jobs. These fine-grained small jobs can easily be mapped to a allocation to

achieve near-ideal load balancing.

Figure 6.2 presents an example similar to the case in Figure 6.1. However, un-

like Figure 6.1, sixteen threads are created in Figure 6.2 instead of four. In Fig-

ure 6.2, when executing sixteen threads on three cores, two cores are assigned with

five threads, while one core is assigned with six threads. Similar to the example in

Figure 6.2, let the sequential execution time of this application be T . The execution

time of sixteen threads on three cores is then 6T
16

, which is 14% slower than the ideal

execution time of using only three threads. This slowdown is considerably smaller

than the 52% slowdown in Figure 6.1. If more threads can be created, this slowdown

can be further reduced. For example, if 128 threads are created, then the execution

time is 43T
128

, which is only 2% slower than using three threads.

In summary, When an application creates a large number of threads, the applica-

1This 75% overhead happens when executing 32 threads on an optimal core allocation of 28 cores
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tion partitions its work into fine-grained small jobs. These small jobs can be easily

mapped to any core allocation with near-ideal load balancing, and thus allows the

application to adapt to any core allocation without significant performance penalty

from unbalanced loads.

6.3 Mitigating Overhead

Creating large numbers of threads can reduce the performance penalty from an un-

balanced load. However, executing large numbers of threads may also introduce con-

siderable overhead. This section analyzes the source of this overhead, and proposes

solutions to mitigate this overhead.

6.4 The Overhead of Massive Threads

Although executing large numbers of threads solves the problem of unbalanced loads,

it increases the execution time of an application because it increases the number of

context switches and synchronization operations and thus increases the overhead.

To understand the impact of additional context switches and synchronizations, we

experimented with a synthetic benchmark called sync on the 32-core Intel NUMA ma-

chine described in Section 5.5. Sync creates several threads. Each thread repeatedly

multiplies an integer with itself, and saves the result back to this integer. Because

each thread only uses one integer, there is little use of memory, allowing us to fo-

cus on the overhead of context switches and synchronizations. The benchmark stops

when a total of 1.3× 1011 multiplications are performed by all threads, as 1.3× 1011

multiplications represent a workload large enough to fully utilize 32 cores.

To determine the overhead introduced by context switches, we ran the benchmark

with two configurations. In the first configuration, or the “base-line” configuration,

the benchmark is executed using different numbers of cores with thread counts always

equal to the number of cores. In the second configuration, the benchmark is executed

using different numbers of cores with 256 threads. By comparing these two configu-

rations, we can determine the overhead from the context switches of large numbers

of threads. Figure 6.3 gives the execution times of these two configurations. As Fig-

ure 6.3 shows, both configurations perform similarly, indicating that context switches

add little overhead. Using lmBench benchmarks, we also determined the time of a

context switch, which is 2000ns [98]. On Linux, the scheduling time slice is 100ms
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Figure 6.3: The execution time of sync under two configurations. “Baseline”: same
numbers of threads and cores (1 thread per cores). “256-threads”: always use 256
threads. Only context switch overhead is included in this experiment.
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Figure 6.4: The execution time of sync under two configurations. “Baseline”: same
numbers of threads and cores (1 thread per cores). “256-threads”: always use 256
threads. Synchronization overhead is included in this experiment.

or 1 × 108ns. That is, for every 100ms of execution, an extra 2000ns context switch

time is required. Comparing to the time slice, 2000ns is negligible, suggesting that

context switches add little overhead.

To determine the overhead introduced by synchronization operations, we extended

sync with barriers: after every 1.3× 106 multiplications, each thread of sync pauses,

and calls pthread barrier to synchronize with each other. We choose to stop every

1.3× 106 multiplications to mimic the synchronization frequency of PARSEC bench-

mark streamcluster, which is one of the benchmarks with the highest synchronization

frequency [15]. Pausing every 1.3× 106 multiplications roughly equals pausing every

0.0015 seconds. The benchmark still stops when a total of 1.3× 1011 multiplications

are performed. We ran the benchmark with two configurations. In the first config-
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uration, or the “base-line” configuration, the benchmark is executed using different

numbers of cores with a thread count that equals the core count. In the second

configuration, the benchmark is executed using different numbers of cores with 256

threads. Figure 6.4 gives the execution times of these two configurations. As Fig-

ure 6.4 shows, synchronization operations add significant overhead when executing

large numbers of threads. When executing 256 threads on 32 cores, the overhead is as

high as 16670.5%. Similarly, we observe that a conditional variable, which is another

common type of synchronization, also adds considerable overhead.

In summary, our experimental results demonstrate that synchronization opera-

tions are the primary cause of overhead when executing large number of threads on

NUMA machines.

6.5 Mitigating Synchronization Overhead

The performance impact of large-scale parallel systems has long been studied and

understood [3, 9, 46, 54, 56, 97, 99, 122, 124, 131, 132, 156]. The fundamental cause

of the synchronization overhead is the sharing of the synchronization variables among

nodes. These variables are used by concurrent threads to record their execution status

and control the access to common resources. For example, in a barrier, one integer is

shared by concurrent threads to record how many threads have reached the barrier.

For correctness, these variables must be updated with atomic operations. On a NUMA

machine, an atomic update is very expensive when the variable is shared by threads

on multiple nodes, because there are usually three steps involved in an atomic update.

First, the node that has the newest value of a shared variable must send this value

to the node who wants to make an update. Second, the node that wants to make

an update must send messages to the other nodes to invalidate their cached copies

of this shared variable. In the last step, the value of the shared variable is updated.

When there are large numbers of threads which all want to update a shared variable,

the value of the share variable and the invalidation messages are frequently sent back

and froth among nodes, which greatly increases the execution time.

Previous research solved the performance bottleneck of the shared variable by

decomposing one shared global variable into multiple local variables, and utilize a

hierarchical design of local and global variables [3, 9, 46, 54, 56, 97, 99, 122, 124,

131, 132, 156]. Threads running on a node mostly access the variable that is local

to their node. Threads only access a global variable when they have to communicate
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Figure 6.5: The execution time of sync with distributed synchronizations under two
configurations. “Baseline”: same numbers of threads and cores (1 thread per cores).
“256-threads”: always use 256 threads.

with threads on other nodes. In this way, unnecessary inter-node communications

are eliminated. For example, the integer counter of a barrier can be decomposed

into several node-level counters and one global counter. When a thread reaches the

barrier, it first updates the local counter of its node. If there are still other threads on

this node that have not reached the barrier, this thread simply goes to sleep. There is

no inter-node communication required for this case. If all threads on this node have

reached the barrier, then this thread can proceed to update the global counter. Only

one global variable atomic update is required for each node. As a result, the overhead

of synchronization can be mitigated.

To determine how much overhead can be mitigated by distributing shared vari-

ables, we applied the distributed synchronization algorithms designed by Mellor-

Crummey and Scott to our synthetic benchmark sync [99, 132]. We then ran the

new sync benchmark using the same two configurations as those found in Figure 6.4.

The experimental results are shown in Figure 6.5. As Figure 6.5 shows, distributing

shared variables can significantly reduce the overhead of synchronizing large numbers

of threads. In Figure 6.5, the overhead of executing 256 threads on 32 cores is only

4.5%, compared to the 16670.5% overhead of non-distributed synchronization.

In summary, distributed synchronization primitives can significantly reduce the

overhead of executing large numbers of threads. Combined with the benefit of bet-

ter load balancing from executing large numbers of threads, it is possible to adapt

a multi-threaded application to any core allocation during execution without high

performance penalty.
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6.6 How Many Threads to Create?

If we examine the results in Figure 6.5 closely, we can see that although the overhead

of running 256 threads on 32 cores is low, the overhead (45%) of running 256 threads

on 1 core is too high. It is worth noting that despite distributed synchronizations

removing unnecessary inter-node communications, a synchronization operation still

requires an atomic memory update and a system call to suspend a thread (in case of

waiting). This update and system call cannot be eliminated. Consequently, there is

still overhead associated with distributed synchronization when executing large num-

bers of threads. If the thread count is high, the overhead may still be unacceptable. 2

That is, there is a limit on how many threads can be created to ensure that the

overhead remains within an acceptable level.

However, it is easy to see that, for load-balancing, the more threads created, the

lower the performance penalty. Clearly, there is a trade-off between load-balancing

and synchronization overhead, and it is important to determine the number of threads

to create to ensure the overall slowdown is low. This section provides an analysis to

determine this thread count, from both theoretical and practical perspectives.

6.6.1 Minimum Thread Count for Good Load-Balancing

For the slowdown caused by an unbalanced load, it is possible to determine the

minimal thread count that is required to ensure a particular slowdown threshold

by comparing the theoretical ideal performance with the theoretical performance of

certain thread counts. The following paragraphs present this theoretical analysis.

Let the sequential execution time of an application be T . Let the core count of

the optimal core allocation be c. The theoretically ideal performance is achieve when

running c threads on c cores. That is, the ideal performance is

Perfideal =
T

c
. (6.1)

Let the number of threads created be t. Running t threads on c implies that the

highest number of threads per core is

d t
c
e. (6.2)

2Strictly speaking, if the thread count per core is high, the overhead may still be unacceptable.
Given that the memory update and system call are mostly local to a core, thread count per core is
more important than the total number of threads.
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The performance of executing t threads on c cores is bound by the performance

of the cores with the highest thread counts. Therefore, the performance of t threads

on c cores is

Perft =
d t
c
e × T
t

. (6.3)

Therefore, the slowdown of t threads on c cores, comparing to the ideal perfor-

mance is
d t
c
e × c
t

− 100%. (6.4)

Let the maximum number of cores on a NUMA machine be n. The core count, c,

of an optimal core allocation can be any number between 1 and n. Let the maximum

slowdown of running t threads on any number of c cores be smax. smax can be

computed easily as

smax = max(
d t
c
e × c
t

− 100%), 1 ≤ c ≤ n (6.5)

If the maximum number of cores of a NUMA machine is known, it is easy to

determine the maximum slowdown for different thread counts. For example, Table 6.1

gives the maximum slowdown for several thread counts on the 32-core Intel machine.

If a desired slowdown is less than 5%, then based on Table 6.1, a minimum of 768

threads is required.

Thread count 128 256 512 768 1024
Max slowdown 32% 15% 8% 5% 3%

Table 6.1: The theoretical maximum slowdown of executing various thread counts on
the 32-core Intel platform.

However, based on our experimental results with PARSEC and NPB benchmarks,

to ensure that slowdown is always smaller than 5%, only 256 threads are required in

practice. Equation (6.5) is based on the assumptions that there is no interference

from external sources, such as OS scheduling and memory contention. However, our

experimental results show that external interference can cause at least 3% fluctua-

tion. That is, the actual performance of executing one thread per core is at least 3%

worse than the theoretical one-thread-per-core performance. Therefore, the actual

slowdown of executing large number of threads than real one-thread-per-core exe-

cution is usually smaller than the theoretical values in Table 6.1. Additionally, the

thread count difference between two cores is at most one. For 256 threads, one thread
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only accounts for 0.4% of the total work of an application. Given that one thread

represents only a small piece of work, the performance difference among cores is not

significant with 256 threads. To sum up, in practice 256 threads is usually enough to

ensure a maximum 5% slowdown on a 32 core machine.

In summary, Equation (6.5) provides a start point to select a few thread counts

as candidates of the minimum thread count for their performance goals. Then ex-

periments with a few benchmarks can determine which thread count is the actual

minimum requirement. We provide tools to automate this procedure to help users

determine the minimum thread count for their particular platforms and needs.

6.6.2 Maximum Thread Count for Low Synchronization Over-

head

For the slowdown caused by synchronization, it is possible to determine the maximum

thread count required to ensure a particular slowdown threshold, by computing the

overhead from synchronization operations. The following paragraphs present the

theoretical analysis.

As stated in the beginning of this section, a synchronization operation requires an

atomic memory update and a system call to suspend a thread (in case of waiting).

Because the memory update is local to a core, and the system calls on different cores

can be parallelized, analyzing the overhead of synchronization operations is equivalent

to analyzing the overhead of memory update and system call on a single core.

Let the core count of the optimal core allocation be c. Let the number of threads

created be t. Equation (6.2) gives the thread count per core. Let the maximum pos-

sible synchronization frequency of an application be f (synchronizations per second),

when the application executes sequentially. Then the frequency of executing t threads

on c cores is,

d t
c
e × f. (6.6)

Let the time required for an memory update be Tmem, and the time required for a

thread-suspending system call be Tsyscall. Combining the frequency in Equation (6.6),

the time that it takes to carry out synchronization operations per core for every second

is

d t
c
e × f × (Tmem + Tsyscall). (6.7)

Let the maximum acceptable slowdown be s. The maximum acceptable time for
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synchronization per second is then s×1 second. The maximum thread count, denoted

by tmax, that allows no more than s× 1 second synchronization time every second is

then

tmax = max(t|∀c, (d t
c
e × f × (Tmem + Tsyscall)) < s). (6.8)

Equation (6.8) provides a means to estimate the maximum number of threads to

satisfy a particular performance target, given that s, f , Tmem, Tsyscall and the range

of c are known. As an example, we compute the tmax on the 32-core Intel platform.

The maximum frequency, f , of our benchmarks on this platform is 667 per second

(the frequency of streamcluster). Using lmBench, we can also determine that Tmem

and Tsyscall are 200ns and 2000ns. The maximum value of c is the total number of

cores on the Intel platform, which is 32. The minimum value of c, determined using

the most memory-intensive benchmark ld mem from lmBench, is 8.3 Suppose the

performance goal, s, is 5%, we can then compute the value of tmax, which is 272

threads. We provide tools to automate this procedure to help users determine the

maximum thread count for their particular platforms and needs.

6.6.3 Summary for Thread Count Analysis

Section 6.6.1 and Section 6.6.2 provide an analysis to determine the maximum and

minimum of the number of threads to create, so that a particular performance goal can

be achieved for run-time core reallocation. Users can then select a number between the

maximum and the minimum as the thread count for their applications. For example,

on the 32-core Intel platform, the maximum number is 272, the minimum number is

256, and an user can choose 256 as their thread count. Because the slowdown imposed

by unbalanced load and synchronization overhead is platform specific, determining

the proper thread count requires experiments on the target platform. We also provide

automatic tools to help users determine these values on their platforms.

6.7 Implementation

Incorporating the techniques of Section 6.2 and Section 6.3, we implemented the

FlexThread technique to enable efficient run-time core reallocation. FlexThread pro-

vides distributed synchronization primitives that implement the algorithms designed

3ld mem is a benchmark that is used to acquired the maximum bandwidth. Therefore, it is the
most memory-intensive application we have.
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by Mellor-Crummey and Scott [99, 132]. More specifically, FlexThread implements

tree barriers, distributed mutexes and distributed condition variables. Because these

algorithms are well documented by previous research, we do not elaborate on them

in this dissertation.

However, because existing applications are hard-coded to utilized traditional non-

distributed synchronization primitives, additional effort must be taken to convert

these applications to distributed synchronizations without modifying their source

code. When designing FlexThread, we particularlly focused on enabling distributed

synchronizations for applications using POSIX Threads (Pthreads) or GNU OpenMP

(GOMP), which are two popular thread libraries [65, 146].

FlexThread provides synchronization interfaces that are compatible with the POSIX

Threads specifications. For example, FlexThread provides implementations for pthread barrier wait

function, following POSIX interface standards. When executing an application, users

must specify the value of an environment variable, “LD PRELOAD”, to be the path

of the REEact library with FlexThread implementation. The OS then automatically

links any Pthreads functions to the implementation of FlexThread. For example,

when an application calls function pthread barrier wait, it invokes the distributed im-

plementation of FlexThread instead of the default non-distributed implementation.

In this way, all synchronization calls by multi-threaded applications are converted to

distributed synchronizations without source code modification.

For GOMP, we acquired the source code of GOMP library, and modified GOMP

source code to use distributed synchronizations. Note that GOMP source code is not

application source code. It is the source code of the thread library used by multi-

threaded applications. After GOMP library is converted to distributed synchroniza-

tion, applications using GOMP library are automatically converted to distributed

synchronizations without application source code modification.

6.8 Experimental Evaluation

This section presents the experimental evaluation of FlexThread’s performance.

6.8.1 Experiment Setup

We evaluated FlexThread on our Intel and AMD NUMA platforms. A detailed de-

scription of the Intel and AMD platforms can be found in Section 5.5.1. We conducted
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experiments with benchmarks from PARSEC and NPB benchmark suites [15, 75].

Two PARSEC benchmarks, raytrace and x264, experienced segmentation faults when

executed with more than 64 threads, so they were excluded from our experiments.

PARSEC’s native input sets were used for PARSEC benchmarks, except for swap-

tions. For swaptions, we used a input set that was twice the size of its native input

set. NPB’s D input sets were used for NPB benchmarks. These input sets are large

enough to fully utilize the large number of cores and threads used in our experi-

ments. NPB benchmark dc was excluded from our experiments because it does not

have D input set. The information of compiler and compilation flags can be found in

Section 5.5.1.

6.8.2 Evaluation Goals and Evaluation Metric

Because FlexThread aims at supporting the efficient execution of multi-threaded ap-

plications with different optimal core allocations, each benchmark was executed with

its optimal core allocation in this evaluation. The optimal core allocation for each

benchmark can be found in Section 5.5. We run each benchmark with three configu-

rations on both platforms:

1. The first configuration, which is called the “baseline”, uses one thread per core

with default PThreads and GOMP libraries on Linux. This configuration gives

the best performance that users can get when FlexThread is not used.

2. The second configuration, which is called the “dist-sync”, uses one thread per

core with FlexThread’s distributed synchronizations. The second configuration

gives the best performance that users can get with distributed synchronization.

3. The third configuration, or the FlexThread configuration, always uses 256 threads

with FlexThread. We chose 256 threads, because it provides less-than-5%-

overhead guarantee on both of our NUMA platforms, based our analysis in

Section 6.6. This third configuration gives the actual performance that users

can expect with FlexThread.

Comparing the performance of the three configurations answers the following three

questions:

1. What is the performance benefit of using distributed synchronization? We

answer this question by comparing the first and second configurations.
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2. What is the performance impact of executing large numbers of threads? We

answer this question by comparing the second and third configurations.

3. What is overall performance improvement or slowdown of FlexThread (i.e.,

combined performance impact of distributed synchronization and large numbers

of threads) over current thread libraries? We answer this question by comparing

the first and third configurations.

Note that any performance improvement observed in this section is from distributed

synchronization and large numbers of threads, instead of better core allocations, be-

cause all benchmarks are already executed with their optimal core allocations. The

total performance benefit of using optimal core allocation and FlexThread over all-

cores allocations is presented in the next Chapter(8.

We run each benchmark with each configuration with five trials. We then com-

puted the average execution time for that benchmark under that configuration. We

then report the performance improvement of one configuration over another. More

specifically, for any two configurations, conf1 and conf2, the performance improve-

ment of conf2 over conf1 is defined as,

Perf Improv =
Timeconf1 − Timeconf2

Timeconf2

× 100%. (6.9)

Positive values of Perf Improv indicate performance improvement, and negative

values indicate slowdown (or overhead).

6.8.3 Results for PARSEC Benchmarks

Figure 6.6 gives the performance improvement of the “dist-sync”, or the distributed

synchronization, and FlexThread configurations over the “baseline” configuration, for

PARSEC benchmarks on Intel and AMD NUMA platforms.

Performance Improvement of Distributed Synchronization

Figure 6.6 shows that the “dist-sync” performs better than the “baseline” for every

benchmark on both machines, suggesting that distributed synchronization improves

performance. The average speedup of the “dist-sync”, is 17.46% for all PARSEC

benchmarks on both platforms.

102



-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

streacluster

canneal

facesim

fluidanim
ate

swaptions

blackscholes

bodytrack

vips
ferret

freqm
ine

Pe
rf

o
rm

a
n
ce

 I
m

p
ro

v
e
m

e
n
t 

(%
)

Benchmarks

dist-sync
FlexThread

(a) Results on Intel Platform
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(b) Results on AMD Platform

Figure 6.6: Performance improvement of the “dist-sync” and FlexThread configura-
tions over the “baseline” configuration for PARSEC benchmarks on Intel and AMD
NUMA platforms. Positive values indicate speedup while negative values indicate
slowdown.
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Performance Impact of Large Number of Threads

By comparing the “dist-sync” and FlexThread configurations, we can determine the

performance impact of executing large numbers of threads for PARSEC benchmarks.

Executing large numbers of threads, interestingly, does not always mean slowing

down. In fact, in Figure 6.6, five benchmarks, blackscholes, ferret, vips, fluidani-

mate and swaptions, have performance improvement when executing with 256 threads

(FlexThread), than using one thread per core (“dist-sync”). For blacksholes, we ob-

served that executing large numbers of threads promoted the data sharing in the L1

cache, thus improving performance. For ferret, executing large numbers of threads

improved its processor utilization, which in-turn improved performance. Ferret has

considerable I/O operations, and thus its threads frequently suspend for I/O waits.

As a result, ferret had low processor utilization when executing with only one thread

per core. Similarly, vips also enjoyed improved processor utilization and better per-

formance with 256 threads on the AMD platform. For fluidanimate and swaptions on

the AMD platform, their performance improvement came from better load-balancing.

Both fluidanimate and swaptions can only partition their work into smaller jobs with

a count of power of 2. However, the AMD platform has 48 cores, and neither flu-

idanimate or swaptions can evenly partition their work in 48 small jobs for parallel

execution. Hence, the performance of these two benchmarks suffered from unbalanced

loads on 48 cores. Whereas, using 256 threads achieves much better load balancing,

hence, achieved better performance.

Most of the rest of the benchmarks experienced limited slowdown when executing

with large numbers of threads. These benchmarks had less than 5% slowdown with

256 threads. Three cases, which are bodytrack, facesim, and fluidanimate (on the

Intel platform only), had slowdown higher than 5%. This slowdown is caused by cur-

rent Linux scheduler, who frequently switches lock-holding threads out. The threads

switched in, however, are quickly switched out because they fail to acquire locks. This

scheduling scheme significantly increases context switches and degrades performance.

A solution for this problem has been proposed, and we plan to implement this solution

in the future [122].

In summary, executing large numbers of threads provides performance improve-

ment in many cases, and the slowdown is usually limited within 5%. If the negative

impact of the Linux scheduler is excluded from the results, executing large number

of threads provides 9.75% speedup on average, over running one thread per core.
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Performance Impact of FlexThread

As shown in Figure 6.6, FlexThread provides better performance than current thread

libraries (“baseline” configuration) for most PARSEC benchmarks. The highest per-

formance improvement of FlexThread is 62.9%, which is achieved with cannel on

the Intel platform. The average performance improvement of FlexThread is 16.3%

for PARSEC benchmarks on the two platforms. These results suggest that not only

does FlexThread support the efficient execution of PARSEC benchmarks with their

varying optimal core allocations, it is actually a better option for executing PARSEC

benchmarks than current thread libraries, because it provides considerably better

performance.

6.8.4 Results for NPB Benchmarks

Table 6.2 and Table 6.3 give the performance improvement of the “dist-sync” and

FlexThread configurations over the “baseline” configuration, for NPB benchmarks

on the Intel and AMD NUMA platforms. Because NPB benchmarks have multiple

phases, we present the results for each phase. The function name of each phase is

also given in Table 6.2 and Table 6.3.

Performance Improvement of Distributed Synchronization

Table 6.2 and Table 6.3 show that the “dist-sync” configuration performs better than

the “baseline” configuration for every NPB benchmark on both machines, suggesting

that distributed synchronization improves performance. The average speedup of the

“dist-sync” configuration is 21.4% for all NPB benchmarks on both platforms.

Performance Impact of Large Number of Threads

By comparing the “dist-sync” and FlexThread configurations in Table 6.2 and Ta-

ble 6.3, we can determine the performance impact of executing large numbers of

threads.

Similar to the results of PARSEC benchmarks, executing large numbers of threads

also improved performance for several NPB benchmarks, including mg.D on the Intel

platform, ep.D on Intel platform, is.D on the AMD platform, cg.D on the AMD

platforms and lu.D on the both platforms. Their performance improved using large
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benchmark phase “dist-sync” FlexThread

mg.D

resid 5.4% 15.2%
psinv 5.0% 7.8%
rprj3 8.8% 3.7%
interp 8.5% 30.9%
norm2 0.1& -0.4%
comm3 505.6% 382.9%

sp.D

xsolve 5.83% -0.1%
ysolve 0.84% -2.4%
zsolve -2.1% -4.4%

rhs 13.7% 9.0%

ep.D
Gaussian Pairs -1.8% -1.2%

Random Numbers 0% 7.6%
cg.D conjgd 4.0% 3.8%

bt.D

xsolve 1.4% 1.8%
ysolve 2.0% 4.2%
zsolve 0.7% -2.6%

rhs 12.4% 7.8%
is.D benchmarking -0.3% -2.9%

ft.D
fft 1.4% 0.6%

evolve 17.8% 17.7%

lu.D

rhs 8.1% 2.7%
jacld -3.2% 22.4%
blts 23.2% 23.3%
jacu 8.0% 17.0%

ua.D convect 3.0% 0.9%
average 25.1% 21.8%

Table 6.2: Performance improvement of the “dist-sync” and FlexThread configura-
tions over the “baseline” configuration for PARSEC benchmarks on Intel NUMA
platforms. Positive values indicate speedup while negative values indicate slowdown.
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benchmark phase “dist-sync” FlexThread

mg.D

resid 0.7% -4.3%
psinv 1.6% -4.9%
rprj3 11.8% 7.1%
interp 11.4% 8.1%
norm2 6.6& -2.0%
comm3 185.9% 103.8%

sp.D

xsolve -0.7% 8.5%
ysolve -0.5% 2.0%
zsolve 7.0% 7.1%

rhs 13.7% 9.0%

ep.D
Gaussian Pairs 2.81% -1.9%

Random Numbers 123.3% 127.1%
cg.D conjgd 4.2% 11.2%

bt.D

xsolve 4.8% 6.3%
ysolve 3.9% 2.4%
zsolve 0.1% 0.1%

rhs 9.68% 5.85%
is.D benchmarking 0.1% 32.0%

ft.D
fft -4.3% 2.8%

evolve 26.0% 20.4%

lu.D

rhs 27.5% 22.4%
jacld -7.6% 6.5%
blts 4.0% 1.9%
jacu 7.4% 15.1%

ua.D convect 2.9% -1.9%
average 17.7% 15.4%

Table 6.3: Performance improvement of the “dist-sync” and FlexThread configura-
tions over the “baseline” configuration for PARSEC benchmarks on AMD NUMA
platforms. Positive values indicate speedup while negative values indicate slowdown.
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number of threads, as fine-grained work partitioning promoted data sharing in the L1

cache, which in-turn reduced the number of local and inter-node memory accesses.

For most NPB benchmarks, the slowdown caused by executing large numbers of

threads was less than 5%, suggesting that the overhead of using large numbers of

threads is limited. Only in the case of mg.D with phase comm3 did the slowdown

become larger than 5%. Comm3 is a very short phase. Therefore, it has very high syn-

chronization frequency, causing the higher slowdown. However, comm3 only accounts

for less than 1% of the execution time of mg.D. As a result, the higher slowdown had

little impact on the overall execution time of the benchmark.

Performance Impact of FlexThread

As shown in Table 6.2 and Table 6.3, for many NPB benchmarks, FlexThread provides

better performance than current thread libraries (“baseline” configuration). The high-

est performance improvement of FlexThread is 382.9%, which is achieved with mg.D

on the Intel platform. The average performance improvement of FlexThread is 18.6%

for NPB benchmarks on the two platforms. This result suggests that FlexThread

supports the efficient execution of NPB benchmarks with their varying optimal core

allocations. Moreover, the overall performance benefits of FlexThread suggest that

FlexThread should be always used for executing these benchmarks instead of current

thread libraries.

6.9 Summary

The rigidity of current multi-threaded applications prevents them from being effi-

ciently adapted to their optimal core allocations at run-time. This chapter provides a

detailed analysis of this problem and proposes a solution of executing large numbers

of threads with distributed synchronization. We implemented this technique into a

run-time system called FlexThread. We then evaluated FlexThread on two large-

scale NUMA platforms with PARSEC and NPB benchmarks, using their optimal

core allocations. The experimental results show that benchmarks managed by Flex-

Thread had less than 5% slowdown compared to directly executing them with one

thread per core using their optimal core allocations. More importantly, compared to

using one thread per core, FlexThread can also provides up to 382.9% performance

improvement. These results suggesting that not only does FlexThread support the
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efficient execution of multi-threaded applications with varying optimal core alloca-

tions, FlexThread should be used for executing these applications instead of current

thread libraries, because of its performance benefits.

109



Chapter 7

REEact: A Customizable

Run-time Framework for Multicore

Platforms1

7.1 Introduction

Chapter 4, Chapter 5 and Chapter 6 present models and techniques for the predic-

tion and adaptation of the optimal core allocations for multi-threaded applications

running on large-scale NUMA machines. However, these models and techniques can-

not directly benefit ordinary users, because applying them requires run-time memory

behavior profiling, hardware configuration and application execution management.

This chapter describes a run-time framework called REEact, which provides services

to support run-time memory behavior profiling, hardware configuration detection,

and application execution management.

If we extend our vision to a broader scope, it is easy to see that as the core counts

and sophistication of modern chip multiprocessors (CMPs) increase, run-time man-

agement techniques are needed to address various resource management challenges.

There have been a flurry of such techniques proposed by the research community,

such as cache contention management [29, 76, 168], processor temperature manage-

ment [162, 163], and process variation management [147, 158]. While these and other

adaptive policies have shown significant promise, Users, such as system administra-

1This project was conducted jointly with Dr. Bruce Childers and Dr. Ryan Moore from University
of Pittsburgh, as well as Dr. Mary Jane Irwin, Dr. Mahmut Kandemir and Mr. Mahmut Aktasoglu
from Pennsylvania State University.
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tors, application developers, and other technical experts, need a platform to create,

customize, and deploy adaptive resource management policies that address a myr-

iad of design goals and requirements. These policies must also be plug and play as

user-specific, application-specific and hardware-specific goals change.

For example, consider two users. The users are executing the same application on

two identical machines (i.e., the same CMP architecture). However, the users have

two distinct requirements. UserA has a tight power budget and prefers a management

policy that focuses on minimizing power consumption. UserB desires a management

policy that prioritizes performance over power consumption. These goals are contra-

dictory and require distinct management policies. Given the wide range of distinct

requirements, it is desirable that management frameworks support flexibility as user

requirements, or application requirements, or even hardware characteristics, change.

Currently, most resource management policies are implemented in the operating

system (OS) kernel. However, the OS is not well-suited for implementing and incor-

porating custom policies for two reasons:

1. The OS is not designed to take into account application-specific information

when making management decisions. However, with application-specific infor-

mation, user-level management policies can adjust the execution of applications

in a way that is not possible with current OSes. For example, consider an ap-

plication that uses work-stealing. Work-stealing allows the number of worker

threads spawned by the application to be dynamically adjusted. If details of

the work-stealing design are known, the management policy can dynamically

increase the number of the application’s worker threads when the system is

underutilized, and reduce the number of threads for better fairness when the

system is over-utilized.

2. The complexity of modifying OS policies or adding new ones to the OS is high,

which can prevent users from designing their own policies. Even after a custom

policy is implemented and carefully tested, much effort has to be made when the

same policy is ported to another OS or the user-goal is changed. Furthermore,

custom policies in OS kernels may introduce security issues if they are not

carefully designed and tested.

Implementing resource management policies at the user-level is easier, and it al-

lows utilization of application-specific information. Previous work has proposed dif-

ferent techniques for user-level resource management [8, 35, 47, 169]. However, these
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techniques do not necessarily provide easy customization by the user, and some tech-

niques only target a subset of resource management problems of CMPs. Moreover,

some techniques do not provide the means to utilize online performance monitoring

technology available in modern CMPs. This monitoring capability is widely used

by many policies to monitor the system and dynamically adjust management deci-

sions [29, 76, 147, 158, 162, 163, 168].

In this dissertation, we advocate using a user-level run-time system to provide a

framework for easy integration and development of custom CMP resource manage-

ment policies. To design a user-level run-time framework, there are several challenges

to overcome. The first challenge is to provide the necessary resource management fa-

cilities to allow easy development of customized resource management policies. These

facilities include allocating hardware resources, adjusting application execution, and

collecting run-time information about the resource landscape and application status.

Furthermore, the run-time-implemented policies should dynamically adapt based on

the actual run-time environment. Additionally, the run-time framework should be

carefully designed so that management overhead does not outweigh the benefit of a

custom management policy.

This chapter presents a Customizable Virtual Execution Manager (REEact) which

provides the flexibility to implement dynamic custom resource management policies.

Situated between applications and the OS and hardware, REEact is active at run

time, and can use both application and hardware run-time information to manage

and coordinate the applications running in the system.

REEact provides the capability to specify custom management policies that need

dynamic adaptation. It offers basic services for resource and application management

to permit the incorporation of different management and coordination policies and

mechanisms, including those that are customized to a workload, computing environ-

ment and/or system goals. These services are exposed through easy-to-use application

programming interfaces (API), allowing quick development and testing without the

burden or difficulty of modifying global OS policies.

With REEact, custom policies can be easily ported across platforms, as long as a

few basic facilities are available on the target platform, such as thread pinning and

access to hardware performance counters. Currently, REEact supports two operating

systems, Linux and Solaris, and two ISAs, x86 and SPARC. Moreover, although we

introduce a new layer into the system, REEact is very lightweight. Its overhead is

typically less than 3% (see Section 7.3).
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To demonstrate REEact’s capabilities and usefulness for run-time management,

we present two case studies. The first case study examines how REEact can implement

a custom thermal management policy for a malfunctioning machine. The second case

study describes using REEact to dynamically control hardware prefetchers to reduce

power consumption without sacrificing performance.

The contributions of this chapter include:

1. The REEact framework that provides the capability to easily write user-specific,

application-specific and hardware-specific management policies with dynamic

adaptation. We describe REEact’s software architecture, which is designed to

be easy-to-use, extensible, configurable and portable. REEact also permits the

implementation of policies that consider application semantics.

2. A thorough evaluation of the overhead and scalability of REEact on a 32-core

NUMA platform. We demonstrate that, by careful design and implementa-

tion, a user-level virtual execution environment, like REEact, can perform ag-

gressive and fine-grained on-line monitoring, dynamic adaptation and multi-

application/thread coordination with very low overhead (<3%) and high scala-

bility (64 thread contexts).

3. Presentation of two case studies that demonstrate REEact’s flexibility for pro-

viding custom dynamic resource management. Evaluation of the two custom

policies show the flexibility, effectiveness and low overhead of REEact. The

results also highlight the benefits of customization. Over conventional systems,

case study 1 improves performance by up to 16%; and case study 2 improves

performance by up to 69%, energy consumption by up to 43%, and energy-

delay-product by up to 142%.

This chapter is organized as follows. Section 7.2 presents the high-level structure

and operation of REEact. Section 7.3 evaluates the overhead of REEact. Section 7.4

illustrates the operation and utility of REEact by presenting two case studies where

REEact manages the use of CMP resources as by specified policies. Section 7.5

concludes this chapter.
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7.2 REEact Framework

This section provides an overview of the REEact software architecture, and it de-

scribes the design of the framework and implementation choices.

7.2.1 REEact Software Architecture Overview

Resource 
Management
Policy

Application
Program

REEact APIs/
Libraries

Global Procedure()
{
    Global_Policy();
    ...
}

Local Procedure()
{
    Local_Policy();
    ...
}

Implement the policy
using REEact API and
adding REEact 
initialization calls to 
the applicaiton

GEM

LEM

Application 1

LEM

Application 2

LEM

Application 3

Operating System Hardware Resources

Status Query &
Execution Config

Status Query &
State Config

Figure 7.1: A custom policy requires implementing two procedures using the REEact
API.

Figure 7.1 sketches the flow of using REEact to implement the specified policies.

In REEact, a specified policy requires the implementation of two procedures using the

API provided by REEact: a global procedure that manages the execution of multiple

applications, and a local procedure that manages the execution of an application (and

its threads).

The modification to an existing application to use REEact is straightforward—the

main program of the application is modified to include a call to the REEact execution

manager. This call essentially places the control of the main thread of execution (as

well as subsequent threads the application may create) under the control of REEact.

No further modification to the application is required.

During execution, REEact is initialized and it invokes the two procedures of the

custom policy, and carries out the specified operations. By coordinating with the OS

and the hardware, these operations manage applications and hardware resources.

To illustrate REEact’s structure and operation, we first present a simple example.

In this example, REEact manages the execution of three multi-threaded applications

on a 16-core CMP. For ease of explanation, each core has a single execution context

(i.e., simultaneous multi-threading or hyper-threading is not supported). For this
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(a) REEact management of a single,
multi-threaded application.
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LEM
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Application 1

Application 2

Application 3

(b) REEact management of three, multi-threaded applications.

Figure 7.2: REEact dynamically allocated/deallocated resources (i.e., cores) using a
custom FCFS policy.

example, REEact manages the use of the computation resources (i.e., the cores) and

dynamically allocates or deallocates them during thread creation and termination

following a specified first-come, first-served (FCFS) policy.

In this example, the three applications, App1, App2, App3, create five, six, and

seven threads, respectively. We assume that App1 acquires all its resources before

App2 begins execution, and App2 acquires all its resources before App3 begins exe-

cution.

Initially, REEact initiates a global execution manager (GEM), which invokes the

global procedure to manage multiple applications. In this example, all 16 cores are

managed by the GEM. Since GEM’s execution has very low overhead, it is allowed to

execute on any core (even a core that is allocated to an application thread). When

App1 begins execution, REEact is loaded by the OS, and REEact invokes its ini-

tialization API routine. This call creates a local execution manager (LEM), which

invokes the local procedure to manage the application. The first action of the LEM
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is to communicate with the GEM and request a core. From this point on, the LEM

executes on any core that has been allocated to it (at this point it has one core).

As App1 executes, it creates other threads. REEact intercepts thread creation

calls, and notifies the LEM. The LEM communicates to the GEM requesting another

core (recall the policy is FCFS). At this point, the GEM has available cores and one

is allocated to this LEM. As application execution continues, additional threads are

created and cores are allocated in a similar manner.

Figure 7.2a illustrates the structure of REEact at this point. In the figure, five

cores (C0–C4) have been allocated to App1—one for each thread of the application.

The LEM thread, like the GEM thread, has low overhead and is permitted to run on

any of the cores allocated to the application (i.e., C0–C4).

When App2 starts, the same process occurs. Here, App2 creates six threads and

is therefore allocated six cores (C5–C10). Then App3 begins execution and requests

cores (there are now five unallocated cores remaining). The first five thread creations

result in a core being allocated for each thread. However, the sixth thread creation

results in the GEM informing App3’s LEM that no core is available. The LEM then

must map this thread to a core already allocated to it. The process is similar for the

seventh and final thread. The final state of execution is illustrated in Figure 7.2b.

The last two threads of App3 are mapped to cores C11 and C12, respectively.

Note that during the execution of an application, a thread may terminate. REEact

intercepts thread termination and notifies the applications’ LEMs. If the termination

of a thread frees a core, the core may be dynamically reallocated to other threads.

The LEM may map an existing thread to the core, or return the core to the GEM

for global reallocation. In this example, if a thread in App1 terminates, the core is

returned to the GEM which makes a global decision to offer it to App3. App3 can

then map one of the threads that is sharing a core to its own core.

REEact supports managing applications with multiple policies. Currently, in-

dividual policies are combined manually. REEact also permits the co-existence of

multiple GEMs, where each GEM controls some applications and resources using

different policies.
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API Component API Methods Notes
sendMessage

Communicator getMessage blocking
timeoutGetMessage non-blocking with timeout
readPMUperThread
readPMUperCore
getCoreTemperature

Monitor (HW Status) getTemperatureThreshold1 threshold temperature of DVFS
getTemperatureThreshold2 threshold temperature of core shutdown
getCoreFrequency
getHWComponentState e.g. whether prefetcher or L2 cache is disabled?

Monitor (Sys. Util.) getCoreUtilization
getSystemLoad

SW Actuator pinAppsToCores
pinThreadsToCores

HW Actuator enableHWComponent e.g. enable or disable hardware prefetchers
adjustFrequency adjust processor/core frequency or duty cycle
getUnallocCores
getAllocCores

App. State Tbl. (GEM) allocOrDeallocCore
getTotalCoreCount get the total number of cores
getCoresofCache get the cores that share a cache
getAllL2Caches get a list of available L2 caches

App. State Tbl. (LEM) getCurrentlyUsingCores get the cores allocated to this LEM
getAppThreads

Table 7.1: API component and their associated methods currently provided by REE-
act

Application
State Table

Communicator
(Message Queue)

SW Actuator

Global/Local
Execution
Manager

(GEM/LEM)

HW Actuator

Monitor

System
Utilization Thread

Status

HW
Status

Mapping
Threads

Operating System

Hardware

Query Configure

Core0
Core1
Core2
Core3

Query

Figure 7.3: Essential components of REEact.
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7.2.2 REEact Design

REEact Components

REEact provides the framework and services to enable the implementation of man-

agement policies (essentially the global and local procedure). These services, such

as GEM/LEM communication and thread mapping, are provided through various

REEact components.

Figure 7.3 shows the essential components of REEact. Because proper resource

management decisions have to be made based on the actual states of applications and

hardware resources, REEact has monitors to collect their run-time status. Hardware

and software actuators are provided to adjust resource allocation and application

execution. A GEM makes global management decisions based on the run-time infor-

mation collected by the LEMs, and the communication component provides facilities

for communication between GEMs and LEMs. REEact also provides application sta-

tus tables so that GEM/LEM can keep track of resource allocation. The following

paragraphs briefly describe each component.

The Global/Local Execution Managers (GEM/LEMs) have three major

duties. First, they initialize and release REEact component objects during application

start-up and termination. Second, they maintain the tree structure introduced in

Section 7.2.1 (Figure 7.2b). Third, they execute customized policy procedures.

The GEM and LEMs are instantiated during application start-up. When several

applications execute simultaneously, the application that starts first becomes the

“master” which creates the GEM and the first LEM. Applications that start later

only create LEMs. The GEM and LEM perform all necessary operations to create

other REEact components. A LEM also identifies the GEM and creates a two-way

communication link between them. And lastly, the GEM/LEM invokes the specified

policy procedures (see Figure 7.1).

The Communicator transfers data among the GEM and LEMs asynchronously.

It is designed as a message queue attached to a GEM/LEM. Each message is composed

of three parts: a sender ID, a message type and the message body. The actual meaning

of the message is policy dependent.

The Monitor provides capabilities to monitor the status of both the hardware

and the applications. It collects information about the hardware, system utilization,

and the status of threads.

Hardware information that can be collected includes the output of performance
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monitoring units (PMU), core frequency, core temperature, and whether a particular

hardware component (e.g., prefetchers, L2 caches, etc.) is enabled.

The system utilization information includes the load (utilization) of each core,

and the overall load. REEact also monitors the status of application threads, such as

thread creation, termination and suspension.

The SW Actuator configures the execution of applications. The SW actuators

map both applications and threads to cores. How cores are allocated depends on the

policy used.

The HW Actuator configures a hardware (HW) component. A HW actuator

can enable or disable a hardware component of a core (e.g., prefetchers), or adjust

processor frequency by setting special bits of model specific registers (MSR).

The Application Status Table (AST) contains the current states of hardware

resources and applications. Each GEM and LEM has its own AST, which contains the

information about the resources and threads that it controls. ASTs can be extended

to include policy-required information.

REEact API

REEact components are represented as objects and their services are exposed through

methods that operate on these objects. The core of REEact is the GEM and LEM

classes and associated methods.

Table 7.1 lists the methods currently provided. For communication among the

multiple applications, we provide methods to send and receive messages as part of

the communicator component. There are two methods for receiving messages—a

blocking method and method with timeout. Currently, the methods for monitors

and actuators are designed to provide access to typical resource controls [78, 82, 85,

145, 163, 166, 168]. We provide the methods for the monitor component to collect

the profiling information either per-core or per-application-thread basis. There are

additional methods to obtain current temperature, temperature threshold, frequency

and other hardware status of the individual physical cores. We also provide methods

to gather information about core utilization. The methods for the software actuator

component enable the control of the application using software, including on which

core an application’s threads run. The methods for a hardware actuator enable the

control of the state of a particular hardware device, for example, to enable or disable

the hardware prefetchers. The methods for the application state table enable the

gathering of information about all the applications running in the system for the
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GEM and one application for LEMs. Additional services and features will be added

as REEact expands to support more operating systems and architectures.

7.2.3 REEact Implementation

The next paragraphs describe the actual implementation of REEact components on

Linux-x86 and Solaris-SPARC.

Global/Local Execution Manager (GEM/LEM): A GEM/LEM is imple-

mented as a helper thread, which is created during REEact initialization at the begin-

ning of application execution (recall that a REEact initialization call is automatically

invoked by the OS when REEact library is attached to a new process).

Communicator: The communicator is implemented using shared memory and

semaphores. The message queue of a GEM or LEM is essentially a portion of memory

that is shared by all GEM/LEMs. Therefore, posting a message or reading a message

is an access to this shared memory. Each queue is associated with a semaphore, which

notifies the GEM/LEM on arrival of a message.

Monitor: On Linux-x86, the monitor uses Perfmon2 to read PMU data [48]. On

Solaris-SPARC, the monitor uses “Libcpc” to read PMU data.

On x86 architectures, the core frequency, temperature and other hardware com-

ponent states are acquired by reading MSRs. REEact reads the MSRs through a

special driver that we designed and implemented. On SPARC, these hardware states

are acquired from the OS.

System utilization information (e.g., processor utilization) is acquired from the

OS. For example on Linux, this information can be read through the “stat” file (per-

core) or “loadavg” file (all-cores) under “/proc”. On Solaris-SPARC, this information

can be acquired from library “Libkstat”.

To intercept thread status changes (e.g., thread creation, termination, suspension),

we dynamically link application thread functions (e.g., pthread create, pthread join)

to REEact’s thread functions using “LD PRELOAD”. Once a thread status change

is detected, the monitor notifies the GEM and LEM by sending messages to them.

SW Actuator: For thread mapping, the SW actuator uses the core-affinity sys-

tem call. Core/processor affinity is readily available in today’s commodity operating

systems, including Linux, Solaris and Windows. Once a thread is mapped to a set of

cores, the OS does not move the thread to use any other cores. Less rigid mechanisms

could also be used; for example, a mechanism could be provided to convey schedul-
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Workload size Benchmark Initials used in each workload
|WL|=1 {BS}, {BT}, {CN}, {FA}
|WL|=2 {BS, BT}, {BS, CN}, {BS, FA}, {BS, SW}
|WL|=4 {BS, BT, CN, FA}, {BS, CN, FA, SW}, {BS, BT, CN, FA}
|WL|=8 {BS, BT, CN, FA, FE, FL, SC, SW}
|WL|=16 {BS, BT, CN, FA, FE, FL, SC, SW, BS, BT, CN, FA, FE, FL, SC, SW}

Table 7.2: The benchmarks used in each workload for measuring REEact overhead.
|WL| denotes the number of applications in a workload, e.g., |WL| = 2 means two
applications in a workload. For each workload size, each set in the next column rep-
resents one workload composed by |WL| number of PARSEC benchmarks (indicated
by the acronym).

ing and allocation hints about thread co-location to the operating system. These

mechanisms could be targeted by a user policy in REEact to guide OS management

decisions.

HW Actuator: The HW actuators enable/disable hardware components, and

adjust core frequency by setting special bits of MSRs. We implement a driver that

allows reading and writing MSRs at the user-level.

Application Status Table (AST): In the default implementation, the ASTs

are lists that store resource allocation information. Policies can define their own lists

(or other data structures) to store any data they need.

7.3 REEact Overhead Evaluation

This section evaluates the overhead of the REEact framework implementation. REE-

act incurs overhead when reading hardware performance counters, by monitoring and

managing thread creation, and through communication between the LEMs and GEM.

To determine the run-time overhead of REEact, we chose several multithreaded

applications from PARSEC [17], and we measured REEact’s overhead as we scaled

the total number of threads and applications. The experiments were run on a CMP

machine that has four Intel Xeon X7550 processors each of which has eight cores. As

the processors are hyper-threaded, each core has two thread contexts and consequently

the machine supports 64 thread contexts. Each physical core has a private 32KB L1-

cache, a 256KB L2-cache and one 16MB L3-cache shared by eight physical cores.

This machine is running Linux 2.6.32.

We conducted a series of experiments with workloads consisting of different num-
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Number of threads
1 2 4 8

|WL|=1 0.77 1.36 1.46 2.74
|WL|=2 0.79 1.82 1.45 0.63
|WL|=4 0.6 0.84 0.94 2.49
|WL|=8 1.43 1.07 1.18 1.37
|WL|=16 1.27 1.47 1.32 —

Table 7.3: Total overhead (in percentage) as the number of applications and threads
per application is varied, for counter-reading period=10 milliseconds. |WL| denotes
the number of applications in a workload, e.g., |WL| = 2 means two applications in
a workload.

bers of randomly chosen PARSEC benchmarks. The benchmarks used in the exper-

iments are: blackscholes (BS), bodytrack (BT), canneal (CN), dedup (DD), facesim

(FA), ferret (FE), fluidanimate (FL), streamcluster (SC) and swaptions (SW). To

measure the overhead of reading performance counters, we varied the period of read-

ing counters from 10 milliseconds to 32 seconds for a fixed number of applications and

threads per application. As we increased the period, REEact’s overhead decreased

because of less frequent access to the performance counters.

To measure REEact’s overhead, we varied the number of applications from 1 to

16 and threads per application from 1 to 8, for a fixed counter-reading period. We set

the counter-reading period to 10 milliseconds. We experimentally checked PARSEC

and SPEC, and discovered that no benchmark has a phase shorter than 10ms (similar

results are also reported by previous research [43]). Therefore, 10ms is small enough

in practice to capture phase changes in the application threads. If an application does

have phases less than 10ms, then phase changes may go undetected, and there could

be some penalty. However, as the phases are short (< 10ms), any penalty should

not be high/significant. We ran experiments with four one-application, four two-

application, three four-application, one eight-application and one sixteen-application

workload with different number of threads under REEact control. The benchmarks

used in the workloads are described in Table 7.2. For each workload, the overhead

was measured by calculating the average percentage difference in each application’s

execution time normalized with respect to the native execution (i.e., no REEact).

Table 7.3 shows the overhead results. We did not measure the overhead for 16

applications with 8 threads per application as the total number of threads exceeds the

number of thread contexts for the experimental machine. From the table, we observe
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that for a particular workload size, as the number of threads increases (reading across

a column), the overhead slightly increases. The increase is due to the increased

number of messages. For a fixed number of threads, as we increase the number

of applications, the overhead varies slightly. This slight variation is caused by the

differences in the workloads. For all 19 experiments, the average overhead of the

REEact framework is at most 3%, which is acceptably small. Note that, the overall

overhead of REEact given in Table 7.3 includes the overhead of sending messages

across processors. The low overall overhead (less than 3%) implies that the use of

cross-processor messaging has low overhead and is not a bottleneck for the machines

we examined.

7.4 Case Studies

This section describes two case study policies that are implemented in REEact to

demonstrate its flexibility and usefulness. These policies tackle two different problems:

thermal management and performance/energy-consumption management.

7.4.1 Case Study 1: Fighting the Broken Screw

In the first case study, we demonstrate how to use REEact to implement a policy that

reacts to thermal emergencies. We have a CMP computer that frequently experiences

overheating. This computer has an Intel Q6600 quad-core processor. The processor

has four cores. Each core has 32KB L1 I-cache and 32 KB L1 D-cache. Every two

cores of this processor shares one 4MB L2 cache. The machine is running Linux

2.6.25.

In this machine, one of the four screws that fasten the heat sink and fan to the chip

is broken, causing some cores (especially core0) to easily reach a very high tempera-

ture. Most CMP processors have hardware mechanisms to prevent overheating. For

this processor, it uses dynamic voltage/frequency scaling (DVFS) and voluntary core

shutdown. By reading the on-die digital thermal sensors (DTS), this processor mon-

itors its cores’ temperatures. If any core’s temperature exceeds a factory predefined

threshold T1, the core’s frequency and/or voltage are reduced. If a core’s temper-

ature keeps climbing and reaches the critical temperature T2, the core is shutdown

temporarily. Although these mechanisms prevent catastrophic overheating, they have

negative impact on system performance. If we can detect cores that are vulnerable to
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Policy 1.a Fighting the broken screw: GEM policy procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to all LEM objs, ref to GEM obj, ref to monitor and ref
to GEM’s app state table */

2: INPUT: List lemList, Gem gem, Monitor m, AppStatTbl ast
3: List freeCores ← ast.getUnallocCores();
4: Int T1 ← m.getTempThreshold1();
5: Int T2 ← m.getTempThreshold2();
6: LOOP
7: Message msg ← gem.getMessage();
8: Lem lem ← msg.sender;
9: Core oldCore ← msg.value;

10: Core newCore ← oldCore;
11: IF msg.type = TemperatureAboveT1 THEN
12: /* search for a core that has a temperature below T1*/
13: FOR ALL c IN freeCores DO
14: Int t ← m.getCoreTemperature(c);
15: IF t < T1 THEN
16: newCore← c;
17: BREAK;
18: END IF
19: END FOR
20: ELSE IF msg.type = TemperatureAboveT2 THEN
21: Int lowestT ← T2;
22: /* List of cores that “lem” has used and had thermal issue (core temperature

above T2) */
23: List hotCores ← lem.ast.getCoresAboveT2();
24: /* search for an unallocated core that has lowest temperature and no thermal

issue for “lem” yet */
25: FOR ALL c IN freeCores DO
26: t ← m.getCoreTemperature(c);
27: IF hotCores.doNotHave(c) AND (t < lowestT) THEN
28: newCore ← c;
29: lowestT ← t;
30: END IF
31: END FOR
32: END IF
33: /* ask LEM “lem” to run on newCore */
34: IF newCore 6= oldCore THEN
35: lem.sendMessage(runOnCore, newCore);
36: freeCores.add(oldCore);
37: freeCores.remove(newCore);
38: END IF
39: END LOOP
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Policy 1.b Fighting the broken screw: LEM policy procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to this LEM obj, ref to GEM obj, ref to monitor and
ref to this LEM’s app state table */

2: INPUT: Lem lem, Gem gem, Monitor m, AppStatTbl ast
3: Int T1 ← m.getTempThreshold1();
4: Int T2 ← m.getTempThreshold2();
5: /* extend ast with a new list for the cores on which this LEM has thermal issue

(core temperature above T2) */
6: List ast.CoresAboveT2 ← new List();
7: LOOP
8: /* single-threaded app has only one thread and one core*/
9: Core curCore ← ast.getCurrentlyUsingCores();

10: Thread appThread ← ast.getAppThreads();
11: Int coreT ← m.getCoreTemperature(curCore);
12: IF coreT ≥ T2 THEN
13: ast.CoresAboveT2.add(curCore);
14: gem.sendMessage(TemperatureAboveT2, curCore);
15: ELSE IF coreT ≥ T1 THEN
16: gem.sendMessage(TemperatureAboveT1, curCore);
17: END IF
18: /* Get message with timeout “timeout” (non-blocking)*/
19: Message msg ← LEM.timeoutGetMessage(timeout);
20: IF (msg 6= NULL) AND (msg.type = runOnCore) THEN
21: lem.pinThreadstoCores(appThread, msg.value);
22: sleep(timeout);
23: END IF
24: END LOOP
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overheating, and schedule the threads to use these cores less frequently, then we can

achieve better performance as well as prevent unnecessary overheating of the cores.

REEact’s monitoring methods support reading core temperatures (using MSR

“IA32 THERM STATUS”), as well as dynamically detecting threshold temperatures

T1 and T2. To solve the broken-screw thermal problem, we developed a custom

policy using REEact. In this policy, the GEM and LEMs work together to detect

overheating and migrate application threads appropriately. Policy 1.a and 1.b give

the pseudocode for the global (GEM) and local (LEM) procedures respectively. When

an application first requests a core for its newly created thread (through its LEM), the

GEM randomly allocates a free core to it. During execution, the LEM periodically

(every 10 seconds) checks if any of its cores are overheating. Depending on the level

of overheating, the LEM requests different cores:

1. If the overheating core’s temperature is between T1 and T2, the LEM asks the

GEM for a core with temperature below T1 (Policy 1.b line 16). If the GEM finds

such a core (Policy 1.a lines 11-19), it responds with the new core (Policy 1.a

lines 35-37), to which LEM maps its threads (Policy 1.b line 21).

2. If the overheating core’s temperature is equal to or higher than T2, the LEM

marks this core as a hot core, and asks the GEM for the coolest non-marked core

(Policy 1.b line 13-14). Once the GEM responses with a new core (Policy 1.a

lines 21-31), the LEM re-maps its threads to it (Policy 1.b line 21). If the GEM

fails to find a core, the LEM and its threads stay on the hot core.

We evaluated this policy using the SPEC2006 benchmarks. Figure 7.4 shows

the performance (execution time) improvement of SPEC benchmarks controlled by

REEact with the overheating prevention policy, as well as manually tuned optimal

execution, compared to the Linux default scheduler, which does not consider core

temperature and can freely use any core. The optimal execution time is determined by

trying all possible thread-to-core mappings, and choosing the one with the minimum

execution time.

The maximum speedup of REEact over the Linux default scheduler is 16%, and

the average speedup is 9.5%. The results show the benefit of using REEact frame-

work by implementing this adaptive policy customized for this specific machine. The

results also show that REEact and this policy has very low overhead, with at most 3%

slowdown compared to optimal results. This slowdown is partially caused by the reac-

tive nature of the policy: it only migrates threads when overheating actually occurs.
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Figure 7.4: Performance (execution time) improvement of SPEC with REEact broken-
screw policy and manually tuned optimal execution, compared to the Linux default
scheduler.

The policy can be further refined to be proactive instead of being reactive [163].

7.4.2 Case Study 2: Reducing Energy Usage without Perfor-

mance Penalty

In the third case study, we present a REEact policy for reducing system energy

consumption. This policy is based on the following observations: hardware prefetchers

may have no or negative performance impact if many cache lines prefetched are not

used by the application [139]. However, fetching these useless cache lines requires

extra energy. Therefore, we can disable the prefetchers when they do not improve

performance to save energy. With REEact, we can dynamically examine how the

applications use prefetchers, and control the prefetchers accordingly.

Policy 2.a and 2.b give the pseudo-code for the global (GEM) and local (LEM)

procedures. When a new thread is created or unblocked (from synchronization wait),

REEact’s thread status monitor sends a new message to the GEM (Policy 2.a line

6). Upon receiving this message, the GEM starts to test two configurations: one

with prefetchers enabled and one with prefetchers disabled. The GEM also notifies

the LEMs to collect the number of instructions retired for these two configurations
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Policy 2.a REEact Power management: GEM policy procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to all LEM objs, ref to GEM obj, ref to monitor, ref to
GEM’s app state table, ref to HW actuators */

2: INPUT: List lemList, Gem gem, Monitor m, AppStatTbl ast, HWActuator hwAct

3: Int coreCnt ← m.getTotalCoreCount();
4: LOOP
5: Message msg ← gem.getMessage();
6: IF msg.type = ThreadActivated THEN
7: /* start sampling configuration with prefetchers on*/
8: /* enable prefetchers on all cores */
9: hwAct.enableHWComponent(c, prefetcher, on);

10: FOR ALL lem IN lemList DO
11: lem.sendMessage(readInsnRetired, NULL);
12: END FOR
13: Int insnPfOn ← 0;
14: FOR ALL lem IN lemList DO
15: Message msg ← gem.getMessage();
16: insnPfOn ← insnPfOn + msg.value;
17: END FOR
18: /* start sampling configuration with prefetchers off*/
19: hwAct.enableHWComponent(c, prefetcher, off);
20: FOR ALL lem IN lemList DO
21: lem.sendMessage(readInsnRetired, NULL);
22: END FOR
23: Int insnPfOff ← 0;
24: FOR ALL lem IN lemList DO
25: Message msg ← gem.getMessage();
26: insnPfOff ← insnPfOff + msg.value;
27: END FOR
28: /* Comparing two configuration */
29: BOOL switch ← off;
30: IF insnPfOn > insnPfOff × 1.02 THEN
31: switch ← on;
32: END IF
33: hwAct.enableHWComponent(c, prefetcher, switch);
34: END IF
35: END LOOP
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Figure 7.5: Execution time, energy consumption and EDP for PARSEC benchmarks
running under REEact and two static configurations where prefetchers are always
enabled or disabled (normalized to the configuration where prefetchers are always
enabled; the lower bar is better).

(Policy 2.a lines 7-27). Each configuration is executed for 0.5 seconds and each LEM

reports the number of instructions retired to GEM (Policy 2.b lines 8-13). The GEM

compares the results, and disables the prefetchers if the configuration with enabled

prefetchers does not retire more instructions (Policy 2.a lines 28-33). To avoid mea-

surement errors from PMUs, the configuration with enabled prefetchers is considered

superior only if it has at least 2% more instructions retired.

We evaluated this policy on a computer with an Intel quad-core processor Q9550.

Each core has 32KB L1 I-cache and 32KB L1 D-cache. There are two 6MB L2 caches

each shared by two cores. For each L1 cache, there are two prefetchers (DCU and IP)

that prefetch data into it. For each L2 cache, there are also two prefetchers (hardware

prefetcher and adjacent cache line prefetcher) that prefetch data into it. The DCU

prefetcher and the adjacent cache line prefetcher prefetch the next cache line of the

missed cache line into the cache. The IP prefetcher and the hardware prefetcher look

for a stride in the memory access pattern and prefetch the next expected data [67].

We tested eleven PARSEC benchmarks individually. Each benchmark was configured

to run with four threads using native input sets. We ran each benchmark for three

iterations and computed the average energy consumption and execution time of PAR-

SEC’s “region of interest” (parallel region). We collected the energy consumption of

the processor using the methodology from Esmaeilzadeh et al. [50].

Figure 7.5 shows the results of seven benchmarks running under REEact, as well

as two other static configurations where prefetchers are always enabled or disabled.
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Four benchmarks, bodytrack, raytrace, vips and blackscholes, are omitted because

configuring prefetchers does not impact their performance or energy consumption.

The results show that REEact always provides the best performance and lowest energy

consumption. Compared to always enabling prefetchers, REEact improves execution

time by up to 8%. It improves energy consumption by 12% and the energy-delay-

product (EDP) by up to 19%. Compared to always disabling prefetchers, REEact

improves execution time by up to 69%, energy consumption by 43% and EDP by up

to 142%. The results show that REEact has little (at most 1%) overhead over the

best static prefetcher configuration.

Policy 2.b REEact power management: LEM policy procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to this LEM obj, ref to GEM obj, ref to monitor and
ref to this LEM’s app state table */

2: INPUT: Lem lem, Gem gem, Monitor m, AppStatTbl ast
3: List appThreads ← ast.getAppThreads();
4: LOOP
5: Message msg ← lem.getMessage();
6: Double time = 0.5; /* sample for 0.5 seconds */
7: IF msg.type = readInsnRetired THEN
8: /* read InsnRetired for all the threads of this LEM */
9: List insnCnts ← insnCnt +

m.readPMUperThread(appThreads, InsnRetired, time);
10: gem.sendMessage(InsnRetiredValue, insnCnts.sum());
11: END IF
12: END LOOP

7.5 Summary

Various user requirements, application behaviors, and hardware configurations, have

greatly complicated the management of CMP hardware resources and applications.

Management policies addressing such variations depends on user/application/hardware-

specific requirements and require dynamic adaptation. This chapter tackles these

management problems by enabling the design and implementation of custom resource

management policies with REEact, a user-level run-time framework. This framework

provides several services for dynamic management and coordination of hardware re-

sources and applications. REEact allows easy development of custom policies to meet
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different user requirements. It also facilitates the development of policies that con-

sider application-specific information and hardware characteristics. We describe the

design and implementation of REEact, and use it with two case studies, each focusing

on distinct issues on CMPs—thermal management, performance,and power manage-

ment. These case studies highlight the benefits brought by REEact, such as flexibility,

effectiveness, ease-of-use, and separation of concerns. Through these case studies, we

also demonstrate that a carefully designed user-level run-time system, like REEact,

can effectively manage resources and applications with little run-time overhead.

For the problem of processor over-provisioning, REEact framework provides valu-

able run-time support of memory behavior profiling, hardware configuration detection

and application execution management, allowing our optimal core allocation predic-

tion model to be applied to real life practice.
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Chapter 8

OptiCore: Automatic Optimal

Core Allocation for Multi-threaded

Applications on Large-scale

NUMA Platforms

8.1 Introduction

Through Chapter 4 to Chapter 6, we have presented models and techniques which

enable the run-time prediction of, and the dynamic adaptation to, optimal core allo-

cations for multi-threaded applications. In this chapter, we present the comprehensive

run-time system, OptiCore, which combines these models and techniques to automat-

ically execute multi-threaded applications with their optimal core allocations.

When executing a multi-threaded application, a user only has to take two extra

steps to put this application under the management of OptiCore. First, the user needs

to set the value of the environment variable “LD PRELOAD” to be the path of the

OptiCore library. When a multi-threaded application starts, the Operating System

queries the value of “LD PRELOAD”, and automatically loads the OptiCore library,

which then takes over the control of the execution of this application. Additionally,

a user should instruct the application to create a large number of threads. Nearly

all multi-threaded applications allow user-specified thread counts, simply by setting

command line arguments or environment variables. The exact thread count to use can

be determined using the process described in Section 6.6. After these two steps, users
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Figure 8.1: The system architecture and components of OptiCore.

can invoke their applications in the same way as they normally do when OptiCore

is not involved. After an application starts, OptiCore automatically takes control

of its execution, and adapts it to its optimal core allocation. The whole process

of predicting the optimal core allocation, and adapting the application to this core

allocation, requires absolutely no involvement from the user.

We evaluated OptiCore on two real large-scale NUMA platforms with benchmarks

from PARSEC and NPB benchmark suites [15, 75]. The experiment results show that

OptiCore performs 34.6% faster than the use-all-cores allocation on average. More

importantly, the speedup of OptiCore is achieved with fewer cores allocated. The

minimal optimal core allocation uses only 12.5% of all cores and performs 223.4%

better. On average, OptiCore uses only 88.7% of all cores and achieves 34.6% per-

formance improvement. The experimental results also show that OptiCore has only

1.85% overhead compared to manually executing each benchmark with its optimal

core allocation.

This chapter presents the design and experimental evaluation of OptiCore. The

rest of this chapter is organized as follows. Section 8.2 describes the design of Opti-

Core. Section 8.3 gives the results of OptiCore’s experimental evaluation. Section 8.4

summarizes this chapter.

8.2 The OptiCore Run-time system

This section presents the design of OptiCore in detail.
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Figure 8.2: The work flow of OptiCore.

8.2.1 The System Architecture of OptiCore

Figure 8.1 gives the system architecture of OptiCore. OptiCore implements DraMon

(Chapter 4) and NuCore (Chapter 5) models to predict the optimal core allocations

for multi-threaded applications. It also incorporates FlexThread (Chapter 6) to ef-

ficiently adapt multi-threaded applications to their optimal core allocations during

execution. OptiCore is built upon the REEact run-time framework, which is described

in Chapter 7. REEact provides services for online application memory behavior profil-

ing, which is required by DraMon and NuCore models. REEact also provides services

for thread management, such as thread creation/termination detection, thread mi-

gration and phase change detection, which are required by FlexThread and OptiCore

to control the execution of multi-threaded applications.

Figure 8.2 gives the flow of OptiCore when it is used to managed a multi-threaded

application. After a multi-threaded application starts, OptiCore profiles its memory

behavior. Then the profiling data is sent to DraMon for the prediction of the DRAM

contention and local DRAM memory bandwidth usages. DraMon’s prediction is then

sent to NuCore model to predict the optimal core allocations. Once the optimal

core allocation is determined, FlexThread remaps application threads to this core

allocation to execute. During the execution, REEact continuously monitors phase

changes. Once a phase change is detected, the application is profiled again and

adapted to use a new optimal core allocation. The whole process requires no user

intervention. Moreover, OptiCore does not require any knowledge of, or modification

to, the application source code.

8.2.2 Handling Phase Changes

Because phase changes in applications can change their memory behaviors, which in-

turn change their optimal core allocations, OptiCore has to constantly monitor the
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phase changes in applications, and predict the optimal core allocation once a phase

change is detected. OptiCore employs two techniques in REEact to detect phase

changes. Which of these two techniques is used, depends on the thread libraries used

by the multi-threaded applications.

For applications which use OpenMP, the start of a new phase is usually equiva-

lent to the start of new parallel region (usually a new data-parallel loop) [21]. Be-

cause a parallel region typically begins with a call to particular function which par-

titions and schedules a task to concurrent threads, we can detect the start of this

new parallel region, or the new phase, by intercepting the invocation of this func-

tion. For example, in the GNU OpenMP implementation (GOMP), this function

is “GOMP parallel start” [146]. OptiCore uses REEact’s function-interception ser-

vice to detect the invocation of “GOMP parallel start”. It is worth nothing that an

OpenMP application may repeatedly executes its parallel regions. Because a parallel

region always runs the same code, its memory behavior and optimal core allocation

are consist across executions. Consequently, there is no need to re-profile a parallel

region after its first execution. OptiCore internally maintains records of the optimal

core allocations of executed parallel regions. If a parallel region has been executed

before, OptiCore directly executes it with its recorded optimal core allocation with-

out re-profiling it. In this way, OptiCore reduces the overhead associated with online

profiling.

For applications which use POSIX Threads (Pthreads), there is a no clear indi-

cation of a new phase like OpenMP [65]. For these applications, OptiCore period-

ically checks their memory behavior by querying the hardware Performance Mon-

itoring Units (PMUs) readings with REEact. If the difference of two consecutive

readings is larger than a pre-defined threshold, then a new phase is deemed to have

started. On the AMD platform with Opteron 6174 processors, we use the PMU,

SY STEM READ RESPONSES, to monitor the changes in memory behavior. On

the Intel platform with X7550 processors, we use the PMU ofOFFCORE RESPONSE 0.

Note that there are more sophisticated phase change detection techniques for Pthreads

applications [129, 133]. However, we observed that simple periodical checks were suf-

ficient for the optimal core allocation prediction of our benchmarks.
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8.3 Experimental Evaluation

This section presents the experimental evaluation of the OptiCore run-time system.

In this chapter, we focus on evaluating the performance of OptiCore.

8.3.1 Experiment Setup

We evaluated OptiCore on our Intel and AMD NUMA platforms. A detailed descrip-

tion of the Intel and AMD platforms can be found in Section 5.5.1. We conducted

experiments with benchmarks from PARSEC and NPB benchmark suites [15, 75].

Two PARSEC benchmarks, raytrace and x264, experienced segmentation faults when

executed with more than 64 threads, so they were excluded from our experiments.

PARSEC’s native input sets were used for PARSEC benchmarks, except for swap-

tions. For swaptions, we used a input set that was twice the size of its native input

set so that the input size is large enough to support 256 threads. NPB’s D input sets

were used for NPB benchmarks. These input sets are large enough to fully utilize

the large number of cores and threads used in our experiments. NPB benchmark

dc was excluded from our experiments because it does not have D input set. The

information of compiler and compilation flags can be found in Section 5.5.1.

8.3.2 Evaluation Goals and Evaluation Metric

We run each benchmark with three configurations on both platforms.

1. In the first configuration, which is called the “baseline”, each benchmark is

executed using all cores with one thread per core under the management of

the default PThreads and GOMP libraries. This configuration gives the per-

formance that users can get using current thread libraries and the common

use-all-cores allocations.

2. In the second configuration, which is called the “dist-sync”, each benchmark

is executed using its optimal core allocation with one thread per core and dis-

tributed synchronization. This second configuration can be viewed as a second

baseline, because it gives the best performance that users can get without any

run-time management from OptiCore, including run-time profiling, online op-

timal core allocation prediction and dynamic core reallocation. Note that, for
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multi-phased benchmarks, where each phase has different optimal core alloca-

tions, the optimal core allocation of the longest phase is used. The optimal core

allocation for each benchmark can be found in Section 5.5.

3. In the third configuration, or the OptiCore configuration, each benchmark is

executed with OptiCore using 256 threads. We chose 256 threads, because they

provide less-than-5%-overhead guarantee on both NUMA platforms (based on

our analysis in Section 6.6). This third configuration gives the actual perfor-

mance that users can expect by using OptiCore.

Comparing the performance of the three configurations answers the following two

questions:

1. What is the overall performance benefit of OptiCore over the current way of

executing multi-threaded applications, which uses use-all-cores allocation and

default thread libraries? We answer this question by comparing the first and

third configurations.

2. What is the overhead of OptiCore run-time system? We answer this question

by comparing the performance of the second and third configurations.

We run each benchmark with each configuration for five trials. We then computed

the average execution time for that benchmark under that configuration. We report

the performance improvement of one configuration over another. More specifically,

for any two configurations, conf1 and conf2, the performance improvement of conf2

over conf1 is defined as,

Perf Improv =
Timeconf1 − Timeconf2

Timeconf2

× 100%. (8.1)

Positive values of Perf Improv indicate performance improvement, and negative

values indicate slowdown (or overhead).

8.3.3 The Performance Benefit of OptiCore

Figure 8.3 and Figure 8.4 gives the performance improvement of the “dist-sync” and

OptiCore configurations over the “baseline” configuration. As both figures show, Op-

tiCore performs significantly better than the “baseline” configuration, which uses all-

cores and default thread libraries. The highest performance improvement is 384.7%,
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Figure 8.3: Performance improvement of the “dist-sync” and OptiCore configurations
over the “baseline” configuration for PARSEC benchmarks on Intel and AMD NUMA
platforms. Positive values indicate speedup while negative values indicate slowdown.
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Figure 8.4: Performance improvement of the “dist-sync” and OptiCore configurations
over the “baseline” configuration for NPB benchmarks on Intel and AMD NUMA
platforms. Positive values indicate speedup while negative values indicate slowdown.
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which was achieved with benchmark swaptions on the AMD platform. The average

performance improvement of OptiCore was 51.3% for the PARSEC benchmarks, and

8.0% for the NPB benchmarks. The overall performance improvement of OptiCore

was 34.6% on average. This performance benefit of OptiCore is the result of the com-

bined performance improvements from better core allocations, faster (distributed)

synchronizations, lower L1 data cache misses, higher processor utilization and better

load balancing. The exact improvement from optimal core allocation can be found in

Section 5.5. The exact improvement from distributed synchronizations, lower L1 data

cache misses, higher processor utilization and better load balancing can be found in

Section 6.8.

It is worth noting that, for many benchmarks, the performance improvement is

achieved with fewer cores allocated. On the Intel platform, facesim has smallest

optimal core allocation of all benchmarks, which is 8,8,0,0, or 50% of a total of 32

cores. On the AMD platform, streamcluster has the smallest optimal core allocation,

which is 6,0,0,0,0,0,0,0, or only 12.5% of a total of 48 cores. On average, OptiCore

only allocates 88.7% of all cores, while achieving an average performance improvement

of 34.6%.

For fluidanimate, freqmine, is.D and ep.D, their performance under OptiCore was

slower than the “baseline” configuration, because of the run-time overhead from the

profiling and optimal core allocation predictions. However, the slowdowns of these

benchmarks are very small, and are always less than 5%. Facesim experienced higher

than 5% slowdown, because of the negative impact from current Linux scheduler, as

discussed in Section 6.8. We plan to address this scheduler in the future.

8.3.4 The Run-time Overhead of OptiCore

To determine the run-time overhead of OptiCore, we compare the performance of the

configurations of “dist-sync” and OptiCore in Figure 8.3 and Figure 8.4. Both config-

urations execute their benchmarks with optimal core allocations. However, unlike the

static “dist-sync” configuration, OptiCore includes run-time profiling, online optimal

core allocation prediction and dynamic core reallocation. As a result, by comparing

the performance of the configurations of “dist-sync” and OptiCore, we can determine

the overhead of these run-time operations.

As Figure 8.3 and Figure 8.4 show, the maximum slowdown of OptiCore is usually

less than 5%. Only four benchmarks, fluidanimate, bodytrack, vips and facesim have
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higher than 5% overhead, because current Linux scheduler cannot properly schedule

large numbers of threads, as discussed in Section 6.8.

Besides slowdown, the run-time operations from OptiCore can also improve per-

formance over the static configuration of “dist-sync”. Ten benchmarks benefits from

executing large numbers of threads. Because the performance benefit of large numbers

of threads has been discussed in Section 6.8, we do not elaborate on it. In addition

to the performance improvement of executing large numbers of threads, OptiCore

can also dynamically adjust its optimal core allocations to meet the needs of different

phases, which further improves the performance of OptiCore over the static execution

configuration of “dist-sync”. This performance improvement can be observed in the

cases of sp.D when it executed on the Intel and AMD platforms, as well as the case

of mg.D on the Intel platform. The performance improves for these three cases were

8.2%, 10.72% and 6.5%, respectively.

Overall, OptiCore performs similarly to the static configuration of “dist-sync”.

The average overhead of OptiCore is only 1.85% for all PARSEC and NPB bench-

marks. If the negative impact from Linux scheduler is excluded from the results,

OptiCore is actually 4.78% faster than the static execution configuration. These re-

sults suggest that not only does a run-time core allocation manager, such as OptiCore,

has little overhead, it may potentially be more beneficial than any static execution

scheme because its performance benefits.

8.4 Summary

This chapter presents the OptiCore run-time system. OptiCore combines DraMon,

NuCore, FlexThread and the REEact framework to automatically execute multi-

threaded applications with their optimal core allocations. OptiCore is carefully de-

signed so that no user-involvement or source code is required. We evaluated the

performance of OptiCore on two large-scale NUMA platforms using PARSEC and

NPB benchmarks. The experimental results show that, by executing with optimal

core allocations, the applications managed with OptiCore perform 34.6% faster than

the use-all-cores allocation on average. More importantly, the speedup from OptiCore

is achieved with fewer cores allocated. The minimal optimal core allocation uses only

12.5% of all cores and performs 223.4% better than using all cores. On average, Opti-

Core allocates only 88.7% of all cores and achieves 34.6% performance improvement.

The experimental results also show that OptiCore has only 1.85% overhead compared
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to manually executing each benchmark with its optimal core allocation. These re-

sults suggesting that OptiCore offers a complete, low-overhead, user-involvement-free

and application-source-code-independent solution for the processor over-provisioning

problem on large-scale NUMA platforms.
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Chapter 9

Summary and Future Work

This chapter summarizes this dissertation and presents directions for future explo-

ration.

9.1 Summary of Dissertation

Because of the difficulty of increasing single core performance without significantly

increasing processor power consumption, modern micro-architectures have switched

to multi-core processors and thread-level parallelism for performance growth. To

meet the ever growing need for speed, future large-scale computing platforms will

be equipped with dozens, hundreds or even thousands of cores. The applications

executing on these platforms usually have good parallelism. They can create large

numbers of threads to simultaneously execute on the massive numbers of cores.

When executing these multi-threaded applications on these large-scale NUMA

platforms, users typically allocate all cores to their applications, assuming more cores

translate to better performance. However, because of limited memory bandwidth,

the performance of many multi-threaded applications benefits little from the massive

numbers of cores on these large scale systems. In fact, for many multi-threaded appli-

cations, allocating all cores, or over-provisioning processors, can only degrade perfor-

mance, reduce energy efficiency and system throughput. Therefore, it is desirable to

execute multi-threaded applications with the minimum core allocation that achieves

best performance. We call this allocation, the optimal core allocation. However,

because the optimal core allocation varies with application, input set and hardware

configuration, determining the optimal core allocations for various multi-threaded ap-

plications, and executing these applications with their optimal core allocations, are
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very challenging.

9.1.1 The Prediction of Optimal Core Allocation

Given that optimal core allocation is primarily determined by limited memory band-

width, predicting optimal core allocation requires accurate modeling of the mem-

ory system of large-scale NUMA machines. To understand how memory bandwidth

limitation impacts the optimal core allocations on large-scale NUMA machines, we

conducted a series of experiments using PARSEC, NPB and BLAS benchmarks on

two large-scale NUMA machines [7, 15, 75]. The experimental results are reported in

Chapter 3. These results indicate that there are four major factors that impacts the

optimal core allocation. These factors are,

1. the memory bandwidth usage of local DRAM modules;

2. the memory bandwidth usage of inter-node connections;

3. the interference among local and inter-node memory accesses;

4. the heterogeneity within large-scale NUMA machines and multi-threaded ap-

plications, including the heterogeneous inter-node connections, the non-uniform

inter-node connection topologies, and the varying application memory behaviors

and communication patterns.

In short, to accurately model the memory system of a NUMA machine, these factors

must be carefully considered. In the first half of this research, we investigated how

to accurately model the memory system and predict the optimal core allocations.

Modeling the Local DRAM Factor

For the factor of local DRAM bandwidth usage, both our experiments and previous

research results indicate that the local DRAM bandwidth is determined by DRAM

contention and DRAM request overlapping [72]. However, modeling DRAM con-

tention and request overlapping is very challenging, because they appear to be com-

pletely random, and there is no existing statistical distribution can accurately express

them.

Unlike previous research which treats DRAM as a black box, we inspected the

DRAM internal operations using PMUs [30, 60, 81, 86, 144, 164]. We then imple-

mented simulators to reproduce the DRAM contention and request overlapping that
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we observed in real DRAMs. Thanks to this analysis, we discovered that, because of

the memory inter-leaving schemes and the large size of DRAM banks, DRAM con-

tention and request overlapping have a stable statistical distribution which can be

described with a few thousands of probability equations that loosely resemble bino-

mial distributions. This discovery allows us to design and implement a DRAM model

called DraMon to predict the DRAM contention, DRAM request overlapping, and

the resulting local memory bandwidth usage. Experimental results using PARSEC

and NPB benchmarks on two large-scale NUMA platforms show that DraMon model

has 93.4% accuracy on average (Chapter 4).

Modeling Other Factors and Predicting the Optimal

Because of inter-node connections are package-based networks, the factors of inter-

node connections and local/inter-node interference can be described using various

constraint functions (Chapter 5). However, the factor of heterogeneity dramatically

increases the complexity of modeling the memory system and predicting the opti-

mal core allocation, as the heterogeneity requires us to consider each node and each

memory connection differently. Consequently, because of the heterogeneity, we have

to determine the optimal core allocation from a very large solution space (millions of

possible core allocations) with thousands of linear and non-linear constraints. The

large solution space and large numbers of constraints make it very challenging to

determine the optimal solution in a short amount of time.

However, we observe that both the optimal core allocation prediction and memory

system modeling are integer problems. Leveraging this integer property, we designed

a novel technique that could express non-linear memory system constraints with lin-

ear functions. Additionally, we can also express the prediction of the optimal core

allocation as a linear objective function which maximizes total memory bandwidth

while minimizing the size of the core allocation. With these linear objective function

and constraints, we then employ Mix Integer Programming (MIP) to find the optimal

solution (optimal core allocation) or predict the memory bandwidth usage with short

amount of time.

We summarized these findings in a model called NuCore, and implemented it

(Chapter 5). We evaluated the accuracy of NuCore on two large-scale NUMA plat-

forms using PARSEC and NPB benchmarks. The experimental results show that

NuCore is highly accurate. More specifically, the optimal core allocations predicted

by NuCore differ at most one core per node with real optimal core allocations. Ad-
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ditionally, NuCore can predict the total memory bandwidth usage for multi-thread

applications with 90% accuracy on average.

9.1.2 Automatic Execution using Optimal Core Allocation

The DraMon model and NuCore model enable the prediction of optimal core al-

location with high accuracy for multi-threaded applications on large-scale NUMA

platforms. However, because both models require information of an application’s

memory behavior and hardware configuration at run-time, these models cannot di-

rectly benefit ordinary users for two reasons. First, the requirement of the information

on run-time memory behavior implies that the optimal core allocation is unknown at

the beginning of application execution. Therefore, an efficient technique is necessary

to dynamically adapt an application to its optimal core allocation during execution.

Second, this run-time information can be difficult for non-expert users to acquire.

In the second half of our research we focused on supporting dynamic adaption to

optimal core allocations, as well as run-time memory behavior profiling and hardware

configuration detection. The final goal was to design a run-time system that can

automatically execute multi-threaded applications with their optimal core allocations

on large-scale NUMA platforms.

Efficient Dynamic Adaptation

The major difficulty of dynamic adaptation to optimal core allocations is the load-

balancing of any core allocations. Traditionally, users balance the loads of cores by

controlling the number of threads. Typically, users create one thread per core to

ensure each core has the same load – one thread. Additionally, it is either impossible

or heavy-handed to change thread count during execution, i.e., the thread count

cannot be changed during execution. However, because the optimal core allocation

is determined during execution, it is very difficult to determine the proper number

of threads to create before execution. Because of this difficulty, previous research is

either limited to data parallel loops (which can be easily repartitioned), or requires

source code modification [86, 104, 138].

However, we observe that if an application creates a large number of threads,

it is possible to remap these threads to any core allocation to achieve near-ideal

load-balancing. That is, creating large numbers of threads allows near-ideal load-

balancing for any optimal core allocation without the need of modifying application’s
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source code. The downside of creating large numbers of threads is that it increases the

number of synchronization operations, which in-turn introduces significant overhead.

To reduce this overhead, we employ distributed synchronization primitives.

Combining the large numbers of threads and distributed synchronization, we im-

plemented a run-time system, FlexThread, to support efficient dynamic adaptation

to any optimal core allocations without application source code modification (Chap-

ter 6). Experimental results with PARSEC and NPB benchmarks on our two large-

scale NUMA platforms show that FlexThread has less than 5% overhead, compared

to manual execution with one thread per core for different optimal core allocations.

This low overhead suggesting that FlexThread can efficiently support dynamic adap-

tion to optimal core allocations. The experimental results also show that, for many

benchmarks, FlexThread performs better than using one-thread-per-core due to bet-

ter CPU and private cache utilization. The flexibility of supporting varying core

allocations and the performance benefit suggest that users should always create large

numbers of threads for their applications.

Supporting Run-time Profiling and HW/SW Management

To support run-time memory behavior profiling and hardware configuration detec-

tion, we designed a run-time system framework called REEact (Chapter 7). REEact

supports monitoring application memory behavior through the reading of hardware

Performance Monitoring Units (PMU). REEact also supports the detection of hard-

ware configuration from the Operating System and hardware registers. Additionally,

because FlexThread requires dynamic management of thread execution, REEact also

provides means to hook into executing applications to take over the control of its

threads. Moreover, REEact provides a wide range of services to support run-time

profiling, application management and hardware resource configuration for run-time

managements problems other than the optimal core allocation problem. The services

provided by REEact require no user-involvement during execution or any knowledge

of application source-code. Additionally, REEact has limited overhead. Experimen-

tal results on two large-scale NUMA machines with PARSEC benchmarks show that

REEact has a maximum overhead of only 3%.
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Automatic Execution using Optimal Core Allocation

Combing DraMon, NuCore, FlexThread and REEact, we implemented the OptiCore

run-time system, which can automatically execute multi-threaded applications with

their optimal core allocations (Chapter 8). We evaluated OptiCore using PARSEC

and NPB benchmarks on our two large-scale NUMA platforms. The experimental

results show that OptiCore can efficiently execute multi-threaded applications with

their optimal core allocations. By executing with optimal core allocations, applica-

tions managed by OptiCore perform 34.6% faster than the use-all-cores allocation on

average. More importantly, the speedup from OptiCore is achieved with fewer cores

allocated. The minimal optimal core allocation uses only 12.5% of all cores and per-

forms 223.4% better than using all cores. On average, OptiCore allocates only 88.7%

of all cores and achieves 34.6% performance improvement. The experimental results

also show that OptiCore has only 1.25% overhead compared to manually executing

each benchmark with its optimal core allocation. These results suggesting that Op-

tiCore offers a complete, low-overhead, user-involvement-free and application-source-

code-independent solution for the processor over-provisioning problem on large-scale

NUMA platforms.

9.2 Future Directions

Although this research provides a complete solution to the processor over-provisioning

problem, there are still many opportunities to improve the design of OptiCore, or to

apply our insights and models to further improve the execution of multi-threaded

applications on large-scale NUMA platforms. This section briefly discusses these

opportunities.

9.2.1 Improving OptiCore Design

Improving Linux Thread Management

As discussed in Chapter 6, current Linux scheduling policy does not support large

numbers of threads with multiple mutexes and frequent mutex locking attempts.

The current Linux scheduler tends to schedule lock-waiting threads to preempt lock-

holding threads. This preemption usually ends with the lock-waiting threads quick

relinquish the processor, because they cannot acquire the locks. A more efficient way
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of scheduling should not allow lock-holding threads to be preempted. We plan to add

a new scheduling policy to Linux kernel to improve its support for executing large

number of threads.

Additionally, we currently uses FUTEX system calls in Linux to suspend threads

for synchronization [53]. However, the FUTEX system call is quite heavy in that is

requires locking a global table to add the information of the suspending threads. We

plan to improve this suspension mechanism either by breaking the global table into

local (per-core) tables, or simply by letting suspending threads yield their processors.

9.2.2 Considering Caches, Parallelism and Prefetchers

Although for large-scale applications with large input sets, memory bandwidth is the

primary limitation of scalability, the scalability of smaller applications with smaller

inputs may be mainly limited by cache size, cache contentions or parallelism. To

handle these applications with OptiCore, we plan to incorporate the models and

techniques from previous work into OptiCore in the future [25, 54, 56, 60, 79, 86, 99,

123, 132, 144, 159].

Furthermore, our models currently do not consider the aggressive prefetchers on

Intel processors. We will investigate the behavior of these prefetchers and extend our

models to predict the scalability impact of these prefetchers.

9.2.3 Beyond Optimal Core Allocation for Better Perfor-

mance

Through the investigation of this research, we have gathered valuable insights about

the large-scale NUMA platforms and multi-threaded applications. We have also de-

signed highly accurate models for memory systems. These insights and models be-

hoove us to apply them to problems beyond the optimal core allocation and perfor-

mance.

Energy Efficiency and System Throughput

In addition to the negative performance impact, processor over-provisioning can also

reduce energy efficiency and system throughput, because the extra cores allocated

can be turned off to save energy or be used to execute other applications to improve

overall system throughput. However, both energy efficiency and system throughput
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are more complex optimization goals than execution time. Allocating an extra core

may slightly reduce execution time. However, this extra core may greatly increase

power consumption which makes the whole execution less energy efficient. Similarly,

to improve system throughput, it is important that we balance the core allocations

for multiple applications so that the overall throughput is maximized. For optimal

energy efficiency and system throughput, new models that considers more hardware

and software properties must be invented.

Scalable Memory Access

This project convinces us memory bandwidth will remain the primary scalability

limitation for the foreseeable future. The problem is not simply that hardware does

not provide enough memory bandwidth. The analysis in Chapter 4 has revealed that

there is a huge inefficiency in the way that software utilizes memory resources: current

programs can only utilize less than 60% of available bandwidth at best. Although

future DRAM modules will provide higher bandwidth, there is a good chance that

most would be is wasted. Because this inefficiency is the result of both software

memory access pattern and memory allocation scheme, we believe that addressing

this problem requires rethinking the way memory is accessed and designing more

flexible memory allocation schemes that suit the varying needs of real applications.

More specifically, our goal is to investigate how to use DRAM information to rearrange

memory accesses in application algorithms and improve memory allocation to reduce

bank-level contention and improve scalability.

Configurable Hardware with Program Hint

In this research, we constantly observe that the efficiency of different hardware com-

ponent varies considerably with application. The problem is that the configuration

or algorithm used by a hardware component is generic which does not always meet

the need of every application. As the architecture going into the Dark Silicon era,

a great portion of a processor can be devoted to configurable hardware components

that support different algorithms and designs. We believe compile-time and run-time

information from applications should be used to guide the dynamic configuration of

the underlying hardware.

150



Bibliography

[1] ”GNU GOMP libgomp Documentation”, 2014.

[2] T. Achterberg. SCIP: solving sonstraint integer programs. Mathematical Pro-

gramming Computation, 1(1), 2009.

[3] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative

Task Management Without Manual Stack Management. In USENIX Annual

Technical Conference, 2002.

[4] J. H. Ahn, M. Erez, and W. J. Dally. The Design Space of Data-Parallel Memory

Systems. In Int’l Conf. on Supercomputing, 2006.

[5] W. Y. Alkowaileet. NUMA-aware multicore Matrix Multiplication. Master’s

thesis, University of California, Irvine, 2013.

[6] AMD. BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h

Processors, 2013.

[7] AMD. AMD Core Math Library (ACML), 2013.

[8] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler ac-

tivations: effective kernel support for the user-level management of parallelism.

In Proc. of the Thirteenth ACM Symposium on Operating Systems Principles,

1991.

[9] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler

Activations: Effective Kernel Support for the User-level Management of Paral-

lelism. ACM Transactions on Computer Systems (TOCS), 1992.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al. The Landscape

151



of Parallel Computing Research: A View from Berkeley. Technical report,

University of California, Berkeley, 2006.

[11] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis. Han-

dling the Problems and Opportunities Posed by Multiple On-chip Memory Con-

trollers. In Int’l Conf. on Parallel Architectures and Compilation Techniques,

2010.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proc. of the

Nineteenth ACM Symposium on Operating Systems Principles, 2003.

[13] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
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