
Toward a Practical, Path-Based Framework for Detecting and

Diagnosing Software Faults

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Wei Le

December 2010

c© Copyright November 2010

Wei Le

All rights reserved

Approvals

This dissertation is submitted in partial fulfillment of therequirements for the degree of

Doctor of Philosophy

Computer Science

Wei Le

Approved:

Mary Lou Soffa (Advisor)

Jack Davidson

Gregg Rothermel

David Evans (Chair)

Manuvir Das

Barry Horowitz

Accepted by the School of Engineering and Applied Science:

James H. Aylor (Dean)

December 2010

Abstract

One of the important challenges of developing software is the avoidance of software faults.

Since a fault occurs along an execution path, program path information is essential for both detect-

ing and diagnosing a fault. Manual inspection can identify apath where a fault occurs; however,

the approach does not scale. Dynamic techniques, such as testing, are also effective to find faulty

paths, but only in a sampled space.

This thesis develops a practical, path-based framework to statically detect and then diagnose

software faults. The techniques arepath-basedin that both detecting and reporting faults use path

information. An important contribution of the work is the development of a demand-driven analy-

sis that effectively addresses scalability challenges faced by traditional path-sensitive analyses. The

computed path information is shown to be valuable in automating diagnostic tasks and guiding soft-

ware testing to quickly exploit faults. A prototype tool, Marple, was developed to experimentally

evaluate the research.

Foundations of the thesis are the discoveries ofpath diversityandfault locality. Path diversity

says that if a fault is reported in terms of a program point, the assumption is that all the executions

across the same program point have the same property regarding the fault; however,safe, infeasible,

faulty with various severities and root causes, anddon’t-knowcan all traverse the same program

point. Given the path type, fault diagnosis can take action accordingly.Fault locality demonstrates

that instead of a whole program path, often only a path segment of 1–4 procedures, is relevant to a

fault. By only focusing on such path segments, fault detection and diagnosis can be more efficient.

To detect path types and path segments, a demand-driven analysis was developed, which

achieves interprocedural path-sensitivity and scales up to 570,000 lines of code. Evaluation of

iv

v

buffer overflow detection shows that the analysis is about 2 times faster than an exhaustive path-

sensitive tool. Generality of the technique is achieved viaa specification technique and an algorithm

that automatically generates path-based analyses for user-specified faults. The techniques are capa-

ble of handling both safety and liveness properties as well as both control and data-centric faults,

including buffer overflow, integer fault, null-pointer dereference and memory leak.

The usefulness of the path information is demonstrated for computingfault correlation, a causal

relationship between faults, and for guiding software testing to exploit faults. By grouping the

correlated faults, the number of static warnings needed fordiagnosis was reduced to about 53%. The

correlations also reveal that the propagation of integer faults can lead to not only buffer overflows

but also null-pointer dereferences, and resource leaks cancause infinite loops. Our path-guided

concolic testing successfully exploits 73% of statically identified faults. Compared to traditional

concolic testing, it is 25 times faster over a set of benchmarks on average to trigger the same

number of faults.

Acknowledgments

My deepest thanks first go to my advisor Dr. Mary Lou Soffa. It was her support and inspiration

that lead to my current accomplishment. Her invaluable advice and the interesting stories we had

shared during my Ph.D. will be remembered for the rest of my life.

My work was supported by Microsoft, who funded me through twointernships and the Mi-

crosoft Phoenix Academic Program, and also by Google, who provided me with the Anita Borg

Scholarship. The Microsoft Phoenix group, especially Dr. Andy Ayers, gave me tremendous ad-

vice and support for building my research prototype,Marple.

I would like to thank my committee members, including Drs. David Evans, Manuvir Das, Gregg

Rothermel, Jack Davidson and Barry Horowitz, who have provided many insightful comments

for my work and future directions. Thanks, too, to my colleagues both in the department and at

Microsoft for useful discussions about my research.

I am also grateful that our department provides a very supportive environment for female stu-

dents. Especially, I thank Dr. Anita Jones who was always available to me to provide advice and

encouragement.

Last but not least, my thanks go to my parents Debao Le and Linqiu Lu, and husband, Jeremy

Sheaffer. Without your support, I would not be what I am today.

vi

Contents

Acknowledgments vi

1 Introduction 1

1.1 Motivation .. 1

1.2 The Problem .2

1.3 Challenges of Developing a Path-Based Static Framework. 4

1.4 An Overview of the Research 6

1.5 Thesis . 13

2 Background and Related Work 14

2.1 Faults . 14

2.2 Program Paths .. 26

2.3 Implementation Support and Benchmarks 32

3 The Value of Paths for Detecting and Diagnosing Faults 38

3.1 Program Points v.s. Paths in Fault Detection and Diagnosis 39

3.2 Selecting and Representing Path Information 48

3.3 Conclusions .. 53

4 Identifying Faulty Paths Using Demand-Driven Analysis 54

4.1 The Challenges .. 55

4.2 An Overview of the Analysis 56

4.3 The Vulnerability Model and the Demand-Driven Algorithm 59

vii

Contents viii

4.4 Experimental Results 66

4.5 Conclusions .. 73

5 Automatically Generating Path-Based Analysis 74

5.1 An Overview of the Framework 75

5.2 Specification Language 76

5.3 Demand-Driven Template 82

5.4 Generating Analysis 85

5.5 Experimental Evaluation 89

5.6 Discussion .. 95

5.7 Conclusions .. 96

6 Path-Based Fault Correlation 97

6.1 Motivation and Challenges 98

6.2 Defining Fault Correlation 100

6.3 Computing Fault Correlation 106

6.4 Correlation Graphs 113

6.5 Experimental Results 115

6.6 Conclusions .. 120

7 Path-Guided Concolic Testing 121

7.1 An Example . 122

7.2 An Overview of MAGIC .124

7.3 Obtaining Static Path Information 127

7.4 Dynamic Testing .. 130

7.5 Implementation and Evaluation 137

7.6 Conclusions .. 140

8 Conclusions and Future Work 141

8.1 Contributions and Impact 141

Contents ix

8.2 Future Work .143

Bibliography 145

List of Figures

1.1 Research Process: Five Projects for the Thesis Research. 7

1.2 Three Types of Path-Sensitive Analysis 8

1.3 Goals, Solutions and Results 9

2.1 A Stack Buffer Overflow and Its Exploit 15

2.2 An Example of Null-Pointer Dereference 17

2.3 Static Analysis for Fault Detection and Diagnosis 23

2.4 Path-Sensitive Analysis: the State-of-the-Art 29

2.5 the Interactions of Phoenix, Disolver and Marple 33

3.1 An Example from Sendmail-8.7.5 40

3.2 Different Paths Cross a Buffer Overflow Statement 41

3.3 Path-Sensitive Root Causes 42

3.4 Summary of Comparison .. . 47

3.5 Identifying Useful Path Information: the Six Elements 50

3.6 Using Path Graph to Represent a Set of Paths: dash lines are shared edges for

different paths . 51

4.1 Four Components .. 56

4.2 Detecting Different Types of Faults 58

4.3 Interactions of the Vulnerability Model and the Analyzer 62

4.4 An Overflow in bc-1.06, main.c. 69

4.5 Overflows in MechCommander2, Ablscan.cpp. 70

x

List of Figures xi

4.6 Comparison of Marple with other five static detectors on ROC plot 71

5.1 The Framework .75

5.2 The Grammar of Specification Language 78

5.3 Partial Buffer Overflow Specification 80

5.4 Partial Memory Leak Specification 81

5.5 Parsing Specification 88

5.6 Generating Code from Syntax Tree 89

6.1 Fault Correlation in ffmpeg-0.4.8 99

6.2 Defining Fault Correlation: correlated faults are marked with ×, error state is in-

cluded in [], and corrupted data are underlined 102

6.3 Correlation of Resource Leak and Infinite Loop in acpid 104

6.4 Correlations of Multiple Buffer Overflows in polymorph 105

6.5 Fault Detection and Fault Correlation 107

6.6 Correlation via Direct Impact 109

6.7 Correlation via Feasibility Change 111

6.8 Correlation Graphs for Examples 114

7.1 Comparing Concolic Testing and MAGIC Using an Example 124

7.2 The Components of MAGIC .. 125

7.3 The Workflow of MAGIC .126

7.4 A Path Graph for Two Suspicious Path Segments 129

7.5 Multiple Strings in a Buffer 132

7.6 Buffer Overflow Condition 133

List of Tables

2.1 Path-Sensitive Dataflow Analysis for Identifying Faults 30

3.1 Different Types of Paths can Cross a Buffer Overflow Statement 46

3.2 Comparison of Splint and Marple 46

3.3 The Length of the Path Segments Computed for a Given Buffer Overflow 52

4.1 Partial Buffer Overflow Vulnerability Model 59

4.2 Detection Results from Marple 67

4.3 Benefit of Demand-Driven Analysis 72

5.1 Detecting Multiple Types of Faults 91

5.2 Scalability .. . 92

5.3 Comparison of Memory Leak .. . 94

6.1 Error State of Common Faults 101

6.2 Types of Correlated Faults Discovered in CVE 106

6.3 Automatic Identification of Fault Correlations 117

6.4 Characteristics of Fault Correlations 118

6.5 Correlation Graphs and their Analysis Costs 119

7.1 Modeling Buffer Overflow Conditions 132

7.2 Symbolic Semantics of String and Pointer Operations 134

7.3 Comparison of Testing Time and Fault Detection Capability 138

7.4 Comparison of Test Input Generation Costs 139

xii

Chapter 1

Introduction

1.1 Motivation

Software continues to play a critical role in all aspects of our lives, from personal safety to public

health, from phones and appliances used in daily life to vital infrastructures of air traffic control,

medical devices and power generation and distribution systems. Due to its ubiquity and importance,

software needs to be reliable and robust. In fact, 40% of system failures are attributable to software

faults [Marcus and Stern, 2000], and software faults are thedirect cause of patient deaths in the

Therac-25 radiation therapy [Leveson and Turner, 1993], the Ariane rocket crash [Inquiry Board,

1996], and the Mars Climate Orbiter explosion [Investigation Board, 1999].

Building reliable and robust software is challenging. A primary reason is that software is com-

plex: 1) the code size can be incredibly large, consisting ofdiverse components; 2) newer and

different programming paradigms are used, for example, concurrency and parallelization are be-

coming more and more important for developing modern software; 3) newly developed code needs

to be compatible with legacy code; and 4) software is required to run on a variety of hardware and

system environments. Yet software is developed manually, and human beings make mistakes. As

a result, human understanding of software does not scale to the rapid growth of software size and

complexity, and faults are unavoidably introduced in software during both design and coding. A

study commissioned by the Department of Commerce in 2001 shows that for a typical software

development project, fully 80% of software development dollars are spent in identifying and cor-

1

Chapter 1. Introduction 2

recting software faults; however, despite the effort, software faults cost the U.S. Economy $59.5

billion annually, about 0.6 percent of the gross domestic product (GDP) [NIST, 2002]. Effective

fault management tools are desirable to help improve the productivity of software assurance and

further remove faults.

1.2 The Problem

Since a fault is produced on an execution path, to detect faults, ideally we should examine

each program path and determine if a fault can occur. By Rice’s theorem, determining a non-

trivial property for a program is undecidable. To achieve a reasonable speed and ensure software

still can be shipped on time, we either have to sample a limited number of executions, which

potentially will miss an unpredictable number of faults, orwe need to reduce the state space by

merging program paths. In fact, in many of the tools in the state-of-the-art, faults are detected using

conservatively merged information from all paths and reported at a particular program point, which

causes imprecision and requires much manual effort to confirm and diagnose the detection results.

Our insight is that program paths are important for both precisely detecting and efficiently

diagnosing faults. If a fault is reported in terms of a program point as typical, all executions that

traverse the program point are considered as having the sameproperty regarding the fault. Actually,

both safe and faulty paths can traverse the same program point. Even for faulty paths, the severity

and root causes associated with the fault can be different. If the paths where a fault can occur are

given, manual or automatic diagnosis can follow the guidance and take action accordingly based on

the type of paths.

To identify a path where a fault occurs, there are three general approaches: manual inspection,

dynamic detection and static analysis. The main disadvantage of manual inspection is efficiency.

Research shows that on average the estimated speed of code inspection is only 120 lines per person

hour [Hatton, 2008]. Code inspection might be useful to review high level design decisions such as

software architecture, but it is not practical to manually examine every path of a program for cor-

rectness. In practice, manual inspection is often used withstatic tools to confirm reported warnings

Chapter 1. Introduction 3

or to help diagnose complex faults triggered in the field.

Dynamic detection executes a program with inputs, and determines the deviation (if any) of the

program behavior via the observed symptoms. One advantage of a dynamic tool is soundness, i.e.,

the fault triggered in detection demonstrates the symptomsthat would later manifest in the field.

Since execution paths can be obtained, software developersare able to understand the transition of

the program states and thus the development of a fault. One drawback of a dynamic tool is that it

can only show the presence but not the absence of a bug; that is, often only a limited number of

paths and restricted input space can be examined. A dynamic tool would be applied at the late stage

of software lifecycle, when program executables and test inputs are available. The bugs found at

this stage are considered ten times more expensive to fix thanthe ones found earlier, e.g., during

coding [Kaner et al., 2001].

Another technique is static analysis. Static analysis scans program source code for predefined

bug patterns, and reports locations in the code where a faultpotentially occurs. Static analysis has

been integrated in software development in many software companies. According to data in 2005, a

Microsoft program analysis group filed more than 7000 bug reports in one month using their static

tools [Das, 2005]. Static analysis requires only program source code and thus can find faults early,

when fixing a bug is relatively cheap. In fact, at Microsoft, static tools are deployed at desktops, and

code is only allowed to be checked in when it passes the inspection of these tools. Static analysis

also outperforms dynamic detection in its full coverage of paths; therefore it potentially finds faults

on the paths that a dynamic tool cannot reach. Many dynamic tools rely on the guidance of static

information for improved coverage [Sen et al., 2005,Godefroid et al., 2005]. Despite its advantages

and initial successes, existent static techniques are limited in their capability of determining and

explaining faults, as well as in the high cost of developing,maintaining and using the tools.

This thesis presents a practical,path-basedframework for statically detecting and then diagnos-

ing faults. A novelty of this work is that our technique ispath-basedin that we not only consider

path information in determining a fault, but also compute various path properties for diagnosing a

fault. For example, we discovered that most of the time, onlya segment of a path, instead of the

whole program path, is responsible for producing a fault, and we thus can provide more focus for

Chapter 1. Introduction 4

fault diagnosis. We also show that paths of different root causes and severity can be distinguished,

based on which, we can better schedule the diagnostic tasks.In addition, we find that along fault

propagation, different types of faults can interact and then lead to visible consequences; identifying

fault relationships and impacts can help group and prioritize faults.

An important contribution of the work is that we make computation of the path information

practical; that is, the scalability and precision achieved on the framework are applicable for real-

world deployed software for a variety of faults. In order to make the expensive path-sensitive

feasible, we reduce the state space based onfault locality; that is, we detect and report the sequence

of, but not the whole, execution along a path for a fault, and only perform an expensive path-

sensitive analysis on the portion of the program that is relevant to a fault. Using the automatically

computed path information, we identify the relationships of faults along the propagation, which

was previously done manually, and guide the dynamic testingto automatically exploit the faults.

1.3 Challenges of Developing a Path-Based Static Framework

The challenges of developing a path-based static frameworkare 1) to achievescalability and

precisionof the static analysis required by fault detection, 2) to addressgeneralityof the techniques

so that the analysis is applicable for a variety of faults, and 3) to ensureusability of both the tool

and the results reported by the tool.

Static analysis is potentially imprecise for two reasons. First, in a whole program analysis,

it is infeasible to examine all program paths for faults. Instead, approximations, e.g., via merg-

ing or abstracting of program paths, have to be applied to reduce the state space. When multiple

program states are merged at a program point to derive a summary, imprecision can occur, as re-

ported by path-insensitive analysis [Hallem et al., 2002,Evans, 1996]. Abstraction also can lead to

imprecision. For example, in software model checking, programs are mapped to software models

such as pushdown automa; however, the traces from the model are not always the paths from the

program [Chen and Wagner, 2002].

Another reason for imprecision is that static analysis onlyconsiders the program source to

Chapter 1. Introduction 5

determine the faults. However, program inputs and the external environment are also important

for reasoning about the potential program behaviors. Without properly modeling such information,

static analysis can make overly conservative or aggressiveassumptions. A conservative analysis can

lead tofalse positives, i.e., reporting faults which are actually not faults. Contrarily, an aggressive

analysis can make “wrong guesses” and lead tofalse negatives; that is, static analysis would miss

faults.

Besides precision, scalability is a related challenge thatcan prevent a static tool from being use-

ful. A scalable static analysis should be able to handle reasonably size software, and importantly,

the additional cost of coping with a given increase in code size should be manageable. For exam-

ple, a naive exhaustive path-sensitive analysis is not scalable, because the analysis cost increases in

terms of the growth of path numbers in the program, which can be exponential to the size of the pro-

gram. To measure scalability, both time and space, e.g., memory or disk storage, used by analysis,

need to be considered. Existing techniques for scalabilityare not ideal in that they either sacrifice

the analysis precision [Bush et al., 2000], impact the general applicability [Das et al., 2002,Xie and

Aiken, 2007], or require a considerable amount of manual effort to use [Hackett et al., 2006].

Another important goal for designing static analyzers is toreduce the amount of manual effort

needed to construct, maintain and use a tool. The goal requires both generality and usability. A

general static tool should handle a variety of faults, and especially, it should be able to respond to a

new type of fault without requiring the reconstruction of the whole analysis. Achieving generality

is challenging. First, we need to determine whether a general algorithm is feasible for identifying

a variety of faults; if so, we need a way to specify different faults. The specification for fault

patterns should be complete; that is, the specification should include all scenarios in which a fault is

potentially manifested in the source code. We also require the fault patterns to be distinctive, using

which we can distinguish malicious errors from benign ones.The second challenge to achieve

generality is that the precision and scalability tailored for one specific type of fault can be no longer

usable. Due to the challenges, generality in the state-of-the-art is mainly restricted to a subcategory

of faults, such as typestate [Strom and Yemini, 1986] violations. As a result, repeated efforts have

to be expended to build and maintain individual fault detectors.

Chapter 1. Introduction 6

Usability refers to how easily a static tool can be used, and more specifically, how easily a user

can specify faults, configure the tool, or use the bug reportsto correct the faults. It should be noted

that the focus here is not formal user studies, but whether a static tool considers empirical user

experience and integrates features that help reduce manualeffort to use the tool. For example, some

tools require the use of annotations to help analysis, whileboth writing and verifying annotations

require much manual effort. Another determinant factor of usability is the quality of bug reports.

Many static tools only report a program point where a fault potentially occurs. To understand how a

fault is developed along executions, code inspectors have to manually explore the paths that traverse

the reported program points, which is time consuming and error prone.

The above four challenges are not independent factors, as the techniques used to address one

challenge might compromise the other. For example, applying heuristics for scalability impacts

precision. Introducing annotations for precision sacrifices usability. The ultimate reason that these

challenges exist is that static analysis is undecidable. Wethus should develop algorithms that can

use the available computation resources for nearly optimalsolutions, which means 1) we should

avoid computing information that is not needed; and 2) we should avoid repeated computation and

instead, reuse intermediate results if possible. In our research, we use these two principles and

develop scalable algorithms that handle the requirements of precision, generality and usability.

1.4 An Overview of the Research

This section summarizes the thesis research from three different angles. First, we introduce

the development of the five projects in our research process.Second, we list the set of solutions

found in our research that addressed the targeted challenges specified in Section 1.3. Finally, we

summarize our contributions.

1.4.1 A Description of Five Research Projects

This research is developed in three stages, shown as Figure 1.1. In themotivationstage, our

goals are to identify the value of paths for detecting and diagnosing faults, and meanwhile to deter-

Chapter 1. Introduction 7

Figure 1.1: Research Process: Five Projects for the Thesis Research

mine path information that is potentially useful in fault diagnosis. In this project, we proposed and

experimentally validated two important hypotheses: 1) paths that contain different fault properties

(e.g., the presence, type, severity or root cause of a fault)can traverse the same program point, and

thus manual and automatic diagnosis can take correspondingactions based on the types of paths;

and 2) faults manifest locality, and it is the path segment along a program path that contributes to

the cause of a fault. We therefore can use the information identified on path segments to diagnose

faults.

In the frameworkstage, we develop the techniques to automatically compute path information

regarding faults. The two important contributions include: 1) we demonstrate that demand-driven

analysis is feasible and scalable for detecting faulty paths; and 2) we develop a fault model and

a specification technique that enable the applications of demand-driven analysis to both data- and

control-centric faults as well as faults regarding both liveness and safety properties.

In Figure 1.2, we compare demand-driven analysis with othertwo categories of techniques

previously applied in path-sensitive fault detection. In the figure, each rectangle represents the state

space that a static analysis needs to explore: the height of the rectangle indicates the number of

paths in a program, and the width displays the length of a path. Each strip in a rectangle represents

a path. In the first approach, static analysis exhaustively explores all program paths based on the

Chapter 1. Introduction 8

structure of the program. More likely, resources would be exhausted before all the faults can be

found. In the second approach, static analysis randomly searches paths for faults. Research shows

that this approach can find faults more quickly than the first approach [Dwyer et al., 2007]; however,

faults also can be missed.

The demand-driven analysis improves the scalability by only collecting the information needed

for a fault. Applyingdemand-drivenanalysis to detect faults, we first perform a low-cost source

code scan to identify program points where a fault is potentially observed. We then conduct a path-

sensitive analysis only on the code that is relevant to the faults, i.e. the path segments between the

program entry and the identified program points. Compared toan exhaustive analysis, demand-

driven analysis potentially explores a fewer number of program paths, because only the paths that

traverse the program points of interest need to be examined.In the figure, we represent the reduction

of the path number using the shortened breadth in the rightmost rectangle. In addition, our path-

sensitive analysis starts where a fault potentially occursand terminates as soon as the decision about

the fault is made, when only a segment of paths may be explored. Therefore, the length of a path

we analyze is also reduced, shown as the shortened height foreach strip in the rightmost rectangle.

Figure 1.2: Three Types of Path-Sensitive Analysis

In the third stage of our research, shown in Figure 1.1, we study the use of paths for fault

diagnosis. In one project, we find that a casual relationshipcan exist between faults, which we

call fault correlation, such as “an integer overflow can lead to a buffer overflow”. Inpractice, code

Chapter 1. Introduction 9

inspectors manually determine such relationships betweenfaults for understanding the impact of a

fault. Using the faulty paths computed, we develop an algorithm to automatically determine fault

correlations. In another project, we find that path information is useful to reduce state space of path-

based test input generation. We develop a path-guided concolic testing technique that successfully

exploits statically identified faults.

We implement our techniques in a prototype tool, calledMarple, which we use to experimen-

tally evaluate the effectiveness of the techniques.

1.4.2 A Summary of Solutions Provided by the Framework

Figure 1.3: Goals, Solutions and Results

The thesis addresses the four challenges of the static faultdetection discussed in Section 1.3.

In Figure 1.3, we present a summary of our solutions with respect to these challenges. The key

that leads to those solutions is the application of a demand-driven, path-based analysis. The figure

is divided into three parts. At the top of the figure, we list the four challenges we aim to address.

Chapter 1. Introduction 10

In the middle of the figure, we present a set of techniques developed to accomplish the goals. At

the bottom of the figure, we display results that demonstratethe effectiveness of our techniques in

conquering the targeted goals.

In the figure, underPrecision, we summarize our techniques applied to improve the precision of

the analysis. We have pointed out that the two major imprecision sources are: the approximation in-

troduced to reduce the state space and the heuristics applied to model factors beyond program source

(see discussion in Section 1.3). We address the first challenge using an interprocedual path-sensitive

analysis. For the second source of imprecision, we introducedon’t-knowtags in an analysis to mark

positions where imprecision can occur. The idea of don’t-know is that we allow heuristics to be in-

troduced to determine faults, but we are aware what and whereheuristics are applied. Based on the

corresponding results, we can thus decide whether or not to continue applying them. In the figure,

we use arrows to connect the boxes of don’t-know and externalinformation, indicating that the two

techniques are integrated together to handle potential imprecision. By applying the above set of

techniques, our experiments report low false positive and false negative rates for analyzing a set of

real-world programs.

For scalability, we develop a demand-driven analysis and a set of optimizations based on the

analysis. In addition, we integrate two design principles,including terminate earlyandseparate

concerns. Terminate earlymeans that the analysis always terminates when the status ofthe paths

is determined, either as safe, containing faults or don’t-know; the analysis would not use arbitrary

heuristics and allocate computation resources for producing unpredictably imprecise results.Sep-

arate concernsmeans we separate complex properties of a path into several individual properties,

each of which can be efficiently resolved on the framework. Wethen compose the properties for the

paths that we aim to compute. For example, in our analysis, determining path feasibility and detect-

ing faults are performed in two separate passes of an analysis, so that the infeasible paths identified

can be reused in determining different types of faults. The effectiveness of the above techniques is

demonstrated in our experiments, where our analysis terminates for large software such asputty

andapache with reasonable time and space overhead.

Generality is achieved via a fault model and a specification technique. We design a general

Chapter 1. Introduction 11

demand-driven algorithm that can find a variety of faults. Integrating the specification and the gen-

eral template, we develop solutions to automatically generate individual analyses for user-specified

faults. We show that our framework can produce either forward or backward demand-driven anal-

ysis, and the generated analyses can handle both safety and liveness properties and both data- and

control-centric faults, including buffer overflow, integer faults, null-pointer dereferences and mem-

ory leaks.

The usability of our framework focuses on producing useful information for fault diagnosis.

We have spoken with software developers in the industry and based on their experience, we have

determined features that make a static analyzer easy-to-use. For example, we develop techniques

to represent the detected faulty paths; according to code reviewers at Microsoft, path information

is very useful for understanding a fault [PC, 2006]. We also identify fault correlations to help un-

derstand the propagation and the severity of faults, because we find that security experts actually

manually identify such relationships between faults to determine the causes of a vulnerability [Com-

mon Vulnerabilities and Exposure, 2010]. Since paths not only can be diagnosed manually, but also

can be supplied to dynamic tools for generating test inputs and then producing executions to help

debugging, we develop a module to enable other tools to automatically consume the paths. We

experimentally demonstrate that concolic testing can follow our generated faulty paths to auto-

matically exploit faults. In addition to improving the presentation of the analysis results, we also

develop a configuration tool for better tuning the static analysis. Users thus can make choices on

how conservative or aggressive an analysis should be.

Among the four goals, scalability is the prerequisite for the other three, shown by the arrows on

the top of the figure. With the improved scalability, we are able to use the additional computation

to address precision, generality and usability. The improved generality allows us to explore corre-

lations among different types of faults, and thus further facilitates the usability of the framework.

1.4.3 Contributions

This thesis makes the following contributions:

1. We demonstratepath diversity, that is, paths ofinfeasible, safe, faulty with various root

Chapter 1. Introduction 12

causes and severitiesanddon’t-knowcan traverse the same program point. The path classifi-

cation can guide the fault detection to achieve better precision, and help prioritize and explain

detection results for fault diagnosis [Le and Soffa, 2007,Le and Soffa, 2008].

2. We demonstrate that faults manifest locality, i.e., often a fault is relevant to only several

procedures along a path, instead of the whole program path. Therefore, by focusing on such

path segments, both fault detection and diagnosis can achieve better performance [Le and

Soffa, 2007,Le and Soffa, 2008].

3. We develop a demand-driven analysis that statically identifies user-specified faults. In our

feasibility study, we applied the analysis to buffer overflow detection and demonstrated its

scalability. The work validates the hypothesis that the demand-driven analysis only visits the

code that is relevant to the faults and terminates only when asmall portion of the code is

analyzed [Le and Soffa, 2008].

4. We develop a fault model and a specification language that can specify both control- and

data-centric faults as well as both liveness and safety properties [Le and Soffa, 2011].

5. We design an algorithm to automatically generate individual analyses from specifications

and a general demand-driven template. The generated analysis can handle one or several

types of specified faults. We experimentally show that the generality does not compromise

scalability, and the analysis is able to scale at least for identifying buffer overflow, integer

faults, null-pointer dereferences and memory leaks [Le andSoffa, 2011].

6. We define fault correlations and demonstrate their valuesfor understanding faults. We also

develop algorithms to automatically compute paths along which two faults are correlated [Le

and Soffa, 2010].

7. We develop techniques to integrate statically computed path information with the path-based

test input generation. In our evaluation, we show that usingpath-guided concolic testing, we

can automatically generate test inputs that exploit our statically identified faults, and with the

Chapter 1. Introduction 13

guidance of the path information, concolic testing is able to more quickly find faults [Cui

et al., 2011].

8. The framework is implemented in a research prototype Marple. It takes the program source

and user supplied specifications, and reports the paths withdifferent fault properties for spec-

ified faults. The tool is configurable and applicable for analyzing Windows compilable soft-

ware.

Contributions 1 and 2 are presented in Chapter 3 and contribution 3 in Chapter 4. As the effort

of making the framework more generally applied, Chapter 5 includes contributions 4 and 5. The

applications of path information are summarized in contributions 6 and 7, which are shown in

Chapters 6 and 7 respectively.

1.5 Thesis

The thesis presents scalable, general path-sensitive algorithms for detecting faults and deter-

mining fault correlations. It demonstrates that static path information regarding faults can be made:

• valuable for both fault detection and diagnosis;

• practical in that paths can be identified with reasonable precision andscalability; and

• broad to address paths of a variety of faults, and paths of multiplejoint properties.

Chapter 2

Background and Related Work

Two key concepts of this thesis arefaults and program paths. We organize the background

chapter based on the two concepts. Underfaults, we define faults and common fault types; we then

introduce techniques and terminologies related to detecting and diagnosing faults. Similarly, under

program paths, we provide definitions related to paths; we then present theexistent work on com-

puting and using program paths. At the end of the chapter, we provide information about our imple-

mentation and experimentation. In particular, we explain the use of the Microsoft Phoenix [Phoenix,

2004] and Disolver [Hamadi, 2002] in the development of the tool Marple and also our choices of

benchmarks for experiments.

2.1 Faults

Definition 2.1: a programfault is an abnormal condition caused by the violation of a required

property at a program point. Thepropertycan be specified as a set of constraints to which a program

has to conform.

Fault is a dynamic concept, i.e., a fault occurs when a program runs. Research shows that certain

types of malfunction in dynamic behavior can be predicted statically using patterns of program

source code [Evans, 1996, Bush et al., 2000, Das et al., 2002,Xie et al., 2003, Xie and Aiken,

2007, FindBugs, 2005, Le and Soffa, 2008]. The goal of staticfault detection is to apply static

analysis on program source to determine the potential occurrence of a fault.

14

Chapter 2. Background and Related Work 15

2.1.1 Common Fault Types

We focus on the following four types of faults,buffer out-of-bounds, integer fault, null-pointer

dereferenceand resource leak. They are chosen because 1) these types of faults are commonly

seen in software; 2) identifying them is important for software reliability and security, as they can

cause programs to crash, hang, slowdown, be exploited or produce incorrect results, 3) they are not

simple syntactic faults that can be found during compilation, and instead, only advanced semantic

analyzers are able to statically identify them, and 4) the four types are representative for both data

and control centric faults, and include both liveness and safety properties.

Definition 2.2: If a write or read of bufferv accesses the memory outside the boundary ofv,

a bufferout-of-boundsoccurs. If the access is beyond the buffer, e.g., at the address larger than

[Address(v)+size(v)], the fault is abuffer overflow; otherwise, if the out-of-bounds access is before

the buffer, e.g., at the address less than[Address(v)], it is abuffer underflow. A buffer is a chunk of

memory that storesn (n > 0) number of elements of the same type. In program code, a buffercan

be identified using a source variablev; any element in the buffer can be accessed usingv[i] (i is the

index of the buffer).

Buffer out-of-bounds can occur in the stack, heap or data section, and in all of the three cases,

buffer overflow/underflow are exploitable [CERT, 2010]. In Figure 2.1, we show a stack buffer

overflow and the exploit targeted to this buffer overflow.

(a) Code with a Buffer Overflow (b) Exploiting the Buffer Overflow

Figure 2.1: A Stack Buffer Overflow and Its Exploit

Chapter 2. Background and Related Work 16

In Figure 2.1(a), there is a buffer overflow vulnerability atnode 3 on a stack buffera. In

Figure 2.1(b), we show that an inputa[100]=”111...1” (with more than a 100 ”1”) taken at node 3

overflows buffera, and as a result,auth located adjacent to the buffer on the stack is overwritten

(assuming the memory layout shown as Figure 2.1). Due to the buffer overflow, the valueauth

is controllable by external users, and therefore an unauthorized access can occur at node 5. This

buffer overflow is a simplified version of an exploited SSHD vulnerability [Chen et al., 2005].

Next, we introduce three types of integer faults:truncation error, overflow/underflow, and

signedness error.

Definition 2.3: An integer truncation erroroccurs when 1) an integer with a largerwidth is

assigned to an integer with a smaller width and 2) the destination integer cannot accommodate the

value. Integer widthmeasures the number of bytes used in the machine to representa specific type

of an integer.

For example, in C and C++, there exist integer types ofchar, short, int, andlong; their

corresponding sizes are 1, 2, 4, and 8 bytes. When an integer,e.g., 1024, with thelong type is

assigned to the integer ofchar type, a truncation error occurs. Instead of 1024, we would get 0

after the assignment.

Definition 2.4: An integer overflow/underflowoccurs when an integer arithmetic returns a value

that the destination integer cannot accommodate: if the value is larger than the maximum value the

destination integer can store, aninteger overflowoccurs; otherwise, if the value is smaller than the

minimum value the destination integer can store, aninteger underflowoccurs.

For some languages such as C and C++, the values an integer canstore are dependent not only

on the integer type, but also itssignedness. An unsignedinteger is always non-negative, and all

of its bits are interpreted as values. Asignedinteger can represent negative values, and often, its

highest bit indicates whether the integer is positive or negative.

Definition 2.5: An integer signedness erroroccurs when a signed integer is converted to un-

signed (or when an unsigned integer is converted to signed),and its value cannot be represented by

the destination integer.

The three types of integer faults listed in Definitions 2.3–2.5 share one commonality: they oc-

Chapter 2. Background and Related Work 17

cur when a value, either from some integer or integer arithmetic, is assigned to an integer, and

the destination integer cannot accommodate the value. The outcomes of the assignment in pres-

ence of integer faults are either defined in the language standard or implementation dependent. As

the results are often not expected, integer faults can lead to incorrect results, program crashes or

exploits [SecurityTeam, 2010,Common Vulnerabilities andExposure, 2010].

The next category of faults is related to the pointer usage.

Definition 2.6: A null-pointer dereferenceoccurs when the program attempts to dereference a

pointer whose value is NULL.

Null-pointer dereference can cause the program to crash or even be exploitable. Figure 2.2

shows a proof-of-concept example on how a null-pointer dereference is exploited. In Figure 2.2(a),

the pointer dereferencea->i at node 3 encounters a null-pointera. As a result, the program would

access the memory at addressx (x is the offset of variable i in struct A), which most of the

time is not a legitimate user memory space, and thus the program would crash. Sometimes, an

authorization token is by chance located at addressx, as shown in Figure 2.2(b), in which case the

assignment at node 3 can change the value ofauthand allow a non-authorized access at node 5.

(a) a NULL-Pointer Dereference (b) Exploiting NULL-Pointer Dereference

Figure 2.2: An Example of Null-Pointer Dereference

Pointer related faults also include the dereferences of uninitialized, untrusted, or already freed

pointers. They are all similar to null-pointer deferences in that the fault occurs when the pointer

Chapter 2. Background and Related Work 18

dereference is not performed in a proper context.

Finally, the last category of fault is about the usage of resource in software systems.

Definition 2.7: A resource leakoccurs if some allocated resource is never released. One ex-

ample ismemory leak. A memory leak occurs when a chunk of allocated memory is never freed.

Memory leaks can slow down or even crash a program. Other resource leak examples include

“a file is never closed after open”, which can cause a program to crash or leak security sensitive

information, or “a lock is never released after acquire”, leading to deadlocks.

Besides types of faults that can be found in common software,there are also application-specific

faults, which only occur in particular software or systems.For example, in UNIX, a call tochroot

should be immediately followed by the callchdir. Our techniques are applicable for both com-

mon faults and application specific faults; the discussionsin the thesis mainly use common faults

presented above as examples.

2.1.2 Background Related to Static Fault Detection and Diagnosis

An important technique we applied to detect faults isdataflow analysis. Dataflow analysis was

originally developed for optimizing programs in compilers. In recent research, dataflow analysis

is also used for software assurance tasks such as fault detection [Das et al., 2002, Hackett et al.,

2006, Evans, 1996] and software testing [Duesterwald et al., 1996]. A special dataflow analysis

we applied isdemand-driven analysis, which aims to reduce time and space overhead by only

collecting information that is needed [Duesterwald et al.,1997, Bodik et al., 1997b, Heintze and

Tardieu, 2001].

2.1.2.1 Dataflow Analysis and Static Fault Detection

Definition 2.8: Dataflow analysisidentifies a set of values from a program that can satisfy de-

sired data use patterns at program points. A dataflow analysis can beintraprocedural, in which only

information within the procedure is considered. The analysis also can beinterprocedural, where

information across procedures is also collected. A dataflowanalysis can beforward, following the

direction of program executions, orbackward, along a reverse direction of program executions.

Chapter 2. Background and Related Work 19

In a dataflow analysis, the program source code is typically converted to some type of interme-

diate representation, for example,control flow graphs.

Definition 2.9: A control flow graph (CFG)of a procedure is a graphG = (N,E), where the

nodes inN represent statements of the procedure and the edges inE represent the transfer of the

control between two statements. Two distinguished nodesentry∈ N and exit ∈ N represent the

unique entry and exit of the procedure. Aninterprocedural control flow graph (ICFG)of a program

is a collection of control flow graphs{Gi} such thatGi represents a procedure in the program.

Supposecall(s) represents the procedure called from a callsites. Then for each callsiten in an

ICFG, there exists an edge fromn to the entry of the procedurecall(n), and also there exists an

edge from the exit ofcall(n) to n.

Dataflow analysis can compute the following two fundamentalclasses of program properties.

Definition 2.10: A safetyproperty states that “bad things” never happens; alivenessproperty

states that “good things” should eventually happen.

For example, in compiler optimizations, “determining whether a variable has a constant value

at a program point” is a safety problem, as it requires knowing before reaching the given program

point, whether the variable has been assigned to a non-constant value. On the other hand, to deter-

mine whether a statement in a program is “dead”, we need to know if the defined variable(s) in the

statement would eventually be used later along executions;here, we determine a liveness property.

Previous research shows that any program property can be expressed as a conjunction ofsafety

and livenessproperties [Alpern and Schneider, 1985]. Also, assuming a program always termi-

nates, liveness checking can be converted to safety checking [Biere et al., 2002]. In the traditional

dataflow analysis, safety properties are determined using aforward dataflow analysis, while com-

puting liveness problems uses a backward analysis [Aho et al., 1986].

Definition 2.11: A false positivein static fault detection is a warning reported by static analysis

which is not a real fault; afalse negativeis a fault in a program, but not detected by static analysis.

False positives and false negatives are metrics to evaluatethe precision of a static fault detector.

An ideal fault detector should report zero false positive and zero false negative.

Chapter 2. Background and Related Work 20

2.1.2.2 Demand-Driven Analysis

Typically, dataflow analysis traverses the ICFG of a programto collect program facts. One

of the important decisions is how the ICFG should be traversed to efficiently collect the desired

information. For example, in a procedure, there are optionsof performing a breadth-first or depth-

first search. If an interprocedural analysis is conducted, there are also choices of following atop-

downor bottom-uporder to traverse the call graph. Top-down analysis starts at the root of an ICFG

and traverses its leaves (callees) recursively, while bottom-up analysis summarizes the information

from all the leaves and propagates it to the parents (callers). An exhaustivedataflow analysis starts

at the beginning of a program, and terminates at the exit; theinformation is collected without a

selection, as the analysis does not know which information is potentially useful until the program

point that uses the information is reached.Demand-driven analysisis different from exhaustive

analysis in that the traversal of nodes in an ICFG is completely dependent on the information that

is needed, instead of the structure of the ICFG, to reduce time and space overhead [Duesterwald

et al., 1997,Heintze and Tardieu, 2001,Bodik et al., 1997b].

To achieve the goal, demand-driven analysis formulates a demand to a set of queries. Driven

by these queries, the analysis only visits the parts of the program that are reachable from where the

queries are raised, and collects information that is relevant to resolve the queries. Guided by this

general paradigm, a concrete demand-driven analysis can bedeveloped to solve specific problems.

Demand-driven analysis is potentially more scalable than exhaustive dataflow analysis for sev-

eral reasons: 1) the analysis only visits the code reachablefrom where a query is raised; 2) only

information that is useful for resolving a query is collected; 3) the analysis terminates as soon as

the resolutions of the query are determined, often when onlya small portion of the code is visited;

and 4) the information computed for resolving different queries can be reused.

One of the earliest demand-driven analyses computed live variables, dated back to 1978 [Babich

and Jazayeri, 1978]. Over the 30 years, research in the area has been focusing on the applications

of demand-driven analysis to solve various problems. Demand-driven algorithms have been ap-

plied for solving typical dataflow problems [Duesterwald etal., 1997], alias analysis [Heintze and

Tardieu, 2001], infeasible path computation [Bodik et al.,1997b], value flow [Bodik and Anik,

Chapter 2. Background and Related Work 21

1998], range analysis [Blume and Eigenmann, 1995] and software testing [Duesterwald et al.,

1996]. Experiments on a demand-driven copy constant propagation framework report speedups

of 1.4–44.3 on 14 benchmark programs [Duesterwald et al., 1997]. The demand-driven alias

analysis was demonstrated to scale up to millions lines of code [Heintze and Tardieu, 2001]. A

demand-driven analysis can be path-sensitive [Le and Soffa, 2008, Bodik et al., 1997b] or path-

insensitive [Duesterwald et al., 1997], and forward [Livshits and Lam, 2003] or backward [Bodik

et al., 1997b]. Generally, demand-driven analysis followsan opposite direction of a standard data

flow analysis. For example, a forward iterative dataflow analysis computes equivalent information

as a backward demand-driven analysis for distributive dataflow problems [Duesterwald et al., 1997].

The thesis is the first work that studies and evaluates the capability of demand-driven analysis in

determining paths of various types of faults and their correlations.

2.1.3 Related Work on Fault Detection and Diagnosis

Static analysis identifies faults based on the patterns a fault potentially manifest in the code. We

first introduce how faults are usually specified for static detectors. Next, we summarize the three

representative types of static techniques applied for identifying faults. We also present techniques

that further process or use the statically computed information, including fault ranking and static

information guided testing and runtime detection.

2.1.3.1 Representing Faults for Static Analysis

For static analysis to identify a particular type of fault, we have to specify code patterns for

faults; that is, we should express to static detectors “whatdo we mean by a fault?” Faults are often

represented using the following two fault models:finite automataandassertions. Finite automata

are effective in specifying control-centric faults, i.e.,violations of an enforced order of program

execution [Chen and Wagner, 2002]. An assertion based modelis flexible in that it can specify

fault conditions at any program point and express either data or control constraints about program

behavior. In static analysis, assertions are often expressed using annotations [ESC-Java, 2000].

Chapter 2. Background and Related Work 22

Besides using the two fault models, there are three other approaches to integrate fault patterns

in a static analyzer. A straightforward approach is to hard-code the safety rules in the analysis,

and construct individual static analyzers for each type of fault [Wagner et al., 2000,Brumley et al.,

2007]. A more general technique is to first construct a general analysis, and then write additional

extensions on top of the general engine to produce fault-specific detectors [Hallem et al., 2002,Find-

Bugs, 2005]. There is also the approach that provides inconsistent rules of the code for static anal-

ysis; the assumption is that inconsistency implies a fault [Engler et al., 2001]. Our work develops

specification techniques that express both control- and data-centric faults in terms of constraints at

program points. Analyses for a specific type of fault are automatically produced.

2.1.3.2 Three Types of Static Approaches for Detecting Faults

Much research has been done for fault detection due to its importance. In Figure 2.3, we provide

a spectrum of fault detection and diagnosis techniques in the state-of-the-art, static techniques in

the left, dynamic approaches in the right, and in the middle,we show a set of hybrid tools, i.e.,

techniques that integrate both static and dynamic components. Since our work is static, the focus in

this section is to present existing static techniques for faults, as well as their roles in hybrid tools.

Common static techniques for fault detection includemodel checking, dataflow analysis, and

type inference. Model checkers were initially developed to verify small design spaces, such as

hardware or protocols. Recently, successes have been accomplished in model checking software.

For example, SLAM, a model checker developed by Microsoft, successfully identifies protocol

violations in device drivers [Ball et al., 2004]; MOPS reports security violations in millions of lines

of code [Chen and Wagner, 2002]. Applied to software, model checkers first abstract software to

models such as push down automata (PDA) and also represent faults using finite automata (FA).

The software model (e.g., PDA) then is checked against FA forpotential violations. If a violation is

discovered, a counter example is reported as the trace on theabstract software model. The biggest

challenge for software model checking is to manage the potential explosion of the state space; that

is, we need to build software models within a reasonable sizeand meanwhile do not sacrifice much

precision. Also, current model checkers [Chen and Wagner, 2002, Henzinger et al., 2002, Visser

Chapter 2. Background and Related Work 23

Figure 2.3: Static Analysis for Fault Detection and Diagnosis

et al., 2000] are only able to identify control centric faults such as typestate violations. It is unclear

whether we can extend model checkers to handle a more varietyof faults.

Dataflow analysis is another category of fault detection techniques. Dataflow analysis traverses

a program and collects the information to determine whethera fault pattern is matched. Used with

techniques such as symbolic evaluation and constraint solving, dataflow analysis has shown to be

effective in detecting many types of faults [Das et al., 2002, FindBugs, 2005, Evans, 1996, Xie

and Aiken, 2007, Hallem et al., 2002]. Path-insensitive dataflow analysis merges information at

the program points, and the analysis is fast but imprecise [Evans, 1996, FindBugs, 2005]. The

techniques developed in this thesis are based on an interprocedural, path-sensitive dataflow analysis.

We give a detailed discussion on path-sensitive dataflow analysis in Section 2.2.

Type inference has also been applied to detect software faults. The idea is to develop a set of

typing rules as fault patterns. A type inference is performed to determine whether a violation of

the typing rules can occur in the code; if so, a fault is reported. This technique has been applied

to C programs for detecting memory errors [David and Wagner,2004, Necula et al., 2005] and

Chapter 2. Background and Related Work 24

integer faults [Brumley et al., 2007]. However, modeling faults using typing rules is not always

straightforward, which restricts the types of faults that actually can be applied. Also, type inference

algorithms tend to be conservative, which can lead to many false positives in the fault detection.

2.1.4 Fault Ranking and Localization

Static analysis potentially produces a large number of warnings. Fault ranking and fault lo-

calization, shown in the left corner of Figure 2.3, are the two automatic techniques developed to

process statically reported warnings.

Fault ranking aims to prioritize real and important faults for static warnings. Often, many factors

can indicate the importance of a warning, such as the complexity of the code where the warning is

reported or the feedback from code inspectors. Ruthruffet al. developed logistic regression models

to coordinate these factors [Ruthruff et al., 2008]. Kremenek et al. observed that warnings can

be clustered in that either they were all false positives or all real faults. Thus diagnosing one can

predict the importance of other faults in the cluster [Kremenek et al., 2004, Kremenek and Engler,

2002]. Heckmanet al. identified alert characteristics and applied machine learning techniques to

classify actionable and non-actionable static warnings [Heckman and Williams, 2009]. Compared

to the above works which are all based on empirical observations, we compute fault correlations,

and statically group and order faults based on the inherent causality between faults, and thus is

generally applicable.

Research in fault localization aims to automatically identify the root cause of faults. Static

analysis often reports program points where the static violations are detected. However, the actual

cause that leads to the violation can be far from where the violation is observed. The only work we

found for localizing root causes for static warnings is built on model checkers. It finds statements

that occur in the faulty traces but not in the correct ones as likely root causes [Ball et al., 2003].

The techniques are imprecise, because only a limited numberof correct traces can be generated and

compared, and the statements that occur on the faulty tracesbut absent from correct traces are not

necessarily problematic.

Chapter 2. Background and Related Work 25

2.1.4.1 Use of Static Information in Hybrid Tools

In the middle of Figure 2.3, we use a three-dimension coordinator to summarize the three po-

tential ways a static and a dynamic analysis can integrate. In the first two approaches, static and

dynamic analysis are first performed separately, and in the second stage, the information gener-

ated from one analysis is then supplied to another. For example, Perracotta has been applied to

dynamically infer API protocols [Yang et al., 2006], which are then used by ESP [Das et al., 2002]

to find violations in software. In an opposite direction, static analysis is first applied to pinpoint

program points where faults potentially occur; the information then is used to guide runtime detec-

tors [Brumley et al., 2007] and testers (including test input generation and testing) [Csallner and

Smaragdakis, 2006].

In the third category of hybrid tools, static and dynamic analysis are performed interactively. An

important application is to generate test inputs that execute a targeted path [Cadar et al., 2006, Sen

et al., 2005, Godefroid et al., 2005, Cadar et al., 2008]. A representative technique is concolic test-

ing [Sen et al., 2005,Xu et al., 2008,Burnim and Sen, 2008]. In concolic testing, the program under

test is concretely executed and symbolically evaluated simultaneously. Instrumentation is inserted

to the program to collect the symbolic path constraints and value updates during program execution.

The symbolic constraints are solved to generate test inputstargeting a new path. When symbolic

values cannot be collected, symbolic expressions are simplified by using the corresponding concrete

values.

The planes between the two coordinators in the figure indicate the further opportunities of in-

tegrating static and dynamic analysis. For example, DSD applies dynamic inferences to help static

analysis find likely faults; the static information is then provided to test input generation to trigger

faults [Csallner and Smaragdakis, 2006]. Similarly, static information also can be supplied to con-

colic testing tools to help further reduce the search space.We developed MAGIC, which applies

statically computed path information to guide concolic testing [Cui et al., 2011]. Comparing to pro-

gram statements, the path information is more precise, as many of the program properties needed

for dynamic tools are only valid along some paths. We experimentally show that the path precision

brings in further efficiency for guiding dynamic testing, and meanwhile the dynamic testing is able

Chapter 2. Background and Related Work 26

to confirm static results by exploiting the faults reported in static analysis.

2.2 Program Paths

Here, we introduce the background and related work that are related to program paths.

2.2.1 Terminology Related to Paths

Definition 2.12: A path is a sequence of statements in a program, starting at the entry of the

program, and ending at the exit of the program. Apath segmentis any subsequence of statements

on the path. Asub-path segmentof a path segmentp is a subsequence of statements onp.

Definition 2.13: An input exercises a path, producing anexecution. If no input can be found to

exercise the path, the path isinfeasible.

Static infeasible path identification is an undecidable problem. Therefore, static analysis will

have imprecision: some of the paths identified as faulty might actually be infeasible.

Definition 2.14: Path conditions, also calledpath constraints, are a set of control predicates

that decide the execution of the path.

Intuitively, path conditions are conditions at branches that a path traverses. An execution would

follow a path if all the path conditions are satisfied at runtime. In path-based program testing, we

construct program inputs that direct the executions to a desired path.

2.2.1.1 Background on Path-Sensitive Analysis

In dataflow analysis,sensitivitydescribes how the information is handled during the traversal

of a program. It is an important measure to distinguish analysis techniques with regard to their

precision.

Definition 2.15: Path-sensitivityspecifies whether a dataflow analysis collects the information

with the consideration of program paths.Path-sensitive analysisdistinguishes the information col-

lected along different paths.

Chapter 2. Background and Related Work 27

Path-sensitive analysis incorporates flavors of dynamic analysis in that it simulates the execu-

tions potentially invoked at the program runtime. As a result, path-sensitive fault detection is more

precise and able to provide guidance for fault diagnosis with a sequence of executions that lead

to a fault. Meanwhile, since the technique is static, path-sensitive fault detection does not lose the

advantages of traditional static analysis, including early reporting of faults as well as a full coverage

of program paths and the input space. In path-sensitive fault detection, program facts used to de-

termine faults are collected based on paths, and never merged at the joint points of program control

flow. Since not all statically traversed paths can be executed at the runtime, a precise path-sensitive

analysis would further remove identifiable infeasible paths to more accurately model dynamic pro-

gram behavior.

Besidespath-sensitivity, there are alsoflow-sensitivityandcontext-sensitivity.

Definition 2.16: Flow-sensitivityspecifies whether the order of the statements is considered

in a dataflow analysis.Flow-insensitiveanalysis collects information from a call graph instead of

control flow graphs, and the information is collected from procedures without considering the order

of the statements. That is, in a flow-insensitive analysis, the information found can be true at any

program point in the procedure.Flow-sensitive analysis, on the other hand, takes the order of the

statements into consideration, and thus the effectivenessof the information is associated with the

program points of the procedure.

Definition 2.17: Context-sensitivityspecifies whether the call history is considered in dataflow

analysis.Context-sensitiveanalysis collects information at program points with the consideration

of the callers. Global side effects are also considered in that the values of globals are evaluated in

the context of a call history.

Path-sensitive analysis considers the order of statementsand thus is flow-sensitive. Path-

sensitive analysis can be context-sensitive or context-insensitive. An interprocedural path-sensitive

analysis records a real call history, and thus is context sensitive; however, a summary based inter-

procedural analysis can use the path information from procedures in a context-insensitive way.

Traditional iterative dataflow algorithms apply dataflow equations in a flow-sensitive fashion;

however, the algorithms apply meet and join operators to merge information, and thus are inherently

Chapter 2. Background and Related Work 28

path-insensitive. Context-sensitivity is determined by interprocedural propagations in individual

dataflow analysis.

2.2.1.2 Related Work on Path-Sensitive Analysis

Path-sensitivity can be achieved using two types of techniques: model checking and dataflow

analysis. In model checking, each trace on the software model is examined for correctness. Due

to the abstraction, a trace enumerated from the model is often not the exact path from the program,

and imprecision can occur. Applying dataflow analysis for paths, dataflow facts propagated from

different paths should never be merged at any program point.When a path-sensitive analysis is

finished, we report the paths that match a specific fault pattern. For each of the technique, the search

of the state space can follow a systematic order, a random sampling or a demand-driven fashion (see

Figure 1.2). Based on the above classification, we summarizethe representative path-sensitive fault

detectors in the state-of-the-art.

In Figure 2.4, the grey boxes are model checkers and the others are dataflow analyzers. From

top to bottom, we list the tools in chronological order. At the bottom of the figure, we list the three

challenges a path-sensitive static analyzer generally would face, including precision, generality and

scalability. Since most of the tools are neither available for use nor report empirical experiences for

usability, we are not able to compare their usability. If a tool does not handle any of the challenges,

we use an arrow to connect the corresponding box of the challenge and the box of the tool.

In the figure, scalability means whether the analysis can finish with a reasonable path coverage.

Most of listed tools manage to finish the analysis. However, Prefix uses a time threshold to ter-

minate with unexplored paths, and thus the technique does not scale with the size of the software.

Generality requires the tool to handle a variety of faults, such as both data and control centric faults,

without sacrificing scalability and precision. Tools such as ARCHER, ESP, Saturn and MOPS han-

dle the scalability only for a specific type of fault (either buffer overflow or typestate violation), and

thus do not meet the requirement of generality [Xie et al., 2003, Das et al., 2002, Xie and Aiken,

2007, Chen and Wagner, 2002]. Precision measures whether the analysis would report high false

positive and false negative rates. For example, PRSS randomly explored the search space for faults

Chapter 2. Background and Related Work 29

Figure 2.4: Path-Sensitive Analysis: the State-of-the-Art

and can cause false negatives [Dwyer et al., 2007]. None of these fault detectors have shown the

scalability and precision to detect both data and control centric faults, as done in Marple.

A detailed comparison for path-sensitive dataflow analysisis shown in Table 2.1. UnderType

of Faults, we see that Marple is the only one that handles integer faults. 5 out of 7 tools integrate

specifications in the analysis. Metal [Hallem et al., 2002] and ESP [Das et al., 2002] provide finite

automata for modeling the faults. Prefix [Bush et al., 2000] develops a way to specify library

calls. Saturn [Xie and Aiken, 2007] applies a logic programming language to specify summary

information at the procedure calls and also inference rulesfor customizing an analysis. According

to the best of our knowledge, none of the above six tools automatically generate a customized

analysis from specifications as Marple does.

Chapter 2. Background and Related Work 30

Tools
Types of Faults

Specification
Path Traversal Precision Error

buf int control exhaustive path coverage scalability path-sensitivity modeling Reports

Prefix × × model lib × given number truncation heuristically merge ad-hoc path
Metal × automata × all summary intraprocedurally dataflow stmt
ESP × automata × all heuristics heuristically merge dataflow path

ARCHER × no ×
all summary

intraprocedurally
linear

stmt
(timeout) simple solver relation

Saturn × summary × all
summary

intraprocedurally
limited

stmt
compress Booleans bit-accurate

Calysto × no × configurable compact summary interprocedurally bit-accurate stmt

Marple × × ×
assertions

relevant
demand-driven

interprocedurally
integer,some path

flow-funcs caching str,containers segment

Table 2.1: Path-Sensitive Dataflow Analysis for Identifying Faults

We also compare the tools in Table 2.1 with regard to the way paths are traversed in the analysis.

The comparison on the three metrics underPath Traversalshows that Marple is different from the

other tools in that we apply a demand-driven algorithm, which allows us to explore only relevant

paths, instead of exhaustively along all program paths.

Precision has been compared on the degree of path-sensitivity achieved in the analysis as well

as the techniques used to model program facts. The comparison underpath-sensitivityshows that

Calysto and Marple both performed an interprocedural, path-sensitive analysis. Summary based

approaches, such as Metal, Saturn and ARCHER do not considerinterprocedural path information,

and are less precise. ESP applies a heuristic to select the information that is relevant to the faults,

while driven by demand, our analysis is able to determine theusefulness of the information based

on the actual dependencies of variables, achieving more precision. We model integer computation

and some operations of strings and C/C++ containers; compared to bit-accurate modeling technique

accomplished by Saturn and Calysto, we are not able to handleinteger bit operations; however, the

trade-off is a faster analysis.

To report an error, Prefix, ESP and Marple give path information for diagnosis, and Marple

provides the path segments that are relevant to a fault. Although the fault detection is path-sensitive,

other tools only report a statement where a fault occurs.

2.2.2 Use of Path Information

In the domain of detecting and diagnosing faults, path information is generally used in two

ways: 1) to understand fault propagation, and 2) to generatetest inputs to trigger faults.

Chapter 2. Background and Related Work 31

Research in fault propagation has been done for software security [Chen et al., 2003, Ghosh

et al., 1998]. To understand the severity of certain types ofstatic faults, Ghoshet al. injected

faults in programs and dynamically triggered faults to observe their propagation and impact along

the execution [Ghosh et al., 1998]. Chenet al. discovered that a successful attack performs a

set of stages. The finite state machines can be used to model the activities at each stage [Chen

et al., 2003]. Similar to our research, both of the above works track the fault propagation along

the program paths. However, Ghoshet al. obtained fault propagation by running the program, and

thus the number of paths that could be explored was limited bythe program inputs, while Chenet

al. manually inspected the exploited paths to understand faultpropagation. Besides for software

security, fault propagation is also studied for improving software testing. The focus of one effort

was to discover how an error can potentially mask another andimpact testing coverage [Wu and

Malaiya, 1993]. Another study investigated how to propagate an error to the output of the program

so that its consequence can be observed [Goradia, 1993].

Techniques for path-based test input generation have threegeneral categories: 1) EXE [Cadar

et al., 2006] and KLEE [Cadar et al., 2008] symbolically execute a program along program paths,

and generate inputs based on collected symbolic path constraints; 2) SAGE applies trace informa-

tion and symbolic path constraints to generate test inputs [Godefroid et al., 2007]; and 3) DART

[Godefroid et al., 2005], CUTE [Sen et al., 2005], SPLAT [Xu et al., 2008] and CREST [Burnim

and Sen, 2008] are concolic testing tools, which use both symbolic and concrete values to generate

the test inputs. CREST [Burnim and Sen, 2008] proposes several search strategies to improve the

branch coverage for concolic testing. SPLAT [Xu et al., 2008] models buffer operations and deter-

mines at runtime whether a buffer overflow can occur at each buffer access; if so, SPLAT generates

a test input to trigger the fault. The above techniques all exhaustively explore program paths to gen-

erate test inputs, and thus the scalability is an issue. Testing has to give up when a certain number

of paths are executed.

The above related work demonstrated the value of program paths for ensuring software security

and for improving the productivity of software testing. However, among all the work, the path

information is either manually identified or obtained by executing the program. In this thesis,

Chapter 2. Background and Related Work 32

we developed an approach to statically compute desired pathinformation related to faults. We

demonstrated that the automatically identified paths can beused in testing to reduce the state space

for test input generation, and faults in a program can be morequickly triggered in path-guided

testing [Cui et al., 2011].

2.3 Implementation Support and Benchmarks

In this section, we provide background related to our implementation and experimentation. In

particular, we introduce our experience with the MicrosoftPhoenix infrastructure [Phoenix, 2004]

and the Disolver constraint solver [Hamadi, 2002], the two external tools we used to build Marple.

We also discuss how the benchmarks are selected for conducting experiments.

2.3.1 An Overview of the Microsoft Phoenix and Disolver

Phoenix is a compiler infrastructure developed by Microsoft [Phoenix, 2004]. The infrastruc-

ture consists of a Phoenix compiler and a set of libraries that are useful for building customized

compiler optimizations and static analysis. As shown in Figure 2.5(a), Marple is built as a phase-

plugin to the Phoenix compiler. Phoenix compiles functionsof a program one by one via several

phases. Intermediate code is generated at phases. During compilation, when an entry of a program

is encountered, e.g., main function, and when the Phoenix front end produces anMIR (medium level

intermediate representation) for the function, Marple is invoked. Marple first calls the Phoenix li-

brary to build the ICFG for the program and also to perform an alias analysis; Marple then starts the

interprocedural, path-sensitive analysis. During analysis, the Phoenix library is called from time to

time, e.g., to help simplify constraints generated in the analysis, or to find the information about

certain operands, shown as Figure 2.5(b).

Besides applying Phoenix to simplify constraints, we also apply an external integer constraint

solver, the Microsoft Disolver [Hamadi, 2002] for further handling unresolved constraints. Disolver

is written in C and was developed at the Microsoft research [Hamadi, 2002]. It takes any numbers of

integer constraints, and returns instances if the constraints are satisfiable; if no solutions are found,

Chapter 2. Background and Related Work 33

we consider that the constraints are never able to be satisfied. The interfaces between Marple

and Disolver implement the marshallings and unmarshallings between the Marple and Disolver

constraints.

(a) Marple: Phase-plugin to Phoenix (b) Phoenix and Disolver for Marple

Figure 2.5: the Interactions of Phoenix, Disolver and Marple

2.3.2 Phoenix and Disolver for Marple

Here, we give in a detail how Marple is built with the support of Phoenix and Disolver.

2.3.2.1 Intermediate Code

In Phoenix, there exist high-level, medium-level and low-level three types of intermediate rep-

resentations (HIR, MIR and LIR). During compilation, source code of a program is converted to

HIR, MIR, LIR and finally binary executables. At each level, the corresponding analyses and code

transformations are performed.

Marple analyzes the MIRs produced by Phoenix. MIR is program-language independent and

hardware independent. Loop structures in the code are preserved. Two important differences of

MIR and the program source are 1) temporaries are introducedto regulate the instructions. For

example, a source level instructiona = b+c+d is translated to two MIR instructionstemp=c add

Chapter 2. Background and Related Work 34

d; a = b add temp. 2) instructions regarding pointer dereference and array subscripts are trans-

formed. For example, the C codea[b]=’x’ is converted totemp = a subscript b; temp =

’x’ in the MIR.

In our implementation of Marple, we chose to analyze MIRs fortwo reasons. First, programs

written in different languages can be converted to MIR via the front end of Phoenix. Therefore,

using MIR as a bridge, Marple is able to analyze programs written in C, C++ and C# code. Second,

in Phoenix, many of the typical analyses are implemented forMIR; by applying our analysis also

for MIR, we are able to reuse these off-the-shelf analyses, e.g., pointer analysis, in Marple.

2.3.2.2 Modeling Control Flow

Phoenix models the control flow of a program in the ICFG. The challenges of building an ICFG

are to handle irregular control flows caused by function pointers, virtual functions, signal handlers

and exceptional handling routines. In the version of ICFGs we use, Phoenix handles exceptional

handling but not others. We manually resolve some of the function pointers and virtual functions.

Another important control flow analysis is the modeling of the loops. Phoenix provides the basic

information about loops such as the loop entries, exits, andback edges. Occasionally (dependent

on the patterns of a loop), Phoenix is able to offer more valuable information such asinduction

variables. Induction variables of a loop are variables that get increased or decreased by a fixed

amount on every iteration of a loop. Using induction variables, we are potentially able to reason the

symbolic updates of a variable in a loop.

2.3.2.3 Modeling Memory: Resolving Aliasing and Handling Aggregates

Pointer analysis determines to which variables or storage locations a pointer refers. It applies

before dataflow analysis to determine, for example, whethera definition to a variable occurs through

aliasing. Phoenix performs an intraprocedural, flow-sensitive and field-sensitive alias analysis, and

provides bothmayandmustaliasing information.

Scalarsare variables in the program that only can hold one value. Scalar types in C, for in-

stance, includeint, char, andfloat. Composite variables, also calledaggregates, are variables

Chapter 2. Background and Related Work 35

that can represent a set of scalar values, e.g., array, list,or tree. At the MIR level, Phoenix is able to

model a large part of the structures and classes in C and C++. For example, it returnstree.node

for the elementnode present in thetree class, and reportsa[i] as the(i+1) th elements of ar-

ray a. When a structure is very complex, for instance, in the case of multiple layers of embedded

structures, Phoenix will not be able to identify the membersof a structure. For example, it reports

a.b.unknown for the membera.b.c.d.

2.3.2.4 Constraints and Algebra Simplification

In Marple, we construct integer constraints for determining faults. In our implementation, the

constraints are represented using a small piece of Phoenix MIR code. For example, we write code

_Value(a)>0 to denote the constraint that the value ofa should be larger than 0. As Phoenix

contains an algebra simplification system to optimize its MIR code, by constructing constraints

using MIR, we can use this algebra simplification system to simplify our constraints. It should be

noted that the capability of the Phoenix’s algebra simplification system is limited. For example,

Phoenix is not able to process the conjunction or disjunction of multiple constraints. In Marple,

we implement some of the algebra rules that Phoenix does not have, and if the constraints still

cannot be solved, we send them to an external constraint solver Disolver [Hamadi, 2002] for further

evaluation.

2.3.3 Challenges of Using External Tools

One of the greatest advantages of using Phoenix and Disolveris their reliability. By using the

off-the-shelf components, we saved a lot of implementationefforts. The tradeoff is that we needed

to handle additional challenges to use these tools:

• Challenges of working with ongoing projects: Phoenix and Disolver are two ongoing

projects, and the APIs they exported were changing over times. As a result, Marple has

to be refactored from time to time to stay compatible with thenew interfaces. Another prob-

lem is that bugs were introduced in the new versions, which prevent us from using some of

our old benchmarks.

Chapter 2. Background and Related Work 36

• Challenges of working with closed source projects: Both Phoenix and Disolver are closed

source with limited documentation, tutorials and supports. We had to face a high learning

curve at the beginning. After starting to use the tools, we found that the challenge is to

get around the internal bugs or to introduce some desired features. For example, we have

designed a study of parallelizing Marple for further performance improvement; however, we

found that some of the libraries in Phoenix are not reentrant, and we have to give up the

experiments. Also, because source code is not available, weare not able to understand and

elaborate the capabilities of the analyses Phoenix provides. For example, we cannot predict

when the induction variables of loops can be reasoned by Phoenix or what types of aggregates

Phoenix surely handles.

• Challenges of using the Windows platform in academia: In order to be compatible with

Phoenix, Marple only analyzes programs that can be compiledby the Windows compilers;

however, finding widely used Windows open source programs asbenchmarks is more difficult

than finding ones implemented for UNIX systems. As a result, extra effort had to be spent

to port some of the benchmarks. For the same reason, we were not able to use many of the

benchmarks that the communities use to perform comparison experiments.

2.3.4 Benchmarks

To evaluate precision, generality, scalability and usability of our techniques, we collected a set

of benchmarks, including the buffer overflow benchmarks from Zitser [Zitser et al., 2004], Bug-

Bench from Lu [Lu et al., 2005], SPEC CPUINT2000, legacy opensources offfmpeg, putty,

vnc andapache, and a Microsoft game project McCommander [Microsoft Game Studio Mech-

Commander2, 2001]. All of the benchmark programs are written in C or C++, and are managed

to be compiled by Phoenix. Benchmarks from Zitser [Zitser etal., 2004] are manually constructed

programs. Each program consists of a snippet of faulty code selected from the real-world appli-

cations ofBIND, sendmail andwu-ftpd. BugBench consists of a set of legacy programs, each of

which contains some known faults reported by testers or external users. By examining whether we

are able to identify these known faults, we can estimate the false negative rate of our techniques.

Chapter 2. Background and Related Work 37

SPEC CPUINT2000 is used to compare with other tools for performance as well as the capability

of fault detection. The large deployed software are used to evaluate the scalability of Marple. To

examine the usability and generality of Marple, we selectedthe benchmarks that are diverse in the

program paradigms, e.g., including both object-oriented and procedure based programs, and also

various in programming styles, e.g., produced both via opensource projects and Microsoft in-house

development.

Chapter 3

The Value of Paths for Detecting and Diagnosing Faults

Although various path-sensitive analyses have been developed [Xie et al., 2003, Das et al.,

2002, Xie and Aiken, 2007, Chen and Wagner, 2002], a systematical investigation on the value of

program paths for software assurance is still lacking. A fundamental reason is that path information

is expensive to compute and therefore precise path information is not always available for large

software or for desired program properties.

This chapter answers the questions of why path information is important for determining and

understanding faults and what types of path information aredesirable. In this research, we evaluated

two hypotheses regarding the characteristics of a fault occurred in a program.

Our first hypothesis is that paths with different fault properties can traverse the same program

point. Along different paths, the transitions of program states are distinctive; some lead to a fault,

while others do not. Even if the fault condition is observed at the same program point along different

paths, the severity and root causes associated with each path may be different. The diversity of the

paths implies that we need to track information along individual paths to detect faults, and we also

need to report faults based on paths, so that manual diagnosis and dynamic tools can take actions

accordingly to further process statically reported faults.

Our second hypothesis proposes fault locality. Our insightis that although a whole program

path can be long, only a certain part of execution is actuallyresponsible for producing the fault.

By focusing on the most relevant information on a path, we cansave costs for determining and

38

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 39

diagnosing faults. In this chapter, we identify a six-element set of path information as most relevant

to a fault. We also explain how to represent and use this information in fault diagnosis.

In our experiments, we validate the first hypothesis by showing that the precision of fault de-

tection can be improved if we distinguish information from different paths, and the types of paths

we defined actually do exist in real-world programs. We also experimentally demonstrate that for a

set of given faults, the path segments that are responsible for faults only traverse 1-4 procedures on

average, manifesting locality.

3.1 Program Points v.s. Paths in Fault Detection and Diagnosis

Intuitively, a program fault is developed along a sequence of execution; when a particular pro-

gram point is reached, we observe that the program state at the point does not conform to the

property as expected (see Definition 2.1). This abnormal condition can manifest immediately at the

program point, e.g., causing the program to crash, or the corrupted program state can continue to

propagate and manifest later along the execution.

3.1.1 Why Are Paths Important for Fault Detection and Diagnosis

Since the fault is produced after executing a sequence of instructions rather than at a specific

instruction, we are not able to statically predict the faultby only matching a syntactic code pattern

to each program statement. For the same reason, we should notuse a summary of path information

at a program point to determine faults. Instead, to achieve aprecise fault detection, we need to track

the transitions of program states along individual paths todetermine if any violation can occur.

Using an example fromSendmail-8.7.5, we show that false positives can be avoided when

we distinguish information from different paths in fault detection. In Figure 3.1, thestrcpy() at

node 5 is not a buffer overflow. However, a path-insensitive analyzer would merge the facts[buf =

xalloc(i+1), i>=sizeof(buf0)] from path〈1−3〉 and[buf = buf0, i<sizeof(buf0)] from

path〈1,2,4〉, and get the result[buf = xalloc(i+1) ∨ buf = buf0] at node 5 (symbol∨ repre-

sents the union of the two dataflow facts); sincebuf0 is a buffer with a fixed length, anda.q_user

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 40

gets the content from a network package, the analysis identifies node 5 as vulnerable. Whereas,

path-sensitive analysis can distinguish thatbuf is set to bebuf0 only along path〈1,2,4〉, while

along this path, the length ofa.q_user is always less than the size ofbuf0, and thus the buffer is

safe. In our experiments, our path-sensitive analyzer is aware of the impact of the bounds check-

ing at node 2 and successfully excluded this false positive;however, a path-insensitive detector,

Splint [Evans, 1996], incorrectly identified it as a fault.

Figure 3.1: An Example from Sendmail-8.7.5

Not only does detecting faults need a consideration of paths, but also reporting a fault should

be path-based. Many static tools report faults in terms of the program point where the property

violation is perceived. To understand the fault, the code inspector has to manually explore the paths

across the point. Among these paths, some might be safe or infeasible, not useful for determining

root causes. Even if a faulty path is found quickly, additional root causes may exist along other

paths. Without automatically computed path information for guidance, we potentially miss root

causes or waste efforts exploring useless information, experiencing an ad-hoc diagnostic process.

Consider a code snippet fromwu-ftpd-2.6.2 in Figure 3.2. Thestrcat() statement at

node 8 is vulnerable to a buffer overflow; however, among the paths across the statement,

path 〈1,2,4−6,8〉 is always safe, while path〈1,2,4−8〉 is infeasible. Only path〈1,3−8〉 can

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 41

Figure 3.2: Different Paths Cross a Buffer Overflow Statement

overflow the buffer with a′\0′. If a tool only reports node 8 as an overflow, the code inspector may

not be able to find this vulnerable path until the two useless paths are examined.

In another example, we show that path information also can help correct the faults, as the root

cause of a fault can be path-sensitive; that is, more than oneroot cause can impact the same faulty

statement and be located along different paths. Consider anexample fromSendmail-8.7.5 in

Figure 3.3. There exist two root causes that are responsiblefor the vulnerablestrcpy() at node 5.

First, a user is able to taint the stringlogin at node 5 throughpw.pw_name at node 10, and there is

no validation along the path. However, only diagnosing path〈9,10,1−5〉 is not sufficient for fixing

the bug, as another root cause exists. Due to the loop at nodes〈6,7〉, the pointerbp might already

reference an address outside of the bufferbuf at node 5, if the user carefully constructs the input

for pw.pw_gecos. This example shows that diagnosing one path for a fix is not always sufficient to

correct the fault. Paths containing different root causes should be reported.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 42

Figure 3.3: Path-Sensitive Root Causes

3.1.2 Path Classification

Knowing the importance of distinguishing paths in fault detection and diagnosis, we develop a

path classification to define the types of paths that are potentially useful. The classification includes

the following four categories of paths:

Infeasible: Infeasible paths can never be executed. A path that statically is determined as faulty

but actually infeasible is not useful for understanding theroot cause or for guiding dynamic tools.

Although we are not able to prune all of the infeasible paths in a program statically, research [Bodik

et al., 1997b] showed that 9–40% of the branches in a program exhibit correlations, and at com-

pile time, we are able to identify infeasible paths caused bythese branch correlations. Therefore,

detecting these infeasible paths statically is important to achieve more precise fault detection.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 43

Safe: Faults are only observable at certain program points, which we call potentially faulty

points, where violation conditions can be determined. For example, at a buffer access, we can

determine whether a buffer overflow occurs. However, not every path that traverses such a program

point is faulty. A proper bounds checking inserted before a buffer access can ensure the safetyness

of the buffer. Paths that execute a potentially faulty pointbut always guarantee to be safe regardless

of the input are calledsafepaths.

Faulty with different levels of severities or distinct root causes: When a fault occurs, the

severity of the fault, or the root cause of the fault may be different along different paths, even the

fault condition is perceived at the same program point. In static analysis, we are able to collect

information to predict the severity of a fault, and also distinguish paths that potentially contain

distinct root causes. For example, we are able to determine the severity of a buffer overflow by

knowing who can, and what contents are allowed to, write to the buffer. A buffer overflow written

by an anonymous network user is certainly more dangerous than the one that only can be accessed

by a local administrator. A buffer overflow that can be manipulated by any user supplied contents

is more serve than the one written by a constant string. Basedon the severity, we can prioritize

the buffer overflow warnings reported by static analysis. Todistinguish paths with different root

causes, we highlight statements along a path that are responsible for producing the fault. Two paths

with distinctive sequences of impact statements likely contain different root causes.

Don’t-Know : Besides the above three categories, there are also paths whose safety cannot be

determined statically due to the limited power of static analysis, which we calldon’t-knowpaths.

We further classify them based on the factors that cause themdon’t-know. The idea is that instead of

ad-hoc guessing the values of don’t-knows and continuing the analysis with unpredictably imprecise

results, we record the locations of these don’t-knows as well as the reasons that cause the don’t-

knows. In this way, code inspectors can be aware of them. Annotations or controlled heuristics

can be introduced to further refine the static results if desired. In addition, other techniques such as

testing or dynamic analysis can be applied to address the unknown warnings. We summarize the

following five don’t-know factors:

1. Library calls: The source of library calls is often not available until link time. We model a

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 44

set of library calls that are frequently encountered and identify others that might impact the

determination of a path as don’t-know.

2. Loops and recursive calls: The iteration count of a loop orrecursive call cannot always be

determined statically. Loops can be classified into three categories: loops that have no impact

on the determination of a fault, loops where we can reason their symbolic summary related

to the determination of a fault, and also loops where we cannot determine their impact on the

fault. The third type of loops is considered as don’t-know.

3. Non-linear operations: The capacity of a static analyzeris highly dependent on the constraint

solver, since the program property under examination will be finally converted to constraints.

Non-linear operations, such as bit operations, result in non-linear constraints which cannot

be well handled by practical constraint solvers.

4. Complex pointers and aliasing: Pointer arithmetic or several levels of pointer indirection

challenges the static analyzer to precisely reason about memory, especially heap opera-

tions. Imprecision ofpoints-to information also can originate from the path-insensitivity,

context-insensitivity or field-insensitivity of a particular alias analysis used in the detection.

In our framework, we apply a pointer analysis integrated in the Microsoft Phoenix frame-

work [Phoenix, 2004] to resolve memory indirection and aliasing, and report those that can-

not be handled as don’t-know.

5. Shared globals: Globals shared by multiple threads or by multiprocesses through shared

memory are nondeterministic.

3.1.3 Experimental Results

Here, we provide two sets of experimental data to demonstrate that: 1) the path types we

defined can be found in real-world programs and 2) a path-sensitive analysis is more precise than a

path-insensitive analysis.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 45

3.1.3.1 Existence of Path Classification

We selected 9 benchmark programs from BugBench [Lu et al., 2005] and the Buffer Overflow

Benchmark [Zitser et al., 2004]. Each benchmark is shipped with a bug report, indicating where

a known buffer overflow is located. In the experiment, we takethe vulnerable statement, and de-

termine the types of paths that cross the given statement. For buffer overflow, we classify paths as

faulty, safe, don’t-know and infeasible. Based on the severity of a faulty path, we further distinguish

it asvulnerableor overflow-user-independent: along vulnerable paths, user inputs can control the

overflowed buffer, while along overflow-user-independent path, the buffer only can be overflowed

with a constant string.

We apply Marple [Le and Soffa, 2008] to determine the types ofpaths across a given buffer

overflow statement. Our experiments consists of two steps. In the first step, we compute paths for

a known buffer overflow statement in a benchmark program without considering infeasibility of

paths. We then integrated our infeasible path detection module to check the impact of the infeasible

paths on the fault detection.

We summarize the identified path types in Table 3.1. UnderPath Types, we list the number of

vulnerable(Vul), overflow-user-independent (CNST), don’t-know(UnK) and safe(Safe) paths com-

puted for the given buffer overflow. We markyesunder ColumnInf if infeasible paths are detected

in the part of the code where the analysis for path classification can reach [Bodik et al., 1997b].

Our results show that all five types of paths exist in the benchmark programs. Six of nine programs

contain vulnerable paths, and two programs have don’t-knowpaths due to the external library. One

program has overflow-user-independent paths. Seven out of nine programs have safe paths. With-

out our paths detection, the code inspectors might explore safe paths which will not be successful in

finding the vulnerability. For the programbc-1.06, the total number of overflow-user-independent

paths is very large and we ran out of memory when we print the paths. Actually, the number of

paths is not important because it is not necessary for a code reviewer to inspect every path for diag-

nosis. In Marple, users can specify the number of paths to be outputted and then after fixing them,

they can check if vulnerable paths through the faulty statement still exist.

In ColumnsVul/Vul’, CNST/CNST’, UnK/UnK’ andSafe/Safe’, we use the notation′ to indicate

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 46

Table 3.1: Different Types of Paths can Cross a Buffer Overflow Statement

Bechmark
Size Path Types

(kloc) Inf Vul/Vul’ CNST/CNST’ UnK/UnK’ Safe/Safe’

polymorph-0.4.0 0.9 yes 90/90 0/0 0/0 84/0
ncompress-4.2.4 1.9 yes 288/288 0/0 0/0 2016/0
man-1.5h1 4.7 yes 16/16 0/0 0/0 24/24
gzip-1.2.4 5.1 no 1/1 0/0 0/0 0/0
bc-1.06 17.0 yes 0/0 >50,000/>50,000 0/0 >30,000/>30,000
squid-2.3 93.5 yes 0/0 0/0 8/4 4/2
wu-ftp: mapping-chdir 0.2 yes 4320/4320 0/0 0/0 18624/18624
sendmail: ge-bad 0.9 no 48/48 0/0 0/0 648/648
BIND: nxt-bad 1.3 no 0/0 0/0 2/2 0/0

the path numbers after integrating infeasible path detection. Among the 9 programs, we identified

infeasible paths for 6 programs at the code relevant to the given fault. Using the infeasible path

information, the number of safe paths in three programs and the number of unknown paths in

one program are reduced. For example, forsquid-2.3, 4 out of 8 don’t-know paths are actually

infeasible. Diagnosing this overflow statement, we should avoid exploring the 4 infeasible paths.

3.1.3.2 Path-Sensitivity in Fault Detection

In this experiment, we compared the fault detection resultsreported from Marple [Le and Soffa,

2008] and Splint [Evans, 1996], and studied the impact of path-sensitivity on precision of detection

results. From our benchmark set, we found five programs that can be successfully analyzed by

Splint, listed in the first column of Table 3.2. The first threeare from BugBench [Lu et al., 2005],

and the last two are from the buffer overflow benchmark [Zitser et al., 2004].

Table 3.2: Comparison of Splint and Marple
Benchmark Size(kloc) Tm Ts (V ∪O)∩Ts U ∩T ′

s

ncompress-4.2.4 1.9 24 14 1/11 7/5/8
gzip-1.2.4 5.1 21 95 8/2 15/3/84
bc-1.06 17.0 110 133 2/4 72/28/105

wu-ftp:mapping-chdir 0.2 6 6 4/0 2/1/0
sendmail:ge-bad 0.9 6 8 2/2 3/1/5

In Table 3.2, ColumnTs presents the total number of warnings Splint generates for buffer over-

flow. ColumnTm gives the total number of statements where Marple found thatthe paths of vul-

nerable, overflow-user-independent or don’t-know go through. Comparing these two columns, we

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 47

discovered that even if we do not use any further techniques such as heuristics or modeling of

library calls to remove don’t-knows, Marple generated lesswarnings, except for the benchmark

ncompress-4.2.4. Splint reported 10 less warnings than Marple on this benchmark because it

missed 11 statements we identified as overflow. We manually inspected the warnings missed by

Splint, and found that these 11 overflows are all real buffer overflows and the first buffer overflow

consecutively causes the 10 other overflows on 3 different buffers.

The second column(V∪O)∩Ts lists the intersection of statements containing paths of overflow-

input-independent and vulnerable reported from Marple andthe overflow messages generated by

Splint. The number before “/” is the number of statements that are listed in both Splint and Marple

results, while the number after “/” is the total number of confirmed overflows generated by Marple

but missed by Splint. ColumnU ∩T ′
s compares our don’t-know set,U , with the warning set Splint

produced excluding the confirmed overflows, annotated asT ′
s. In each cell, we present three num-

bers separated by “/”. The first number is the number of statements listed inU but not reported by

T ′
s . The second number counts the elements in both sets. The third number reports the number of

statements fromT ′
s , but not inU . We present a summary of the data from the last two columns in

Figure 3.4.

U

C (38)

D (202)

A (17)

Ts

C = U ∩ (Ts−A)

E = U − (U ∩Ts)

B (19)

A = (V ∪O)∩Ts
B = (V ∪O)−A

D = Ts−A−C

V ∪O

E (99)

Figure 3.4: Summary of Comparison

The diagram in Figure 3.4 shows that for the 5 programs listedin Table 3.2, Splint and Marple

identified a total of 17 common overflows (see setA in Figure 3.4), and Marple detected 19 more

flaws that Splint did not report (B). There are 38 warnings both reported by Splint and the don’t-

know set from Marple (C), and thus these statements are very likely to be an overflow.There are a

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 48

total of 202 warnings generated by Splint but not included inour conservative don’t-know set (D).

We manually diagnosed some of these warnings including all sets fromncompress-4.2.4 and

Sendmail, 10 fromgzip-1.2.4 and 10 frombc-1.06 that belong toD; we found that all of these

inspected warnings are false positives. The number of statements that are in our don’t-know set but

not reported by Splint is 99 (E), which suggests that Splint either ignored or applied heuristics to

process certain don’t-know elements in the program. In a short summary, our comparison shows

that Marple is able to find more faults than Splint and report less false positives.

Limitations. Path-sensitivity is not the only factor that can impact the precision of the analysis.

Therefore, we should not conclude that the 202 additional likely false positives reported by Splint

are all due to path-insensitive analysis. We inspected several warnings from this set, and found that

path-sensitivity is the factor that causes some of the falsepositives, but not all.

3.2 Selecting and Representing Path Information

Besides distinguishing path types, we also identify information on a path that is potentially

useful. We hypothesize that although a program path can be long, faults manifest locality and only

a sequence of statements along a path are actually responsible for producing the fault. We thus

should focus on the most relevant information along the particular sequence for fault detection and

diagnosis.

3.2.1 A Set of Useful Path Information

We identify the following six elements as the most relevant to determine and diagnose a fault on

a path:potentially faulty point, property constraint, impact point, property impact, shortest faulty

path segmentandpath conditions. Path conditions are constraints that ensure the executionwould

follow the path (see Definition 2.14). The other five elementsare about faults, defined as follows.

SupposeP is a program property andp is a program path.

Definition 3.1: If there exists a program points along p, at which the violation ofP can be

observed, we says is apotentially faulty point.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 49

P holds for pathp if and only if all executions ofp satisfy theproperty constraints; P is violated

if and only if there exists an execution ofp that does not satisfy theproperty constraints.

Definition 3.2: Property constraintsdefines conditions on the program state at the potentially

faulty point.

At source level, given a type of fault, we can pinpoint certain types of statements as potentially

faulty points. For example, in a program, the potentially faulty points for buffer overflow are

statements that implement the buffer access.

Definition 3.3: Program points on a path that contribute to the production of a fault areimpact

points.

Definition 3.4: At an impact point, any change of the program state that is related to the pro-

duction of property constraints is called aproperty impact.

Mapped to the program source, the impact points of a fault area slice of statements along

the path that determines the outcome of the property constraints at the potentially faulty point. To

statically determine a fault, we need to identify the types of statements that potentially impact points

of a fault, and we also need to know changes of the program state at these statements.

Definition 3.5: A faulty path segmentis the path segment that contains all of the impact points

and the potentially faulty point of a fault. The faulty path segment isshortestif any sub-path

segment is not a faulty path segment.

In Figure 3.5, we summarize the six elements. In the figure,PFS is a potentially fault point;

i1, andi2 are impact points; ands1, s2 ands3 are program states related to the property constraints

at (i.e., right before executing)i1, i2 andPFS. The transition betweens1 ands2 is the property

impact ati1, and the transition betweens2 ands3 is the property impact ati2. If a fault is determined

as the violation of a safety constraint, the impact points occur before the potentially faulty point

along the execution. The shortest faulty path segmentp is between the first impact point and the

potentially faulty point, andc is the path condition on the path segment. If a fault is related to a

liveness constraint, the shortest faulty path segment is between the potentially faulty point and the

last impact point, shown in the rectangle at the right cornerof the figure.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 50

Figure 3.5: Identifying Useful Path Information: the Six Elements

3.2.2 Representing Path Segments Using Path Graphs

There potentially exists a number of faulty path segments. To report these path segments, it

is not always feasible to exhaustively enumerate them. In one approach, we can select one path

segment to report a fault, randomly or based on the structureof a program, e.g., the shortest path

segment; however, the selected path may be a false positive,or too complicated to be understood

in fault diagnosis. Sometimes, multiple root causes can exist along different paths, and we have to

diagnose more than one path to ensure the correctness of the fixes. Ideally, we should specify all

the path segments reported from static analysis in a representation, so that the users can decide how

many or what path segments to use. We developpath graphsto serve the purpose.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 51

Definition 3.6: Suppose we have a set of path segmentsS= {pi} on an ICFGG = (N,E),

wherepi = 〈ni1,ni2, ...nik〉, andei j =
〈

ni j ,ni j+1
〉

∈ E. We denote the set of the statements on a path

segment asNi = {ni j |1 ≤ j ≤ k}, and the set of edges along the path asEi = {ei j |1 < j ≤ k}. A

path graphfor a set of path segmentsS is an annotated graphGS = (NS,ES), whereNS =
⋃

Ni and

ES =
⋃

Ei. Each edge of the graph is annotated, specifying which pathscontain the edge.

Figure 3.6: Using Path Graph to Represent a Set of Paths: dashlines are shared edges for different
paths

In Figure 3.6, we give an example, where a set of path segmentsare shown in the left, and the

path graph that represents the set is shown in the right. The three path segments are:p1 : 〈1,2,3,8〉,

p2 : 〈6,7,3,8〉, andp3 : 〈2,3,4,5〉. In the path graph, each edge is marked with a set of path identifi-

cations. For example, only pathp1 contains edge〈1,2〉 but not others; thus path identificationp1 is

marked on the edge. Among the edges, edge〈2,3〉 shared byp1 andp3, and〈3,8〉 shared byp1 and

p2. Thus, the annotations for the two edges are the set of two path identifications. For each fault we

identified, we report a set of path graphs, each of which represent a group of path segments of the

same type. For example, paths with different root causes areseparated into different path graphs,

and we therefore can diagnose one path from a group to ensure all the root causes are considered.

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 52

Table 3.3: The Length of the Path Segments Computed for a Given Buffer Overflow

Bechmark
Average Path Size

P/#P’ # B/#B’

polymorph-0.4.0 2.7/2.5 19.0/19.0
ncompress-4.2.4 2.0/2.0 29.3/27.8
man-1.5h1 1.8/1.8 14.3/14.3
gzip-1.2.4 3.0/3.0 5.0/5.0
squid-2.3 1.0/1.0 6.7/6.8
wu-ftp: mapping-chdir 3.8/3.8 33.6/33.6
sendmail: ge-bad 2.0/2.0 35.5/35.5
BIND: nxt-bad 2.0/2.0 23.5/23.5

For each path graph, either the entry (liveness property) orexit (safety property) is the potentially

faulty point.

3.2.3 Experimental Results

We provide the experiment data that demonstrate the fault locality. In this experiment, we

took the 9 benchmark programs listed in Table 3.1 (see Section 3.1.3), and computed the length

of path segments explored to determine path classification for the given overflow statement. In

Table 3.3, we report the average length of the path segments in terms of the number of procedures

(not including library calls) and the number of basic blocksthat are traversed by the paths. Under

#P/#P’, we give the procedure counts before (the first number in the column) and after (the second

number) the infeasible path module was invoked. Similarly,under#B/#B’, we report the block

counts before and after considering the impact of path feasibility.

The experimental results show that the path segments that are relevant to a buffer overflow

contain about 1–4 procedures on average, manifesting locality. In most of the benchmarks, the faults

can be determined by inspecting 2-3 procedures, which implies that an interprocedural analysis is

required to identify these faults. The experimental data also show that the number of basic blocks

is not always proportional to the number of procedural calls. Inspecting the results, we found

that the path segments computed forsendmailare actually longer and more complex than the path

segments computed forgzip, though the path segments fromsendmailare 1 procedure shorter than

the segments fromgzip. Comparing the results from# Pand# P’, and from# Band# B’, we found

Chapter 3. The Value of Paths for Detecting and Diagnosing Faults 53

that the impact of path feasibility on the length of path segments is not significant.

3.3 Conclusions

We have shown in this chapter that path information is valuable for detecting and diagnosing

faults, particularly in the following three aspects:

• Path-sensitive analysis is more precise than path-insensitive in identifying faults, as the in-

formation needed to determine the property is not merged at branches, and the identifiable

infeasible paths can be removed;

• Path information guides the manual diagnosis to follow onlyfaulty paths; meanwhile, paths

that differ in severity and root causes can be distinguished; and

• Path segments provide for efficient fault detection and diagnosis.

Based on the potential scenarios of applying path information, we develop a path classification,

consisting of types of infeasible, safe, faulty with various severities and distinctive root causes,

as well as don’t-know. We also identify information on a paththat is relevant to determine and

understand a fault. This chapter clarifies the goals and motivations of the thesis. In the next chapter,

we develop techniques to automatically compute path information identified above.

Chapter 4

Identifying Faulty Paths Using Demand-Driven Analysis

In this chapter, we present an innovative technique that statically identifies the paths along

which a fault occurs in a program. We classify program paths that cross a potentially faulty point.

To further focus the code inspectors’ attention, we report shortest path segments that are relevant to

a fault. The scalability of path-sensitive analysis is addressed using a demand-driven analysis. Our

insight is that code is not equally faulty over the software.A fault can only occur at certain program

points, and only statements that possibly update the property constraints of a fault are relevant to

the vulnerability. Therefore, in fault detection, our focus is on the path segments starting from the

entry of the program to a potentially faulty point. Only statements that can reach the potentially

faulty point should be examined to determine the fault.

In this chapter, we used buffer overflow detection as a case study to evaluate the techniques.

In our experiments, we reported a total of 71 buffer overflowsover 8 benchmark programs, 14

previously reported and 57 not reported overflows. We demonstrated the scalability of our tool

through successfully analyzing a Microsoft online XBox game with over 570,000 lines of code

within 35.4 minutes. We also compared our analysis with several existing detectors in terms of

precision of the fault detection and speed of the analysis.

54

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 55

4.1 The Challenges

First, we identify challenges of applying a demand-driven analysis to detect paths that contain

a particular type of fault.

4.1.1 Applying a Demand-Driven Analysis

In demand-driven analysis, a demand is modeled as a set of queries originating at a statement

of interest. For example, applying a demand-driven analysis to determine constants, the query is

whether a certain variable in the program is a constant. To identify branch correlation, the query is

whether the branch can always be evaluated as true or false.

Applying demand-driven analysis to detect faults, our challenge is to determine the contents

and resolutions of a query which can report a fault condition. In addition, we need to decide where

in a program a query should be constructed, in which direction the query should be propagated, and

when the propagation of the query should be terminated. Alsodependent on the contents of the

query, we need to identify the potential locations in the source code where the information can be

collected for resolving a query, and also the rules to updatethe query.

4.1.2 Achieving Path-Sensitivity

To achieve path-sensitivity in a demand-driven analysis, we still face some challenges of a

traditional path-sensitive analysis. For example, we needto make decisions on how a branch, loop

and procedure call should be traversed, and how the low leveldetails of the program source code

should be handled, such as pointer aliasing or library calls.

In addition, due to applying a demand-driven analysis, we nolonger select the program paths

purely based on the structure of the program, and instead, weneed to consider the dependency

relationships between the demands and the information available in the source code to determine

the path traversal algorithm. Accordingly, the strategiesof storage and reuse of intermediate results

as well as the policies for terminating the analysis need be designed, as they will also be different

from traditional exhaustive path-sensitive analysis.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 56

4.2 An Overview of the Analysis

In this section, we provide an overview of our analysis. We first introduce the components and

workflow of the analysis. We then use an example to intuitively explain how the analysis works to

identify faults. Finally, we show how the analyzer can be used in practice.

4.2.1 The Components and Workflow

Figure 4.1: Four Components

The analysis takes program source code as input and reports path segments of faults. As shown

in Figure 4.1, the analyzer consists of four components. ThePreparationmodule implements the

initialization routines required before we perform a demand-driven analysis for fault detection. The

preparation tasks include: building an ICFG for the program, determining aliasing relationships

for the pointers, and identifying infeasible paths. TheDemand-Driven Analysismodule encapsu-

lates the fault detection algorithm. In the analysis, we first construct queries as to whether each

potentially faulty point in a program is safe. Starting fromwhere the query is raised, we propagate

it forward or backward (depending on the type of fault we detect) along the control flow of the

program. Dependent on the contents of the query, symbolic values, ranges or taint information are

collected from the program source to resolve the query. The analysis terminates when the query

is resolved as safe, faulty, don’t-know or infeasible. TheVulnerability Modelmodule interacts

with the analysis to supply information about the type of fault we aim to detect. TheReport Path

Informationmodule returns the analysis results based on a user requiredformat.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 57

4.2.2 An Example

In Figure 4.2, we use integer faults and null-pointer dereferences as examples to explain how

our analysis works to determine faults. In the figure, an integer signedness error occurs at node 11.

In the first step, the analysis performs a linear scan and identifies node 11 as a potentially faulty

statement, because at node 11, a signedness conversion occurs for integerx to match the interface

of malloc. We raise a query [Value(x)≥ 0] at node 11, indicating for integer safety, the value ofx

should be non-negative along all paths before the signedness conversion. The query is propagated

backwards to determine the satisfaction of the constraint.At node 10, the query is first updated to

[Value(x)*8≥ 0] via a symbolic substitution. Along branch〈8,7〉, the query encounters a constant

assignment and is resolved to [1024≥ 0] as safe. Along the other branch〈8,6〉, the analysis derives

the informationx≤−1 from the false branch, which implies the constraint [Value(x)≥ 0] is always

false. Therefore, we resolve the query as unsafe. Path segment 〈6,8,10,11〉 is reported as faulty.

Null-pointer dereferences also can be identified in a similar way. Here, our explanation focuses

on how infeasible paths are excluded for better precision. In our analysis, identified infeasible path

segments are marked on the ICFG, asip1 and ip2 shown in Figure 4.2. To detect the null-pointer

dereference, the analysis starts at a pointer dereference discovered at node 13. Query [Value(p) 6=

NULL] is constructed, meaning the pointerpshould be non-NULL before the dereference at node 13

for correctness. At branch〈13,12〉, the query encounters the end of the infeasible path and records

ip1 in progress. Along one path〈13,12,9〉, the propagation no longer follows the infeasible path

and thus the query dropsip1. The query is resolved as safe at node 9 becausemalloc implies a non-

NULL p (assuming memory allocation succeeds here). Along the other path〈13−10〉, no update

occurs until the end ofip2 is met at node 10. The query thus recordsip2 in progress. When the query

arrives at branch〈5,4〉, the start ofip1 is discovered, showing the query traverses an infeasible path.

The analysis terminates. Similarly, the propagation haltsat branch〈5,3〉 for traversal ofip2. The

analysis reports node 13 as safe for null-pointer dereference.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 58

Figure 4.2: Detecting Different Types of Faults

4.2.3 User Scenario

Our analysis can be used both to detect and diagnose faults. If a user would like to diagnose a

given faulty statement, she first inputs the source code and requests to analyze the faulty statement.

If the analysis returns a faulty path segment, the user then follows the impact points highlighted

on the path segment to understand and correct the root cause.Our previous experimental results

show that a path segment for a fault typically contains only about 1–4 procedures. After the fix is

introduced into the code, the analysis is run again to determine if all faulty paths are eliminated.

If not, it returns another faulty path to the user for furtherdiagnosis. The process iterates until all

faulty paths are corrected.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 59

If the user prefers to inspect static results to diagnose a fault, rather than using the interactive

method, she can request to print path graphs that contain allthe faulty and don’t-know path segments

computed for a given faulty statement. Since each path graphrepresents a type of paths, the user

thus can take a path segment from each graph and determine thefixes.

If the analysis is used for detecting faults, it checks each potentially faulty point, instead of a

specified one, and reports paths of requested numbers for thedetected faults.

4.3 The Vulnerability Model and the Demand-Driven Algorithm

The two important modules of the analysis are the vulnerability model and the demand-driven

algorithm. In this section, we give a detailed description on the two modules and also explain their

interactions. We use buffer overflow as an example to elaborate our design.

Table 4.1: Partial Buffer Overflow Vulnerability Model
POS& UPS Q: Constraints E: Update Equations
strcpy(a,b) Size(a) ≥ Len(b) Len′(a) = Len(b)
strcat(a,b) Size(a) ≥ Len(a)+Len(b)−1 Len′(a) = Len(b)+Len(a)

strncpy(a,b,n) Size(a) ≥ Min(Len(b),n)
(Len(b) > n→ Len′(a) = ∞)∨
(Len(b) ≤ n→ Len′(a) = Len(b))

a[i] = ’t’ Size(a) ≥ i Len′(a) = ∞
char a[x] N/A Size(a) = x
char *a = (char*)malloc(x) N/A Size(a) = x/8
r(x) : Size(x) ≤ Len(x)

4.3.1 The Vulnerability Model

The vulnerability model for buffer overflow is a 5-tuple:〈POS,δ,UPS,γ, r〉, where

1. POSis a finite set of possible overflow statements where queries are raised,

2. δ is the mappingPOS→ Q, andQ is a finite set of buffer overflow queries,

3. UPSis a finite set of statements where buffer overflow queries areupdated,

4. γ is the mappingUPS→ E, andE is a finite set of equations used for updating queries, and

5. r is the security policy to determine the resolution of the query.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 60

POS: Buffer overflow only can manifest itself at certain statements, such as where a buffer is

accessed. We call such program pointspossible overflow statements. Our analysis raises queries

from these points and checks the safety for each of them. A program is free of buffer overflow if

no violations are detected on any paths that lead to the possible overflow statements in a program.

We recognize that a buffer can be defined only through a stringlibrary call or a direct assignment

via pointers or array indices. We therefore identify these types of statements as possible overflow

statements for write overflow. Table 4.1 presents a partial vulnerability model for buffer overflow.

In the first column of the table, the first four expressions aretypes of possible overflow statements.

For the language dependent features, we use C. In the table, the notationLen(x) represents the

length of the string in bufferx (including the null character′\0′), Len′(x) indicates the length of the

string in bufferx afterx is updated,Size(x) is the buffer size ofx, Min(x,y) expresses the minimum

value amongx andy, andr(x) is the security policy to determine if a write to bufferx is safe.

δ : POS→ Q: The mapping provides rules for constructing a query from a possible overflow

statement in the code. We model the buffer overflow query for each possible overflow statement

using two elements. The first element specifies whether a buffer access at the statement would be

safe, represented as an integer constraint of the buffer size and string length. The second element

indicates whether the user input could write to the buffer, annotated as a taint flag. The second

column in Table 4.1 displays the query constraints for the four types of possible overflow statements

listed in the first column.

UPS: To update a query, the analysis extracts information from aset of program points. We

identify two types of sources for information, including statements of buffer definitions and allo-

cations, and statements where we are able to obtain values orranges of the program variables that

are relevant to the buffer size or string length, such as constant assignment, conditional branch and

the declaration of the type. In Table 4.1, the first four expressions in the first column are buffer

definitions and the next two are buffer allocations, and theyare all members ofUPS.

γ : UPS→ E: The mapping formats the information as equations so that the analysis can apply

substitution or inequality rules to update queries. In the third column of Table 4.1, we display the

equations we derive from the correspondingUPS. The symbol∞ is a conservative approximation

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 61

for buffers where′\0′ may not be present.

r: The last part of the vulnerability model is a security policy defined for the analyzer to de-

termine if an overflow could occur. We say a buffer definition is safe if after a write to the buffer,

the declared buffer size is no less than the size of the stringstored in the buffer (see the last row

of Table 4.1). It should be noted that here we only specify theupper bound of the buffer and only

model write overflows, but the technique can be easily extended to also include the lower bound

and read overflow. Based on how a query conforms to this policy, the query can be resolved as

safe, vulnerable, overflow-input-independent, infeasible or don’t-know. These answers categorize

the paths through which the query propagates.

4.3.2 Interactions of the Vulnerability Model and the Analyzer

Figure 4.3 shows the interaction of the vulnerability modeland the analyzer. The analysis first

scans the code and identifies the statements that match the possible overflow statements described

in the vulnerability model. Queries are constructed from those statements based on the rules de-

fined in the vulnerability model. The analyzer processes a query a time. Each query is propagated

backwards from where it is raised along feasible paths towards the program entry. A set of prop-

agation rules are designed in the analyzer to guide the traversal. At the node where information

could be collected, the query is updated using the equations. An evaluator follows to determine if

the query can be resolved. If not, the propagation continues. If the query is resolved, the search

is terminated. To present the computed path graphs, the answers to the query are propagated to

the visited nodes to identify path segments of certain types, and statements for understanding root

causes are highlighted.

4.3.3 The Algorithm

We present the algorithm for computing buffer overflow pathsin Algorithm 1. We only describe

the intraprocedural analysis here. Our actual framework isinterprocedural, context-sensitive and

path-sensitive. The side effects of globals are also modeled.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 62

Figure 4.3: Interactions of the Vulnerability Model and theAnalyzer

The analysis consists of two phases:resolve queryand report paths. In the first phase, the

analysis first identifies the infeasible paths and marks themon the ICFG, at line 1 [Bodik et al.,

1997b]. The analysis at lines 2–15 examines the buffers frompossible overflow statements one by

one and classifies paths that lead to the buffer access. At line 5, the query is constructed based on

the query template stored in the vulnerability modelvm.Q. The analysis uses a worklist to queue the

queries under propagation, together with the node to which aquery propagates. At lines 6–13, each

pair of the node and query is processed.

To update a query, the analysis first determines if the node could impact the buffer we are cur-

rently tracking. If so, we extract the information and format it into equations. ProcedureUpdateQ

at lines 16–20 provides details. At line 17, the analysis encounters a node that defines a variable

relevant to the current query, but the range or value of this variable is not able to be determined

statically. We useGetUnknown to record this unknown factor based on rulesE defined in the vul-

nerability model. Line 19 finds that noden is a member ofUPS, and the analysis then computes

in f o from noden in CollectInfo. Finally,Resolve at line 20 consumes the information to update

the query.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 63

Input : ICFG (icfg), Vulnerability Model (vm)
Output : four types of paths: safe, vulnerable, overflow-input-independent and don’t-know

1 Detect&MarkInfeasibleP(ic f g)
2 foreachs∈ vm.PVSdo
3 initialize each node n with Q[n] ={}
4 setworklist to {}
5 q = RaiseQ(s, vm.Q); add pair(s,q) to worklist
6 while worklist 6= /0 do
7 remove pair(node i, query q) from worklist
8 UpdateQ(i, q, vm.S, vm.E)
9 a = EvaluateQ(i, q)

10 if a∈ {Vul,OCNST,Safe,Unknown}
11 then add pair(i, a) to A[q]; else
12 foreachn∈ Pred(i) do PropagateQ(i, n, q)
13 end
14 ReportP(A[q])
15 end

16 Procedure UpdateQ(node n, query q, ups S,rule E)
17 if n is unknown
18 then in f o = GetUnknown (n, q, E)
19 else ifn∈ S then in f o = CollectInfo(n, q, E)
20 Resolve(in f o, q)

21 Procedure EvaluateQ(node i, query q)
22 SimplifyC(q.c)
23 if q.c = true then a = Safe
24 else ifq.c= false∧q.taint = CNST then a = OCNST
25 else ifq.c= false∧q.taint = Userinput then a = Vul
26 else ifq.c= undef∧q.unsolved= /0 then a = Unknown
27 elsea = Unsolved

28 Procedure PropagateQ(node i, node n, query q)
29 if NotLoop(i, n, q.loopin f o)
30 then
31 status= CheckFeasibility(i, n, q.ipp)
32 if status !=Infeasible ∧ !FindCachedQ(q, Q[n])
33 then addq to Q[n]; add pair(n, q) to worklist
34 end
35 else ProcessLoop(i, n, q)

Algorithm 1: Categorizing Paths for Buffer Overflow

After the query is updated,EvaluateQ at line 9 checks if the query can be resolved as one of

the defined answers. Lines 21–27 describesEvaluateQ in a more detail.SimplifyC at line 22 first

simplifies the constraints in the query. Based on the status of the query after the constraint solving,

four types of answers can be drawn. For example, at line 26,Unknown is derived from the fact that

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 64

the constraintq.c is undetermined and the unresolved variable set,q.unsolved, is empty. If a query

is resolved, its answer, together with the node where the query is resolved is recorded inA[q] (see

line 11). If the query cannot be evaluated to be any of above four types of answers,Unsolved is

returned and the query continues to propagate at line 12.

PropagateQ at line 28–35 interprets the rules we designed for propagating the query through

infeasible paths, loops and branches.CheckFeasibility at line 31 checks if the propagation from

the current node to its predecessor encounters an infeasible path and thus should be terminated.

FindCachedQ at line 32 determines if the same query has been computed before. At line 35, the

analysis processes the loop. We observe that when a query enters a loop, one of the following sce-

narios could occur: 1) the loop does not update the query, andthe query remains the same after each

iteration of the loop; 2) the query is updated in the loop and the loop iteration count can be symboli-

cally represented, e.g., loopfor(int i=0; i<c; i++) iteratesc times; and 3) the query is updated

in the loop and the number of iterations cannot be simply represented using integer variables. For

example, we are not able to express the iteration count for the loopwhile(a[i] != ’\\’) using

integer variables. When the first type of loop is encountered, the analyzer stops traversing the loop

after it determines that the query does not change in the loop. To deal with the second and third

cases, the analyzer reasons the impact of the loop on the query based on the update of the query per

iteration, and the number of iterations of the loop; since the initial query at the loop exit is known

(note our analysis is backwards), the analysis is able to compute the query at the loop entry. In the

third case, we introduce a don’t-know factor to represent the iteration count and use it to compute

the query at the entry of the loop. If a loop contains multiplepaths that can update the query dif-

ferently, we cannot summarize the update of the query for theloop. Therefore, we will traverse the

loop a fixed number of times (requested by the user), and introduce a don’t-know factor to indicate

that the query update beyond the certain number of iterations is unknown.

If the user is only interested in obtaining one faulty path, the analysis terminates when the first

resolution of vulnerable or overflow-user-independent is reached. If the user would like to obtain

a classification of the paths across potentially faulty point, the analysis terminates when all the

resolutions of the query are reached. The paths the query traverses can be output. If the path graph

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 65

is requested, an additional phase has to be performed, shownat line 14 inreport paths. At this

phase, the analysis propagates the answers from the nodes where resolutions are obtained to the

nodes that have been visited in the analysis.

Optimizations for Scalability . We developed techniques to further speed up the analysis.

One observation is that queries regarding local and global buffers are propagated in a different

pattern during analysis. Queries that track local buffers cross into a new procedure only through

function parameters or return variables, and the computation for local buffers often does not involve

many procedures. However, global buffers can be accessed byany procedure in the program, and

those procedures are not necessarily located close on the ICFG. In the worst case, the query cannot

be resolved until the analysis visits almost every procedure on the ICFG, and the demand-driven

approach cannot benefit much.

To address this challenge, we develop an optimization namedhop. Our experience analyzing

real-world code demonstrates that although global variables can be defined at any procedure, the

frequency of the accesses in a procedure is often low, i.e., the procedure possibly just updates the

variable once or twice. Our approach is that when we build theICFG for a program, we record the

location of the global definitions in the procedures. Since the analysis is demand-driven, we are

able to know before entering a new procedure the variables ofinterest. If all variables of interest

are globals, we can simply search the global summaries at theprocedure, and hop the query directly

to the node that defines the unresolved variables in the query, skipping most of the irrelevant code.

This hop technique also can be applied intraprocedurally when we encounter a complex procedure

with many branches and loops. Similar to the global hop, we can record the nodes that define local

variables in the summary. Although the number of branch nodes could potentially be large, the

number of nodes that define variables of interest often is relatively small. Therefore, guided on

demand, we are always able to resolve a query within a limitednumber of hops. In addition to hop,

we apply optimizations of advancing and caching as developed by Duesterwald et al. [Duesterwald

et al., 1997].

Limitations . Although our framework introduces the concept of don’t-know to handle the

potential imprecision of the analysis, there is still untraceable imprecision that could impact the de-

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 66

tection results. For example, we do not model control flows impacted by signal handlers or function

pointers, and do not handle concurrency properties such as shared memory. Another example is that

we use an intraprocedural field-sensitive and flow-sensitive alias analyzer from Phoenix [Phoenix,

2004], which is conservative. We also can miss infeasible paths from our infeasible paths detection

since identifying all infeasible paths is not computable.

4.4 Experimental Results

The goal of our experiments is to investigate the scalability and capabilities of our analysis for

detecting buffer overflow. We selected 8 benchmark programsfrom BugBench [Lu et al., 2005], the

Buffer Overflow Benchmark [Zitser et al., 2004] and a Microsoft Windows application [Microsoft

Game Studio MechCommander2, 2001]. All benchmarks are real-world code, and they all contain

some known buffer overflows documented by the benchmark designers, which are used to estimate

the false negative rate of Marple. We examined the scalability of our analysis using MechComman-

der2, a Microsoft online XBox game published in 2001 with 570.9 k lines of C++ code [Microsoft

Game Studio MechCommander2, 2001].

We conducted two sets of experiments. We first ran our analyzer over 8 benchmark programs

and examined the detection results. In the second set of experiment, we evaluated Marple using 28

programs from the Buffer Overflow Benchmark and compared ourresults with the data produced

by 5 other representative static detectors [Zitser et al., 2004]. We applied the metrics of probability

of fault detection and false positives for comparison. The results for these two sets of experiments

are presented in the following sections.

4.4.1 Path-Sensitive Detection

In this experiment, we ran Marple on every write to a buffer ina program to check for a potential

overflow. For each buffer write, we excluded infeasible paths, and categorized paths of interest from

program entry to the possible overflow statement into safe, overflow-input-independent, vulnerable

and don’t-know types. We identified a total of 71 buffer overflows over 8 programs, of which 14

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 67

have been previously reported by the benchmark designers and 57 had not been reported before.

Among all vulnerable and overflow-input-independent warnings Marple reports, only 1 message is

a false positive, which we confirmed manually.

We show the detailed experimental results in Table 4.2. Column Benchmarklists the set of

benchmarks we used, the first 4 from BugBench,wu-ftp, sendmail, andBIND from the Buffer

Overflow Benchmark, and the last XBox application MechCommander2. ColumnPOSshows the

number of possible overflow statements identified in these programs. ColumnKnown Bugsrecords

the number of overflow statements documented in the benchmarks.

Table 4.2: Detection Results from Marple

Benchmark POS
Known Detected Bugs Path Prioritization Root Cause Info
Bugs Known New V O U Stmt Ave No.

polymorph-0.4.0 15 3 3 4 6 1 2 2.9 1.7
ncompress-4.2.4 38 1 1 11 8 4 12 3.9 1.0
gzip-1.2.4 38 1 1 9 7 3 18 4.2 1.7
bc-1.06 245 3 3 3 3 3 108 7.1 1.0

wu-ftp:mapping-chdir 13 4 4 0 3 1 4 6.8 1.0
sendmail:ge-bad 21 2 2 2 3 1 6 6.5 1.2
BIND:nxt-bad 48 1 0 0 0 0 22 N/A N/A

MechCommander2 1512 1 0 28 28/1 0 487 9.4 1.0

ColumnDetected Bugssummarizes our detection results. It contains two subcolumns. Subcol-

umnKnowndisplays Marple’s detection of previously reported overflows. Comparing the results

from this subcolumn to the numbers listed underKnown Bugs, we show Marple detected 14 out of

total 16 reported overflows. Marple identified 1 overflow inBIND as don’t-know, because the anal-

ysis is blocked by some library call, and we missed 1 bug in MechCommander2, because we do not

model function pointers. SubcolumnNewshows 57 previously not reported overflows we found

in the experiment. We manually confirmed that these overflowsare actually real buffer overflows.

Many of these overflows are located in BugBench. For example,we found 11 previously not re-

ported overflows inncompress-4.2.4 and 9 ingzip-1.2.4. Bugbench uses a set of dynamic error

detectors such as Purify and CCured to detect overflow [Lu et al., 2005]. These dynamic detectors

terminate when the first buffer overflow on the path is encountered; therefore, other overflows on

the same path can be missed. We inspected the overflows reported from Marple but not included

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 68

in BugBench, and we found that many of the new detected bufferoverflows are actually located on

the same path as other overflows, but not always involved in the same buffers.

The above results show that Marple not only identified most ofthe documented overflows, but

also discovered buffer overflows that have not been reportedby the benchmark designers.

ColumnPath Prioritizationpresents the results of our path classification. SubcolumnsV, O and

U show the number of statements Marple reported in the programthat contain paths of vulnerable,

overflow-input-independent and don’t-know. We manually inspected the vulnerable and over-flow-

input-independent warnings and identified 1 false positivein MechCommander2. The false positive

results from the insufficient range analysis for the integerparameters of asprintf(). Marple can

properly suppress false positives because we use a relatively precise path-sensitive analysis, and we

successfully prioritized warnings that are truly buffer overflows by categorizing the low confidence

results into the don’t-know set. For the don’t-knows reported in SubcolumnU , we explain what

factors cause the don’t-know and where the reason for the don’t-know appears in the source code.

Consider the benchmarkbc-1.06 as an example to illustrate the don’t-know warnings we gen-

erate. Among a total of 108 statements that contain don’t-know paths, 43 are marked with the

factor of complex pointers, 28 result from recursive calls,15 are caused by loops and 12 are due to

non-linear operations. There are also 8 blocked by library calls and 6 dependent on environmental

factors such as uninitialized variables. One statement could be labeled with more than one type

of don’t-know factor, since paths with different don’t-know factors can go through the same state-

ment. The computed factors indicate that we can further improve the analysis by applying better

memory modeling to resolve pointers, trying to convert non-linear constraints to linear constraints,

or annotating the library calls that affect the analysis. The results also help in manual inspection to

follow up the don’t-know warnings.

The above results validate our hypothesis that although real errors may be in the don’t-know

set, we are able to report a good number of buffer overflows with very low false positives.

The last column of the tableRoot Cause In f opresents the assistance of our analysis for helping

identify root causes. In our bug report, we highlight statements that update the query during analy-

sis. We count the number of those statements for each overflowpath segment. In SubcolumnStmt,

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 69

we report the average count over all overflow path segments inthe program. The results suggest

that to understand an overflow, the number of statements thatthe user has to focus on are actually

less than 10 on average. We also experimentally validated that the root causes can be path-sensitive.

SubcolumnAve No. displays the average number of root causes per overflow for all overflow state-

ments in the program. If the result is larger than 1, there must exist some overflow in the program

resulting from more than one root cause. We manually inspected overflow paths and discovered 3

out of 8 programs containing such overflows, and the different root causes for the overflow are all

located on different paths.

4.4.2 Buffer Overflow Examples from Results

Here, we show three buffer overflows from two examples which we discovered but had not

been previously reported. The first example is frombc-1.06. In Figure 4.4, the overflow occurs

at line 8, since the number of elements written to bufferenv_argv is determined by the number of

iterations of thewhile loop at line 6 and theif condition at line 7. However, the execution of both

thewhile loop and theif condition are controlled byenv_value, a string that is set through the

environment variable at line 2.

1 char∗ env_argv [3 0] ;
2 env_va lue = ge tenv ("BC_ENV_ARGS") ;
3 i f (env_va lue != NULL) {
4 env_argc = 1 ;
5 env_argv [0] = "BC_ENV_ARGS" ;
6 whi le (∗ env_va lue != 0) {
7 i f (∗ env_va lue != ’ ’) {
8 env_argv [env_argc ++] = env_va lue ;
9 whi le (∗ env_va lue != ’ ’ && ∗ env_va lue != 0)

10 env_va lue ++;
11 i f (∗ env_va lue != 0) {
12 ∗ env_va lue = 0 ;
13 env_va lue ++; }
14 }
15 e l s e env_va lue ++; } . . .
16 }

Figure 4.4: An Overflow in bc-1.06, main.c.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 70

1 char S o u r c e F i l e s [2 5 6] [2 5 6] ;
2 vo id l a n g u a g e D i r e c t i v e (vo id) {
3 char f i l eName [1 2 8] ; char f u l l P a t h [2 5 5] ;
4 whi le ((cu rChar != ’ " ’) && (f i leNameLength <127)) {
5 f i leName [f i leNameLeng th ++] = curChar ;
6 ge tCha r () ;
7 }
8 f i leName [f i leNameLeng th] = NULL; . . .
9 i f (cu rChar ==−1) s t r c p y (f u l l P a t h , f i leName) ;

10 e l s e{
11 s t r c p y (f u l l P a t h , S o u r c e F i l e s [0]) ;
12 f u l l P a t h [cu rChar +1] = NULL;
13 s t r c a t (f u l l P a t h , f i leName) ; }
14 i f ((openEr r = o p e n S o u r c e F i l e (f u l l P a t h)) . . .)
15 }
16 long o p e n S o u r c e F i l e (char∗ sourceF i leName) { . . .
17 s t r c p y (S o u r c e F i l e s [NumSourceFi les] , sourceF i leName) ;
18 }

Figure 4.5: Overflows in MechCommander2, Ablscan.cpp.

The second example in Figure 4.5 presents two overflows we identified in MechCommander2.

At line 13, two strings are concatenated into bufferfullPath: the stringfileName, with the possi-

ble length of 127 bytes, andSourceFiles[0], whose maximum length could reach 255 bytes. Both

buffersfileName andSourceFile are accessible to the user, e.g.,getChar() at line 6 gets the in-

put from a file that users can access, to the globalcurChar, which is then copied intofileName

at line 5. Therefore, given the size of 255 bytes forfullPath at line 3, the overflow can occur at

line 13 with the user input. This overflow further propagatesto the procedureopenSourceFile at

line 14, and makes bufferSourceFiles[NumSourceFiles] at line 17 also unsafe.

4.4.3 Comparison with Other Buffer Overflow Detectors

We also compared Marple with other static buffer overflow detectors using the Buffer Overflow

Benchmark developed by Zister et al. [Zitser et al., 2004], in terms of both fault detection and false

positive rates. The Buffer Overflow Benchmark contains a total of 14 benchmarks constructed

from real-world applications includingwu-ftpd, Sendmail andBIND. Each benchmark contains

a “bad” program, where several overflows are marked, and a corresponding “ok” version, where

overflows in the “bad” program are fixed. Zister et al. evaluated five static buffer overflow detectors:

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 71

ARCHER, BOON, UNO, Splint and PolySpace (a commercial tool), with the Buffer Overflow

Benchmark. The results show that 3 out of the 5 above detectors report less than 5% of the overflows

in the benchmarks, and the other 2 have higher detection rates, but the false positive rates are

unacceptably high at 1 false positive in every 12 lines of code and 1 in every 46 lines of code.

The results of the evaluation have been plotted on the ROC (Receiver Operating Characteristic)

curve shown in Figure 4.6 [Zitser et al., 2004]. They-axis p(d) shows the probability of detection,

computed by the formulaC(d)/T(d), whereC(d) is the number of marked overflows detected by

the tool andT(d) is the total number of overflows highlighted in the “bad” program. Similarly, the

x-axis p(f) represents the probability of false positives, computed byC(f)/T(f), whereC(f) is

the number of “ok” statements identified by the tool as an overflow, andT(f) is the total number

of fixed overflow statements in the “ok” version of the program. The diagonal line in the figure

suggests where a static analyzer based on random guessing would be located. The uppermost and

leftmost corner of the plot represents an ideal detector with 100% detection and 0% false positive

rates.

Figure 4.6: Comparison of Marple with other five static detectors on ROC plot

We ran Marple over the Buffer Overflow Benchmark and renderedour results ofp(f) andp(d)

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 72

Table 4.3: Benefit of Demand-Driven Analysis

Benchmark
Size Blocks Procedures WorkList

Time
(kloc) Total Visited Total Visited Max Size

polymorph-0.4.0 0.9 323 41 11 4 6 1.3 s
ncompress-4.2.4 0.9 473 269 13 4 56 1.3 s
gzip-1.2.4 5.1 1,218 482 42 17 110 26.2 s
bc-1.06 17.0 3,035 1,489 119 77 677 3.5 min

wu-ftp:mapping-chdir 0.2 84 50 5 5 31 2.1 s
sendmail:ge-bad 0.9 140 81 7 4 12 1.1 s
BIND:nxt-bad 1.3 226 83 9 3 1 0.9 s

MechCommander2 570.9 57,883 25,069 3,259 1,689 944 35.4 min

on the plot. In Figure 4.6, we computed two points for Marple.Marple_A is computed using only

overflow-input-independent and vulnerable warnings, while Marple_B is derived also using don’t-

know messages, i.e., a don’t-know warning is counted both into C(d) as a detection and intoC(f)

as a false positive.Marple_A shows that we can detect 49% of overflows with a 4% false positive

rate. Marple_B achieves better results both in false positive and negativerates than PolySpace

and Splint. Our results indicate that Marple can more precisely detect buffer overflows with high

detection and low false positive rates. We discovered that although the don’t-know warnings should

not miss overflows since they are computed conservatively, we obtained 88% detection rate. The

reason for this is that some overflows in the benchmarks are caused by integer errors or they are

read overflows, and we have not yet modeled these in our analysis.

4.4.4 Benefit of Demand-Driven Analysis

To evaluate the scalability of our analysis, we measured both the time and memory of analyzing

8 programs. The platform we used for experiments is the Dell Precision 490, one Intel Xeon 5140

2-core processor, 2.33 GHz, and 4 GB memory. Table 4.3 ColumnSizelists the size of benchmark

programs in terms of thousands lines of code. ColumnsBlocksandProcedurescompare the number

of total blocks and procedures on the ICFG of a program, listed under SubcolumnsTotal, to the

number of blocks and procedures Marple visited during analysis, displayed in SubcolumnsVisited.

The results show that because we direct the analysis only to the code relevant to buffer overflow, the

analysis only visited an average of 43% nodes and 52% procedures on the ICFG for 8 programs.

Chapter 4. Identifying Faulty Paths Using Demand-Driven Analysis 73

ColumnWorkList Sizeshows the maximum number of elements in the major worklist inanalysis.

The actual memory measurement reports that all 8 benchmark programs can be analyzed using less

than 4 GB memory.

ColumnTimereports the time that Marple uses to analyze each program. The results show that

the analyses for all benchmarks can finish within a reasonable time, and we successfully analyzed

MechCommander2 within 35.4 minutes. We compared the performance of our analysis with two

path-sensitive tools, ARCHER [Xie et al., 2003] and IPSSA [Livshits and Lam, 2003]. ARCHER

uses an exhaustive based search and achieves the speed of analyzing 121.4 lines of code per sec-

ond [Xie et al., 2003]. IPSSA detects buffer overflows on the SSA annotated with path-sensitive

alias information; its average speed for 10 programs in the experiments is 155.3 lines per sec-

ond [Livshits and Lam, 2003]. Marple reports the speed of analyzing 254.7 lines per second over

our benchmark programs.

4.5 Conclusions

This chapter presents a demand-driven analysis that addresses the challenges of path compu-

tation for faults. Both the discussions of the methodology and experimental evaluation focus on

buffer overflow detection; however, we show in the next chapter, that the techniques are applicable

to detect other types of faults. The main contributions of this work include a vulnerability model

that enables the application of demand-driven analysis fordetecting faults, and a demand-driven,

path-sensitive analysis that achieves the practical precision and scalability. We experimentally show

that our analysis can detect faults that are previously not reported in the benchmarks, and 99% of

overflows reported by our tool are real buffer overflows. Compared to the other tools in our study,

Marple achieves better precision, and is more scalable in detecting and reporting faults.

Chapter 5

Automatically Generating Path-Based Analysis

In this chapter, we present a novel framework which enables the automatic generation of scal-

able, interprocedural, path-sensitive analyses that detect user-specified faults. The framework con-

sists of a general algorithm, a specification technique, anda generator that unifies the two to produce

an analysis. The key idea is to address the scalability of path-sensitive fault detection in a general

demand-driven algorithm and automatically generate the fault-specific parts of the analysis from a

specification.

The framework is general in that it can handle both data- and control-centric faults. Data-centric

faults require the tracking of variable values and ranges for detection, e.g., buffer overflow and

integer faults, while control-centric faults, such as typestate violations, mainly focus on the order

of operations. Although different types of information arerequired to determine different types of

faults, there are commonalities in detecting them. Our insight is that 1) many types of faults are only

observable at certain types of program statements, and 2) onthe paths to such observable points,

only certain types of statements can contribute to the failure. By identifying suchpotentially faulty

points (see Definition 3.1), we can construct a query at those pointsregarding whether the fault

can occur and propagate the query along the paths for resolutions. Similarly, givenimpact points

(see Definition 3.3), we know where to collect information toresolve the query and determine the

fault. Therefore, by supplying potentially faulty/impactpoints and the corresponding actions at the

points, we are able to guide a general analysis to locate the desired faults.

74

Chapter 5. Automatically Generating Path-Based Analysis 75

(a) Five Components

(b) Work Flow

Figure 5.1: The Framework

In our experiment, we demonstrate that the framework can identify buffer overflows, integer

faults, null-pointer dereferences and memory leaks. The detection capability of the produced anal-

ysis is comparable with ones that are targeted for a particular type of fault.

5.1 An Overview of the Framework

Our framework takes a user-defined specification and generates interprocedural, path-sensitive

analyses that identify path segments of the specified faults. The framework is 1)generalin that it

can handle both data- and control-centric faults, and 2)scalable and precisein that the analyses

report path segments where a fault occurs and only the code that is relevant to the faults is analyzed.

In Figure 5.1(a), we present the five components of the framework. TheSpecification Language

consists of the syntax and semantics of our specification language. TheParserand theAnalyzer

Generatortranslate the specification and produce the parts of the analysis that target the speci-

fied fault. A general, path-sensitive, demand-driven algorithm is developed in theDemand-Driven

Template, which implements our design decisions for handling the challenges of precision and scal-

ability. TheSpecification Repositoryconsists of specifications for common fault types. Rather than

having users to specify these faults, the framework provides specifications for a set of fault types,

Chapter 5. Automatically Generating Path-Based Analysis 76

e.g., buffer overflows, integer faults, null-pointer dereferences and memory leaks. The user also can

define her own faults using the language provided by our framework.

As shown in Figure 5.1(b), given a specification, theParserfirst produces a set of syntax trees.

Based on the semantics of the specification, theAnalyzer Generatorgenerates the code modules

that implement the rules for determining the specified faults. The code modules are plugged into

theDemand-Drive Templateto produce the analyzer. The specifications for multiple types of faults

can be integrated to generate one analysis that handles a setof types of faults. The advantage of such

an analysis is that we can reuse the intermediate results, e.g., feasibility or aliasing information, for

analyzing different types of faults, and also explore the interactions of different types of faults [Le

and Soffa, 2011].

5.2 Specification Language

The goal of specifications is to express both a fault and the information needed to statically

determine the fault.

5.2.1 Fault Signatures and Detection Signatures

A specification consists offault signaturesanddetection signaturesfor a type of fault the user

desires to detect. A fault signature defines “what is a fault”. Based on the definition of the fault (see

Definition 2.1), we construct the fault signature as pairs ofpotentially faulty points and property

constraints.

For example, a buffer overflow occurs at a buffer access when the length of the string stored

in the buffer is larger than the buffer size. To model the fault, we identify the code signatures of

buffer read and write, and we define the relation of the stringlength and buffer size as constraints.

Similarly, to model “an opened file has to be closed”, we find code signatures of “open file”, and

construct a constraint as “a close has to follow the open”.

Besides the above two examples, we show later that our technique also can model integer fault,

null-pointer dereference and memory leak. For those faultsthat we can model, the constraints

Chapter 5. Automatically Generating Path-Based Analysis 77

can be about the order of operations, which we callcontrol-centric, or otherwisedata-centricif

the constraints define relations of value or range of programvariables. Types such as missing a

statement or misuse of a variable do not belong to this category.

A detection signature contains a set of information needed to statically determine a type of fault.

We model the detection signature based on the dynamic fault behavior. At runtime, a set of changes

of program states at certain program points lead to the violation of the property constraints along

the execution. Thus, to statically determine the violationof constraints, we need to identify the

potentialimpact points(see Definition 3.3) in the program source and their correspondingproperty

impacts(see Definition 3.4).

The constraints at a program point can be about the history orfuture of an execution. For

example, it is the values generated along the execution pathbefore reaching the buffer access that

contribute to the buffer overflow. On the other hand, in the file-open-close example, we require that

for a “file open”, the corresponding “file close” should be invoked in the future. Based on the types

of constraints, we know where the information that determines the resolutions of the constraints is

located. Therefore, we can choose either backward or forward static analysis for fault detection.

5.2.2 Grammar and Semantics

To express a fault signature and detection signature, we introduceattributes in our specifica-

tion to represent an abstraction of program state.Attributesare properties of program objects such

as program variables or statements. For instance, an attribute can be value, range, or typestate of

individual program variables, or relations of multiple variables. To express the fault and detec-

tion signatures, the key is to specify the constraints and update rules using attributes of program

variables.

The specification language provides a set of commonly used attributes, as well as the operators

computation, comparison, compositionandcommand. Each attribute takes a program variable(s),

and returns an integer, Boolean, or set. Based on the domain,the corresponding computation and

comparison operators can be applied. The command operatorsdefine common actions for updating

a constraint, e.g., symbolic substitution or integration of a constraint.

Chapter 5. Automatically Generating Path-Based Analysis 78

Specification→ Vars VarList FaultSignature FaultSigListDetectionSignatureDetectSigList

VarList→ Var∗

Var→ VarTypenamelist;

VarType→ Vbuffer|Vint|Vany|Vptr|...

FaultSigList→ FaultSigItem〈or FaultSigItem〉∗

DetectSigList→ DetectSigItem〈or DetectSigItem〉∗

FaultSigItem→ CodeSignatureProgramPointS_Constraint Condition|

CodeSignatureProgramPointV_Constraint Condition

DetectSigItem→ CodeSignatureProgramPointUpdateAction

ProgramPoint→ $LangSyntax$|Condition|$LangSyntax$&&Condition

Condition→ Attribute Comparator Attribute|!Condition|[Condition]|Condition&&Condition|

Condition‖ Condition

Action→ Attribute:=Attribute|∧Condition|Condition 7→ Action|[Action]|Action&&Action |

Action ‖ Action

Attribute→ PrimitiveAttribute(var, ...)|Constant|Attribute Op Attribute|min(Attribute,Attribute)|

[Attribute,Attribute]|¬Attribute|!Attribute|Attribute◦Attribute|[Attribute]

PrimitiveAttribute→ Size|Len|Value|MatchOperand|TMax|TMin|...

Constant→ 0|true|false|...

Comparator→= | 6= | > | < | ≥ | ≤ | ∈ | /∈

Op→ +|− | ∗ |∪ |∩

Figure 5.2: The Grammar of Specification Language

The grammar of the language is shown in Figure 5.2. In this grammar, we show how a set of

advanced language constructs can be composed from the basicconstruct of attributes. In the gram-

mar, terminals are highlighted: keywords use bold fonts, and the predefined constants, functions

and types are italicized.

A specification consists of three sections, shown as the firstrule in Figure 5.2. In the first

section, we definespecification variable. The specification variables represent the program objects

of interest, such as statements or operands. The ruleVar shows a variable is defined by a type and a

name. A set of built-in types are listed in the productionVarType. The naming convention for each

type indicates to which category of program objects the typerefers. For example, a specification

Chapter 5. Automatically Generating Path-Based Analysis 79

variable that corresponds to a program variable has a type starting with aV, followed by a name

indicating the type of program variable such asint.

After the definition of variables, the grammar provides the fault signature,FaultSigList, and the

detection signature,DetectSigList. FaultSigListconsists of pairs of potentially faulty points and

property constraints, using the keywordor for multiple pairs. Similarly,DetectSigListlists pairs of

impact points and property impacts. The constructProgram Pointprovides code signatures or/and

conditions to identify the types of program statements of interest. We use keywordsS_Constraint

andL_Constraint to distinguish whether the fault is related to a safety or a liveness constraint. The

productionConditioncompose constraints of attributes. The basic rule is to connect twoAttribute

with aComparator. A condition is a Boolean. Therefore, a set of Boolean operators can be applied.

Symbol [] is used to define the priority of the computation. The construct Action specifies the

actions that can be taken on attributes with the operators of:= for assignment and∧ for integrating

conditions. An action can be conditional and only be performed when a certain condition is sat-

isfied, which we use the operator7→ to specify. Attributesused to composeConditionandAction

specify the properties of variables. In our specification language, we define a set of commonly used

primitive attributes as terminals, shown in thePrimitiveAttributeproduction. A set of operators

are defined to compose attributes from these primitive attributes (see the productionsAttributesand

Op).

5.2.3 Specification Examples

We show a buffer overflow specification in Figure 5.3. UnderFaultSignature, the keyword

CodeSignatureprovides a set of program points where the buffer constraints have to be enforced.

Three examples are the library calls ofstrcpyandmemcpyas well as the direct assignment to a

buffer. We useS_Constraintto indicate that the buffer overflow constraint is a safety constraint. It

can be specified using a comparator “≥” on attributes ofSize(a), the size of buffera, andLen(b),

the length of the stringb. The role of variables such asa andb is to locate the operands in the code

signature for constructing constraints.

UnderDetectionSignature, we show a set of program points that potentially affect the buffer size

Chapter 5. Automatically Generating Path-Based Analysis 80

Vars Vbuffera, b; Vint d; Vanye;
FaultSignature

CodeSignature $strcpy(a,b)$
S_Constraint Size(a)≥Len(b)

or
CodeSignature $memcpy(a,b,d)$
S_Constraint Size(a)≥min(Len(b), Value(d))

or
CodeSignature $a[d]=e$
S_Constraint Size(a)>Value(d)

DetectionSignature
CodeSignature $strcpy(a,b)$
Update Len(a) := Len(b)

or
CodeSignature $strcat(a,b)$
Update Len(a) := Len(a)+Len(b)

or
CodeSignature $a[d]=e$ && Value(e)=’\0’
Update (Len(a)>Value(d)‖ Len(a)=∞)

7→ Len(a) := Value(d)
or

CodeSignature $d=strlen(b)$
Update Value(d) := Len(b)

Figure 5.3: Partial Buffer Overflow Specification

or string length as well as the update rules for these programpoints. The first pair says that after a

strcpyis executed, the length of the string stored in the first operand equals the length of the string

stored in the second operand. The third pair introduces a conditional command using the symbol

7→. It says when a ’\0’ is assigned to the buffer, if the current string ina is either longer thand,

Len(a)>Value(d), or not terminated, Len(a)=∞, we can assign the string length ofawith the value of

b. It should be noted that Marple integrates a symbolic substitution module to automatically handle

integer computation, e.g., using rulesValue(x):=Value(y)for the program pointx = y. The detection

signature provided in the specification only gives rules that are potentially useful for determining

defined faults; in the case of buffer overflow, the rules are about string libraries and their semantics.

We also present a specification for detecting memory leaks inFigure 5.4. The constraint for

Chapter 5. Automatically Generating Path-Based Analysis 81

memory leak is that a memory allocation is safe only if a free of the memory is invoked in the

future. It is a liveness constraint and defines a control-centric fault. In the specification, we use

the attributeTypeState(a)to record the order of operations performed on the section ofmemory

tracked bya. The L_Constraintsays that whenTypeState(a)equals 1, the leak does not occur.

Under DetectionSignature, the first rule indicates that if afree is called on the tracked pointer,

TypeState(a)returns 1, and the program is safe. The code signatures from the second to fourth rules

present the cases when the pointer is no longer associated with the memory: either it is reassigned,

or its scope ends. At these program points, we need to determine whethera is the only pointer

that points to the tracked memory; if so, a memory leak occurs; otherwise, we removea from the

reference set,Ref(a)(the reference set contains a set of pointers that currentlypoint to the tracked

memory). The last rule in the specification adds the aliasingpointer to the reference set.

Vars Vptr a,b; Vint c
FaultSignature

CodeSignature $a=malloc(c)$
L_Constraint TypeState(a) == 1

DetectionSignature
CodeSignature $free(a)$
Update TypeState(a) := 1

or
CodeSignature $a=malloc(c)$
Update |Ref(a)|==07→Ref(a) := {a} ‖

|Ref(a)|==17→TypeState(a):=0‖
|Ref(a)|6=1,07→Ref(a):=Ref(a)-{a}

or
CodeSignature $a=b$
Update |Ref(a)|==17→TypeState(a):=0‖

|Ref(a)|6=17→Ref(a):=Ref(a)-{a}
or

CodeSignature IsEnd(a)
Update |Ref(a)|==17→TypeState(a):=0

|Ref(a)|6=17→Ref(a):=Ref(a)-{a}
or

CodeSignature $b=a$
Update Ref(a):=Ref(a)+{b}

Figure 5.4: Partial Memory Leak Specification

Chapter 5. Automatically Generating Path-Based Analysis 82

5.2.4 User Scenario

To specify a type of fault, the user first needs to identify theprogram points and the constraints

that define the fault. If the faults are data-centric, the user can reuse the detection signatures we

developed to compute buffer overflow and integer faults. Additional rules also can be introduced

to document the semantics of library functions, or certain types of operators in the program. If the

faults are control-centric, the user needs to identify statements that potentially impact the order of

operations defined in the constraint. Intuitively, a finite automata, FA, can potentially be converted

to our specification: the fault signature can be derived fromthe end states and their incoming

edges of FA, and the detection signature can be obtained fromtransitions between states in FA.

To extend Marple for supporting a new type of fault, in the worst case, we need to add a few new

primitive attributes and operators. Our assumption is thatthe required abstractions in the analysis,

i.e., attributes, are always limited to certain types, and it is the composition of the attributes that

specify different types of faults and their detection.

5.3 Demand-Driven Template

The above specifications can be integrated in a general static analysis for detecting specified

faults. To achieve the scalability and precision that are applicable for a variety of faults, we develop

an interprocedural, demand-driven, path-sensitive analysis in theDemand-DrivenTemplate, shown

in Algorithm 2. TheDemand-Driven Templateis a skeleton of a demand-driven algorithm, which

mainly provides query propagation rules that are general for identifying different types of faults.

The skeleton has “holes”, where the fault-dependent information is missing. In Algorithm 2, the

“holes” areMatchFSignatureat line 4 andMatchDSignatureat line 10.MatchFSignatureexamines

whether a given program statement matches the code signature of a fault; if it does, a query will

be constructed using the constraints in the fault signature. MatchDSignaturedetermines whether a

given statement matches the code signature for updating a query; if so, the query is updated. The

two "holes" will be filled in using the code automatically generated from theAnalyzer Generator.

Chapter 5. Automatically Generating Path-Based Analysis 83

Input : program (p)
Output : path segments for faults

1 ic f g = BuildICFG(p);AnalyzePtr(ic f g); IdentifyInfP(ic f g);
2 set worklistL to {};
3 foreachs∈ ic f g do
4 MatchFSignature(s)
5 // hole1: raise queryq, if smatched code signature
6 if q then add (q,s) to L
7 end
8 while L 6= /0 do
9 remove (q, s) from L;

10 MatchDSignature (q,s);
11 //hole2: update queryq, if s matched code signature
12 a=EvaluateQ (q,s);
13 if a 6=Unresolved then add(q,s) to A[q];
14 else
15 foreachn∈ Next(s) do PropagateQ(s,n,q);
16 end
17 ReportP(A)

18 Procedure EvaluateQ(query q, stmt n)
19 SimplifyC(q.c, n)
20 if q.c = true then a = Safe
21 else ifq.c = false then a = Fault
22 else ifq.c = undef∧q.unknown6= /0 then a = Don’t-Know
23 elsea = Unresolved

24 Procedure PropagateQ(stmt i, stmt n, query q)
25 if OnFeasiblePath(i, n, q.ipp) then
26 ProcessBranch(i, n, q)
27 ProcessProcedure(i, n, q)
28 ProcessLoop(i, n, q)
29 end

Algorithm 2: the Demand-Driven Template

Using Algorithm 2, we explain a set of design decisions we made to achieve the precision

and scalability for the analysis. Without loss of the generality, we use a backward demand-driven

analysis as an example to explain this algorithm. As a preparation stage shown at line 1, the analysis

first builds an interprocedural control flow graph (ICFG) forthe program. The pointer analysis is

performed to determine aliasing information and models C/C++ structures. We also conduct a

branch correlation analysis to identify infeasible paths;the discovered infeasible paths are marked

on ICFG [Bodik et al., 1997a]. The demand-driven analysis for detecting faults is invoked at lines 3-

16.

Chapter 5. Automatically Generating Path-Based Analysis 84

The analysis first performs a linear scan of statements in theICFG to match the fault signature.

If the match succeeds, a query will be returned and added to a worklist at line 6. A query contains

the constraints of a fault, as well as in-progress information tracked by the analysis, such as to

which nodes it has been propagated.

After the demand is collected, a path-sensitive analysis isperformed on the code reachable from

where the query is raised. At line 10, if a statement is matched to a detection signature, the query

will be updated, either via a general symbolic value substitution, or by fault-specific flow functions.

For each update, we evaluate if the query is resolved at line 12.

Lines 18-23 present the evaluation of the query. At line 19, we first simplify the constraints

using the algebraic identities and inequality properties.An integer constraint solver is also called

to further determine the resolution of the constraint. Considering its performance overhead, we do

not invoke the constraint solver at every query update but ata configurable frequency, e.g., when

the query is propagated out of a procedure. If the constraintreturnstrue, the safety rule always

can be satisfied; otherwise, iffalse, a fault is discovered. We report the query asdon’t-knowif its

resolution is dependent on variables or operations that ouranalysis cannot handle, e.g., a variable

returned from a library or an integer bit operation. The analysis terminates for the query if its

resolution is determined.

If the query is not resolved, we continue to propagate it for further information. At line 15,

Nextfinds the predecessors (in a backward analysis) or successors (in a forward analysis) of the

current node.PropagateQat lines 24-29 integrates a set of propagation rules to handle branches,

procedures and loops, where the path-sensitivity is addressed. At line 25, the analysis determines

whether the propagation encounters an infeasible path. If not, the propagation proceeds.

When propagating through branches, the query is copied at the fork point, each of which is ad-

vanced into separate branches. At the branch merge point, queries from different branches continue

to propagate along the paths. We also check at the conditional branch, whether any variables tracked

in the constraints are dependent on the condition at the branch; if so, we integrate the condition into

the query.

An interprocedural propagation includes the following twocases. If the beginning of the pro-

Chapter 5. Automatically Generating Path-Based Analysis 85

cedure is reached, the query is propagated to the caller fromwhich the query originally comes to

preserve the context-sensitivity. If instead, a procedural call is met, we perform a linear scan for

the call to determine if the query can be updated in that call.We only propagate the query in the

procedure if the update is possible.

ProcessLoop, at line 28, integrates our strategies to handle loops. We classify loops into three

types, based on the update of the query in the loop. We propagate the query into the loop to deter-

mine the loop type. If the loop has no impact on the query, the query advances out of the loop. If the

iteration count of the loop and the update of the query in the loop can be symbolically identified, we

update the query by adding the loop’s effect on the original query. Otherwise, we precisely track

the loop effect on the query for a limited number of iterations (based on the user’s request). If the

query is still not resolved, we introduce a “don’t-know” tagto record the imprecision.

The analysis terminates when the resolutions for all the queries in the worklist are determined.

At line 17, we report path segments that are traversed by the query. The path segments start where

a query is raised and end where the resolution of the query is determined. Along the path segment,

the constraints of a fault 1) either are always resolved as false, which implies that as long as the

execution traverses the path segment, the fault can be triggered, or 2) report violations on some user

input, which says any execution that crosses the path segments with a proper input can trigger the

fault.

5.4 Generating Analysis

This section presents an algorithm that automatically generates the fault-specific modules,

MatchFSignatureandMatchDSignature, in Algorithm 2 from a specification.

5.4.1 An Overview of the Approach

A specification consists of three types of objects: 1) code signatures, 2) constraints and updates

composed using the attributes and their operators; and 3) a set of keywords whose roles are to

connect the previous two objects to constitute the fault anddetection signatures.

Chapter 5. Automatically Generating Path-Based Analysis 86

The parser first replaces the code signatures encapsulated in the symbol $ with constraints on

the operands and operator of the statement. The specification is thus converted into a stream of

constraints and updates. Each constraint or update is parsed into a syntax tree, whose leaf nodes are

attributes or constants, while the parents are operators for the children. During code generation, the

syntax tree is traversed in a bottom up order. At the leaf nodes, we find the code that implements

the corresponding attributes from theattribute library. This library is developed as a part of theAn-

alyzer Generatorin the framework. It implements the semantics of a set of predefined attributes. At

the parent nodes, we compose the code from their children based on the semantics of the operators.

The code produced at the root implements the semantics of thetree. We further integrate the code

from syntax trees based on their relations, which are definedby the keywords in the specification,

such ascode signature, constraintor update.

5.4.2 The Algorithm for Generating Analysis

Algorithm 3 provides in detail the code generation process.The algorithm takes a user-provided

specificationspec, and produces the code modules ofMatchFSignatureandMatchDSignature, as

well as a repository of calls invoked by the code modules,R.

At line 2, we use the grammar,l .grammar, to parse a specification. Consider the first pair of

CodeSignatureandS_Constraintfrom the buffer overflow specification in Figure 5.3. As shown

in Figure 5.5, the parser introduces the attributeOp(s) to represent the operator of statements,

andSrci(s) for the ith operands. Specification variablesa andb, which represent the locations of

operands, are replaced accordingly for both the code signature and the constraint. The constraints

are converted to syntax trees:A for the code signature, andB for the buffer overflow constraint. The

symbol◦ in the figure is a composition operator, which performs a function composition between

Srci andSize/Len.

As shown at line 2 in Algorithm 3, after parsing, a set of pairsof syntax trees,siglist, are

returned. Each pair of the syntax trees represents either anelement of fault signature or an element

of detection signature in the specification. The first tree inthe pair is produced from the code

signature, while the second represents the corresponding constraint or update.

Chapter 5. Automatically Generating Path-Based Analysis 87

Input : Specification of Fault (spec)
Output : Code modules (MatchFSignature, MatchDSignature) A repository of calls invoked by

code modules (R)

1 set f s_list, ds_list to {}; initialize R= " "
2 siglist = Parse(l .grammar,spec)
3 foreachsig∈ siglist do
4 isnode= CodeGenforTree(sig. f irst, "n")
5 if IsFSginature (sig) then
6 raiseQ=CodeGenforTree(sig.second, "n")
7 case= "If isnode then q=raiseQ;"
8 add case to f s_list
9 end

10 else if when(sig. f irst) then
11 updateQ=CodeGenforTree(sig.second, "n", "q")
12 case= "If isnode then updateQ;"
13 add case to ds_list
14 end
15 end
16 MatchFSignature= GenSignature(f s_list)
17 MatchDSignature= GenSignature(ds_list)

18 ProcedureCodeGenforTree(treet, arglistp1, p2...)
19 alist = SelectAttrImp (t, l .attr)
20 f tree= ComposeFunc(alist, t, l .semantics)
21 Append (R, f tree)
22 returnCreateCallSignature(f tree, p1, p2,...)

23 ProcedureGenSignature(codelistlist)
24 foreachcase∈ list do Append(case,code)
25 returncode

Algorithm 3: GenerateMatchFSignature andMatchDSignature

Lines 3-15 in the algorithm generate the code modules from the syntax trees. At line 4,Code-

GenforTreetakessig.first, the syntax tree of the code signature, and“n” , a variable name, and

generates a call that implements the semantics of the tree. The return variable,isnode, stores the

call signature, while the actual implementation of the callis incorporated in the code repository,R.

SeeCodeGenforTreeat lines 18-22 for details. At line 19, we select attribute functions from the

attribute libraryl .attr, which are composed based on the semantics of operators,l .semantics, from

the syntax tree,t. At lines 21 and 22, we add the generated functions toRand create a call signature

using ”n” as an actual parameter.

As an example, Figure 5.6 shows the actual code generated forthe code signature in Figure 5.5.

TheStep 1box displays the implementation for the attributeOp. The function returns the opcode

Chapter 5. Automatically Generating Path-Based Analysis 88

Figure 5.5: Parsing Specification

for a statement from the program. The code inStep 2implements the semantics of a comparison

operator,=, which checks whether the value returns from the left leaf node equals to the one from

the right node. In theStep 3, the call signature is returned.

Figure 5.6 displays one example forisnodeat line 4. The code forraiseQandupdateQalso

can be generated in a similar way. At lines 7-8, calls fromisnodeandraiseQare integrated in an

If-Thenclause and added tofs_list. At lines 12-13,isnodeandupdateQare combined and added

to ds_list. fs_list consists of cases where a code signature of a fault is matched, and a query is

raised, whileds_listconsists of cases where a code signature for updating the query is matched,

and the query is updated. Using the two lists,GenSigatureproducesMatchFSignatureat line 16

andMatchDSignatureat line 17. The two code modules can be plugged directly into the Demand-

Driven Template at lines 4 and 10 in Algorithm 2

Based on whether the specification integratesS_Constraintor L_Constraint, NextandPropa-

gateQat line 15 in Algorithm 2 will be instantiated using a backward or forward analysis template.

Chapter 5. Automatically Generating Path-Based Analysis 89

Figure 5.6: Generating Code from Syntax Tree

5.5 Experimental Evaluation

We experimentally evaluate our framework to demonstrate that the analysis we produced can

identify multiple types of faults, and the scalability and precision of our detectors are comparable

to manually constructed ones and those that only analyze fora specific type of fault.

5.5.1 Experimental Setup

In the experiments, we generate an analysis that can identify buffer overflows, integer trun-

cation/signedness errors, null-pointer dereferences andmemory leaks. In our implementation, we

automatically generated code forMatchFSignatureat line 4 in Algorithm 2.MatchDSignatureat

line 10 in Algorithm 2 is obtained via interpreting the specification. The detection for the first three

types of faults applies a backward analysis, while the analysis for memory leak is forward. The

Chapter 5. Automatically Generating Path-Based Analysis 90

analysis first performs an infeasible path detection, and then detects each type of fault one at a time.

We construct a benchmark suite, consisting of 9 C/C++ programs: the first five are selected

from BugBench [Lu et al., 2005] and the Buffer Overflow Benchmark [Zitser et al., 2004], and the

rest are deployed mature applications. Among the nine programs, eight contain 1–2 known faults,

which were either reported by users or discovered via staticanalysis, runtime detection or manual

inspection. We estimate false negatives of the analysis by checking whether we are able to identify

these known faults. We also use SPEC CPUINT 2000 to compare our memory leak detector with

other memory leak detectors.

5.5.2 Detecting Multiple Types of Faults

In the first experiment, we run the generated analysis on the 9benchmark programs. We eval-

uate the effectiveness of the analysis using four metrics: detection capability, false negatives, false

positives and the path information provided for diagnosis.

In Table 5.1, for each type of fault, we report the number of confirmed faults under Columnd,

the number of the faults that are missed under Columnmf and the number of false positives under

Column fp. For each program, we also give the length of the paths for theidentified faults, in

terms of the minimal and maximum number of procedures, shownunder Columnp. Faults here are

counted as the number of statements where the constraint violations are found along some paths.

We manually confirmed the data in the table.

UnderBuffer, we show a total of 33 buffer overflows with 5 false positives.We do not miss any

known buffer overflow. Among the 33 identified, 26 are newly discovered buffer overflows. The 5

false positives are all diagnosed as being on infeasible paths. As identification of infeasible paths is

undecidable, we cannot exclude all infeasible paths statically. The four programs,wuftp:mapping-

chdir, sendmail:ge-bad, polymophyandgzip, have also been used before to evaluate our manually

constructed buffer overflow detector [Le and Soffa, 2008]. The results show that the generated

detector is able to report all buffer overflows detected before. UnderInteger, we report a total of

41 detected integer faults, 33 of which were not previously reported. We missed a fault forputty

because we do not model function pointers. Besides insufficient infeasible path detection, imprecise

Chapter 5. Automatically Generating Path-Based Analysis 91

pointer information is also a cause for false positives, which leads to 1 false positive forapacheand

2 for ffmpeg. We identified a total of 8 null-pointer dereferences. The five identified fromapache

are cases where the pointer returned from amallocfunction is never checked for NULL before use,

which is inconsistent with the majority memory allocationscalled in the program. We missed two

null-pointer dereferences inffmpegas they are related to interactions of integer faults, whichwe did

not model in this experiment. We also identified 2 memory leaks, 1 fromsendmail:ge-badand the

other fromffmpeg, where one cleanup procedure missed a member. For the control-centric faults

of null-pointer dereference and memory leak, we only reporta total of 3 false positives, compared

to 15 generated by the data-centric faults. Our inspection shows that the infeasible paths related to

the control-centric faults are often simple, e.g.,p6=NULL, and thus easily detected by our analysis;

however, integer faults and buffer overflows are more likelylocated along an infeasible path that is

complex and not able to be identified.

Table 5.1: Detecting Multiple Types of Faults

Benchmarks
Size Buffer Overflow Integer Fault Null-Ptr Deref Memory Leak

(kloc) d mf fp p d mf fp p d mf fp p d mf fp p

wuftp:mapping-chdir 0.2 4 0 0 1-11 0 - 0 - 0 - 0 - 0 - 0 -
sendmail:tTflag-bad 0.2 0 0 1 - 3 0 3 2-2 0 - 0 - 0 - 0 -
sendmail:ge-bad 0.9 4 0 0 1-4 0 - 0 - 2 - 0 1-3 1 - 0 4-4
polymophy-0.4.0 0.9 8 0 0 1-4 0 - 2 - 0 - 0 - 0 - 0 -
gzip-1.2.4 5.1 10 0 2 1-35 15 - 0 1-16 0 - 0 - 0 - 0 -
tightvnc-1.2.2 45.4 0 - 0 - 11 0 0 1-3 0 - 0 - 0 - 0 -
ffmpeg-0.4.9pre 48.1 0 - 0 - 6 0 2 1-1 1 2 0 3-3 1 - 0 2-2
putty-0.56 60.1 7 - 2 1-15 4 1 1 1-29 0 - 1 - 0 - 2 -
apache-2.2.4 268.9 0 - 0 - 2 - 2 1-2 5 - 0 1-3 0 - 0 -

Summarizing the fault detection results from the table, we identified a total of 84 faults of the

four types from 9 benchmarks; 68 are new faults that were not previously reported. Inspecting

these new faults, we find that many of them are located along the same paths. As a result, the

dynamic approaches halt on the first fault and never find the rest. We missed 3 known faults and

reported a total of 18 false positives for the detection, mainly due to the precision of pointer analysis

and infeasible path detection. Our experimental results demonstrate that the generated analyses

are able to identify both control- and data-centric faults with reasonable false positives and false

negatives. The results for buffer overflow detection shows that the capability of generated detectors

are comparable with manually constructed ones.

Chapter 5. Automatically Generating Path-Based Analysis 92

Path information about identified faults is also reported. The results underp in the table show

that although the complete faulty paths can be very long, many faults, independent on the types, can

be determined by only visiting 1–4 procedures. The data fromgzipandputty imply that although

in general, the faults were discovered by only propagating through several procedures, we are able

to identify faults deeply embedded in the program which cross the maximum of 35 procedures.

Without path information, it is very difficult for manual inspection to understand how such a fault

is produced.

5.5.3 Scalability

To evaluate the scalability of our technique, we collect experimental data about time and space

used for our analysis. The machine we used to run experimentscontains 8 Intel Xeon E5345 4-core

processors, and 16 GB of RAM. All of our experiments finished using memory under 16 GB.

Table 5.2: Scalability

Benchmark
icfg Buffer Integer Pointer Leak

ptr,inf q t q t q t q t

wuftp:mapping-chdir 10.1 s 13 71.4 s 0 0 12 1.1 s 0 0
sendmail:tTflag-bad 12.3 m 1 28.8 m 6 46.6 m 12 17.3 s 0 0
sendmail:ge-bad 5.1 s 32 4.7 s 7 1.2 s 44 4.3 s 2 3.2 s
polymophy-0.4.0 1.8 m 15 8.1 s 3 6.4 s 9 1.2 s 0 0
gzip-1.2.4 25.1 m 39 18.5 m 82 70.9 s 116 6.2 s 2 7.3 s
tightvnc-1.2.2 21.9 m 21 54.9 m 1480 18.3 m 847 1.6 m 27 3.4 m
ffmpeg-0.4.9pre 49.8 m 307 88.1 m 410 33.6 m 1970 4.2 m 76 12.1 m
putty-0.56 26.4 m 150 37.9 m 79 44.1 m 256 3.2 m 14 2.4 m
apache-2.2.4 102.8 m 518 53.0 m 423 160.6 m 2730 9.6 m 21 8.2 m

In Table 5.2, we first give the time used for preparing the fault detection, including building

the ICFG, and conducting pointer analysis and infeasible path detection. We then list for each type

of fault, the number of queries we raised and the time used fordetection (Columnsq andt). The

experimental data show that all the benchmarks are able to finish within a reasonable time. The

maximum time of 160.6 minutes is reported from analyzingapachefor integer faults. Adding the

columns underBuffer, Integer, PointerandLeak, we obtain the total time for identifying four types

of faults. For example,apachereports a total time of 231 minutes for fault detection, and the second

slowest isffmpeg, which uses 137 minutes. The time used for analysis is not always proportional to

Chapter 5. Automatically Generating Path-Based Analysis 93

the size of the benchmark or the number of queries raised in the program. The complexity involved

to resolve queries plays a major role in determining the speed of the analysis. For example, the

small benchmarksendmail:tTflag-badtakes a long time to finish because all the faults are related

to nested loops.

Another observation is that the identification of control-centric faults is much faster than the

detection for data-centric faults, as for the control-centric faults we no longer need to traverse

paths of loops to model symbolic update for the query. We alsonotice that, running on a general

framework, our buffer overflow detection is slower than the manually constructed one reported in

Chapter 4. Besides the overhead of translating the specification, generality also impacts the speed of

analysis in an additional two ways: 1) in order to improve thedetection capability of integer faults,

null-pointer dereferences and memory leaks, we handle manydon’t-knows reported by Marple;

after don’t-know factors are resolved, some queries can continue propagating along the paths and

slow down the analysis; and 2) the optimizations we developed in Chapter 4 targeted at detecting

buffer overflows are no longer used in the general framework.

5.5.4 Comparing Our Framework with Other Tools

In the second experiment, we analyze SPEC CPUINT 2000 using amemory leak detector

produced from our framework. This benchmark has been used bymultiple memory leak detec-

tors [Cherem et al., 2007, Clause and Orso, 2010, Orlovich and Rugina, 2006] for evaluation, and

we thus are able to get the data for comparison.

In the first and second columns of Table 5.3, 12 programs are listed, and their sizes are given.

We compare three existing memory leak detectors with our analysis. The first two [Jeffrey et al.,

2008,Orlovich and Rugina, 2006] are static, and their results are displayed underTool I andTool II.

Tool I applies a backward analysis. It first assumes that no leak occurs at the current program point.

A memory leak is discovered if the collected information contradicts the assumption [Orlovich and

Rugina, 2006]. Tool II converts the detection for memory leak to a reachability problem using a

guarded value flow graph [Jeffrey et al., 2008]. Neither of the tools is path-sensitive; however the

impact of the conditional branch is considered in Tool II. The third tool is dynamic and used to

Chapter 5. Automatically Generating Path-Based Analysis 94

Table 5.3: Comparison of Memory Leak

CINT2000
size Marple Tool I Tool II Dynamic

(kloc) d fp time d fp d fp traces

181.mcf 1.3 0 0 2.8 s 0 0 0 0 0
256.bzip2 2.9 1 0 24.5 s 1 0 0 0 10
197.parser 6.4 0 0 26.5 s 0 0 0 0 2
175.vpr 9.6 2 0 268.5 s 0 0 0 1 47
164.gzip 10.0 2 0 8.0 s 1 2 0 0 4
186.crafty 11.3 0 0 56.3 m 0 0 0 0 37
300.twolf 15.1 17 0 25.7 m 0 0 2 0 1403
252.eon 19.3 1 0 58.2 s - - - - 380
254.gap 31.2 1 0 121.0 s 0 1 0 0 2
255.vortex 44.7 1 1 71.0 s 0 26 0 0 15
253.perlbmk 64.5 1 3 17.1 m 1 0 1 3 3481
176.gcc 128.4 27 2 7.2 h - - 35 2 1121

compare false negatives among the static detectors, as memory leaks found in this dynamic tool are

always real faults [Clause and Orso, 2010].

Under Columnd, we report the number of memory leaks that are confirmed to be real, and

underfp, we give the number of false positives. The numbers under thetwo columns count the

memory allocation sites where a leak can occur along some paths. In dynamic analysis, however,

the memory leak is reported as the number of traces that manifest the leak (see Columntraces).

The numbers in the column show whether a memory leak exists inthe programs, but it cannot be

compared with the number reported underd.

Our experimental data show that we are able to report more memory leaks than the other static

tools. We identify a total of 53 memory leaks, compared to a total of 3 shown underTool I, and

38 underTool II. We are able to report leaks that neither of the other tools isable to identify. For

example, forvortex, the result from the dynamic tool shows that there exist leaks in the program;

however, neither of the other two static tools reports any faults, while Marple does. Also, we handle

the C++ benchmarkeonand report a memory leak, while the other two tools are only able to analyze

C programs. We report a total of 6 false positives, shown under fp, compared to 29 reported by Tool

I and 6 by Tool II. We are more precise than Tool I because we apply a path-sensitive analysis but

they do not. For Tool II, our intuition is that besides using the guards on the value flow graph to

help precision, other techniques are also introduced to suppress the false positives, which adversely

Chapter 5. Automatically Generating Path-Based Analysis 95

impact the detection capability of the tool. Therefore, we are able to report more faults.

We also list the time used to detect the memory leaks.gcc takes the longest time, using 7.2

hours, which was still able to finish in a nightly run. Compared to the larger benchmarkapache,

gcc is much slower because we find many global pointers ingcc; also we encounter more don’t-

know factors when analyzingapache, and thus is able to terminate the analysis early.

5.5.5 Limitations

We use Phoenix to build the ICFG, which currently does not model certain control flows such as

function pointers and virtual functions. Therefore, certain parts of the code in a benchmark might

not be able to be analyzed. Also, for detecting buffer overflow and memory leak, we only identify a

set but not all of the code signatures where a query can be raised for checking safety. For example,

we do not construct queries atrealloc for memory leak. We can miss faults related to such program

points.

5.6 Discussion

This chapter addresses the generality of the techniques by showing that we are able to identify

both control- and data-centric faults as well as safety and liveness properties. Generality is achieved

via a fault model, a specification technique, and a general analysis. Here, we provide a further

clarification on how general our techniques actually are from the three perspectives.

In our fault model, faults are considered as violations of property constraints, and the constraints

here are specifically about data or control relations on the program objects. For example, many

vulnerabilities in web applications, such as cross-site scripting and SQL injection, are caused by

improper input validations [Lam et al., 2008] and can be formulated as control violations, which are

handled by our framework. We do not consider cases such as missing a statement or use a wrong

variable.

The expressiveness of our specification language is determined by its key construct, attributes,

and their operators. If a fault is related to some abstraction of program state that no attribute can

Chapter 5. Automatically Generating Path-Based Analysis 96

express, our framework cannot handle it. For example, currently in our specification language, we

are not able to specify deadlock conditions using attributes on the locks.

Also, our techniques are static, and we are thus not able to handle faults whose detection is

beyond the capability of static analysis, e.g., performance bugs that cannot be mapped to any code

patterns. Furthermore, the types of faults we can handle arerestricted by the capability of constraint

solvers. For example, our analysis only handles integer constraints, and thus we are not able to find

faults related to complex float computation.

5.7 Conclusions

In this paper, we present a unifying framework, which includes a general, scalable analysis, a

specification technique, and a generator for automaticallygenerating desired fault detectors. The

generated analyses are path-sensitive and interprocedural, and return path segments where a fault

occurs. Our experiments show that the produced analyses canidentify the common faults of buffer

overflow, integer fault, null-pointer dereference and memory leak. Applying a demand-driven, path-

sensitive analysis, the fault detection achieves competitive precision and scalability. Although here

we mainly focus on traditional faults, with our technique, users can write specifications and identify

their own defined faults.

Chapter 6

Path-Based Fault Correlation

Although a number of automatic tools have been developed to detect faults, much of the diag-

nosis is still being done manually. To help with the diagnostic tasks, we formally introducefault

correlation, a causal relationship between faults. We statically determine correlations based on the

expected dynamic behavior of a fault. If the occurrence of one fault causes another fault to occur,

we say they are correlated. With the identification of the correlated faults, we can better understand

fault behaviors and the risks of faults. If one fault is uniquely correlated with another, we know

fixing the first fault will fix the other. Correlated faults canbe grouped, enabling prioritization of

diagnoses of the fault groups. In this chapter, we develop aninterprocedural, path-sensitive, and

scalable algorithm to automatically compute correlated faults in a program. In our approach, we

first statically detect faults and determine their error states. By propagating the effects of the er-

ror state along a path, we detect the correlation of pairs of faults. We automatically construct a

correlation graph which shows how correlations occur amongmultiple faults and along different

paths. Guided by a correlation graph, we can reduce the number of faults required for diagnosis

to find root causes. We implemented our correlation algorithm and found through experimentation

that faults involved in the correlations can be of differenttypes and located in different procedures.

Using correlation information, we are able to automate diagnostic tasks that previously had to be

done manually.

Our work is the first that formally defines and automatically computes fault correlations. The

contributions of the work include:

97

Chapter 6. Path-Based Fault Correlation 98

• the definition and classification of fault correlations,

• the identification of the usefulness of correlations in fault diagnosis,

• algorithms for automatically computing correlations,

• correlation graphs that integrate fault correlations on different paths and among multiple

faults, and

• experiments that demonstrate the common existence of faultcorrelations and the value of

identifying them.

6.1 Motivation and Challenges

Fault diagnosis, done statically on the program source code, aims to identify and fix the causes

of detected faults. Diagnosing faults is challenging for a number of reasons. One reason is that the

root cause can be located far from where the fault is detected, while the code around the fault can be

complex. Unlike debugging, in fault diagnosis, there is no runtime information available to assist in

explaining faults. Also, in static analysis, real faults are often mixed with an overwhelming number

of false alarms and benign errors.

In this chapter, we explore relationships among faults for fault diagnosis. We show that a causal

relationship can exist between faults; that is, the occurrence of one fault can cause another fault to

occur, which we callcorrelation. As an example, in Figure 6.1 we show a fault correlation discov-

ered inffmpeg-0.4.8. The correlation exists between an integer signedness error at node 2 and a

null-pointer dereference at node 5, as any input that leads to the integer violation at node 2 triggers

the null-pointer dereference at node 5 along path〈1,2,5〉. The trigger can occur because the variable

current_track at node 2 is not guaranteed to get the unsigned value ofAV_RL32(&head[i+8])

(see the macro definition at the bottom of the figure). If a large value is assigned, the signed inte-

gercurrent_track would get a negative value at runtime. Whencurrent_track is negative, the

branch〈2,5〉 is taken and the memory allocation at node 4 is skipped, causing the dereference of

fourxm->tracks at node 5 to encounter a null-pointer.

Chapter 6. Path-Based Fault Correlation 99

Figure 6.1: Fault Correlation in ffmpeg-0.4.8

Fault correlation is a relationship defined on the dynamic behavior of faults. When a program

runs, an initial root cause can propagate and cause a sequence of property violations along the

execution before an observed symptom, e.g., crash, is detected. In traditional static tools, the de-

pendencies of those property violations are not identified;either only the first violation is reported

or all the violations are reported but as separate faults [Brumley et al., 2007, Evans, 1996, Le and

Soffa, 2008,Schwarz et al., 2005]. For the above example, static detection only reports that node 2

contains an integer violation, but it cannot explain whether it is benign or malignant, and if harmful,

how severe is the consequence. A static detector for null-pointer dereference also cannot discover

Chapter 6. Path-Based Fault Correlation 100

the vulnerability, because the detector may not be aware of any integer violations. When the im-

pact of integer fault is not considered, the static analysiswould report the path〈1,2,5〉 infeasible,

asAV_RL32(x) always returns a non-negative integer and thus the result ofthe addition at node 2

should be always larger thanfourxm->track_count’s initial value 0. However, given the fault

correlation, we know that: there exists a null-pointer dereference at node 5; its root cause is the

integer fault at node 2; and by fixing the integer fault, the null-pointer dereference can also be fixed.

Fault correlation helps fault management in the following ways: 1) we can detect new faults

with introduced fault impact, e.g., the null-pointer dereference shown in Figure 6.1. These faults are

impossible to be identified using traditional static detectors; 2) we can confirm and prioritize real

faults by revealing their potential consequences; and 3) wecan group faults based on their causes.

Determining fault correlations in current static tools is challenging for three reasons. First,

identification of correlations of faults requires knowledge of fault propagation, which only can be

obtained when program paths are considered; however, exhaustive static analysis based on full path

exploration is not scalable. Another reason is that most static tools only detect one type of fault,

while correlations often occur among faults of different types as shown in the above example. Also,

in order to statically compute the propagation of a fault, the potential dynamic impact of a fault

needs to be modeled, which is typically not done in the statictools.

6.2 Defining Fault Correlation

We first define fault correlations. We also provide examples to demonstrate correlations.

6.2.1 Preliminaries

An important concept to define fault correlations iserror state.

Definition 6.1: Theerror stateof a fault is the set of values produced at runtime as a result of

property violations.

Intuitively, an error state is the manifestation of a fault.That is, after executing a program

statement, there exists a set of values from which we can determine that property constraints are

Chapter 6. Path-Based Fault Correlation 101

violated and a fault occurs. The set of values constitute an error state. If a crash would occur, we

consider the values that cause the crash as the error state. We model the error state of a fault based

on the fault type using constraints. The modeling is empirical and based on the common symptoms

of faults a code inspector might use to manually determine fault propagation.

Table 6.1: Error State of Common Faults
Fault Type Code Signature Error State

buffer overflow strcpy(a,b) len(a)>size(a)

integer overflow unsigned i=a+b
value(i)==value(a)+

value(b)-C
integer int j...unsigned i=j value(i)>231-1

signedness unsigned i...int j=i value(j)< 0
integer truncation unsigned i...uchar j=i value(j)<value(i)

resource leak
Socket s=accept(); avail(Socket)==

s=accept() avail(Socket)-1

Table 6.1 lists the error state for several common faults. Under Code Signature, we give ex-

ample statements where a certain type of fault potentially occurs. UnderError State, we show

constraints about corrupted data at the fault. The type of corrupted data is listed in bold. The

first row of the table indicates that when a buffer overflow occurs, the length of the string in the

buffer, len(a), is always larger than the buffer size,size(a). From the second to fourth rows,

we simulate the effect of integer faults. When an integer overflow occurs, the value stored in the

destination integer,value(i), should equal the result of integer arithmetic,value(a)+value(b),

minus a type-dependent constantC, e.g., 232. Similarly, when an integer signedness error occurs,

we would get an unexpected integer value. For example, when asigned integer casts to unsigned,

any results larger than 231−1 (the maximum value a signed 32 bit integer possibly stores)indicates

the violation of integer safety constraints [Brumley et al., 2007]. When an integer truncation occurs,

for instance, betweenuchar andunsigned as shown in the table, the destination integer would get

a smaller value than the source integer. In the last row, we use a socket as an example to show

that when resource leaks occur, the amount of available resources in the system is reduced, and we

model the error state as [avail(Socket)==avail(Socket)-1].

Chapter 6. Path-Based Fault Correlation 102

(a) uniquely correlate via data (b) uniquely correlate via control

(c) correlate but not unique (d) not correlate

Figure 6.2: Defining Fault Correlation: correlated faults are marked with×, error state is included
in [], and corrupted data are underlined

6.2.2 Correlation Definition

Supposef1 and f2 are two program faults.

Definition 6.2: f1 and f2 arecorrelatedif the occurrence off2 along pathp is dependent on the

error state off1. We denote the correlation asf1 → f2. If f2 only occurs withf1 along pathp, we

say f1 uniquely correlateswith f2, denoted asf1
u
−→ f2.

The occurrence off2 along p is determined by the property constraints on a set of variables

collected alongp. If such variables are control or data dependent [Snelting,1996] on the corrupted

data at the error state off1, f1 and f2 are correlated. Intuitively, givenf1 → f2, f1 occurs first on

the path, and the error state produced atf1 propagates alongp and leads to the property violation

at f2. Therefore,f1 and f2 have a causal relationship. Givenf1
u
−→ f2, f1 is a necessary cause off2,

which means, iff1 does not occur,f2 cannot occur. If the correlation is not unique, there is other

cause(s) that can lead tof2.

Consider Figure 6.2(a) in which the variableinput stores a string from the untrusted user.

A correlation exists between the buffer overflow at line 2 andthe one at line 3, as there exists a

Chapter 6. Path-Based Fault Correlation 103

valueflow on variablea, shown in the figure, that propagates the error state of the overflow at line 2

to line 3. When the first buffer overflow occurs, the second also occurs. The faults are uniquely

correlated.

In Figure 6.2(b), we show a correlation based on control dependency between faults. The integer

overflow at line 1 leads to the buffer overflow at line 3, as the corrupted data,value(i), produced

at the integer fault impacts the conditional branch at line 2(on which line 3 is control-dependent).

In Figure 6.2(c), buffer overflow at line 2 correlates with the one at line 3. However, the first

overflow is not the only cause for the second because when the overflow at line 2 does not occur,

the overflow at line 3 still can occur.

As a comparison, the two buffer overflows presented in Figure6.2(d) are not correlated. At

line 3, both the size of the buffer and the length of the stringused to determine the overflow are not

dependent on the corrupted datalen(a) in the error state at line 2.

By identifying fault correlation, we can better understandthe propagation of the faults and

thus fault behavior. We demonstrate the value of fault correlations in two real-world programs. In

the first example, we show givenf1 → f2, we can predict the consequence off1 through f2, and

prioritize the faults. The correlation also helps group andorder faults, as in the case off1
u
−→ f2,

fixing f1 will fix f2. See Example 2.

Example 1: Figure 6.3 presents a correlation found in the programacpid-1.0.8. In this exam-

ple, we show how a fault of resource leak can cause an infinite loop and lead to the denial of service.

The code implements a daemon that waits for connection from clients and then processes events

sent via connected sockets. In Figure 6.3, thewhile loop at node 1 can only exit at node 5, when an

event is detected by thepoll() function at node 2 and processed by the server. Correspondingly,

along the paths〈(1−4)∗,1−2,5〉, the socketfd is created by the functionud_accept at node 3,

and released byclean_exit at node 5. However, if a user does not send legitimate requests, the

branch〈2,3〉 is always taken, and the created sockets at node 3 cannot be released. Eventually,

the list of sockets in the system is completely consumed and no socket is able to be returned from

ud_accept at node 3. As a result, the conditionfd<0 always returns true. The execution enters an

infinite loop〈(1−3)∗〉. In this example, the impact of the resource leak makes the execution always

Chapter 6. Path-Based Fault Correlation 104

follow the false branch of node 2 and the true branch of node 3,causing the program to hang. With

fault correlation information, we can automatically identify that the root cause of the infinite loop

is the resource leak. To correct this infinite loop, we can addresource release code in the loop, as

shown in the figure.

Figure 6.3: Correlation of Resource Leak and Infinite Loop inacpid

Example 2: Static tools potentially report many warnings for a program, especially when they

analyze newly written code or legacy but low quality code. Consider the example in Figure 6.4

from polymorph-0.4.0. There exist 7 buffer overflows in the code, located at lines 2, 10, 12, 14,

16, 19 and 21. Although these overflows are not all located in the same procedure and even the

buffers involved in the overflow are not all the same, we find that correlations exist among them.

For example, the overflow at line 2 correlates with the one at line 16 along path〈1−7,16〉, and

line 16 correlates with line 21 along〈16,17,21〉. We can group these correlated faults and diagnose

them together.

To further understand the correlations in real-world programs, we conducted a study on 300

vulnerabilities in the Common Vulnerabilities and Exposure (CVE) database [Common Vulnera-

Chapter 6. Path-Based Fault Correlation 105

1 char f i l e n a m e [2 0 4 8] ;
2 s t r c p y (f i l ename , F i l e D a t a . cFi leName) ;
3 c o n v e r t _ f i l e Na me (f i l e n a m e) ;
4
5 vo id c o n v e r t _ f i l e n a m e (char∗ o r i g i n a l) {
6 char newname [2 0 4 8] ; char ∗ b s l a s h = NULL; . . .
7 i f (does_nameHaveUppers (o r i g i n a l)) {
8 f o r (i =0 ; i < s t r l e n (o r i g i n a l) ; i ++){
9 i f (i s u p p e r (o r i g i n a l [i]))

10 { newname [i] = t o l o w e r (o r i g i n a l [i]) ;
11 cont inue ; }
12 newname [i] = o r i g i n a l [i] ;
13 }
14 newname [i] = ’ \ 0 ’ ;
15 }
16 e l s e s t r c p y (newname , o r i g i n a l) ;
17 i f (c l e a n) {
18 b s l a s h = s t r r c h r (newname , ’ \ \ ’) ;
19 i f (b s l a s h != NULL) s t r c p y (newname , &b s l a s h [1]) ;
20 } . . .
21 s t r c p y (o r i g i n a l , newname) ;
22 }

Figure 6.4: Correlations of Multiple Buffer Overflows in polymorph

bilities and Exposure, 2010], dated between 2006-2009. We manually identified fault correlations

on 8 types of common faults, including integer faults, buffer bounds errors, dereference of null-

pointers, incorrect free of heap pointers, any types of resource leak, infinite loops, race conditions

and privilege elevations. Our study shows that correlations commonly exist in real-world programs.

In fact, the reports suggest that security experts manuallycorrelate faults in order to understand the

vulnerabilities or exploits.

Table 6.2 classifies the correlations we found. We mark∗ if the fault listed in the row uniquely

correlates with the fault in the column, and× for correlations that are not unique. Comparing

the rows ofint and race in the table, we found that integer faults and data race behave alike in

correlations. Intuitively, both integer violation and data race can produce unexpected values for

certain variables, and thereby trigger other faults. From the study, we also found that a fault can

trigger different types of faults along different execution paths and produce different symptoms. We

markX in the table if the faults from the column and row can be triggered by the same fault along

Chapter 6. Path-Based Fault Correlation 106

different paths.

Table 6.2: Types of Correlated Faults Discovered in CVE
int buf nullptr free leak loop race privilege

int ∗ ∗ × ∗ ∗ ∗ ∗ × X ∗

buf ∗ ∗ X ∗ X ∗

nullptr X X X ∗

free ∗ X ∗

leak ∗ ∗

loop X ∗ × X X

race ∗ ∗ × ∗ ∗ ∗ ∗ ∗

privilege ×

6.3 Computing Fault Correlation

In this section, we present an algorithm to statically compute fault correlation. The approach has

two phases: fault detection and fault correlation. In faultdetection, we report path segments where

faults occur in terms of path graphs. In fault correlation, we model the error state of detected faults

and symbolically simulate the propagation of the error state along program paths to determine its

impact on the occurrence of the other faults. The goals of thesecond phase are to identify 1) whether

a fault is a cause of another fault detected in the first phase;and 2) whether a fault can activate faults

that had not been identified in the first phase. As the determination of fault correlation requires path

information, we use a demand-driven analysis for scalability.

6.3.1 Overview of the Approach

We first review the steps for fault detection shown on the leftside of Figure 6.5. The demand-

driven analysis first identifies program statements where the violation of property constraints can

be observed, namely,potentially faulty points. At those statements, the analysis constructs queries

as to whether property constraints can be satisfied. Each query is propagated backwards along all

reachable paths from where it is raised. Information is collected along the propagation to resolve

the query. If the constraints in the query are resolved asfalse, implying a violation can occur, a

fault is detected. The path segments that produce the fault are identified as faulty.

Chapter 6. Path-Based Fault Correlation 107

Figure 6.5: Fault Detection and Fault Correlation

To improve the precision of the fault detection, we run an infeasible path detection using a

similar query based algorithm, where the query is constructed at a conditional branch as to whether

the outcome of the branch can always be true or false [Bodik etal., 1997b]. After the infeasible

paths are identified and marked on the ICFG, we run various fault detectors. In the fault detection,

when the query that is being used to determine faults encounters an infeasible path, the propagation

terminates.

In the analysis, we cache queries and the resolutions at statements where the queries have been

propagated. Both the cached query and the identified path segments will be reused to compute fault

correlations. All the detected faults are checked for correlation in the next phase.

We developed four steps to determine the fault correlation,shown on the right in Figure 6.5.

In the first step, we model the error state off1 based on its fault type (see Table 6.1). The error

state is instrumented on ICFG as a constraint. For example, for the integer fault in Figure 6.1, we

insert [value(current_track)<0] at node 2, and for the resource leak in Figure 6.3, we add at

node 3 [avail(Socket)==avail(Socket)-1]. Next, we examine whether the error state off1

Chapter 6. Path-Based Fault Correlation 108

can change the results of branch correlation analysis, as anupdate of the conditional branch can

lead to the change of feasibility, which then impacts the occurrence of f2. In the following step,

we determine the impact off1 directly on f2, and finally we check if the identified correlation is

unique.

6.3.2 Examples to Find Correlations

Based on the definition of fault correlation, forf1 → f2 to occur, we require two conditions: 1)

there exists a program pathp that traverses bothf1 and f2; and 2) alongp, constraints for evaluating

f2 are dependent on the error state off1. In this section, we use examples to show how the steps of

fault detection and fault correlation presented in Figure 6.5 proceed to determine the two conditions.

6.3.2.1 Correlation via Direct Impact on Faults

In Figure 6.6, we show an example on the left, and the actions taken in the analysis on the right.

UnderFault Detection, we present the transitions of the query in fault detection phase. Each table

describes the propagation of a query along one path. The firstcolumn of the table gives the nodes

where a query propagated and updated. The second column lists the query after being updated and

cached at the node. In TableQ5, we show that, to detect integer overflow, we identify node 5 as

a potentially faulty point and raise the query [value(i)*8<C] (C is the type-dependent constant

232), inquiring whether the integer safety constraints hold. The query is propagated backwards and

resolved asfalse at node 4 due to a user determined inputi, shown in the second row of TableQ5.

Path〈4,5〉 is thus determined as faulty and marked on ICFG. The query is also propagated to

node 3 and resolved astrue (this path is not listed in the figure due to space limitations). Similarly,

to detect buffer overflows, we identify nodes 8, 10 and 11 as potentially faulty and raise queries to

determine their safety. TableQ8, Q10 andQ11 present the propagation of the three queries. TakeQ8

as an example. At node 8, we raise an initial query [value(i)≤size(p)], inquiring whether the

buffer constraints are satisfied. At node 6, the query is firstchanged to [8*value(i)≤value(x)].

A symbolic substitution at node 5 further updates the query to [8*value(i)≤8*value(i)]. We

thus resolve the query astrue and report the buffer at node 8 safe. In the fault detection phase, we

Chapter 6. Path-Based Fault Correlation 109

identify three faults, an integer overflow at node 5, and buffer overflows at nodes 10 and 11. We

determine in the next step whether the correlation exists for these faults.

Figure 6.6: Correlation via Direct Impact

UnderFault Correlation in Figure 6.6, we list the steps for computing correlations.We first

model the error state. For the integer overflow at node 5, we introduce [value(x)==8*value(i)-C]

as an error state, shown in the first box underFault Correlation. We italicizedvalue(x) to indicate

it is the corrupted data at this fault. Conceptually, we needto propagate the error state along all

program paths in a forward direction to examine if the corrupted datavalue(x) can impact the

occurrence of the faults at nodes 8, 10 and 11. Since our analysis is demand-driven, to determine

Chapter 6. Path-Based Fault Correlation 110

such impact, we actually propagate the queries raised at nodes 8, 10 and 11 in a backward direction

toward the fault located at node 5, and determine if the errorstate can update the queries. As such

backward propagation has been done in fault detection, we can take advantage of cached queries to

compute correlation. In the figure, all queries listed in thetables are cached in the corresponding

nodes after fault detection. From TableQ8, we discover that at the immediate successor(s) of the

integer fault, i.e., node 6, query [8*value(i)≤ value(x)] has been propagated to and is cached.

The query is dependent on the corrupted datavalue(x) at the error state. We use a bold arrow in

the figure to show the dependency. The query is thus updated with the error state and reaches a new

resolutionfalse. In this case we discover a fault that was not reported in fault detection. Using a

similar approach, we introduce the error state [len(a)>128)] after node 10 for a buffer overflow.

With this information, the query for checking buffer overflow at node 11 is resolved tofalse. In

this case, two previously identified faults are determined as correlated.

To determinef1
u
−→ f2, we examine whenf1 is fixed, whetherf2 still can occur. As forf1

u
−→ f2,

f1 is the necessary cause off2, and fixing f1 ensures the correctness off2. Our approach is to

replace the inserted error state with the constraints that imply the correctness of the node. For

example, in Figure 6.6, we replace the error state at node 5 with [value(x)==8*value(i)], and at

node 10 with [len(a)≤128]. With the new information, node 8 is determined as safe, indicating

the correlation of node 5 and node 8 is unique, while node 11 still reports unsafe, showing the

correlation between nodes 10 and 11 is not unique.

In our approach, the two conditions for determining fault correlation are ensured by two strate-

gies. First, in fault correlation, if queries are updated with the error state off1 and still not resolved,

we continue propagating the updated query along the faulty path of f1, which assuref2 and f1 are

located along the same path. For instance, in the above example, if the buffer overflow query raised

at node 8 is not resolved at node 5 with the error state, it would continue to propagate along path

〈5,4〉 for resolution, as the error state is only produced along thefaulty path〈5,4〉. Second, we

establish the dependency betweenf2 and f1 by assuring the error state off1 can update the queries

of f2 and the variables in the queries are dependent on the corrupted data in the error state.

Chapter 6. Path-Based Fault Correlation 111

6.3.2.2 Correlation via Feasibility Change

Figure 6.7: Correlation via Feasibility Change

The error state off1 also can impactf2 indirectly by changing the conditional branchesf2

depends upon, shown in Figure 6.7. The program is a simplifiedversion of Figure 6.1. Under

Fault Detection, we list the query transitions to detect infeasible paths and faults. UnderFault

Correlation, we show the query update in fault correlation. In this example, our focus is to present

how an integer error found at node 3 changes the branch correlation at node 4 and then impacts other

faults. An error state [value(i)<0] is modeled after node 3. Examining cached query at node 4,

we find that the error state can update the branch query [value(i)>0] and resolve it tofalse. The

change of the resolution implies that the path this query propagated along is no longer infeasible as

identified before. Therefore, all the queries that are control dependent on this branch are potentially

impacted, and we need to evaluate all the queries cached at node 4 for new resolutions. For example,

Chapter 6. Path-Based Fault Correlation 112

we restart the query [value(p)6=0] from node 4 and resolve it at node 1 asfalse, and a null-pointer

dereference is discovered. Similarly, we restart the buffer overflow query [value(i)>0] at node 4,

where we find the query is resolved asfalse with the information from the error state. In this case,

the error state of the integer fault first impacts the branch and activates the propagation of the query

at node 4; then the error state also has a direct impact on the query and changes its resolution to

false.

6.3.3 The Algorithm of Fault Correlation

For identifying fault correlations, Algorithm 4 takes the inputsic f gandn, whereic f g represents

the ICFG with fault detection results (including the cachedqueries and marked faulty paths), and

n is the node where the fault is detected. Our goal is to identify all the correlations for the fault at

noden.

At line 2, we model the error state. For each query cached at the immediate successor(s) of

the fault, we identify queries that are dependent on the error state. See lines 3–5. If the query is

resolved after updating with the error state, we add it to theset of resolved queriesA at line 7.

Otherwise, if the updated query was used to compute faults, we add it to the listFQ at line 8. If

the query was used to compute branch correlation, we add it tothe list IQ at line 10. Lines 11–12

collect queries stored at the branchq′.raise. The faults associated with these queries are potentially

impacted by the feasibility change, and thus need to be reevaluated. After queries are classified to

the listsFQ andIQ, we compute the feasibility change at line 17 usingIQ and then determine the

impact of the error state directly on the faults at line 18 using FQ.

The determination of the resolutions of updated queries is shown inResolve at line 19. The

analysis is backwards. At line 21, we first propagate the queries to the predecessors of the faulty

node. We then use a worklist to resolve those queries at lines23–28.Propagate at line 30 indicates

that we need to only propagate the queries along feasible andfaulty paths. After a query is resolved

at line 26, we identify paths and mark them on ICFG at line 29. For branch query, they are adjusted

infeasible paths, while for queries to determine faults, the paths show where the correlation occurs.

Chapter 6. Path-Based Fault Correlation 113

Input : ICFG with fault detection results (ic f g);
faulty node (n)

Output : Correlations forn

1 initialize IQ = {} and FQ = {}
2 er = ModelErrState (n);
3 foreachm∈ Succ(n) do
4 foreachq∈ Q[m] do
5 q′ = UpdateWithErrState (er, q);
6 if q′ 6= q then
7 if q′.an = resolvedthen addq′ to A
8 else if IsFaultQ(q’) then addq′ to FQ
9 else

10 addq′ to IQ
11 foreachx∈ Q[q′.raise] do
12 if IsFaultQ(x) then addx to FQ
13 end
14 end
15 end
16 end
17 Resolve(IQ)
18 Resolve(FQ)

19 ProcedureResolve(querylistQ)
20 foreachq∈ Q do
21 foreach p∈Pred(n) do Propagate(n, p, q)
22 end
23 while worklist 6= /0 do
24 remove (i, q) from worklist
25 UpdateQ(i, q)
26 if q.an = resolvedthen addq to A
27 else foreachp∈Pred(i) do Propagate(i, p, q)
28 end
29 IdentifyPath(A)

30 ProcedurePropagate(nodei, nodep, queryq)
31 if OnFeasiblePath(i, p, q.ipp)∧
32 OnFaultyPath(i, p, q. f pp) then
33 add (p, q) to worklist

Algorithm 4: Compute Fault Correlations

6.4 Correlation Graphs

Our algorithm computes the correlation between pairs of faults. We integrate individual fault

correlations in a graph representation to present correlations among multiple faults and along dif-

ferent paths for the whole program.

Chapter 6. Path-Based Fault Correlation 114

Definition 6.3: A correlation graphis a directed and annotated graphG = (N,E), whereN is

a set of nodes that represent the set of faults in the program and E is a set of directed edges, each

of which specifies a correlation between two faults. Theentry nodesin the graph are nodes that

do not have incoming edges, and they are the faults that occurfirst in the propagation. Theexit

nodesare nodes without outgoing edges, and they are the faults that no longer further propagate.

Annotations for a node introduce information about a fault,including its location in the program,

the type, and the corrupted program objects at the fault if any. Annotations for the edge specify

whether the correlation is unique and also the paths where the correlation occurs.

(a) graph for Figure 6.1 (b) graph for Figure 6.3

(c) graph for Figure 6.4

Figure 6.8: Correlation Graphs for Examples: + marks a correlation that is not unique

The correlation graph groups faults of the related causes for the program. The entry nodes of

the graph and the nodes whose correlation are not unique should be focused to find root causes.

Using the correlation graph, we can reduce the number of faults that need to be inspected in order

to fix all the faults. In Figure 6.8, we show the correlation graphs for examples we presented before,

Chapter 6. Path-Based Fault Correlation 115

Figure 6.8(a) for Figure 6.1, 6.8(b) for Figure 6.3, and 6.8(c) for Figure 6.4.

In Figure 6.1, we have shown a correlation of integer fault and null-pointer dereference along

path 〈1,2,5〉. Actually the integer fault at node 2 also correlates with a buffer bounds error at

node 5 along path〈(1−5)+,1,2,5〉. See Figure 6.8(a). If the buffer bounds error continues to

cause privilege elevation, the correlation graph would show a chain of correlated faults to help

understand the exploitability of the code. On the other hand, if both the null-pointer dereference

and buffer underflow at node 5 are reported via a dynamic detector, using the correlation graph,

we are able to know the two failures are attributable to the same root cause and can be fixed by

diagnosing the integer fault at node 2. Similarly, the relationship of the resource leak and infinite

loop shown in Figure 6.3 is depicted in Figure 6.8(b).

The correlation graph in Figure 6.8(c) integrates all correlations for 7 buffer overflows in Fig-

ure 6.4. To use this graph for diagnosis, we start from the entry node of the graph, as it indicates

the root cause of all 7 correlated faults. Diagnosing the entry node we discover that when the input

FileData.cFileName is copied to thefilename buffer at line 2, no bounds checking is applied.

We thus introduce a fix for line 2. The correlation graph indicates that all other correlated faults can

be fixed except the fault at line 14, as in the graph, the edge from the fault at line 2 to the fault at

line 14 indicates the existence of an additional root cause.We thus diagnose line 14 and introduce

the second fix.

6.5 Experimental Results

To demonstrate that we are able to automatically compute fault correlations and show that fault

correlations are helpful for fault diagnosis, we implemented our techniques and chose three types

of common faults as case studies: buffer out-of-bounds, integer truncation and signedness errors,

and null-pointer dereference. In the experiments, we first run fault detection and update the ICFG

with faults detected. We model the error state of integer andbuffer faults using the approaches

shown in Table 6.1 and then determine the fault correlation.It should be noted that although in our

experiments, we use our fault detector to identify faults and then compute fault correlations, our

Chapter 6. Path-Based Fault Correlation 116

technique is applicable when faults are provided by other tools. We used a set of 9 programs for

experimental evaluation: the first five are selected from benchmarks that are known to contain 1–2

buffer overflows in each program [Lu et al., 2005, Zitser et al., 2004]; the rest are deployed mature

applications with a limited number of faults reported by ourfault detector. The experimental data

about fault correlation are presented in the following foursections. The results have been confirmed

by manual inspection.

6.5.1 Identification of Fault Correlations

In the first experiment, we show that fault correlations can be automatically identified. Table 6.3

displays identified correlations. In the first column of the table, we list the 9 benchmark programs.

UnderFaults from Detection, we display the number of faults identified for each program in our

fault detection. Buffer bounds errors are reported in Column buf/corr. Integer faults are listed in

Columnint/corr and the null-pointer dereferences are shown in Columnptr/corr. In each column,

the first number gives the identified faults and the second lists the number of detected faults that

are involved in fault correlation. Our fault detector reports a total of 80 faults of three types, 51 of

which are involved in fault correlation.

UnderFault Correlations, we list the number of pairs of faults in the program that are found

to be correlated. For example, underint_buf, we count the pairs of correlated faults where the

cause is an integer fault, which leads to a buffer overflow. Comparing the integer faults involved in

the correlations underint_buf and int_ptr with the ones found in fault detection, we can prioritize

the integer faults with severe symptoms. In the last column of Fault Correlations, we give a total

number of identified correlations. In our experiments, we found fault correlations for 8 out of 9

programs. Correlations occur between two integer faults, an integer fault and a buffer overflow, an

integer fault and a null-pointer dereference, two buffer overflows, as well as a buffer overflow and

an integer fault.

The experiments also validate the idea that the introduction of error states can enable more

faults to be discovered. We identify a total of 25 faults during fault correlation from 5 benchmarks,

including buffer overflows, integer faults, and null-pointer dereferences, shown underFaults during

Chapter 6. Path-Based Fault Correlation 117

Correlation.

Consider the benchmarkgzip-1.2.4 as an example. We discover a total of 25 faults and

22 pairs of them are correlated. A new buffer overflow is foundafter introducing the impact of

an integer violation. Buffer overflow correlates with integer fault whenstrlen is called on an

overflowed buffer which later is assigned to a signed integerwithout proper checking. We also

found that the new faults generated during fault correlation can further correlate with other faults.

In putty-0.56, two integer faults found during fault correlation resulted from another integer fault

are confirmed to enable a buffer overflow. The propagation of these faults explains how the buffer

overflow occurs.

Table 6.3: Automatic Identification of Fault Correlations
Benchmarks

Faults from Detection Fault Correlations Faults during
bu f/corr int/corr ptr/corr int_int int_bu f int_ptr bu f_bu f bu f_int total Correlation

wuftp:mapping-chdir 4/4 0 0 0 0 0 7 0 7 0
sendmail:tTflag-bad 0 3/1 0 0 1 0 0 0 1 1 (buf)
sendmail:ge-bad 4/4 0 1/0 0 0 0 3 0 3 0
polymorph-0.4.0 8/8 0 0 0 0 0 13 0 13 0
gzip-1.2.4 9/9 15/7 0 0 7 0 9 6 22 1 (buf)

ffmpeg-0.4.8 0 6/2 1/0 0 10 1 0 0 11 11 (1 ptr, 10 buf)
tightvnc-1.2.2 0 11/8 0 9 8 0 0 0 17 7 (2 int, 5 buf)
putty-0.56 7/6 4/2 0 3 3 0 4 0 10 5 (3 int, 2 buf)
apache-2.2.4 0 2/0 5/0 0 0 0 0 0 0 0

6.5.2 Characteristics of Fault Correlations

We also collected the data about the characteristics of fault correlations, shown in Table 6.4.

In ColumnUnique/Not, we count, for all the correlations identified, how many are uniquely cor-

related (see the first number in the column) and how many are not (see the second number). The

data demonstrate that both types of correlations exist in the benchmarks. ColumnDir/Indir shows

whether a correlation occurs directly between two faults orindirectly as a result of feasibility

change. The first number summarizes the direct correlationsand the second number counts the

indirect ones. The results show that most correlations are discovered via direct query interactions,

and only two programs report the correlations identified from feasibility change. We also inves-

tigated the distances between the correlated faults. The experimental data underInter/Intra show

that along the correlated paths, the two faults can be located either intraprocedurally or interpro-

Chapter 6. Path-Based Fault Correlation 118

cedurally. Therefore an interprocedural analysis is required for finding all correlations. A related

metric is the distance of correlated faults along the correlation paths in terms of number of proce-

dures. ColumnCorr-Proc gives both the minimum and maximum numbers of procedures between

two correlated faults in the benchmark. We are able to find thecorrelation where two faults are 19

procedures apart.

Table 6.4: Characteristics of Fault Correlations
Benchmarks Unique/Not Dir/Indir Inter/Intra Corr-Proc
wuftp:mapping-chdir 4/3 7/0 7/0 1–10
sendmail:tTflag-bad 1/0 1/0 0/1 1–1
sendmail:ge-bad 0/3 3/0 0/3 1–1
polymorph-0.4.0 11/2 13/0 8/5 1–3
gzip-1.2.4 12/10 21/1 15/7 1–19

ffmpeg-0.4.8 11/0 1/10 0/11 1–1
tightvnc-1.2.2 14/3 17/0 16/1 1–2
putty-0.56 10/0 10/0 2/8 1–3

6.5.3 Computing Correlation Graphs

A correlation graph is built for each benchmark in the experiments. In Table 6.5, we first give

the size of benchmarks in terms of thousands lines of code. InColumnNode, we report the total

number of nodes in the correlation graph. The nodes include faults identified from fault detection

and fault correlation. The types of identified faults are listed in ColumnType. For example, for

the programffmpeg-0.4.8, we find faults of all three types. In ColumnGroup, we provide the

number of groups of correlated faults for each program. We obtained the number by counting the

connected components in each correlation graph. The results show that although the number of

faults can be high in a program, many of the faults can be grouped and diagnosed together. For

7 out of 9 programs, the faults are clustered to less than a half of fault groups which will assist

diagnosis.

Under Analysis Cost, we report the analysis costs for computing correlation graphs, includ-

ing the time used for detecting faults (see the first number inthe column) and the time used for

computing fault correlations (see the second number). The machine we used to run experiments

is the Dell Precision 490, one Intel Xeon 5140 2-core processor, 2.33 GHz, and 4 GB memory.

Chapter 6. Path-Based Fault Correlation 119

The experimental data show that the analysis cost for fault detection is not always proportional to

the size of the benchmarks; the complexity of the code also matters. For example, the analysis for

sendmail:tTflag-bad takes a long time to finish because all the faults are related to several nested

loops. The additional costs of computing fault correlations for most of the benchmarks are under

seconds or minutes, except forgzip-1.2.4, which contains the most faults among the benchmarks

and many faults are found to impact a large chunk of the code inthe program. The data suggest that

the important factors that determine the analysis cost of fault correlation are the number of faults

and the complexity of their interactions.

Table 6.5: Correlation Graphs and their Analysis Costs
Benchmarks Size(kloc) Node Type Group Analysis Cost

wuftp:mapping-chdir 0.2 4 1 1 3.9 m/43.2 s
sendmail:tTflag-bad 0.2 4 2 3 108.0 m/5.6 s
sendmail:ge-bad 0.9 5 2 2 10.8 s/3.7 s
polymorph-0.4.0 0.9 8 1 1 39.4 s/9.3 s
gzip-1.2.4 5.1 25 2 9 29.3 m/90.0 m

ffmpeg-0.4.8 39.8 18 3 7 114.2 m/3.4 m
tightvnc-1.2.2 45.4 18 2 6 60.3 m/2.4 m
putty-0.56 60.1 16 2 7 62.8 m/1.2 m
apache-2.2.4 268.9 7 2 7 217.8 m/2.1 s

6.5.4 False Positives and False Negatives

In our experiments, both false positives and false negatives have been found. Because we

isolate don’t-know warnings for unresolved library calls,loops and pointers, our analysis does not

generate a large number of false positives. In fault correlation, we consider the following two cases

as false positives: 1) at least one of the faults involved in correlation is false positive; and 2) both

faults in the correlation are real faults, but they are not correlated. In our buffer overflow detection,

we report a total of 7 false positives for all programs, 1 fromsendmail:tTflag-bad, 4 from

gzip and 2 fromputty. For integer fault detection, we report a total of 10 false positives, 3 from

sendmail:tTflag-bad, 2 from polymorph, 2 from ffmpeg, 1 from putty and 2 fromapache.

We find 25 correlations reported are actually false positives, 23 of which are related to case (1),

and 2 to case (2) where the correlation paths computed are confirmed as infeasible. However, we

did not find that any new faults reported during fault correlation (see the last column in Table 6.3)

Chapter 6. Path-Based Fault Correlation 120

are false positives. Interestingly, we found false positive faults can correlate with each other and

thus be grouped. In our implementation, we have applied suchcorrelations to quickly remove false

positives and improve the precision of our analysis. We exclude the false positives when reporting

the faults and fault correlations in Tables 6.3, 6.4 and 6.5.

We miss fault correlations mainly in two cases: 1) we report correlated paths between two

faults as don’t-know; and 2) the correlation occurs among the types of faults not investigated in our

experiments. For example, in the benchmarktightvnc-1.2.2, three integer faults are reported as

not correlated, shown underFaults from Detectionin Table 6.3; however, our manual inspection

discovers that these faults can cause buffer read overflow, which was not considered in our fault

detection.

6.6 Conclusions

As faults become more complex, manually inspecting individual faults becomes ineffective. To

help with diagnosis, this chapter shows that identifying a causal relationship among faults helps

understand fault propagation and group faults of related causes. With the domain being statically

identifiable faults, this chapter introduces definitions offault correlation and correlation graphs,

and presents algorithms for their computation. Our experiments demonstrate that fault correlations

exist in real-world software, and we can automatically identify them. The benchmarks used in our

experiments are mature applications with few faults. However, determining correlation is espe-

cially important for newly developed or developing software which would have many more faults.

Although the fault correlation algorithm is tied to our fault detection for efficiency, a slightly mod-

ified correlation algorithm would work if faults are discovered by other tools and presented to the

correlation algorithm.

Chapter 7

Path-Guided Concolic Testing

Concolic testing [Sen et al., 2005] has been proposed as an effective technique to automatically

test software. The goal of concolic testing is to generate test inputs to find faults by executing as

many paths of a program as possible. However, due to the largestate space, it is unrealistic to

consider all of the program paths for test input generation.Rather than exploring the paths based

on the structure of the program as current concolic testing does, in this research, we generate test

inputs and execute the program along the paths that have identified potential faults.

We present a path-guided testing technique that combines static analysis with concolic testing.

A novelty of our work is that our technique is path-based, i.e., we direct dynamic testing to the

path segments rather than a program point. Compared to program points, path information is more

precise, and can help further reduce the search space for test input generation.

This research addresses three challenges. Considering that the number of suspicious paths

can still be huge, we need to develop a representation of pathinformation used in testing. Also,

static analysis produces false positives and false negatives. We need to understand the impact of

the potential imprecision in guiding test input generation. Furthermore, not every execution that

exercises a faulty path necessarily triggers the fault; besides path constraints, we also need to track

fault conditions for test input generation.

Our technique proceeds in three steps. First, the program under test is analyzed by a path-

sensitive static analysis tool. Both the suspicious statement and corresponding path segments along

121

Chapter 7. Path-Guided Concolic Testing 122

which a fault could occur are identified, represented using apath graph. Second, reachability

relationships from each branch to these path segments are computed. In the third step, we execute

the program with an initial input, and use the reachability information and the path graph to select

the paths of interest. During execution, we generate test inputs that 1) can reach a suspicious

statement along a corresponding suspicious path segment, and 2) can trigger the fault condition at

the suspicious statement.

We have implemented our techniques in a tool called MAGIC (MArple-GuIded Concolic test-

ing). Currently, this tool handles buffer overflows for C programs; however the technique is applica-

ble for multiple types of faults, including both data- and control-centric faults. In our experiments,

MAGIC confirmed 73% of statically reported faults. It failedto trigger 5 static faults whose de-

tection requires an environment which is different from where MAGIC is running, and it missed 2

faults due to the capability of concolic testing. Compared to concolic testing, MAGIC found about

2.5 times more faults, and using the path information, MAGICtriggers the faults 1.1–66.3 times

faster over a set of benchmarks.

The main contributions of this chapter include:

• automatic test input generation to exploit statically identified faults,

• application of static path information for reducing the cost of dynamic testing,

• the implementation of the techniques for detecting buffer overflows, and

• an experimental study that demonstrates the effectivenessof our technique.

7.1 An Example

First, we use an example to intuitively explain the techniques. In Figure 7.1, we show a piece

of code adapted from the benchmark wu-ftp [Zitser et al., 2004]. This example contains three paths

and two buffer write statements at lines6 and10 respectively. A buffer overflow exists at line10.

Using this example, we compare how traditional concolic testing and our technique find this buffer

overflow.

Chapter 7. Path-Guided Concolic Testing 123

Applying concolic testing for buffer overflow [Xu et al., 2008], we first execute the program

with an initial input. We assume in the first run,argc=1, which means that no command line

argument is supplied to the program. Under this input, the program takes the execution path

〈2,3,4(T),5〉. During execution, the symbolic path constraint [argc !=2] is collected. As the goal

of concolic testing is to cover as many paths as possible, in the second run, the tester inverts the

path constraint to [argc=2], aiming to exercise the branch4(F). Suppose a command line argument

“a” is generated forargv[1]. Running this input, path〈2,3,4(F),6,7,8(F),10〉 is taken. Along this

path, the tester checks the buffer safety at lines6 and10, and determines that both lines 6 and 10

are safe for this execution. Meanwhile, the tester also derives that line 10 can be an overflow if

the length of argv[1] is larger than 8. Using this buffer overflow condition, the tester can generate

an input “aaaaaaaaa” forargv[1], which leads the execution to path〈2,3,4(F),6,7,8(F),10〉, and

exploits the buffer at line 10. Since there are still paths that have not been covered, the concolic

testing continues to invert the path constraint at line 8, aiming to take branch8(F). A string “.” is

generated as the input forargv[1] to exercise〈2,3,4(F),6,7,8(T),9〉.

Concolic testing terminates either when 1) no more new pathscan be further executed due to

incapability of solving complex constraints, 2) all of the paths in a program have been executed,

or 3) a time threshold is reached. Considering that there is an exponential number of paths, often

only a small portion of the program paths are actually covered by concolic testing [Godefroid et al.,

2005] [Sen et al., 2005]. For this example, concolic testingcovers all the three paths of the program

and generates a total of three test inputs. Buffer write statements at lines 6 and 10 are checked for

each path that exercises them.

Our observation is that not all of the buffer write statements are equally suspicious for buffer

overflows. Even for a suspicious statement, not all the pathsthat traverse it are faulty. To save the

cost of test input generation, we should direct the testing along suspicious paths.

Applying our technique, we first statically identify that line10 is suspicious for buffer overflow

along path segment〈6,7,8(F),10〉, and line6 is safe, which implies that no checks are needed

for this statement at run time. We then perform a reachability analysis, and find that branch4(F)

reaches the suspicious path segment, but branch4(T)cannot. Based on the above static information,

Chapter 7. Path-Guided Concolic Testing 124

1 main (i n t argc , char ∗∗ argv) {
2 char mapped_path [1 0] ;
3 char ∗ pa th ;
4 i f (a rgc != 2)
5 re turn ;
6 s t r c p y (mapped_path , ‘ ‘ / ’ ’) ;
7 pa th = argv [1] ;
8 i f (pa th [0] == ’ . ’))
9 re turn ;

10 s t r c a t (mapped_path , pa th) ;
11 }

Figure 7.1: Comparing Concolic Testing and MAGIC Using an Example

we run a concolic testing. The program is first executed with no arguments along path〈2,3,4(T),5〉.

As branch4(F) can reach the suspicious path segment, we inverse the symbolic path constraint and

generate an input“a” . Under this input, the program executes〈2,3,4(F),6,7,8(F),10〉. Since the

suspicious path segment is traversed, the tester determines if the buffer overflow is triggered. As the

buffer overflow is not triggered under this input, the testerintegrates the buffer overflow condition

at line10, and generates a new input“aaaaaaaaaa” to exploit the buffer overflow.

With the static information, we do not need to explore the program nodes that cannot reach

the suspicious path segment, e.g., branch4(T). Only paths that cross a suspicious path segment

are checked for buffer overflow. For instance, no effort is needed to generate test input for path

〈2,3,4(F),6,7,8(T)〉. Testing can be terminated early when the potential faults are triggered. We

exploit the overflow at line10 by only generating two test inputs, and the possibility of buffer

overflow is checked only once along one path.

7.2 An Overview of MAGIC

This section provides a high level description of MAGIC, including the components of MAGIC

and their interactions.

Chapter 7. Path-Guided Concolic Testing 125

7.2.1 The Components

MAGIC consists of five components, shown in Figure 7.2. Marple and the reachability analyzer

are the two static components. Marple is a static path-sensitive analyzer that reports the suspicious

statements as well as the suspicious path segments. The reachability analyzer calculates reachability

relationships from each branch of the program to the suspicious path segments. The dynamic testing

components are built based on concolic testing, including aprogram instrumentor, a test input

generator and a test driver. The program instrumentor inserts statements to the program to collect

symbolic constraints and concrete values during testing. The test input generator generates test

inputs using symbolic path constraints and fault conditions. The test driver executes the program

with test inputs and performs symbolic evaluation simultaneously.

Static Analysis

Path-Sensitive Fault
Detector

Dynamic Testing

Reachability Analyzer

Program Intrumentor

Test Input Generator

Test Driver

Figure 7.2: The Components of MAGIC

Our testing components make several improvements on traditional concolic testing. First, we

use boundary values to initiate the test input, which is experimentally shown to achieve a better

branch coverage than using a fixed given value as the input. Another enhancement is that we

dynamically change the program state at runtime when a faultis perceived to avoid the crash of the

program; otherwise, manual effort has to be involved to fix the fault before testing can continue.

Furthermore, we model program operations that are potentially related to the production of a certain

type of fault. For instance, to trigger a buffer overflow, we handle string libraries and pointer

operations. Concolic testing might never be able to exercise desired paths if these operations are not

modeled. In addition to path constraints, we also constructfault conditions for test input generation.

Chapter 7. Path-Guided Concolic Testing 126

The goal is to ensure the generated inputs not only can exercise a desired path but also trigger faults.

7.2.2 The Workflow of MAGIC

As shown in Figure 7.3, MAGIC first statically analyzes the program and reports suspicious

statements and path segments. Based on the program source and the path segments, MAGIC runs

a reachability analysis to determine, for each branch, whether the execution at the branch is able to

reach any of the suspicious path segments. MAGIC instruments the program to collect information

needed at runtime. Testing runs on the instrumented programwith an initial test input. During

execution, the tester determines whether the current execution can traverse any suspicious path

segment. Meanwhile, the tester collects concrete and symbolic values; when a suspicious fault is

encountered, the symbolic constraints regarding path constraints and fault conditions are solved by

a constraint solver for potential test inputs. Testing terminates when a program input is discovered

that can trigger the fault, or the paths that traverse the setof suspicious path segments are all

examined, which show that the suspicious statement is likely safe along the reported suspicious

path segments. The details of static and dynamic componentsare presented in Section 7.3 and 7.4.

Figure 7.3: The Workflow of MAGIC

Chapter 7. Path-Guided Concolic Testing 127

7.3 Obtaining Static Path Information

In MAGIC, a program is first analyzed using our path-sensitive analysis to obtainsuspicious

statementsand correspondingsuspicious path segments. Here, we consider bothfaulty anddon’t-

knowpath segments reported by Marple as suspicious and any statement where a suspicious seg-

ment can traverse is asuspicious statement. In this section, we first describe our choice of static

information provided to dynamic testing, and we then present the reachability analysis customized

for our purpose.

7.3.1 The Choice of Path Information

To determine what path information we should provide to dynamic components, we first need

to understand the semantics of two types of suspicious path segments. In our analysis, a path

segment is determined as faulty if: 1) along the path segment, the fault always occurs independent

of program inputs, e.g., a buffer overflow with a constant string, or 2) there exists an entry point

along the path segment, where users can supply an input to trigger the fault, e.g., a buffer overflow

with an external string. As its determination is independent on any other information beyond the

path segment, any execution that traverses the faulty path segment (with a proper input supplied at

the entry point along the path segment for the second case) can trigger the fault. A don’t-know path

segment is determined when the query encounters don’t-knowfactors. If the don’t-know factors

are resolved, the query is potentially propagated further before being determined as faulty, in which

case, the don’t-know path segment can be viewed as a partial faulty path segment. Some of the

don’t-know paths can be safe and thus executions along don’t-know paths do not necessarily trigger

the fault.

There is also the choice on the number of suspicious path segments we should present. In test-

ing, we only need to demonstrate the exploits of the buffer overflow along one execution. However,

presenting one path segment for test input generation is notsufficient. The reasons are twofold.

First, static information can be imprecise. For example, even a buffer overflow potentially occurs at

the statement, a suspicious path segment randomly picked from the static results can be infeasible.

Chapter 7. Path-Guided Concolic Testing 128

Although we have applied a static analysis to remove some of the infeasible paths, infeasible path

detection is an undecidable problem, and we can not remove all of them for a program. The second

reason is that concolic testing is not always able to generate a test input to exercise a given path,

as some of the symbolic constraints are too complex to solve.We also can choose to enumerate

all of the suspicious path segments; however, this solutionis not scalable as there potentially exists

a large number of suspicious path segments, and both storingand accessing them at runtime can

incur unacceptable overhead. There is also the choice of using a fixed number of path segments.

The challenge is to determine a reasonable number and also strategies to select the path segments.

In our work, we appliedpath graphs(see Definition 3.6) to represent a set of suspicious path

segments that end at the same suspicious statement. Each path graph contains a type of paths for

a fault. The path graphs are generated by Marple. In Marple, computation of path graphs is a

forward analysis following the fault detection. As shown inChapter 4, in fault detection, queries

are propagated backwards for resolutions. During propagation, queries are stored at each program

node. To construct the path graph, we start at the node where afault or don’t-know resolution

was derived. These nodes are first added to the graph as entry nodes. Marple then determines for

each successor, whether the query at the current node was actually propagated from either of its

successors; if so, the successor(s) is added to the graph, and an edge between the predecessor and

successor is also added into the graph. The process continues until the suspicious statement, where

the query was initially raised, is reached.

For example, we show in Figure 7.4 (a) and (b), two suspiciouspath segments ending at the

same suspicious statementr. s1 ands2 are two resolution points. Figure 7.4(c) is the path graph

constructed for the suspicious path segments in (a) and (b).

The choice here is whether we use the annotations on the path graph in testing. The tradeoff is

that using the annotated path graph, more information needsto be compared at runtime, incurring

additional performance overhead; if annotations on the edges are not considered when we use the

path graph, some path-sensitive information is potentially lost and we potentially lead the test input

generation to some safe path. In MAGIC, we use the path graphswithout annotations.

In concolic testing, generating an input that potentially covers a path segment in a path graph

Chapter 7. Path-Guided Concolic Testing 129

r r

s1 s2

l1

l2

l3

l2

r

s1

l1

l2

s2

l3

(b)(a) (c)

Figure 7.4: A Path Graph for Two Suspicious Path Segments

is more efficient than generating an input based on individual path segments. The reasons are as

follows. Concolic testing generates a test input for a new path by inverting a particular branch.

Given a path, concolic testing potentially needs to invert aset of branches from an initial execution,

and take several iterations before a desired test input can be generated. On the other hand, if a set

of path segments are given in a graph, concolic testing has more flexibility in choosing which path

to exploit. The testing terminates as long as any suspiciouspath segment in the graph is triggered.

7.3.2 Reachability Analysis

In our dynamic testing, we need to generate test input for thepath that starts at the beginning

of the program and traverses any path segment in path graphs.We use reachability analysis to

determine whether any of the branches in a program can actually reach the entries of the path

graphs; if not, we terminate the test input generation alongthe corresponding branch.

Algorithm 1 takes the interprocedural control flow graph of aprogram (ICFG), and a set of path

graphs reported by our analysis as inputs. The results of reachability are stored in a map, where for

each branch, we report a set of entries of path graphs that thebranch can reach. In Algorithm 1,

lines1-5determine for each branch statement, whether the entries ofthe path graph can be reached.

The core analysis is achieved in a recursive procedureReach(see line8). At line 10, we get the

immediate successors of the current branchb. For each successorbi , if bi is an entry of the path

graph, then we add it to the setreachableat line13; otherwise, we recursively call procedureReach

on bi at line14.

Chapter 7. Path-Guided Concolic Testing 130

Algorithm 1. Calculating Reachability Relationship

INPUT : icfg: the ICFG of the program,G: a set of path graphs

OUTPUT: reachability: a map<branch,<set> entries of path graphs>

1 for eachbranch statementb in icfg

2 initialize reachable {}

3 Reach(b, &reachable)

4 reachability[b] := reachable

5 end

6 return reachability

7

8 PROCEDURE: Reach(statementb, setreachable)

9 //recursively traverse statements can be reached from b

10 setsuccessors:= immediate successor statements ofb in icfg

11 for eachstatementbi in successors

12 if bi is an entry of any path graphg∈ G

13 reachable.push(bi)

14 Reach(bi, reachable)

15 end

16 end

7.4 Dynamic Testing

In our dynamic testing, we apply the reachability information and the suspicious statements/-

path segments computed above. Since collecting and solvingsymbolic constraints are important

for generating the test input, we symbolically model fault conditions, as well as the semantics of

certain program statements that are relevant to trigger faults. In this section, we first present the

goals of program instrumentation and techniques. We then show our modeling techniques for four

types of program statements. Finally, we explain how the static information is used to generate test

inputs.

Chapter 7. Path-Guided Concolic Testing 131

7.4.1 Program Instrumentation

Instrumentation is inserted in the program source. Dynamictesting runs on the instrumented

programs and takes actions according to the instrumentation. A general goal is to collect symbolic

path constraints and fault conditions needed for test inputgeneration at runtime. Four types of

actions are applied based on the types of program statements:

• if an input statement is encountered, we add a new input variable into asymbolic map. The

symbolic map records the symbolic values of current live variables, and also symbolic path

constraints and fault conditions;

• if a binary and unary variable operation is met, we record thesymbolic values of the results;

• for conditional branches, we record the conditions for bothfalse and true branches in the

symbolic map; and

• for a suspicious statement, such asstrcpyor pointer dereferences, we construct fault condi-

tions to determine inputs that can trigger the fault.

7.4.2 Buffer Overflow Vulnerability Model

One main difference of MAGIC and concolic testing is that MAGIC is focused to trigger partic-

ular types of fault. Here, we describe the vulnerability model we developed for buffer overflow. In

this model, we provide a mapping from a buffer write statement to an overflow condition. We also

provide the actions we take at statements related to buffer and pointer operations. For each buffer,

we not only consider the buffer size and the string length, but also the contents of the buffer up to a

certain number of bytes. We specify a buffer using a 3-tuple (size, L, C), where:

• sizeis a symbolic expression for the size of the buffer;

• L = { len1, len2, ..., lenn} is a set of symbolic expressions representing the lengths of strings

stored in the buffer, as shown in Figure 7.5. Since′\0′ can occur multiple times in a buffer, we

record string lengths that are relevant to every′\0′ for precision. Dependent on the location

of the pointerp to the buffer, the string obtained viap can be relevant to any of recorded

lengths.

Chapter 7. Path-Guided Concolic Testing 132

Table 7.1: Modeling Buffer Overflow Conditions
Suspicious Operations Overflow Conditions

Supposepd = (addrd, o f fd)
Supposeps = (addrs, o f fs)

strcpy(pd, ps)

(bd (sized, Ld, Cs) := δ(addrd)) 6= null;
(bs (sizes, Ls, Cs) := δ(addrs)) 6= null;

Len(bs, ps) - o f fs >= sized - o f fd
Supposepd = (addrd, o f fd)
Supposeps = (addrs, o f fs)

strcat(pd, ps)

(bd (sized, Ld, Cs) := δ(addrd)) 6= null;
(bs (sizes, Ls, Cs) := δ(addrs)) 6= null;

Len(bs, ps) - o f fs + Len(bd, pd) >= sized
Supposep = (addr, o f f)

*p := var
(b (size, L, C):= δ(addr)) 6= null;

off > size

• C = c1, c2, ...,cv is a sequence of symbolic expressions representing the firstv characters of

the buffer [Xu et al., 2008]. The tradeoff here is that the more content of a buffer is modeled,

more precise the symbolic analysis can achieve, however, with higher overhead.

len1

len2

buffer

pointerp

\0 \0

pointerp

Figure 7.5: Multiple Strings in a Buffer

We use a pair (addr, off) to specify a pointer to a buffer, whereaddr is the beginning of the

buffer andoff specifies the symbolic offset fromaddr. In Table 7.1, we show how buffer overflow

conditions can be constructed based on the type of program statements at runtime. In the first

column, we show three examples of suspicious statements. Weexplain the construction of buffer

overflow conditions in the second column. Consider the first row of the table as an example.ps

and pd are two pointers. A string in the buffer pointed to byps is copied to the buffer pointed to

by pd. At runtime, when such a suspicious statement is encountered, we first find in the symbolic

map the buffers associated withps andpd. This action is specified usingδ in the second column. If

the mapping is successful, shown asbd 6= null andbs 6= null in the table, we determine whether the

string fromps copied topd potentially cause an overflow (see Figure 7.6).

Chapter 7. Path-Guided Concolic Testing 133

offd

sized

offs

lens=Len(bs,ps)

\0

bd

bs

Figure 7.6: Buffer Overflow Condition

In the figure, we show that the available buffer space is[sized −o f fd]. The string being copied

has a length of[lens−o f fs], wherelens represents the length of the string stored in buffers. As we

mentioned in Figure 7.5, multiple string lengths can be recorded for a buffer, and we need to select

a proper length depending on the location of the pointer. We useLen(bs, ps) to represent this action.

The second column first row in the table indicates that if the string length is larger than or equal to

the available buffer size, a buffer overflow can occur.

Besides operations modeled by concolic testing [Sen et al.,2005], our testing components also

model additional buffer and pointer operations. Table 7.2 presents a partial list. In the first column,

we present the type of program statements, and in the second column, we specify actions MAGIC

takes at the statement to construct the symbolic map. Consider the first row of the table. When

the program executes the statementp (addr, off) := input(size), MAGIC creates a new bufferb on

the symbolic map. The three parameters of a buffer are initialized: the size of the buffer issize,

a string length is alsosize, and the firstn bytes of characters are set based on the input string.

After the buffer is created, MAGIC establishes a mapping between the buffer and the pointer using

addr:=&b andoff:=0.

7.4.3 Path-Guided Test Input Generation

Algorithm 2 takes the path graphs of suspicious path segments reported by Marple, and gener-

ates the program inputs that can trigger faults.

Chapter 7. Path-Guided Concolic Testing 134

Table 7.2: Symbolic Semantics of String and Pointer Operations
Operations Symbolic Semantics

p (addr, off) := input(size)
create a bufferb (size, {size}, { c1, c2, ...,cn}),
addr := &b, off := 0

p (addr, off) := malloc(size)
create a bufferb (size, {}, {}),
addr := &b, off := 0

supposep = (addr, off) b := δ(addr)
free(p) deleteb

supposestr = (addr, off) create a new bufferb (size, {size}, {}),
char str[size] addr := &b, off := 0

supposepd = (addrd, o f fd)
supposeps = (addrs, o f fs)

pd := ps ± v
addd := adds, o f fd = o f fs ± v

supposep = (addr, off) b (size, L, C):= δ(addr)
*p := ’\0’ L := L ∪ { off}

At line 2, initial program inputs are generated. Primitive input variables are given value0, and

strings are initialized as empty strings. If boundary values of the inputs are known, MAGIC uses

their lower and upper bounds.

In the second step, MAGIC executes the program with the generated inputs (seeRun_Program

at line3). During execution, MAGIC collects both the branches that the execution covers and the

symbolic path constraints at the branches. When a path is discovered to traverse a suspicious path

segment in any given path graph, MAGIC determines if a bufferoverflow occurs; if not, MAGIC

integrates the buffer overflow conditions with a set of path constraints and generates a new test input.

If a buffer overflow is confirmed, MAGIC removes the path graphcorresponding to this suspicious

statement. Also, when a buffer overflow is determined, MAGICallocates a new memory space for

the buffer with the overflowed size and continues the execution, in an attempt to trigger more faults

along the same execution. When the execution terminates, westore a sequence of branches and

symbolic path constraints, collected along the execution,into the branch listB and the constraint

list C.

Path_Guided_Searchat line6 uses the branch listB and the constraint listC collected from the

previous execution to generate test inputs that excise the suspicious paths. Thefor loop at line8

examines the collected branch one by one in a reverse order; for each branch, MAGIC determines

Chapter 7. Path-Guided Concolic Testing 135

whether itspaired branchis either able to reach the entries of any path graph inG (see line11) or

on a suspicious path segment (see line15). If so, at line21, MAGIC attempts to generate a new test

input using a set of path constraints collected along〈B[1],B[2], ...,B[i −1]〉 with the inverted path

constraint at branchB[i]. The generated input at line23executes path
〈

B[1],B[2], ...,B[i −1],B[i]
〉

.

If the current branch cannot reach the entries of the path graphs or is not on any suspicious path

segment, MAGIC proceeds to examine the next branch at line8 in the same way. The testing

process terminates when all suspicious statements are triggered or all suspicious path segments are

covered.

Chapter 7. Path-Guided Concolic Testing 136

Algorithm 2. Path-Guided Test Input Generation
INPUT : G{g1, g2, ...,gl }: a set of path graphs of suspicious path segments

1 initialize branch list B {}andconstraint list C {}

2 I = GenInitInput()

3 Run_Program(I, &B, &C)

4 Path_Guided_Search(B, C)

5

6 PROCEDURE: Path_Guided_Search(branchlistB, constraintlistC)

7 bool inversePath:= false

8 for (i:=sizeOf(B); i >= 1 ; i- -)

9 get the PairedBranchB[i]

10 for eachsuspicious path graphgk in G

11 if B[i] can reach any stop point ingk

12 inversePath:= true

13 break

14 end

15 else ifpath
〈

B[1], ...B[i-1],B[i]
〉

traverses a path segment ingk

16 inversePath:= true

17 break

18 end

19 end

20 if (inversePath= true)

21 I’ := solve (C[1] ∩ C[2] ∩ ... ∩ C[i-1] ∩ ¬ (C[i]))

22 initialize branch list B’ {} andconstraint list C’ {}

23 Run_Program(I’ , &B’ , &C’)

24 Path_Guided_Search(B’, C’)

25 end

26 end

27 end

Chapter 7. Path-Guided Concolic Testing 137

7.5 Implementation and Evaluation

We implemented MAGIC for testing buffer overflows. Our goalsare to evaluate its capability

for generating inputs to detect and trigger faults and also to determine its performance. For compar-

ison, we also constructed two other tools. Tool I implementsthe techniques of SPLAT [Xu et al.,

2008], which model buffer lengths and the first several bytesof buffer content on top of basic con-

colic testing to trigger buffer overflows. Different from MAGIC, it does not use boundary values as

initial inputs, and terminates when a fault is found. In the experiments, we needed to fix the fault

and run the tool again until no more faults were found. We constructed Tool II by isolating the dy-

namic testing components from MAGIC; that is, it does not useany static information. Comparing

Tool II and MAGIC, we can determine the usefulness of the pathinformation in guiding test input

generation.

MAGIC is implemented on top of CREST [Burnim and Sen, 2008] and Marple [Le and Soffa,

2008]. Both MAGIC and Tool I are implemented using MicrosoftPhoenix SDK1, and applied

the Yices constraint solver2. The machine used for experiments is the Intel Duo Core 2.26 GHz

processor with 2GB memory. We selected a set of benchmark programs, including wu-ftp:mapping-

chdir, sendmail:ge-bad, polymorph-0.4.0 and gzip-1.2.4.The first two are buffer overflow bench-

marks [Zitser et al., 2004], containing typical and realistic buffer overflows. Polymorph-0.4.03

is a real-world program, used to simplify file names in UNIX. Gzip-1.2.44 is a file compression

program.

We ran a preliminary set of experiments to determine the timethreshold we could use for the

tools. The experimental results show that for all of the benchmarks, testing either terminates within

1500seconds, or is no longer able to trigger more faults beyond1500seconds. Thus, in our exper-

iments, we decided to double the number and set the time threshold at3000seconds for all three

tools. The goal is to ensure that for most of the benchmarks, testing terminates before reaching

this threshold, and even when the termination is forced by the time threshold, the number of faults

1http://connect.microsoft.com/Phoenix
2http://yices.csl.sri.com/
3http://sourceforge.net/projects/polymorph/
4http://www.gzip.org/

Chapter 7. Path-Guided Concolic Testing 138

reported by the tools reflect the actual detection capability of the tools.

7.5.1 Capability of Triggering Faults

We first ran experiments to determine the capability of the three tools for triggering faults. The

results are shown in Table 7.3. The first two columns give the benchmark programs and their sizes.

For each tool, we show the number of faults triggered, the number of faults that were missed and

the total time that it takes to finish the testing. By manuallyconfirming suspicious statements/path

segments reported from Marple, we are able to know the numberof buffer overflows a testing tool

is supposed to trigger. We therefore can determine the number of faults missed in testing. For

gzip-1.2.4, Marple reports 9 buffer overflows. Four of these require specific environment variables

to have long lengths that are not possible in the system whereMAGIC runs. In this testing envi-

ronment, MAGIC does not miss any faults for this benchmark. In addition to the fault detection

capability, we also report the performance of dynamic testing. The performance of static analysis

can be found in Chapter 4.

Table 7.3: Comparison of Testing Time and Fault Detection Capability
Size Tool I: SPLAT techniques Tool II: MAGIC without Static Information MAGICBenchmarks

(kloc) Detect Miss Time Detect Miss Time Detect Miss Time

wu-ftp:mapping-chdir 0.2 2 0 1342 s 5 0 1325 s 5 0 20 s
sendmail:ge-bad 0.9 3 1 1618 s (crash) 4 0 1459 s 4 0 171 s
polymorph-0.4.0 0.9 0 7 >3000 s 5 2 >3000 s 5 2 >3000 s
gzip-1.2.4 5.1 3 2 463 s 5 0 1071 s 5 0 951 s

Comparing the results of Tool I and Tool II, we find that more faults are triggered using Tool II

than Tool I. Across all benchmarks, Tool I missed10 faults and Tool II only missed2. The reasons

for being able to trigger more faults in Tool II are: 1) MAGIC models string contents more carefully,

e.g., tracking multiple′\0′ for a buffer; and 2) MAGIC uses boundary values, instead of a fixed

default value, which enables more branches to be covered in testing. The times used in testing

are comparable for the two tools, except for gzip-1.2.4, where Tool II executes more paths than

Tool I due to the use of the boundary value, and thus takes longer to terminate. Since more paths

are executed, more faults are found. The constraint solver is crashed when we run Tool I for

sendmail:ge-badafter 1618 seconds.

Chapter 7. Path-Guided Concolic Testing 139

Comparing Tool II to MAGIC, we discover that 1) both the toolstrigger the same number of

faults, which shows Marple does not report false negatives that can impact this testing, and 2)

MAGIC is more efficient to find these faults. The testing time is reduced because paths which do

not traverse any suspicious path segment are avoided. Amongthe benchmarks, the time reduction

in gzip-1.2.4 is the least. One reason is that for this benchmark, Tool II is not able to cover a certain

number of paths due to complex symbolic constraints, and thus testing terminates early. Another

reason is that for this benchmark, some of the don’t-know path segments are short, and thus in

MAGIC, the guidance is not significant.

7.5.2 The Effort to Generate Test Inputs

In another experiment, we compared the effort of generatingtest inputs with the three tools.

Table 7.4 presents the experimental results for each tool. UnderAttempts, we display the number

of paths (or path segments) that are targeted for test input generation, i.e., the number of times that

symbolic constraints are sent to the constraint solver for potential test inputs. UnderGenerated,

we give the number of test inputs that are successfully generated from the constraint solver. The

numbers count both the test inputs that can trigger faults, and the inputs generated in the process of

searching for suspicious path segments. UnderTime, we show the total time spent in the constraint

solver in generating test inputs from the symbolic constraints.

Table 7.4: Comparison of Test Input Generation Costs
Tool I: SPLAT techniques Tool II: MAGIC without Static Information MAGICBenchmarks

Attempts Generated Time Attempts Generated Time Attempts Generated Time
wuftp:mapping-chdir 13995 1748 30.9 s 7828 1254 19.4 s 23 20 0.2 s
sendmail:ge-bad 1335 1084 54.5 s 30377 1201 3.9 s 5362 253 0.7 s
polymorph-0.4.0 492061 3335 116.7 s 46019 1615 66.7 s 227 122 0.7 s
gzip-1.2.4 4258 485 8.7 s 12533 1178 25.6 s 5687 1178 5.0 s

Our experimental results show that MAGIC largely reduces the search space for generating test

inputs, as both the number of paths explored and the number oftest inputs generated in the testing

process reported by MAGIC are much less. The time used for test input generation is also reduced

accordingly.

Chapter 7. Path-Guided Concolic Testing 140

7.6 Conclusions

This chapter presents MAGIC, a path-guided concolic testing framework for automatically gen-

erating test inputs to exploit statically identified faults. MAGIC consists of both the static and

dynamic components: the static components include a path-sensitive analyzer, and a reachability

analyzer; and dynamic components implement concolic testing that in particular is able to trigger

buffer overflows in a program. Our experiments show that in MAGIC, the dynamic testing confirms

statically reported buffer overflows, and also determines some of the don’t-know static warnings as

faulty. MAGIC also helps classify false positives, as if no inputs can be generated to exploit the

suspicious path, we are more confident that the suspicious path is safe. We also find that guided

by the path information, our testing runs 1.1–66.3 times faster than concolic testing over a set of

benchmarks. Although we only implemented buffer overflow detection for our experiments, more

types of faults can be included.

Chapter 8

Conclusions and Future Work

This thesis presents a practical framework that staticallycomputes and reports path informa-

tion to predict dynamic fault behavior. The main insight is that path information is essential for

addressing the precision problem faced by traditional static analysis. In addition, if program paths

are given, we are able to explore likely-dynamic behaviors,such as propagation of a fault or in-

teractions of multiple faults, which has not been done in traditional static analysis. The computed

path information is shown not only helpful for understanding and fixing the faults [Le and Soffa,

2007,Le and Soffa, 2008,Le and Soffa, 2010], but also usefulfor guiding dynamic testing to exploit

the faults [Cui et al., 2011].

An important contribution of this work is that we developed ademand-driven analysis to address

the state space explosion problem faced in path-sensitive analysis, and make the computation of

path properties feasible for a variety of faults and for large deployed software [Le and Soffa, 2008].

With the improved scalability, we are able to further apply techniques to make path computation

more precise, general and usable [Le and Soffa, 2011].

8.1 Contributions and Impact

This thesis demonstrates that static computation of paths of certain fault properties can be valu-

able (see Chapter 3, 4, 6 and 7), practical (Chapter 4 and 5) and broadly applied (Chapter 5 and 6).

We developed a set of path-based techniques which compute and use path information for detecting

141

Chapter 8. Conclusions and Future Work 142

and diagnosing faults. In the following, we summarize the contributions of our work from these

three aspects:

• Identification of Path Information: We demonstratedpath diversityand fault locality. Path

diversitysays paths across the same program point can differ in the presence, the root cause

or severity of a fault, or its analyzability with regard to static analysis. Therefore, using path

information, we can more precisely characterize the behavior of potential executions. A path

classification is developed including the types ofinfeasible, faulty with various consequences

and root causes, safe, anddon’t-know. Fault locality says that faults often are only relevant

to a sequence of execution, instead of the whole program path, based on which, we developed

efficient algorithms to detect and diagnose the path segments that contain faults.

• Computation of Path Information: We developed a demand-driven analysis to automatically

detect paths of a type of fault, and the path information is reported in path graphs. Using

a fault-model and specification technique, we automatically generated path-based analyses

to detect user-specified faults. Generality is achieved forcomputing both safety and live-

ness properties, and both control and data-centric types offaults, including buffer overflows,

integer faults, null-pointer deferences and memory leaks.

• Utilization of Path Information: Based on the paths of multiple faults, we developed an algo-

rithm to automatically compute the relationships between multiple faults. Fault correlations

are shown to be valuable in grouping faults and prioritizingdiagnostic tasks. Using path in-

formation, we also developed a hybrid test input generationtechnique, which generates test

inputs to confirm statically identified faults, and can more quickly trigger faults compared to

traditional concolic testing.

The prototype tool, Marple, developed in this research has been used to studyreducing the

cost of test input generation using static informationand parallelization of static analysis[Mi-

tali Parthasarathy and Soffa, 2010]; it also has been used toteach basic concepts of static analysis

and the Microsoft Phoenix Infrastructure. The Phoenix and Disolver groups have integrated our

feedback and bug reports for developing Phoenix and Disolver.

Chapter 8. Conclusions and Future Work 143

With the results of this thesis, industry can better understand the value of precise and rich path

information for reducing the manual cost of fault detectionand diagnosis; the techniques related to

scalability, precision and generality of static path computation can be integrated into the industrial

software assurance process to further improve productivity.

8.2 Future Work

Future work includes:

• Further exploring the use of paths. Static path informationis interesting because it specifies

likely dynamic behavior but has a broader coverage than dynamic traces. In this thesis,

we have shown that paths are useful to guide testing. Similarly, path information also can

benefit other dynamic tools, such as runtime monitors or instrumentors. In addition, we

also can compare information between paths, or between paths and dynamic traces to derive

interesting properties. The challenge here is to identify and represent the path information

for a particular application to achieve desired functionality and efficiency.

• Investigating the application of the framework to identifyother types of faults. We have

demonstrated the effectiveness of our framework in detecting the four types of faults. How-

ever, we hypothesize that our techniques are applicable to any types of faults that traditional

static analysis handles, and will be more efficient. For example, it is interesting to model

and handle concurrent bugs with our framework. When multithreading is involved, the state

space we need to handle is even bigger, the question is how much demand-driven analysis

can help here to further improve the scalability and precision of fault detection.

• Researching more types of fault interactions and their values for software assurance. We have

shown a causal relationship between faults and their computation. Other fault relationships

may exist, e.g., one fault can disable another or multiple faults may collaborate to cause a

vulnerability. With more types of faults integrated into orour framework and more types

of fault relationship considered, we can predict more interesting properties regarding fault

Chapter 8. Conclusions and Future Work 144

propagation and potential dynamic symptoms, e.g., we wouldlike to determine the potential

impact of a data race in a program.

• Processing the don’t-know warnings. We have shown that testing can exploit some of the

don’t-know paths to confirm them as vulnerable. Based on the don’t-know factors, these

warnings can be further refined by other solutions. For example, we can apply a statistical

analysis to reason the potential behavior of certain parts of source code.

• Parallelizing our demand-driven, path-sensitive algorithm: Demand-driven analysis is natu-

rally parallel. Our initial exploration shows there existsa potential to further speed up the

analysis. For example, each query for determining the safety of each potentially faulty point

is independent, and thus can be parallelized. Also, for resolving each query, the propaga-

tion of the queries along different paths can be run in parallel. The challenge is to enable

parallelization and meanwhile maximize the reuse of the intermediate results.

Bibliography

[PC, 2006] (2006). Personal communication with Mingdong Shang and Haizhi Xu, Code Review-

ers at Microsoft.

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: principles, tech-

niques, and tools. Addison Wesley.

[Alpern and Schneider, 1985] Alpern, B. and Schneider, F. B.(1985). Defining liveness.Informa-

tion Processing Letters, 21(4):181–185.

[Babich and Jazayeri, 1978] Babich, W. A. and Jazayeri, M. (1978). The method of attributes for

data flow analysis: Part II demand analysis.Acta Informatica, 10(3).

[Ball et al., 2004] Ball, T., Cook, B., Levin, V., and Rajamani, S. K. (2004). SLAM and static

driver verifier: Technology transfer of formal methods inside microsoft. Technical Report MSR-

TR-2004-08, Microsoft Research.

[Ball et al., 2003] Ball, T., Naik, M., and Rajamani, S. K. (2003). From symptom to cause: local-

izing errors in counterexample traces. InPOPL’03: Proceedings of the 30th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages.

[Biere et al., 2002] Biere, A., Artho, C., and Schuppan, V. (2002). Liveness checking as safety

checking. InFMICS’02, Formal Methods for Industrial Critical Systems,volume 66(2) of

ENTCS.

145

Bibliography 146

[Blume and Eigenmann, 1995] Blume, W. and Eigenmann, R. (1995). Demand-driven, symbolic

range propagation. InProceedings of the 8th International Workshop on Languagesand Com-

pilers for Parallel Computing, pages 141–160.

[Bodik and Anik, 1998] Bodik, R. and Anik, S. (1998). Path-sensitive value-flow analysis. In

POPL’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages.

[Bodik et al., 1997a] Bodik, R., Gupta, R., and Soffa, M. L. (1997a). Interprocedural conditional

branch elimination. InPLDI’97: Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

[Bodik et al., 1997b] Bodik, R., Gupta, R., and Soffa, M. L. (1997b). Refining data flow informa-

tion using infeasible paths. InFSE’05: Proceedings of the 6th ACM SIGSOFT International

Symposium on Foundations of Software Engineering.

[Brumley et al., 2007] Brumley, D., cker Chiueh, T., Johnson, R., Lin, H., and Song, D. (2007).

RICH: Automatically protecting against integer-based vulnerabilities. InNDSS’07: Proceedings

of the 14th Symposium on Network and Distributed Systems Security.

[Burnim and Sen, 2008] Burnim, J. and Sen, K. (2008). Heuristics for scalable dynamic test gen-

eration. InASE’08: Proceedings of the 23rd IEEE/ACM International Conference on Automated

Software Engineering.

[Bush et al., 2000] Bush, W. R., Pincus, J. D., and Sielaff, D.J. (2000). A static analyzer for finding

dynamic programming errors.Software Practice and Experience.

[Cadar et al., 2008] Cadar, C., Dunbar, D., and Engler, D. (2008). KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. InOSDI’08: Proceedings of

the 8th USENIX conference on Operating systems design and implementation.

Bibliography 147

[Cadar et al., 2006] Cadar, C., Ganesh, V., Pawlowski, P. M.,Dill, D. L., and Engler, D. R. (2006).

EXE: automatically generating inputs of death. InCCS’06: Proceedings of the 13th ACM con-

ference on Computer and Communications Security.

[CERT, 2010] CERT (2010).http://www.cert.org/.

[Chen and Wagner, 2002] Chen, H. and Wagner, D. (2002). MOPS:an infrastructure for exam-

ining security properties of software. InCCS’02: Proceedings of the 9th ACM Conference on

Computer and Communications Security.

[Chen et al., 2003] Chen, S., Kalbarczyk, Z., Xu, J., and Iyer, R. K. (2003). A data-driven finite

state machine model for analyzing security vulnerabilities. In DSN’03: the IEEE International

Conference on Dependable Systems and Networks.

[Chen et al., 2005] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. (2005). Non-control-

data attacks are realistic threats. InProceedings of the 14th conference on USENIX Security

Symposium.

[Cherem et al., 2007] Cherem, S., Princehouse, L., and Rugina, R. (2007). Practical memory leak

detection using guarded value-flow analysis. InPLDI ’07: Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design and implementation.

[Clause and Orso, 2010] Clause, J. and Orso, A. (2010). Leakpoint: pinpointing the causes of

memory leaks. InICSE’10: Proceedings of the 32nd International Conferenceon Software

Engineering.

[Common Vulnerabilities and Exposure, 2010] Common Vulnerabilities and Exposure (2010).

http://cve.mitre.org/.

[Csallner and Smaragdakis, 2006] Csallner, C. and Smaragdakis, Y. (2006). DSD-Crasher: A hy-

brid analysis tool for bug finding. InISSTA’06: Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis.

Bibliography 148

[Cui et al., 2011] Cui, Z., Le, W., and Soffa, M. L. (2011). MAGIC: Path-guided concolic testing.

In review.

[Das, 2005] Das (2005). Manviur das, keynote talk.http://www.cs.umd.edu/~pugh/

BugWorkshop05/presentations/das.pdf.

[Das et al., 2002] Das, M., Lerner, S., and Seigle, M. (2002).ESP: path-sensitive program verifi-

cation in polynomial time. InPLDI’02:Proceedings of the ACM SIGPLAN 2002 Conference on

Programming language design and implementation.

[David and Wagner, 2004] David, R. J. and Wagner, D. (2004). Finding user/kernel pointer bugs

with type inference. InProceedings of the 13th conference on USENIX Security Symposium.

[Duesterwald et al., 1996] Duesterwald, E., Gupta, R., and Soffa, M. L. (1996). A demand-driven

analyzer for data flow testing at the integration level. InICSE’96: Proceedings of 18th Interna-

tional Conference on Software Engineering.

[Duesterwald et al., 1997] Duesterwald, E., Gupta, R., and Soffa, M. L. (1997). A practical frame-

work for demand-driven interprocedural data flow analysis.ACM Transactions on Programming

Languages and Systems.

[Dwyer et al., 2007] Dwyer, M. B., Elbaum, S., Person, S., andPurandare, R. (2007). Parallel

randomized state-space search. InICSE’07: Proceedings of the 29th international conference

on Software Engineering.

[Engler et al., 2001] Engler, D., Chen, D. Y., Hallem, S., Chou, A., and Chelf, B. (2001). Bugs

as deviant behavior: a general approach to inferring errorsin systems code.SIGOPS Operating

System Review, 35(5):57–72.

[ESC-Java, 2000] ESC-Java (2000). ESC-Java. http://web.archive.org/web/

20051208055447/http://research.compaq.com/SRC/esc/.

Bibliography 149

[Evans, 1996] Evans, D. (1996). Static detection of dynamicmemory errors. InPLDI’96: Pro-

ceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Imple-

mentation.

[FindBugs, 2005] FindBugs (2005). http://findbugs.sourceforge.net/.

[Ghosh et al., 1998] Ghosh, A. K., O’Connor, T., and Mcgraw, G. (1998). An automated approach

for identifying potential vulnerabilities in software. In1998 IEEE Symposium on Security and

Privacy.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., and Sen, K. (2005). DART: directed auto-

mated random testing. InPLDI’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation.

[Godefroid et al., 2007] Godefroid, P., Levin, M. Y., and Molnar, D. (2007). Automated whitebox

fuzz testing. Technical Report MSR-TR-2007-58, MicrosoftResearch.

[Goradia, 1993] Goradia, T. (1993). Dynamic impact analysis: a cost-effective technique to en-

force error-propagation.SIGSOFT Software Engineering Notes.

[Hackett et al., 2006] Hackett, B., Das, M., Wang, D., and Yang, Z. (2006). Modular checking for

buffer overflows in the large. InICSE’06: Proceeding of the 28th International Conference on

Software Engineering.

[Hallem et al., 2002] Hallem, S., Chelf, B., Xie, Y., and Engler, D. (2002). A system and language

for building system-specific, static analyses. InPLDI’02, Proceedings of the ACM SIGPLAN

2002 Conference on Programming Language Design and Implementation.

[Hamadi, 2002] Hamadi, Y. (2002). Disolver : A Distributed Constraint Solver. Technical Report

MSR-TR-2003-91, Microsoft Research.

[Hatton, 2008] Hatton, L. (2008). Testing the value of checklists in code inspections.IEEE Soft-

ware, 25:82–88.

Bibliography 150

[Heckman and Williams, 2009] Heckman, S. and Williams, L. (2009). A model building process

for identifying actionable static analysis alerts. InICST ’09: Proceedings of the 2009 Interna-

tional Conference on Software Testing Verification and Validation.

[Heintze and Tardieu, 2001] Heintze, N. and Tardieu, O. (2001). Demand-driven pointer analysis.

In PLDI’01: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation.

[Henzinger et al., 2002] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. (2002). Lazy

abstraction. InPOPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages.

[Inquiry Board, 1996] Inquiry Board (1996). Ariane 5: Flight 501 failure. http://sunnyday.

mit.edu/accidents/Ariane5accidentreport.html.

[Investigation Board, 1999] Investigation Board (1999). Mars climate orbiter mishap investigation

board phase I report.http://sunnyday.mit.edu/accidents/MCO_report.pdf.

[Jeffrey et al., 2008] Jeffrey, D., Gupta, N., and Gupta, R. (2008). Fault localization using value

replacement. InISSTA’08: Proceedings of the 2008 international symposiumon Software testing

and analysis.

[Kaner et al., 2001] Kaner, C., Bach, J., and Pettichord, B. (2001). Lessons Learned in Software

Testing: A Context-Driven Approach. Wiley.

[Kremenek et al., 2004] Kremenek, T., Ashcraft, K., Yang, J., and Engler, D. (2004). Correlation

exploitation in error ranking.SIGSOFT Software Engineering Notes.

[Kremenek and Engler, 2002] Kremenek, T. and Engler, D. (2002). Z-ranking: Using statistical

analysis to counter the impact of static analysis approximations. InSAS’02: Proceedings of the

10th International Static Analysis Symposium.

[Lam et al., 2008] Lam, M. S., Martin, M., Livshits, B., and Whaley, J. (2008). Securing web

applications with static and dynamic information flow tracking. In PEPM ’08: Proceedings

Bibliography 151

of the 2008 ACM SIGPLAN symposium on Partial evaluation and semantics-based program

manipulation.

[Le and Soffa, 2007] Le, W. and Soffa, M. L. (2007). Refining buffer overflow detection via

demand-driven path-sensitive analysis. InPASTE’07: 7th Workshop on Program Analysis for

Software Tools and Engineering.

[Le and Soffa, 2008] Le, W. and Soffa, M. L. (2008). Marple: a demand-driven path-sensitive

buffer overflow detector. InFSE’08: Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering.

[Le and Soffa, 2010] Le, W. and Soffa, M. L. (2010). Path-based fault correlations. InFSE’10:

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software

engineering.

[Le and Soffa, 2011] Le, W. and Soffa, M. L. (2011). A path-based framework for automatically

identifying multiple types of software faults. Inreview.

[Leveson and Turner, 1993] Leveson, N. and Turner, C. S. (1993). An investigation of the therac-

25 accidents.http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html.

[Livshits and Lam, 2003] Livshits, V. B. and Lam, M. S. (2003). Tracking pointers with path and

context sensitivity for bug detection in c programs. InFSE’03: Proceedings of 11th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering.

[Lu et al., 2005] Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., andZhou, Y. (2005). Bugbench: Bench-

marks for evaluating bug detection tools. InProceedings of Workshop on the Evaluation of

Software Defect Detection Tools.

[Marcus and Stern, 2000] Marcus, E. and Stern, H. (2000).Blueprints for high availability: de-

signing resilient distributed systems. John Wiley & Sons.

[Microsoft Game Studio MechCommander2, 2001] Microsoft Game Studio MechCommander2

(2001).http://www.microsoft.com/games/mechcommander2/.

Bibliography 152

[Mitali Parthasarathy and Soffa, 2010] Mitali Parthasarathy, W. L. and Soffa, M. L. (2010). Paral-

lel path-based static analysis. Technical Report CS-2010-6, Department of Computer Science,

University of Virginia.

[Necula et al., 2005] Necula, G. C., McPeak, S., and Weimer, W. (2005). CCured: type-safe

retrofitting of legacy code.ACM Transactions on Programming Languages and Systems Vol-

ume 27 Issue 3.

[NIST, 2002] NIST (2002). Software errors cost u.s. economy$59.5 billion annually. News Re-

lease: National Institute of Standards and Technology, Department of Commerce.

[Orlovich and Rugina, 2006] Orlovich, M. and Rugina, R. (2006). Memory leak analysis by con-

tradiction. InSAS’06: Proceedings of the 13th International Static Analysis Symposium.

[Phoenix, 2004] Phoenix (2004).http://research.microsoft.com/phoenix/.

[Ruthruff et al., 2008] Ruthruff, J. R., Penix, J., Morgenthaler, J. D., Elbaum, S., and Rothermel, G.

(2008). Predicting accurate and actionable static analysis warnings: an experimental approach.

In ICSE ’08: Proceedings of the 30th international conferenceon Software engineering.

[Schwarz et al., 2005] Schwarz, B., Chen, H., Wagner, D., Lin, J., Tu, W., Morrison, G., and West,

J. (2005). Model checking an entire linux distribution for security violations. InProceedings of

the 21st Annual Computer Security Applications Conference.

[SecurityTeam, 2010] SecurityTeam (2010).http://www.securiteam.com/.

[Sen et al., 2005] Sen, K., Marinov, D., and Agha, G. (2005). CUTE: a concolic unit testing en-

gine for c. InFSE’05: Proceedings of the 13th ACM SIGSOFT international symposium on

Foundations of software engineering.

[Snelting, 1996] Snelting, G. (1996). Combining slicing and constraint solving for validation of

measurement software. InSAS’96: Proceedings of the 3rd International Static Analysis Sympo-

sium.

Bibliography 153

[Strom and Yemini, 1986] Strom, R. E. and Yemini, S. (1986). Typestate: A programming lan-

guage concept for enhancing software reliability.IEEE Transaction Software Engineering,

12(1):157–171.

[Visser et al., 2000] Visser, W., Havelund, K., Brat, G., andPark, S. (2000). Model checking

programs. InASE’00: Proceedings of the 15th IEEE international conference on Automated

software engineering, page 3.

[Wagner et al., 2000] Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. (2000). A first step

towards automated detection of buffer overrun vulnerabilities. In NDSS’00: Proceedings of

Network and Distributed System Security Symposium.

[Wu and Malaiya, 1993] Wu, K. and Malaiya, Y. (1993). The effect of correlated faults on software

reliability. In ISSRE’93: Proceedings of Software Reliability Engineering, 4th International

Symposium on.

[Xie and Aiken, 2007] Xie, Y. and Aiken, A. (2007). Saturn: A scalable framework for error de-

tection using boolean satisfiability.ACM Transaction Program Language System, 29(3).

[Xie et al., 2003] Xie, Y., Chou, A., and Engler, D. (2003). ARCHER: Using symbolic, path-

sensitive analysis to detect memory access errors. InFSE’03: Proceedings of 11th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering.

[Xu et al., 2008] Xu, R.-G., Godefroid, P., and Majumdar, R. (2008). Testing for buffer overflows

with length abstraction. InISSTA’08: Proceedings of the 2008 international symposiumon

Software testing and analysis.

[Yang et al., 2006] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and Das, M. (2006). Perracotta:

mining temporal api rules from imperfect traces. InICSE ’06: Proceedings of the 28th interna-

tional conference on Software engineering.

Bibliography 154

[Zitser et al., 2004] Zitser, M., Lippmann, R., and Leek, T. (2004). Testing static analysis tools

using exploitable buffer overflows from open source code. InFSE’04: Proceedings of the 12th

International Symposium on Foundations of Software Engineering.

