Toward a Practical, Path-Based Framework for Detecting and
Diagnosing Software Faults

A Dissertation
Presented to
the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the requirements for the Degree
Doctor of Philosophy

Computer Science

by

Wei Le

December 2010

(© Copyright November 2010
Wei Le

All rights reserved

Approvals

This dissertation is submitted in partial fulfillment of trequirements for the degree of
Doctor of Philosophy

Computer Science

Wei Le
Approved:
Mary Lou Soffa (Advisor) David Evans (Chair)
Jack Davidson Manuvir Das
Gregg Rothermel Barry Horowitz

Accepted by the School of Engineering and Applied Science:

James H. Aylor (Dean)

December 2010

Abstract

One of the important challenges of developing software ésatoidance of software faults.
Since a fault occurs along an execution path, program péiniation is essential for both detect-
ing and diagnosing a fault. Manual inspection can identifyath where a fault occurs; however,
the approach does not scale. Dynamic techniques, suchtagtese also effective to find faulty
paths, but only in a sampled space.

This thesis develops a practical, path-based frameworkatically detect and then diagnose
software faults. The techniques grath-basedn that both detecting and reporting faults use path
information. An important contribution of the work is thevadopment of a demand-driven analy-
sis that effectively addresses scalability challengesdday traditional path-sensitive analyses. The
computed path information is shown to be valuable in autorgatiagnostic tasks and guiding soft-
ware testing to quickly exploit faults. A prototype tool, Niée, was developed to experimentally
evaluate the research.

Foundations of the thesis are the discoveriepaih diversityandfault locality. Path diversity
says that if a fault is reported in terms of a program poird,aBsumption is that all the executions
across the same program point have the same property neganeifault; howevesafe infeasible
faulty with various severities and root causesddon’t-knowcan all traverse the same program
point. Given the path type, fault diagnosis can take actmmomdingly. Fault locality demonstrates
that instead of a whole program path, often only a path segofeir-4 procedures, is relevant to a
fault. By only focusing on such path segments, fault dedectind diagnosis can be more efficient.

To detect path types and path segments, a demand-drivepsisnalas developed, which

achieves interprocedural path-sensitivity and scalesoup70,000 lines of code. Evaluation of

buffer overflow detection shows that the analysis is aboutn2g faster than an exhaustive path-
sensitive tool. Generality of the technique is achievedsaecification technique and an algorithm
that automatically generates path-based analyses fospeeified faults. The techniques are capa-
ble of handling both safety and liveness properties as vedicth control and data-centric faults,

including buffer overflow, integer fault, null-pointer éderence and memory leak.

The usefulness of the path information is demonstrateddiowitingfault correlation a causal
relationship between faults, and for guiding softwareingsto exploit faults. By grouping the
correlated faults, the number of static warnings neededi&gnosis was reduced to about 53%. The
correlations also reveal that the propagation of integalifacan lead to not only buffer overflows
but also null-pointer dereferences, and resource leaksa@ase infinite loops. Our path-guided
concolic testing successfully exploits 73% of staticathgntified faults. Compared to traditional
concolic testing, it is 25 times faster over a set of benchkman average to trigger the same

number of faults.

Acknowledgments

My deepest thanks first go to my advisor Dr. Mary Lou Soffa. dsviaer support and inspiration
that lead to my current accomplishment. Her invaluable @elaind the interesting stories we had
shared during my Ph.D. will be remembered for the rest of fiey li

My work was supported by Microsoft, who funded me through imternships and the Mi-
crosoft Phoenix Academic Program, and also by Google, whueiged me with the Anita Borg
Scholarship. The Microsoft Phoenix group, especially Dndy Ayers, gave me tremendous ad-
vice and support for building my research prototyl&rple.

I would like to thank my committee members, including Drsvldé&Evans, Manuvir Das, Gregg
Rothermel, Jack Davidson and Barry Horowitz, who have pledi many insightful comments
for my work and future directions. Thanks, too, to my colleeg both in the department and at
Microsoft for useful discussions about my research.

| am also grateful that our department provides a very sujpoenvironment for female stu-
dents. Especially, | thank Dr. Anita Jones who was alwaydaa to me to provide advice and
encouragement.

Last but not least, my thanks go to my parents Debao Le andl.ing and husband, Jeremy

Sheaffer. Without your support, | would not be what | am today

Vi

Contents

Acknowledgments

1

Introduction

1.1 Motivation e

1.2 TheProblem.

1.3 Challenges of Developing a Path-Based Static Framework
1.4 AnOverviewoftheResearch

1.5 Thesis o

Background and Related Work
21 Faults
22 ProgramPaths.

2.3 Implementation Support and Benchmarks

The Value of Paths for Detecting and Diagnosing Faults
3.1 Program Points v.s. Paths in Fault Detection and Didgnos

3.2 Selecting and Representing Path Information

3.3 Conclusions

Identifying Faulty Paths Using Demand-Driven Analysis
41 TheChallenges
4.2 AnOverviewofthe Analysis

4.3 The Vulnerability Model and the Demand-Driven Algonith .

Vii

Vi

........... 4

Contents viii
4.4 Experimental Results e 66
4.5 Conclusions e 73

5 Automatically Generating Path-Based Analysis 74
5.1 AnOverview of the Framework 75
5.2 SpecificationLanguage e e 76
5.3 Demand-Driven Template 82
5.4 Generating Analysis e 85
5.5 Experimental Evaluation e 89
5.6 DISCUSSION 95
5.7 Conclusions 96

6 Path-Based Fault Correlation 97
6.1 Motivation and Challenges e 98
6.2 Defining Fault Correlation 100
6.3 Computing Fault Correlation, 106
6.4 Correlation Graphs e 113
6.5 Experimental Results 115
6.6 Conclusions 120

7 Path-Guided Concolic Testing 121
7.1 AnExample e 221
7.2 AnOverview of MAGIC 124
7.3 Obtaining Static Path Information 127
7.4 DynamicTesting e 130
7.5 Implementation and Evaluation aa. .. 137
7.6 CoONnCluSIONS 140

8 Conclusions and Future Work 141
8.1 ContributionsandImpact e 141

Contents iX

8.2 Future Work 143

Bibliography 145

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

Research Process: Five Projects for the Thesis Research 7
Three Types of Path-Sensitive Analysis 8
Goals, Solutionsand Resultso 9
A Stack Buffer Overflow and Its Exploit 15
An Example of Null-Pointer Dereference 17
Static Analysis for Fault Detection and Diagnosis 23
Path-Sensitive Analysis: the State-of-the-Art 29
the Interactions of Phoenix, Disolverand Marple 33
An Example from Sendmail-8.7.5 40
Different Paths Cross a Buffer Overflow Statement 41
Path-Sensitive RootCauses e 42
Summary of Comparison e e a7
Identifying Useful Path Information: the Six Elements. 50

Using Path Graph to Represent a Set of Paths: dash lieeshared edges for

differentpaths e 15
Four Components e e e 56
Detecting Different Typesof Faults 58
Interactions of the Vulnerability Model and the Analyze 62
An Overflow in bc-1.06, main.C. 69
Overflows in MechCommander2, Ablscan.cpp. 70

List of Figures Xi

4.6

5.1
5.2
5.3
54
5.5
5.6

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6

Comparison of Marple with other five static detectors @Crplot 71
The Framework e 75

The Grammar of Specification Language« 78
Partial Buffer Overflow Specification 80
Partial Memory Leak Specification, . 81
Parsing Specification e 88

Generating Code from Syntax Tree e . 89
Fault Correlation in ffmpeg-0.4.8 99

Defining Fault Correlation: correlated faults are mdrigth x, error state is in-

cluded in[], and corrupted data are underlined 102
Correlation of Resource Leak and Infinite Loop inacpid 104
Correlations of Multiple Buffer Overflows in polymorph 105
Fault Detection and Fault Correlation 107
CorrelationviaDirectlmpact e 109
Correlation via Feasibility Change 111
Correlation Graphs forExamples oo 114
Comparing Concolic Testing and MAGIC Using an Example..... 124
The Components of MAGIC 125
The Workflow of MAGIC 126
A Path Graph for Two Suspicious Path Segments 129
Multiple StringsinaBuffer 132
Buffer Overflow Condition 133

List of Tables

2.1

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

Path-Sensitive Dataflow Analysis for Identifying Fault 30
Different Types of Paths can Cross a Buffer Overflow &tate 46
Comparison of Splintand Marple 46
The Length of the Path Segments Computed for a Given BOfferflow 52
Partial Buffer Overflow Vulnerability Model 59
Detection Resultsfrom Marple ae. 67
Benefit of Demand-Driven Analysis 72
Detecting Multiple Typesof Faults 91
Scalability e e 92
Comparisonof Memory Leak 94
Error State of Common Faults 101
Types of Correlated Faults DiscoveredinCVE 106
Automatic Identification of Fault Correlations 117
Characteristics of Fault Correlations 118
Correlation Graphs and their AnalysisCosts 119
Modeling Buffer Overflow Conditions 132
Symbolic Semantics of String and Pointer Operations 134
Comparison of Testing Time and Fault Detection Caggbili 138
Comparison of Test Input GenerationCosts 139

Xii

Chapter 1

Introduction

1.1 Motivation

Software continues to play a critical role in all aspectsuflives, from personal safety to public
health, from phones and appliances used in daily life td infaastructures of air traffic control,
medical devices and power generation and distributioresyst Due to its ubiquity and importance,
software needs to be reliable and robust. In fact, 40% oéays$hilures are attributable to software
faults [Marcus and Stern, 2000], and software faults aredttext cause of patient deaths in the
Therac-25 radiation therapy [Leveson and Turner, 1998] Athane rocket crash [Inquiry Board,
1996], and the Mars Climate Orbiter explosion [InvestigatBoard, 1999].

Building reliable and robust software is challenging. Anpary reason is that software is com-
plex: 1) the code size can be incredibly large, consistingiieérse components; 2) newer and
different programming paradigms are used, for examplecuwwancy and parallelization are be-
coming more and more important for developing modern sa#n@) newly developed code needs
to be compatible with legacy code; and 4) software is requioerun on a variety of hardware and
system environments. Yet software is developed manuaity,raaman beings make mistakes. As
a result, human understanding of software does not scaletmapid growth of software size and
complexity, and faults are unavoidably introduced in safievduring both design and coding. A
study commissioned by the Department of Commerce in 200Wvsstioat for a typical software

development project, fully 80% of software developmentaislare spent in identifying and cor-

Chapter 1. Introduction 2

recting software faults; however, despite the effort, wafe faults cost the U.S. Economy $59.5
billion annually, about 0.6 percent of the gross domestadpct (GDP) [NIST, 2002]. Effective
fault management tools are desirable to help improve thdyaterity of software assurance and

further remove faults.

1.2 The Problem

Since a fault is produced on an execution path, to detectsfaideally we should examine
each program path and determine if a fault can occur. By Rittedorem, determining a non-
trivial property for a program is undecidable. To achieveasonable speed and ensure software
still can be shipped on time, we either have to sample a linitember of executions, which
potentially will miss an unpredictable number of faults,vee need to reduce the state space by
merging program paths. In fact, in many of the tools in théestd-the-art, faults are detected using
conservatively merged information from all paths and regmbat a particular program point, which
causes imprecision and requires much manual effort to cormditd diagnose the detection results.

Our insight is that program paths are important for both igedg detecting and efficiently
diagnosing faults. If a fault is reported in terms of a prognaoint as typical, all executions that
traverse the program point are considered as having the maperty regarding the fault. Actually,
both safe and faulty paths can traverse the same prograrh Esien for faulty paths, the severity
and root causes associated with the fault can be differéthe Ipaths where a fault can occur are
given, manual or automatic diagnosis can follow the guidaantd take action accordingly based on
the type of paths.

To identify a path where a fault occurs, there are three géapproaches: manual inspection,
dynamic detection and static analysis. The main disadganté manual inspection is efficiency.
Research shows that on average the estimated speed of spdetion is only 120 lines per person
hour [Hatton, 2008]. Code inspection might be useful toeemnigh level design decisions such as
software architecture, but it is not practical to manuakgreine every path of a program for cor-

rectness. In practice, manual inspection is often usedstéic tools to confirm reported warnings

Chapter 1. Introduction 3

or to help diagnose complex faults triggered in the field.

Dynamic detection executes a program with inputs, and ah@tess the deviation (if any) of the
program behavior via the observed symptoms. One advanfagdymamic tool is soundness, i.e.,
the fault triggered in detection demonstrates the symptihratswould later manifest in the field.
Since execution paths can be obtained, software develapeble to understand the transition of
the program states and thus the development of a fault. Gavebdick of a dynamic tool is that it
can only show the presence but not the absence of a bug; ttadteén only a limited number of
paths and restricted input space can be examined. A dynaoiiwould be applied at the late stage
of software lifecycle, when program executables and tgritgare available. The bugs found at
this stage are considered ten times more expensive to fixttleaones found earlier, e.g., during
coding [Kaner et al., 2001].

Another technique is static analysis. Static analysis spaogram source code for predefined
bug patterns, and reports locations in the code where agaténtially occurs. Static analysis has
been integrated in software development in many softwamgemies. According to data in 2005, a
Microsoft program analysis group filed more than 7000 bu@ntsgn one month using their static
tools [Das, 2005]. Static analysis requires only prograomr@® code and thus can find faults early,
when fixing a bug is relatively cheap. In fact, at Microsofsti tools are deployed at desktops, and
code is only allowed to be checked in when it passes the itispeaf these tools. Static analysis
also outperforms dynamic detection in its full coverageathg; therefore it potentially finds faults
on the paths that a dynamic tool cannot reach. Many dynarols tely on the guidance of static
information for improved coverage [Sen et al., 2005, Gauldfet al., 2005]. Despite its advantages
and initial successes, existent static techniques ar¢eliimn their capability of determining and
explaining faults, as well as in the high cost of developmgjntaining and using the tools.

This thesis presents a practigaéith-basedramework for statically detecting and then diagnos-
ing faults. A novelty of this work is that our techniquegath-basedn that we not only consider
path information in determining a fault, but also computdous path properties for diagnosing a
fault. For example, we discovered that most of the time, engegment of a path, instead of the

whole program path, is responsible for producing a faulti &e thus can provide more focus for

Chapter 1. Introduction 4

fault diagnosis. We also show that paths of different rooisea and severity can be distinguished,
based on which, we can better schedule the diagnostic taslesidition, we find that along fault
propagation, different types of faults can interact andflead to visible consequences; identifying
fault relationships and impacts can help group and praaritaults.

An important contribution of the work is that we make compiota of the path information
practical, that is, the scalability and precision achieved on the &aork are applicable for real-
world deployed software for a variety of faults. In order t@ka the expensive path-sensitive
feasible, we reduce the state space basdduhlocality; that is, we detect and report the sequence
of, but not the whole, execution along a path for a fault, anty @erform an expensive path-
sensitive analysis on the portion of the program that isvesieto a fault. Using the automatically
computed path information, we identify the relationshipdawlts along the propagation, which

was previously done manually, and guide the dynamic testirrgitomatically exploit the faults.

1.3 Challenges of Developing a Path-Based Static Framework

The challenges of developing a path-based static framea@rld) to achievecalability and
precisionof the static analysis required by fault detection, 2) toradshjeneralityof the techniques
so that the analysis is applicable for a variety of faults] @phto ensureusability of both the tool
and the results reported by the tool.

Static analysis is potentially imprecise for two reason&stFin a whole program analysis,
it is infeasible to examine all program paths for faults. téasl, approximations, e.g., via merg-
ing or abstracting of program paths, have to be applied tacedhe state space. When multiple
program states are merged at a program point to derive a syymim@recision can occur, as re-
ported by path-insensitive analysis [Hallem et al., 2002yis, 1996]. Abstraction also can lead to
imprecision. For example, in software model checking, paots are mapped to software models
such as pushdown automa; however, the traces from the madabaalways the paths from the
program [Chen and Wagner, 2002].

Another reason for imprecision is that static analysis ardynsiders the program source to

Chapter 1. Introduction 5

determine the faults. However, program inputs and the eatenvironment are also important
for reasoning about the potential program behaviors. Witpooperly modeling such information,
static analysis can make overly conservative or aggreassgmptions. A conservative analysis can
lead tofalse positivesi.e., reporting faults which are actually not faults. Garity, an aggressive
analysis can make “wrong guesses” and leafiklge negativesthat is, static analysis would miss
faults.

Besides precision, scalability is a related challengedaatprevent a static tool from being use-
ful. A scalable static analysis should be able to handleorestsly size software, and importantly,
the additional cost of coping with a given increase in code should be manageable. For exam-
ple, a naive exhaustive path-sensitive analysis is noablsglbecause the analysis cost increases in
terms of the growth of path numbers in the program, which esexponential to the size of the pro-
gram. To measure scalability, both time and space, e.g.,aneon disk storage, used by analysis,
need to be considered. Existing techniques for scalalailiégynot ideal in that they either sacrifice
the analysis precision [Bush et al., 2000], impact the garagplicability [Das et al., 2002, Xie and
Aiken, 2007], or require a considerable amount of manualrefb use [Hackett et al., 2006].

Another important goal for designing static analyzers igettuce the amount of manual effort
needed to construct, maintain and use a tool. The goal exjbwth generality and usability. A
general static tool should handle a variety of faults, aqeteislly, it should be able to respond to a
new type of fault without requiring the reconstruction oé tivhole analysis. Achieving generality
is challenging. First, we need to determine whether a géatgarithm is feasible for identifying
a variety of faults; if so, we need a way to specify differeatlfs. The specification for fault
patterns should be complete; that is, the specificationldhinciude all scenarios in which a fault is
potentially manifested in the source code. We also regbgddult patterns to be distinctive, using
which we can distinguish malicious errors from benign on&ke second challenge to achieve
generality is that the precision and scalability tailoreddne specific type of fault can be no longer
usable. Due to the challenges, generality in the statbesftt is mainly restricted to a subcategory
of faults, such as typestate [Strom and Yemini, 1986] viotet. As a result, repeated efforts have

to be expended to build and maintain individual fault dedesct

Chapter 1. Introduction 6

Usability refers to how easily a static tool can be used, anterapecifically, how easily a user
can specify faults, configure the tool, or use the bug regiort®rrect the faults. It should be noted
that the focus here is not formal user studies, but whetheate ool considers empirical user
experience and integrates features that help reduce meffiardlito use the tool. For example, some
tools require the use of annotations to help analysis, wioté writing and verifying annotations
require much manual effort. Another determinant factor sdhility is the quality of bug reports.
Many static tools only report a program point where a fauteptally occurs. To understand how a
fault is developed along executions, code inspectors lwavehually explore the paths that traverse
the reported program points, which is time consuming arnaf gmone.

The above four challenges are not independent factors eaethniques used to address one
challenge might compromise the other. For example, appljieuristics for scalability impacts
precision. Introducing annotations for precision sa@gicasability. The ultimate reason that these
challenges exist is that static analysis is undecidable tht¥e should develop algorithms that can
use the available computation resources for nearly optgaokitions, which means 1) we should
avoid computing information that is not needed; and 2) weukhavoid repeated computation and
instead, reuse intermediate results if possible. In owareh, we use these two principles and

develop scalable algorithms that handle the requiremdrreoision, generality and usability.

1.4 An Overview of the Research

This section summarizes the thesis research from threereliff angles. First, we introduce
the development of the five projects in our research proc&ssond, we list the set of solutions
found in our research that addressed the targeted chadlepgeified in Section 1.3. Finally, we

summarize our contributions.

1.4.1 A Description of Five Research Projects

This research is developed in three stages, shown as Fidurdriithemotivationstage, our

goals are to identify the value of paths for detecting andmising faults, and meanwhile to deter-

Chapter 1. Introduction 7

Motivation Framework Use of Path Information
4 2 4 2
Identify Useful Path Detect Faulty Paths via Compute Paths of
Properties for Faults Demand-Driven Analysis Fault Correlations
[Chapter 3] [Chapter 4] [Chapter 6]
_ J _
() ()
Automatically Generate Path-Guided
Fault-Specific Analyses Software Testing
[Chapter 5] [Chapter 7]
J _ J

Figure 1.1: Research Process: Five Projects for the ThesiedRch

mine path information that is potentially useful in faulagnosis. In this project, we proposed and
experimentally validated two important hypotheses: lhgdhat contain different fault properties
(e.g., the presence, type, severity or root cause of a feautfraverse the same program point, and
thus manual and automatic diagnosis can take correspoadtimns based on the types of paths;
and 2) faults manifest locality, and it is the path segmemh@la program path that contributes to
the cause of a fault. We therefore can use the informationtifteed on path segments to diagnose
faults.

In the frameworkstage, we develop the techniques to automatically comptteipformation
regarding faults. The two important contributions includ¢ we demonstrate that demand-driven
analysis is feasible and scalable for detecting faulty atimd 2) we develop a fault model and
a specification technique that enable the applications wfatel-driven analysis to both data- and
control-centric faults as well as faults regarding botletigss and safety properties.

In Figure 1.2, we compare demand-driven analysis with ottwer categories of techniques
previously applied in path-sensitive fault detection.Ha figure, each rectangle represents the state
space that a static analysis needs to explore: the heighieafectangle indicates the number of
paths in a program, and the width displays the length of a fizdhh strip in a rectangle represents

a path. In the first approach, static analysis exhaustivgioees all program paths based on the

Chapter 1. Introduction 8

structure of the program. More likely, resources would bleagisted before all the faults can be
found. In the second approach, static analysis randomlglses paths for faults. Research shows
that this approach can find faults more quickly than the fppteach [Dwyer et al., 2007]; however,
faults also can be missed.

The demand-driven analysis improves the scalability by onllecting the information needed
for a fault. Applyingdemand-driveranalysis to detect faults, we first perform a low-cost source
code scan to identify program points where a fault is poddigtobserved. We then conduct a path-
sensitive analysis only on the code that is relevant to thksiai.e. the path segments between the
program entry and the identified program points. Compareahtexhaustive analysis, demand-
driven analysis potentially explores a fewer number of progpaths, because only the paths that
traverse the program points of interest need to be examingke figure, we represent the reduction
of the path number using the shortened breadth in the rigsttnectangle. In addition, our path-
sensitive analysis starts where a fault potentially ocangsterminates as soon as the decision about
the fault is made, when only a segment of paths may be expldreerefore, the length of a path

we analyze is also reduced, shown as the shortened heigkaidbrstrip in the rightmost rectangle.

path Fault Fault path segment Fault

' : / / e
= i 9 |

3]

: | I]
[3+
[T
=R I

i)
8

T_. number of paths le—

Systematic Random Demand-driven

Figure 1.2: Three Types of Path-Sensitive Analysis

In the third stage of our research, shown in Figure 1.1, wdysthe use of paths for fault
diagnosis. In one project, we find that a casual relationship exist between faults, which we

call fault correlation such as “an integer overflow can lead to a buffer overflowpriactice, code

Chapter 1. Introduction 9

inspectors manually determine such relationships betviaadts for understanding the impact of a

fault. Using the faulty paths computed, we develop an algorito automatically determine fault

correlations. In another project, we find that path infoliorats useful to reduce state space of path-

based test input generation. We develop a path-guided Gomesting technique that successfully

exploits statically identified faults.

We implement our techniques in a prototype tool, caléatple, which we use to experimen-

tally evaluate the effectiveness of the techniques.

1.4.2 A Summary of Solutions Provided by the Framework

Goals

Solutions

Precision Scalability Generality Usability

Y
path info demand-driven fault model
interprocedual optimizations specification

external info

path presentation

fault correlation

general template

generate analysis

terminate early configurable tool

i
i
i

separate concerns export to tester

2 low false positive apache, ffmpeg control-centric, data-centric path graph
=] . . .
2 low false negative putty, vic, me2 liveness, safety fault correlation
~ buffer, integer, pointer, leak exploit faults

Figure 1.3: Goals, Solutions and Results

The thesis addresses the four challenges of the staticdatdttion discussed in Section 1.3.

In Figure 1.3, we present a summary of our solutions witheesfo these challenges. The key

that leads to those solutions is the application of a dentlivén, path-based analysis. The figure

is divided into three parts. At the top of the figure, we list tour challenges we aim to address.

Chapter 1. Introduction 10

In the middle of the figure, we present a set of techniquesloped to accomplish the goals. At
the bottom of the figure, we display results that demonstraesffectiveness of our techniques in
conquering the targeted goals.

In the figure, undePrecision we summarize our techniques applied to improve the pacis
the analysis. We have pointed out that the two major impigtisources are: the approximation in-
troduced to reduce the state space and the heuristics dppheodel factors beyond program source
(see discussion in Section 1.3). We address the first clggllesing an interprocedual path-sensitive
analysis. For the second source of imprecision, we intredoa’t-knowtags in an analysis to mark
positions where imprecision can occur. The idea of dontivkiis that we allow heuristics to be in-
troduced to determine faults, but we are aware what and wieenéstics are applied. Based on the
corresponding results, we can thus decide whether or narttincie applying them. In the figure,
we use arrows to connect the boxes of don’t-know and extanf@mation, indicating that the two
techniques are integrated together to handle potentialeioigion. By applying the above set of
techniques, our experiments report low false positive alskfnegative rates for analyzing a set of
real-world programs.

For scalability, we develop a demand-driven analysis anet @fsoptimizations based on the
analysis. In addition, we integrate two design principlesjuding terminate earlyand separate
concerns Terminate earlyneans that the analysis always terminates when the stathe phths
is determined, either as safe, containing faults or domdvk the analysis would not use arbitrary
heuristics and allocate computation resources for produgnpredictably imprecise resultSep-
arate concerngneans we separate complex properties of a path into seneiaidual properties,
each of which can be efficiently resolved on the framework.théa compose the properties for the
paths that we aim to compute. For example, in our analysisrméning path feasibility and detect-
ing faults are performed in two separate passes of an agadgsthat the infeasible paths identified
can be reused in determining different types of faults. Tifextveness of the above techniques is
demonstrated in our experiments, where our analysis tatasrfor large software such pst ty
andapache with reasonable time and space overhead.

Generality is achieved via a fault model and a specificatemtnique. We design a general

Chapter 1. Introduction 11

demand-driven algorithm that can find a variety of fault$edmating the specification and the gen-
eral template, we develop solutions to automatically getleandividual analyses for user-specified
faults. We show that our framework can produce either fodvwaarbackward demand-driven anal-

ysis, and the generated analyses can handle both safetivanesls properties and both data- and
control-centric faults, including buffer overflow, integaults, null-pointer dereferences and mem-
ory leaks.

The usability of our framework focuses on producing usefifibimation for fault diagnosis.
We have spoken with software developers in the industry ased on their experience, we have
determined features that make a static analyzer easyetohm example, we develop techniques
to represent the detected faulty paths; according to codewers at Microsoft, path information
is very useful for understanding a fault [PC, 2006]. We atknitify fault correlations to help un-
derstand the propagation and the severity of faults, becawssfind that security experts actually
manually identify such relationships between faults tedatne the causes of a vulnerability [Com-
mon Vulnerabilities and Exposure, 2010]. Since paths niyt ©en be diagnosed manually, but also
can be supplied to dynamic tools for generating test inpatsthen producing executions to help
debugging, we develop a module to enable other tools to attoally consume the paths. We
experimentally demonstrate that concolic testing carofolbur generated faulty paths to auto-
matically exploit faults. In addition to improving the pesgation of the analysis results, we also
develop a configuration tool for better tuning the staticlgsia. Users thus can make choices on
how conservative or aggressive an analysis should be.

Among the four goals, scalability is the prerequisite fa tither three, shown by the arrows on
the top of the figure. With the improved scalability, we aréeab use the additional computation
to address precision, generality and usability. The im@dogenerality allows us to explore corre-

lations among different types of faults, and thus furtheilifates the usability of the framework.

1.4.3 Contributions
This thesis makes the following contributions:

1. We demonstratpath diversity that is, paths ofnfeasible safe faulty with various root

Chapter 1. Introduction 12

causes and severitiesxddon’t-knowcan traverse the same program point. The path classifi-
cation can guide the fault detection to achieve better pi@tj and help prioritize and explain

detection results for fault diagnosis [Le and Soffa, 20@7ahd Soffa, 2008].

2. We demonstrate that faults manifest locality, i.e., oféefault is relevant to only several
procedures along a path, instead of the whole program péigrefore, by focusing on such
path segments, both fault detection and diagnosis canwachietter performance [Le and

Soffa, 2007, Le and Soffa, 2008].

3. We develop a demand-driven analysis that staticallytifies user-specified faults. In our
feasibility study, we applied the analysis to buffer ovexfldetection and demonstrated its
scalability. The work validates the hypothesis that the aetirdriven analysis only visits the
code that is relevant to the faults and terminates only whemall portion of the code is

analyzed [Le and Soffa, 2008].

4. We develop a fault model and a specification language #matspecify both control- and

data-centric faults as well as both liveness and safetyeptieés [Le and Soffa, 2011].

5. We design an algorithm to automatically generate indizidanalyses from specifications
and a general demand-driven template. The generated esnefyrs handle one or several
types of specified faults. We experimentally show that theegaity does not compromise
scalability, and the analysis is able to scale at least fentifying buffer overflow, integer

faults, null-pointer dereferences and memory leaks [LeSuwofth, 2011].

6. We define fault correlations and demonstrate their valoesnderstanding faults. We also
develop algorithms to automatically compute paths alonghvtwo faults are correlated [Le

and Soffa, 2010].

7. We develop techniques to integrate statically compuédld imformation with the path-based
test input generation. In our evaluation, we show that upatf-guided concolic testing, we

can automatically generate test inputs that exploit ouicsily identified faults, and with the

Chapter 1. Introduction 13

guidance of the path information, concolic testing is ablentore quickly find faults [Cui

etal., 2011].

8. The framework is implemented in a research prototype Maiptakes the program source
and user supplied specifications, and reports the pathsiiffiéinent fault properties for spec-
ified faults. The tool is configurable and applicable for gmalg Windows compilable soft-

ware.

Contributions 1 and 2 are presented in Chapter 3 and cotitnib8 in Chapter 4. As the effort
of making the framework more generally applied, Chapterctugtes contributions 4 and 5. The
applications of path information are summarized in contidns 6 and 7, which are shown in

Chapters 6 and 7 respectively.

1.5 Thesis

The thesis presents scalable, general path-sensitiveitaige for detecting faults and deter-

mining fault correlations. It demonstrates that statitipatormation regarding faults can be made:
e valuable for both fault detection and diagnosis;
e practical in that paths can be identified with reasonable precisiorsaathbility; and

e broad to address paths of a variety of faults, and paths of muljgfe properties.

Chapter 2

Background and Related Work

Two key concepts of this thesis afaults and program paths We organize the background
chapter based on the two concepts. Urfdalts we define faults and common fault types; we then
introduce techniques and terminologies related to detgeind diagnosing faults. Similarly, under
program pathswe provide definitions related to paths; we then presenétistent work on com-
puting and using program paths. At the end of the chapterraxege information about our imple-
mentation and experimentation. In particular, we expla@se of the Microsoft Phoenix [Phoenix,
2004] and Disolver [Hamadi, 2002] in the development of th@ Marple and also our choices of

benchmarks for experiments.

2.1 Faults

Definition 2.1: a programfault is an abnormal condition caused by the violation of a reguire
property at a program point. Tipgopertycan be specified as a set of constraints to which a program
has to conform.

Fault is a dynamic concept, i.e., a fault occurs when a proguems. Research shows that certain
types of malfunction in dynamic behavior can be predictediclly using patterns of program
source code [Evans, 1996, Bush et al., 2000, Das et al., 2002t al., 2003, Xie and Aiken,
2007, FindBugs, 2005, Le and Soffa, 2008]. The goal of sfatitt detection is to apply static

analysis on program source to determine the potential ceece of a fault.

14

Chapter 2. Background and Related Work 15

2.1.1 Common Fault Types

We focus on the following four types of faultsyffer out-of-boundsnteger fault null-pointer
dereferenceand resource leak They are chosen because 1) these types of faults are cognmonl
seen in software; 2) identifying them is important for sates reliability and security, as they can
cause programs to crash, hang, slowdown, be exploited dupeoincorrect results, 3) they are not
simple syntactic faults that can be found during compifatiand instead, only advanced semantic
analyzers are able to statically identify them, and 4) the fgpes are representative for both data
and control centric faults, and include both liveness affetg@roperties.

Definition 2.2: If a write or read of buffev accesses the memory outside the boundary; of
a bufferout-of-boundsoccurs. If the access is beyond the buffer, e.g., at the asidaeger than
[Addressv) +sizg V)], the fault is ebuffer overflowotherwise, if the out-of-bounds access is before
the buffer, e.g., at the address less tfadress$v)], it is abuffer underflow A bufferis a chunk of
memory that stores (n > 0) number of elements of the same type. In program code, a lusfer
be identified using a source variabteany element in the buffer can be accessed ugidi is the
index of the buffer).

Buffer out-of-bounds can occur in the stack, heap or datidose@nd in all of the three cases,
buffer overflow/underflow are exploitable [CERT, 2010]. lig#re 2.1, we show a stack buffer

overflow and the exploit targeted to this buffer overflow.

char a[100]

scanf (“get input %s”, a)

//\A
5 int auth = Stack when program runs Exploited when the input string contains 101 “1”
“1 do_authorization()
......

scanf (“get input:

%s”, a) Buffer Overflow Occurs a[0]

if (auth) stack grows

buffer a[100] [a109] a[100]=*1111....17

yes no

s e int auth auth overflow
5[root_access(a) } [printf (“you are }6 ‘ ‘

not root!”)

auth =1

(a) Code with a Buffer Overflow (b) Exploiting the Buffer Overflow

Figure 2.1: A Stack Buffer Overflow and Its Exploit

Chapter 2. Background and Related Work 16

In Figure 2.1(a), there is a buffer overflow vulnerability raide 3 on a stack buffea. In
Figure 2.1(b), we show that an inpaftt00]="111...1" (with more than a 100 "1") taken at node 3
overflows buffera, and as a resulauth located adjacent to the buffer on the stack is overwritten
(assuming the memory layout shown as Figure 2.1). Due to uffferboverflow, the valueauth
is controllable by external users, and therefore an unaa#tb access can occur at node 5. This
buffer overflow is a simplified version of an exploited SSHDnarability [Chen et al., 2005].

Next, we introduce three types of integer faultsuncation error, overflow/underflowand
signedness error

Definition 2.3: An integer truncation erroroccurs when 1) an integer with a largerdth is
assigned to an integer with a smaller width and 2) the de&iménteger cannot accommodate the
value. Integer widthmeasures the number of bytes used in the machine to represpatific type
of an integer.

For example, in C and C++, there exist integer typestafr, short, i nt, andl ong; their
corresponding sizes are 1, 2, 4, and 8 bytes. When an integey,1024, with thé ong type is
assigned to the integer ohar type, a truncation error occurs. Instead of 1024, we woutddge
after the assignment.

Definition 2.4: An integer overflow/underflowccurs when an integer arithmetic returns a value
that the destination integer cannot accommodate: if theeviallarger than the maximum value the
destination integer can store, mmeger overflowoccurs; otherwise, if the value is smaller than the
minimum value the destination integer can storeingéeger underflovoccurs.

For some languages such as C and C++, the values an integetocammre dependent not only
on the integer type, but also issgnedness An unsignedinteger is always non-negative, and all
of its bits are interpreted as values. signedinteger can represent negative values, and often, its
highest bit indicates whether the integer is positive ortigg.

Definition 2.5: An integer signedness errarccurs when a signed integer is converted to un-
signed (or when an unsigned integer is converted to sigaed)its value cannot be represented by
the destination integer.

The three types of integer faults listed in Definitions 2.5-¢hare one commonality: they oc-

Chapter 2. Background and Related Work 17

cur when a value, either from some integer or integer aritlane assigned to an integer, and
the destination integer cannot accommodate the value. Uittemes of the assignment in pres-
ence of integer faults are either defined in the languagelatdror implementation dependent. As
the results are often not expected, integer faults can leaucorrect results, program crashes or
exploits [SecurityTeam, 2010, Common Vulnerabilities &xgposure, 2010].

The next category of faults is related to the pointer usage.

Definition 2.6: A null-pointer dereferenceccurs when the program attempts to dereference a
pointer whose value is NULL.

Null-pointer dereference can cause the program to craslvesr e exploitable. Figure 2.2
shows a proof-of-concept example on how a null-pointerfdesace is exploited. In Figure 2.2(a),
the pointer dereferenca->i at node 3 encounters a null-pointar As a result, the program would
access the memory at addresg(x is the offset of variablei in struct A, which most of the
time is not a legitimate user memory space, and thus the amogvould crash. Sometimes, an
authorization token is by chance located at addresss shown in Figure 2.2(b), in which case the

assignment at node 3 can change the valuawhand allow a non-authorized access at node 5.

void foo (struct A* a)
address: 0

Null-pointer Dereference 2 int auth = _
do_authorization()

void bm()/\—’i X

3

1 foo (NULL) ‘ a—i=1 — Vv
auth a->i=1
- —

4 if (auth)

yes : : no

printf (“you are
not root!”)

root_access(a) ‘ ‘

(a) a NULL-Pointer Dereference (b) Exploiting NULL-Pointer Dereference

Figure 2.2: An Example of Null-Pointer Dereference

Pointer related faults also include the dereferences afitisdized, untrusted, or already freed

pointers. They are all similar to null-pointer deferenceshat the fault occurs when the pointer

Chapter 2. Background and Related Work 18

dereference is not performed in a proper context.

Finally, the last category of fault is about the usage ofues®in software systems.

Definition 2.7: A resource lealoccurs if some allocated resource is never released. One ex-
ample ismemory leak A memory leak occurs when a chunk of allocated memory ismieged.
Memory leaks can slow down or even crash a program. Otheuresdeak examples include
“a file is never closed after open”, which can cause a prograordsh or leak security sensitive
information, or “a lock is never released after acquiregddieg to deadlocks.

Besides types of faults that can be found in common softvilaeee are also application-specific
faults, which only occur in particular software or systerRer example, in UNIX, a call tehroot
should be immediately followed by the calhdir. Our techniques are applicable for both com-
mon faults and application specific faults; the discussiarthe thesis mainly use common faults

presented above as examples.

2.1.2 Background Related to Static Fault Detection and Diagpsis

An important technique we applied to detect faultdasaflow analysisDataflow analysis was
originally developed for optimizing programs in compileds recent research, dataflow analysis
is also used for software assurance tasks such as faultidat¢das et al., 2002, Hackett et al.,
2006, Evans, 1996] and software testing [Duesterwald etl8P6]. A special dataflow analysis
we applied isdemand-driven analysisvhich aims to reduce time and space overhead by only
collecting information that is needed [Duesterwald et #0297, Bodik et al., 1997b, Heintze and

Tardieu, 2001].

2.1.2.1 Dataflow Analysis and Static Fault Detection

Definition 2.8: Dataflow analysisdentifies a set of values from a program that can satisfy de-
sired data use patterns at program points. A dataflow asatgsi bentraprocedural in which only
information within the procedure is considered. The anslgiso can bénterprocedura) where
information across procedures is also collected. A datafloalysis can béorward, following the

direction of program executions, backward along a reverse direction of program executions.

Chapter 2. Background and Related Work 19

In a dataflow analysis, the program source code is typicalhyerted to some type of interme-
diate representation, for examptentrol flow graphs

Definition 2.9: A control flow graph (CFG)f a procedure is a grapB = (N, E), where the
nodes inN represent statements of the procedure and the eddesdpresent the transfer of the
control between two statements. Two distinguished neahtsy € N and exit € N represent the
unique entry and exit of the procedure. iterprocedural control flow graph (ICF&)f a program
is a collection of control flow graph$G;} such thatG; represents a procedure in the program.
Supposecall(s) represents the procedure called from a callsitd’ hen for each callsita in an
ICFG, there exists an edge fromto the entry of the procedureall(n), and also there exists an
edge from the exit o€all(n) to n.

Dataflow analysis can compute the following two fundamedi@ses of program properties.

Definition 2.10. A safetyproperty states that “bad things” never happentyenessproperty
states that “good things” should eventually happen.

For example, in compiler optimizations, “determining wiesta variable has a constant value
at a program point” is a safety problem, as it requires kngviiaefore reaching the given program
point, whether the variable has been assigned to a nonartnstlue. On the other hand, to deter-
mine whether a statement in a program is “dead”, we need tw kinthe defined variable(s) in the
statement would eventually be used later along executlmTs, we determine a liveness property.

Previous research shows that any program property can lbessga as a conjunction séifety
and livenessproperties [Alpern and Schneider, 1985]. Also, assumingognam always termi-
nates, liveness checking can be converted to safety clefRiare et al., 2002]. In the traditional
dataflow analysis, safety properties are determined usfognard dataflow analysis, while com-
puting liveness problems uses a backward analysis [Aho,et386].

Definition 2.11: A false positiven static fault detection is a warning reported by statidysia
which is not a real fault; false negativés a fault in a program, but not detected by static analysis.

False positives and false negatives are metrics to evahmferecision of a static fault detector.

An ideal fault detector should report zero false positivd aero false negative.

Chapter 2. Background and Related Work 20

2.1.2.2 Demand-Driven Analysis

Typically, dataflow analysis traverses the ICFG of a progtancollect program facts. One
of the important decisions is how the ICFG should be travktseefficiently collect the desired
information. For example, in a procedure, there are optadmerforming a breadth-first or depth-
first search. If an interprocedural analysis is conducteeket are also choices of followingtap-
downor bottom-uporder to traverse the call graph. Top-down analysis statteaoot of an ICFG
and traverses its leaves (callees) recursively, whilebotip analysis summarizes the information
from all the leaves and propagates it to the parents (callarsexhaustivedataflow analysis starts
at the beginning of a program, and terminates at the exitjrtfttgmation is collected without a
selection, as the analysis does not know which informasopotentially useful until the program
point that uses the information is reachddemand-driven analysis different from exhaustive
analysis in that the traversal of nodes in an ICFG is comiylelependent on the information that
is needed, instead of the structure of the ICFG, to reduce &ind space overhead [Duesterwald
et al., 1997, Heintze and Tardieu, 2001, Bodik et al., 1997b]

To achieve the goal, demand-driven analysis formulatesraadd to a set of queries. Driven
by these queries, the analysis only visits the parts of thgram that are reachable from where the
queries are raised, and collects information that is relet@resolve the queries. Guided by this
general paradigm, a concrete demand-driven analysis cdavadoped to solve specific problems.

Demand-driven analysis is potentially more scalable thdraestive dataflow analysis for sev-
eral reasons: 1) the analysis only visits the code reacHadte where a query is raised; 2) only
information that is useful for resolving a query is colle;t@) the analysis terminates as soon as
the resolutions of the query are determined, often when awsiyall portion of the code is visited;
and 4) the information computed for resolving different iige can be reused.

One of the earliest demand-driven analyses computed livabtas, dated back to 1978 [Babich
and Jazayeri, 1978]. Over the 30 years, research in the aselgen focusing on the applications
of demand-driven analysis to solve various problems. Dehthiven algorithms have been ap-
plied for solving typical dataflow problems [Duesterwaldakt 1997], alias analysis [Heintze and

Tardieu, 2001], infeasible path computation [Bodik et 4B97b], value flow [Bodik and Anik,

Chapter 2. Background and Related Work 21

1998], range analysis [Blume and Eigenmann, 1995] and softwesting [Duesterwald et al.,
1996]. Experiments on a demand-driven copy constant peijmagframework report speedups
of 1.4-44.3 on 14 benchmark programs [Duesterwald et aB7/]19 The demand-driven alias
analysis was demonstrated to scale up to millions lines dédéleintze and Tardieu, 2001]. A
demand-driven analysis can be path-sensitive [Le and S2#@8, Bodik et al., 1997b] or path-
insensitive [Duesterwald et al., 1997], and forward [Lisland Lam, 2003] or backward [Bodik
et al., 1997b]. Generally, demand-driven analysis foll@anspposite direction of a standard data
flow analysis. For example, a forward iterative dataflow gsialcomputes equivalent information
as a backward demand-driven analysis for distributiveflimtaoroblems [Duesterwald et al., 1997].
The thesis is the first work that studies and evaluates thebdép of demand-driven analysis in

determining paths of various types of faults and their dati@ns.

2.1.3 Related Work on Fault Detection and Diagnosis

Static analysis identifies faults based on the patternsligdatentially manifest in the code. We
first introduce how faults are usually specified for statitedors. Next, we summarize the three
representative types of static techniques applied fortifyamg faults. We also present techniques
that further process or use the statically computed infionaincluding fault ranking and static

information guided testing and runtime detection.

2.1.3.1 Representing Faults for Static Analysis

For static analysis to identify a particular type of faulte Wwave to specify code patterns for
faults; that is, we should express to static detectors “wlbave mean by a fault?” Faults are often
represented using the following two fault moddigite automateandassertions Finite automata
are effective in specifying control-centric faults, i.eiplations of an enforced order of program
execution [Chen and Wagner, 2002]. An assertion based nigdielxible in that it can specify
fault conditions at any program point and express eitheax datontrol constraints about program

behavior. In static analysis, assertions are often expdessing annotations [ESC-Java, 2000].

Chapter 2. Background and Related Work 22

Besides using the two fault models, there are three othepapbpes to integrate fault patterns
in a static analyzer. A straightforward approach is to harde the safety rules in the analysis,
and construct individual static analyzers for each typeaaftffWagner et al., 2000, Brumley et al.,
2007]. A more general technigue is to first construct a gérmeralysis, and then write additional
extensions on top of the general engine to produce fauttfspdetectors [Hallem et al., 2002, Find-
Bugs, 2005]. There is also the approach that provides imstens$ rules of the code for static anal-
ysis; the assumption is that inconsistency implies a fatdigler et al., 2001]. Our work develops
specification techniques that express both control- aretckttric faults in terms of constraints at

program points. Analyses for a specific type of fault are muaticcally produced.

2.1.3.2 Three Types of Static Approaches for Detecting Faisl

Much research has been done for fault detection due to itsriapce. In Figure 2.3, we provide
a spectrum of fault detection and diagnosis techniquesdrsthte-of-the-art, static techniques in
the left, dynamic approaches in the right, and in the middie,show a set of hybrid tools, i.e.,
techniques that integrate both static and dynamic compgsn8mce our work is static, the focus in
this section is to present existing static techniques folt$aas well as their roles in hybrid tools.

Common static techniques for fault detection includedel checkingdataflow analysisand
type inference Model checkers were initially developed to verify smalksim spaces, such as
hardware or protocols. Recently, successes have been plisioea in model checking software.
For example, SLAM, a model checker developed by Microsaftcessfully identifies protocol
violations in device drivers [Ball et al., 2004]; MOPS regsosecurity violations in millions of lines
of code [Chen and Wagner, 2002]. Applied to software, motetkers first abstract software to
models such as push down automata (PDA) and also repressist daing finite automata (FA).
The software model (e.g., PDA) then is checked against FAdtential violations. If a violation is
discovered, a counter example is reported as the trace ab#tct software model. The biggest
challenge for software model checking is to manage the piatexplosion of the state space; that
IS, we need to build software models within a reasonableaizemeanwhile do not sacrifice much

precision. Also, current model checkers [Chen and Wagri2 2Henzinger et al., 2002, Visser

Chapter 2. Background and Related Work 23

Model Checking EXE, KLEE,
SLAM, Blast, MOPs, CUTE, DART
PathFinder .
Testing
Dataflow Analvsi Sage, Matrix,
atatlow Analysis PathImpact
ESP, Metal, Splint, MAGIC P
Saturn, Findbugs Runtime Monitoring
DSD U
Purify, Valgrind,
Type Inference Eraser
CCured, CQual Dynamic for static Static for dynamic -
...... Diakon, Perracotta RICH, PQL
Detection
Diagnosis
Ranking Fault Localization
Z-rank, Aware Delta-Debugging,
Tarantula
Localization Value Replacement
Trace Comparison
Static Dynamic

Figure 2.3: Static Analysis for Fault Detection and Diagsos

et al., 2000] are only able to identify control centric faudtuch as typestate violations. It is unclear
whether we can extend model checkers to handle a more vafiéults.

Dataflow analysis is another category of fault detectiohnéques. Dataflow analysis traverses
a program and collects the information to determine whedhault pattern is matched. Used with
techniques such as symbolic evaluation and constrainingpldataflow analysis has shown to be
effective in detecting many types of faults [Das et al., 2008dBugs, 2005, Evans, 1996, Xie
and Aiken, 2007, Hallem et al., 2002]. Path-insensitiveafliav analysis merges information at
the program points, and the analysis is fast but imprecisari§ 1996, FindBugs, 2005]. The
techniques developed in this thesis are based on an integuical, path-sensitive dataflow analysis.
We give a detailed discussion on path-sensitive dataflolysisan Section 2.2.

Type inference has also been applied to detect softwartsfalihe idea is to develop a set of
typing rules as fault patterns. A type inference is perfatrtee determine whether a violation of
the typing rules can occur in the code; if so, a fault is regmhrtThis technique has been applied

to C programs for detecting memory errors [David and Wagg@@4, Necula et al., 2005] and

Chapter 2. Background and Related Work 24

integer faults [Brumley et al., 2007]. However, modelinglfa using typing rules is not always
straightforward, which restricts the types of faults thattially can be applied. Also, type inference

algorithms tend to be conservative, which can lead to masg faositives in the fault detection.

2.1.4 Fault Ranking and Localization

Static analysis potentially produces a large number of ingm Fault ranking and fault lo-
calization, shown in the left corner of Figure 2.3, are the sutomatic techniques developed to
process statically reported warnings.

Fault ranking aims to prioritize real and important fautisgtatic warnings. Often, many factors
can indicate the importance of a warning, such as the contpleixthe code where the warning is
reported or the feedback from code inspectors. RutketLdd. developed logistic regression models
to coordinate these factors [Ruthruff et al., 2008]. Kreeiteet al. observed that warnings can
be clustered in that either they were all false positivesllaral faults. Thus diagnosing one can
predict the importance of other faults in the cluster [Kregleet al., 2004, Kremenek and Engler,
2002]. Heckmaret al. identified alert characteristics and applied machine lagrtechniques to
classify actionable and non-actionable static warningsckthan and Williams, 2009]. Compared
to the above works which are all based on empirical obsemstiwe compute fault correlations,
and statically group and order faults based on the inhermmsadity between faults, and thus is
generally applicable.

Research in fault localization aims to automatically idfgnthe root cause of faults. Static
analysis often reports program points where the stati@timis are detected. However, the actual
cause that leads to the violation can be far from where tHatibo is observed. The only work we
found for localizing root causes for static warnings is bail model checkers. It finds statements
that occur in the faulty traces but not in the correct oneskasdylroot causes [Ball et al., 2003].
The techniques are imprecise, because only a limited nuailoerrect traces can be generated and
compared, and the statements that occur on the faulty thatesbsent from correct traces are not

necessarily problematic.

Chapter 2. Background and Related Work 25
2.1.4.1 Use of Static Information in Hybrid Tools

In the middle of Figure 2.3, we use a three-dimension coatdinto summarize the three po-
tential ways a static and a dynamic analysis can integratehd first two approaches, static and
dynamic analysis are first performed separately, and ind¢bersl stage, the information gener-
ated from one analysis is then supplied to another. For ebrRerracotta has been applied to
dynamically infer API protocols [Yang et al., 2006], whicredhen used by ESP [Das et al., 2002]
to find violations in software. In an opposite direction,tistanalysis is first applied to pinpoint
program points where faults potentially occur; the infotiorathen is used to guide runtime detec-
tors [Brumley et al., 2007] and testers (including test ingeneration and testing) [Csallner and
Smaragdakis, 2006].

In the third category of hybrid tools, static and dynamiclgsia are performed interactively. An
important application is to generate test inputs that eieeauargeted path [Cadar et al., 2006, Sen
et al., 2005, Godefroid et al., 2005, Cadar et al., 2008]. pkasentative technique is concolic test-
ing [Sen et al., 2005, Xu et al., 2008, Burnim and Sen, 2008¢ohcolic testing, the program under
test is concretely executed and symbolically evaluatediis@meously. Instrumentation is inserted
to the program to collect the symbolic path constraints atde/updates during program execution.
The symbolic constraints are solved to generate test irtptgeting a new path. When symbolic
values cannot be collected, symbolic expressions are ifieajdby using the corresponding concrete
values.

The planes between the two coordinators in the figure inglitta further opportunities of in-
tegrating static and dynamic analysis. For example, DSOiegpgynamic inferences to help static
analysis find likely faults; the static information is themyided to test input generation to trigger
faults [Csallner and Smaragdakis, 2006]. Similarly, statformation also can be supplied to con-
colic testing tools to help further reduce the search sp¥ée.developed MAGIC, which applies
statically computed path information to guide concolidites[Cui et al., 2011]. Comparing to pro-
gram statements, the path information is more precise, ay wfathe program properties needed
for dynamic tools are only valid along some paths. We expeniiadly show that the path precision

brings in further efficiency for guiding dynamic testingdameanwhile the dynamic testing is able

Chapter 2. Background and Related Work 26

to confirm static results by exploiting the faults reportedtatic analysis.

2.2 Program Paths

Here, we introduce the background and related work thatedaéed to program paths.

2.2.1 Terminology Related to Paths

Definition 2.12 A pathis a sequence of statements in a program, starting at the @ntine
program, and ending at the exit of the programpath segmernis any subsequence of statements
on the path. Asub-path segmemf a path segment is a subsequence of statementspon

Definition 2.13. An input exercises a path, producing execution If no input can be found to
exercise the path, the pathiigeasible

Static infeasible path identification is an undecidablebfmm. Therefore, static analysis will
have imprecision: some of the paths identified as faulty tragtually be infeasible.

Definition 2.14: Path conditions also calledpath constraintsare a set of control predicates
that decide the execution of the path.

Intuitively, path conditions are conditions at branches thpath traverses. An execution would
follow a path if all the path conditions are satisfied at mmati In path-based program testing, we

construct program inputs that direct the executions to aetbpath.

2.2.1.1 Background on Path-Sensitive Analysis

In dataflow analysissensitivitydescribes how the information is handled during the tralers
of a program. It is an important measure to distinguish aigltechniques with regard to their
precision.

Definition 2.15. Path-sensitivityspecifies whether a dataflow analysis collects the infoomati
with the consideration of program pathath-sensitive analysiistinguishes the information col-

lected along different paths.

Chapter 2. Background and Related Work 27

Path-sensitive analysis incorporates flavors of dynamédyars in that it simulates the execu-
tions potentially invoked at the program runtime. As a reqdth-sensitive fault detection is more
precise and able to provide guidance for fault diagnosi$ wisequence of executions that lead
to a fault. Meanwhile, since the technique is static, patisitive fault detection does not lose the
advantages of traditional static analysis, includingyeaaporting of faults as well as a full coverage
of program paths and the input space. In path-sensitive datiéction, program facts used to de-
termine faults are collected based on paths, and never thatgke joint points of program control
flow. Since not all statically traversed paths can be exeécaté¢he runtime, a precise path-sensitive
analysis would further remove identifiable infeasible pathmore accurately model dynamic pro-
gram behavior.

Besidegpath-sensitivitythere are alsfiow-sensitivityandcontext-sensitivity

Definition 2.16. Flow-sensitivityspecifies whether the order of the statements is considered
in a dataflow analysisFlow-insensitiveanalysis collects information from a call graph instead of
control flow graphs, and the information is collected froragadures without considering the order
of the statements. That is, in a flow-insensitive analysis,information found can be true at any
program point in the procedurélow-sensitive analysjon the other hand, takes the order of the
statements into consideration, and thus the effectiveoeds information is associated with the
program points of the procedure.

Definition 2.17: Context-sensitivitgpecifies whether the call history is considered in dataflow
analysis. Context-sensitivanalysis collects information at program points with thesideration
of the callers. Global side effects are also consideredanttie values of globals are evaluated in
the context of a call history.

Path-sensitive analysis considers the order of staten@rdsthus is flow-sensitive. Path-
sensitive analysis can be context-sensitive or contesdrigitive. An interprocedural path-sensitive
analysis records a real call history, and thus is contexdites; however, a summary based inter-
procedural analysis can use the path information from phe®s in a context-insensitive way.

Traditional iterative dataflow algorithms apply dataflonuations in a flow-sensitive fashion;

however, the algorithms apply meet and join operators t@en@formation, and thus are inherently

Chapter 2. Background and Related Work 28

path-insensitive. Context-sensitivity is determined bieiprocedural propagations in individual

dataflow analysis.

2.2.1.2 Related Work on Path-Sensitive Analysis

Path-sensitivity can be achieved using two types of tealmsig model checking and dataflow
analysis. In model checking, each trace on the software him@éxamined for correctness. Due
to the abstraction, a trace enumerated from the model is ofiethe exact path from the program,
and imprecision can occur. Applying dataflow analysis fahpadataflow facts propagated from
different paths should never be merged at any program pdifiien a path-sensitive analysis is
finished, we report the paths that match a specific fault pattor each of the technique, the search
of the state space can follow a systematic order, a randorplsanor a demand-driven fashion (see
Figure 1.2). Based on the above classification, we summtmzeepresentative path-sensitive fault
detectors in the state-of-the-art.

In Figure 2.4, the grey boxes are model checkers and theso#inerdataflow analyzers. From
top to bottom, we list the tools in chronological order. A thottom of the figure, we list the three
challenges a path-sensitive static analyzer generallydifaae, including precision, generality and
scalability. Since most of the tools are neither availableuse nor report empirical experiences for
usability, we are not able to compare their usability. Ifal oes not handle any of the challenges,
we use an arrow to connect the corresponding box of the cigaland the box of the tool.

In the figure, scalability means whether the analysis casHiniith a reasonable path coverage.
Most of listed tools manage to finish the analysis. Howevegfi uses a time threshold to ter-
minate with unexplored paths, and thus the technique daescate with the size of the software.
Generality requires the tool to handle a variety of faulzghsas both data and control centric faults,
without sacrificing scalability and precision. Tools sushfdeRCHER, ESP, Saturn and MOPS han-
dle the scalability only for a specific type of fault (eitherffer overflow or typestate violation), and
thus do not meet the requirement of generality [Xie et al@as et al., 2002, Xie and Aiken,
2007, Chen and Wagner, 2002]. Precision measures whetnantlysis would report high false

positive and false negative rates. For example, PRSS rdgpdmplored the search space for faults

Chapter 2. Background and Related Work 29

[Path-Sensitive]
/ \

[Dataflow] | Model checking I
/ I
Systematic [Random] [Demand-driven]

A4 v v
~
r { Prefix o [PRSS] [Marple]
| N
| ' A \\ AN
| ARCHER RN AN
| N
| . J\ N \\
| \ SN N
| s 1 \\ \\ \\
I ESP \ N \
| L J N \ ~ \
N AN
' ANERN AN N
I NN N \
! MOPS SN ~ \
| S~ N0\ AN \
| NN N N
AN X~ N
[N N N \
| SO NN~ AN AN
N ~
| Saturn SRR S\ S~ NN
I\ ~ SeaN ~< N N
| SN N R =~ N N
| (~ RN T—< \\\ \\
| Cal SN T——_ -~ N
a yStO ~o N A\ ~— ~< NN
| . \\\\\\ \‘\\\\\ \\\
e ———_ _ RRR\N I RN
T Ty
| — — — — — — — — — — — — — \
|—>l Scalability I l Generality I l Precision I

Figure 2.4: Path-Sensitive Analysis: the State-of-the-Ar

and can cause false negatives [Dwyer et al., 2007]. Noneesktfault detectors have shown the
scalability and precision to detect both data and contmofreefaults, as done in Marple.
A detailed comparison for path-sensitive dataflow analigsghown in Table 2.1. Undélype

of Faults we see that Marple is the only one that handles integersfaGlout of 7 tools integrate
specifications in the analysis. Metal [Hallem et al., 200#] &SP [Das et al., 2002] provide finite
automata for modeling the faults. Prefix [Bush et al., 2008]Jedops a way to specify library
calls. Saturn [Xie and Aiken, 2007] applies a logic programgrianguage to specify summary
information at the procedure calls and also inference fialesustomizing an analysis. According
to the best of our knowledge, none of the above six tools aatically generate a customized

analysis from specifications as Marple does.

Chapter 2. Background and Related Work 30

Tools Types of Faults Specification Path Traversal Precision Error
buf [int | control P exhaustive] path coveragd scalability path-sensitivity | modeling | Reports
Prefix X X model lib X given number| truncation heuristically merge ad-hoc path
Metal X automata X all summary intraprocedurally dataflow stmt
ESP X automata X all heuristics heuristically merge dataflow path
ARCHER || x no X . all _summary intraprocedurally Ilne_ar stmt
(timeout) simple solver relation
Saturn X summary X all summary intraprocedurally . limited stmt
compress Booleans bit-accurate
Calysto X no X configurable | compact summary| interprocedurally | bit-accurate | stmt
assertions demand-driven . integer,some| path
Marple x | % X relevant } interprocedurally .
flow-funcs caching str,containery segment

Table 2.1: Path-Sensitive Dataflow Analysis for IdentityiRaults

We also compare the tools in Table 2.1 with regard to the wiyspare traversed in the analysis.
The comparison on the three metrics unBath Traversakhows that Marple is different from the
other tools in that we apply a demand-driven algorithm, Wratlows us to explore only relevant
paths, instead of exhaustively along all program paths.

Precision has been compared on the degree of path-sdgsiviieved in the analysis as well
as the techniques used to model program facts. The comparsterpath-sensitivityshows that
Calysto and Marple both performed an interprocedural, -patisitive analysis. Summary based
approaches, such as Metal, Saturn and ARCHER do not constdgerocedural path information,
and are less precise. ESP applies a heuristic to selectftrengtion that is relevant to the faults,
while driven by demand, our analysis is able to determineuieédulness of the information based
on the actual dependencies of variables, achieving mospra. We model integer computation
and some operations of strings and C/C++ containers; cadpartbit-accurate modeling technique
accomplished by Saturn and Calysto, we are not able to hartdlger bit operations; however, the
trade-off is a faster analysis.

To report an error, Prefix, ESP and Marple give path inforamafor diagnosis, and Marple
provides the path segments that are relevant to a faulto@Adth the fault detection is path-sensitive,

other tools only report a statement where a fault occurs.

2.2.2 Use of Path Information

In the domain of detecting and diagnosing faults, path mftdion is generally used in two

ways: 1) to understand fault propagation, and 2) to genégatenputs to trigger faults.

Chapter 2. Background and Related Work 31

Research in fault propagation has been done for softwargisefChen et al., 2003, Ghosh
et al., 1998]. To understand the severity of certain typestatic faults, Ghoslet al. injected
faults in programs and dynamically triggered faults to obséheir propagation and impact along
the execution [Ghosh et al., 1998]. Chenal. discovered that a successful attack performs a
set of stages. The finite state machines can be used to madattivities at each stage [Chen
et al., 2003]. Similar to our research, both of the above war&ck the fault propagation along
the program paths. However, Ghastal. obtained fault propagation by running the program, and
thus the number of paths that could be explored was limitethéyrogram inputs, while Chest
al. manually inspected the exploited paths to understand matiagation. Besides for software
security, fault propagation is also studied for improvimgtware testing. The focus of one effort
was to discover how an error can potentially mask anotherirapdct testing coverage [Wu and
Malaiya, 1993]. Another study investigated how to propagat error to the output of the program
so that its consequence can be observed [Goradia, 1993].

Techniques for path-based test input generation have feeeral categories: 1) EXE [Cadar
et al., 2006] and KLEE [Cadar et al., 2008] symbolically execa program along program paths,
and generate inputs based on collected symbolic path edmtstr2) SAGE applies trace informa-
tion and symbolic path constraints to generate test inghtglgfroid et al., 2007]; and 3) DART
[Godefroid et al., 2005], CUTE [Sen et al., 2005], SPLAT [Xuaé, 2008] and CREST [Burnim
and Sen, 2008] are concolic testing tools, which use bottbslimand concrete values to generate
the test inputs. CREST [Burnim and Sen, 2008] proposes aesearch strategies to improve the
branch coverage for concolic testing. SPLAT [Xu et al., 2088dels buffer operations and deter-
mines at runtime whether a buffer overflow can occur at eafferbaccess; if so, SPLAT generates
atestinput to trigger the fault. The above techniques dlbestively explore program paths to gen-
erate test inputs, and thus the scalability is an issueintelas to give up when a certain number
of paths are executed.

The above related work demonstrated the value of prograhs i@t ensuring software security
and for improving the productivity of software testing. Hewer, among all the work, the path

information is either manually identified or obtained by &xng the program. In this thesis,

Chapter 2. Background and Related Work 32

we developed an approach to statically compute desired ip&timation related to faults. We
demonstrated that the automatically identified paths carsbd in testing to reduce the state space
for test input generation, and faults in a program can be marekly triggered in path-guided

testing [Cui et al., 2011].

2.3 Implementation Support and Benchmarks

In this section, we provide background related to our im@etation and experimentation. In
particular, we introduce our experience with the Microftfibenix infrastructure [Phoenix, 2004]
and the Disolver constraint solver [Hamadi, 2002], the txi@mnal tools we used to build Marple.

We also discuss how the benchmarks are selected for congustperiments.

2.3.1 An Overview of the Microsoft Phoenix and Disolver

Phoenix is a compiler infrastructure developed by Microf®hoenix, 2004]. The infrastruc-
ture consists of a Phoenix compiler and a set of libraries dha useful for building customized
compiler optimizations and static analysis. As shown iruFeg2.5(a), Marple is built as a phase-
plugin to the Phoenix compiler. Phoenix compiles functiohs program one by one via several
phases. Intermediate code is generated at phases. Durmglation, when an entry of a program
is encountered, e.g., main function, and when the Phoemt &nd produces avlIR (medium level
intermediate representation) for the function, Marplenimked. Marple first calls the Phoenix li-
brary to build the ICFG for the program and also to performlasanalysis; Marple then starts the
interprocedural, path-sensitive analysis. During anglyke Phoenix library is called from time to
time, e.g., to help simplify constraints generated in thalysis, or to find the information about
certain operands, shown as Figure 2.5(b).

Besides applying Phoenix to simplify constraints, we alsplyaan external integer constraint
solver, the Microsoft Disolver [Hamadi, 2002] for furtheardling unresolved constraints. Disolver
is written in C and was developed at the Microsoft researamnjiidi, 2002]. It takes any numbers of

integer constraints, and returns instances if the congsrare satisfiable; if no solutions are found,

Chapter 2. Background and Related Work 33

we consider that the constraints are never able to be sdtisfide interfaces between Marple
and Disolver implement the marshallings and unmarshallingtween the Marple and Disolver
constraints.

Program Source l

0B

Phoenix Compiler
H Compiler

Executable l

program representation
at each phase ICFG Pointer

Phoenix Compilation Phase Plugin: Marple | Loop Analysis Constraints | Marple

& for one function /‘

HIR

Phase Plugin: Marple
MIR Phoenix Disolver

LIR

(a) Marple: Phase-plugin to Phoenix (b) Phoenix and Disolver for Marple

Figure 2.5: the Interactions of Phoenix, Disolver and Marpl

2.3.2 Phoenix and Disolver for Marple

Here, we give in a detail how Marple is built with the suppdrPboenix and Disolver.

2.3.2.1 Intermediate Code

In Phoenix, there exist high-level, medium-level and |l@wel three types of intermediate rep-
resentations (HIR, MIR and LIR). During compilation, sceirmode of a program is converted to
HIR, MIR, LIR and finally binary executables. At each levéletcorresponding analyses and code
transformations are performed.

Marple analyzes the MIRs produced by Phoenix. MIR is proglamguage independent and
hardware independent. Loop structures in the code arerpegseTwo important differences of
MIR and the program source are 1) temporaries are introdteegulate the instructions. For

example, a source level instructian= b+c+d is translated to two MIR instructiortsenp=c add

Chapter 2. Background and Related Work 34

d; a = b add tenp. 2) instructions regarding pointer dereference and amwag®ipts are trans-
formed. For example, the C co@dgb] =" x’ is converted td enp = a subscript b; tenp =
"X" in the MIR.

In our implementation of Marple, we chose to analyze MIRst¥ow reasons. First, programs
written in different languages can be converted to MIR via fifont end of Phoenix. Therefore,
using MIR as a bridge, Marple is able to analyze programdewin C, C++ and C# code. Second,
in Phoenix, many of the typical analyses are implemented/fiét; by applying our analysis also

for MIR, we are able to reuse these off-the-shelf analyses, gointer analysis, in Marple.

2.3.2.2 Modeling Control Flow

Phoenix models the control flow of a program in the ICFG. Thadlehges of building an ICFG
are to handle irregular control flows caused by function {@os) virtual functions, signal handlers
and exceptional handling routines. In the version of ICF@suse, Phoenix handles exceptional
handling but not others. We manually resolve some of thetfomgointers and virtual functions.

Another important control flow analysis is the modeling @& khops. Phoenix provides the basic
information about loops such as the loop entries, exits,mwk edges. Occasionally (dependent
on the patterns of a loop), Phoenix is able to offer more \@&iaformation such agduction
variables Induction variables of a loop are variables that get insedaor decreased by a fixed
amount on every iteration of a loop. Using induction vamgble are potentially able to reason the

symbolic updates of a variable in a loop.

2.3.2.3 Modeling Memory: Resolving Aliasing and Handling Aygregates

Pointer analysis determines to which variables or storagations a pointer refers. It applies
before dataflow analysis to determine, for example, whethifinition to a variable occurs through
aliasing. Phoenix performs an intraprocedural, flow-d&@sand field-sensitive alias analysis, and
provides bothmayandmustaliasing information.

Scalarsare variables in the program that only can hold one valuelaBtgpes in C, for in-

stance, includént, char, andf| oat. Composite variables, also calledgregatesare variables

Chapter 2. Background and Related Work 35

that can represent a set of scalar values, e.g., arragiisge. At the MIR level, Phoenix is able to
model a large part of the structures and classes in C and Cartexample, it returnsr ee. node
for the elemennode present in the ree class, and reporta[i] as the(i+1)!" elements of ar-
ray a. When a structure is very complex, for instance, in the césauitiple layers of embedded
structures, Phoenix will not be able to identify the memldra structure. For example, it reports

a. b. unknown for the membesn. b. c. d.

2.3.2.4 Constraints and Algebra Simplification

In Marple, we construct integer constraints for determgrfiaults. In our implementation, the
constraints are represented using a small piece of Phoelfixchde. For example, we write code
_Val ue(a) >0 to denote the constraint that the valueaothould be larger than 0. As Phoenix
contains an algebra simplification system to optimize itfRMbde, by constructing constraints
using MIR, we can use this algebra simplification systemrigpsfy our constraints. It should be
noted that the capability of the Phoenix’s algebra simp@tfan system is limited. For example,
Phoenix is not able to process the conjunction or disjunctibmultiple constraints. In Marple,
we implement some of the algebra rules that Phoenix doesawat, fand if the constraints still
cannot be solved, we send them to an external constrairgrddigolver [Hamadi, 2002] for further

evaluation.

2.3.3 Challenges of Using External Tools

One of the greatest advantages of using Phoenix and Disslteeir reliability. By using the
off-the-shelf components, we saved a lot of implementagifforts. The tradeoff is that we needed

to handle additional challenges to use these tools:

e Challenges of working with ongoing projects: Phoenix andgdbier are two ongoing
projects, and the APIs they exported were changing overstims a result, Marple has
to be refactored from time to time to stay compatible withilees interfaces. Another prob-
lem is that bugs were introduced in the new versions, whielvgat us from using some of

our old benchmarks.

Chapter 2. Background and Related Work 36

e Challenges of working with closed source projects: BothdPitoand Disolver are closed
source with limited documentation, tutorials and suppo¥e had to face a high learning
curve at the beginning. After starting to use the tools, wenébthat the challenge is to
get around the internal bugs or to introduce some desirddri=a For example, we have
designed a study of parallelizing Marple for further pemi@ance improvement; however, we
found that some of the libraries in Phoenix are not reentrand we have to give up the
experiments. Also, because source code is not availableyevaot able to understand and
elaborate the capabilities of the analyses Phoenix previBier example, we cannot predict
when the induction variables of loops can be reasoned byridhoewhat types of aggregates

Phoenix surely handles.

e Challenges of using the Windows platform in academia: Irepitd be compatible with
Phoenix, Marple only analyzes programs that can be compietthe Windows compilers;
however, finding widely used Windows open source prograrbgashmarks is more difficult
than finding ones implemented for UNIX systems. As a resultaeeffort had to be spent
to port some of the benchmarks. For the same reason, we weableato use many of the

benchmarks that the communities use to perform comparigoerienents.

2.3.4 Benchmarks

To evaluate precision, generality, scalability and usighdf our techniques, we collected a set
of benchmarks, including the buffer overflow benchmarksnfiditser [Zitser et al., 2004], Bug-
Bench from Lu [Lu et al., 2005], SPEC CPUINT2000, legacy opearces of f npeg, putty,
vnc andapache, and a Microsoft game project McCommander [Microsoft Gareli®® Mech-
Commander2, 2001]. All of the benchmark programs are writteC or C++, and are managed
to be compiled by Phoenix. Benchmarks from Zitser [Zitseal£t2004] are manually constructed
programs. Each program consists of a snippet of faulty cetect®ed from the real-world appli-
cations ofBl ND, sendnai | andwu- ft pd. BugBench consists of a set of legacy programs, each of
which contains some known faults reported by testers ormatesers. By examining whether we

are able to identify these known faults, we can estimate dfse fnegative rate of our techniques.

Chapter 2. Background and Related Work 37

SPEC CPUINT2000 is used to compare with other tools for perdmce as well as the capability
of fault detection. The large deployed software are useddtuate the scalability of Marple. To
examine the usability and generality of Marple, we seletiedoenchmarks that are diverse in the
program paradigms, e.g., including both object-oriented procedure based programs, and also
various in programming styles, e.g., produced both via goeice projects and Microsoft in-house

development.

Chapter 3

The Value of Paths for Detecting and Diagnosing Faults

Although various path-sensitive analyses have been dexelfXie et al., 2003, Das et al.,
2002, Xie and Aiken, 2007, Chen and Wagner, 2002], a systeahatvestigation on the value of
program paths for software assurance is still lacking. Alamental reason is that path information
is expensive to compute and therefore precise path infosmé# not always available for large
software or for desired program properties.

This chapter answers the questions of why path informasamportant for determining and
understanding faults and what types of path informatiordasérable. In this research, we evaluated
two hypotheses regarding the characteristics of a fauliroed in a program.

Our first hypothesis is that paths with different fault pndjgs can traverse the same program
point. Along different paths, the transitions of programtas are distinctive; some lead to a fault,
while others do not. Even if the fault condition is observetha same program point along different
paths, the severity and root causes associated with edtmagtbe different. The diversity of the
paths implies that we need to track information along irdiial paths to detect faults, and we also
need to report faults based on paths, so that manual diagaondidynamic tools can take actions
accordingly to further process statically reported faults

Our second hypothesis proposes fault locality. Our insighhat although a whole program
path can be long, only a certain part of execution is actuabponsible for producing the fault.

By focusing on the most relevant information on a path, we s@are costs for determining and

38

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 39

diagnosing faults. In this chapter, we identify a six-eletrset of path information as most relevant
to a fault. We also explain how to represent and use thisnmétion in fault diagnosis.

In our experiments, we validate the first hypothesis by shgvtinat the precision of fault de-
tection can be improved if we distinguish information froiffatent paths, and the types of paths
we defined actually do exist in real-world programs. We algmeementally demonstrate that for a
set of given faults, the path segments that are responsibfadlts only traverse 1-4 procedures on

average, manifesting locality.

3.1 Program Points v.s. Paths in Fault Detection and Diagnas

Intuitively, a program fault is developed along a sequerfaexecution; when a particular pro-
gram point is reached, we observe that the program stateegtdimt does not conform to the
property as expected (see Definition 2.1). This abnormalition can manifest immediately at the
program point, e.g., causing the program to crash, or thelgted program state can continue to

propagate and manifest later along the execution.

3.1.1 Why Are Paths Important for Fault Detection and Diagncsis

Since the fault is produced after executing a sequence wtigtons rather than at a specific
instruction, we are not able to statically predict the famltonly matching a syntactic code pattern
to each program statement. For the same reason, we shouldeatsummary of path information
at a program point to determine faults. Instead, to achiguwecise fault detection, we need to track
the transitions of program states along individual pattdetermine if any violation can occur.

Using an example fronSendnai | - 8. 7. 5, we show that false positives can be avoided when
we distinguish information from different paths in faulttéletion. In Figure 3.1, thetrcpy() at
node 5 is not a buffer overflow. However, a path-insensitivalyzer would merge the fadtbuf =
xal loc(i+1),i>=sizeof (buf0)] from path(1—3) and[buf = buf0,i<sizeof (buf0)] from
path(1,2 4), and get the resutbuf = xal | oc(i+1) Vv buf = buf0] at node 5 (symboV repre-

sents the union of the two dataflow facts); siha&0 is a buffer with a fixed length, aral q_user

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 40

gets the content from a network package, the analysis faEntiode 5 as vulnerable. Whereas,
path-sensitive analysis can distinguish that is set to bebuf 0 only along path(1,2,4), while
along this path, the length af q_user is always less than the size lmif 0, and thus the buffer is
safe. In our experiments, our path-sensitive analyzer &ewf the impact of the bounds check-
ing at node 2 and successfully excluded this false positiesyever, a path-insensitive detector,

Splint [Evans, 1996], incorrectly identified it as a fault.

1

)

i = strlen (aq user)]

A

i >= sizeof (buf0)]

2

)

yes

\

3 [buf = xalloc (i+1)

—

[buf = buf0]4

/

strcpy(buf, a.q_user)]

i

/

5

)

Figure 3.1: An Example from Sendmail-8.7.5

Not only does detecting faults need a consideration of péihisalso reporting a fault should
be path-based. Many static tools report faults in terms efpfogram point where the property
violation is perceived. To understand the fault, the codpéator has to manually explore the paths
across the point. Among these paths, some might be safeeasibfe, not useful for determining
root causes. Even if a faulty path is found quickly, additiloroot causes may exist along other
paths. Without automatically computed path information daidance, we potentially miss root
causes or waste efforts exploring useless informatioremspcing an ad-hoc diagnostic process.

Consider a code snippet fromu-ftpd-2.6.2 in Figure 3.2. Thestrcat() statement at
node 8 is vulnerable to a buffer overflow; however, among ththg across the statement,

path (1,2, 4—6,8) is always safe, while patlil,2,4—8) is infeasible. Only patf1,3—8) can

Chapter 3.

The Value of Paths for Detecting and Diagnosingt$-a

41

'

1 resolved[0] == /* &&
resolved[l] =0

2

2‘ (ootd:l

‘ rootd \%

infeasible

wbuf %ﬂnerdble

yes —|

ﬁ(resolved)ﬂtrlen(wbuf

+rootd+1>sizeof(resolved)
yes

o lno /

6 rootd == 0

yes,_|

7 [strcat(resolve}\‘/”)

no

N\
strcat(resolved, wbuf)

{

Figure 3.2: Different Paths Cross a Buffer Overflow Statemen

overflow the buffer with &\0'. If a tool only reports node 8 as an overflow, the code inspenty

not be able to find this vulnerable path until the two useledbgpare examined.

In another example, we show that path information also cémdwrect the faults, as the root

cause of a fault can be path-sensitive; that is, more thamawtecause can impact the same faulty

statement and be located along different paths. Considexample fromSendnai | -8.7.5 in

Figure 3.3. There exist two root causes that are resporfeibtbe vulnerablest r cpy() at node 5.

First, a user is able to taint the strihggi n at node 5 throughw. pw_nane at node 10, and there is

no validation along the path. However, only diagnosing g0, 1 — 5) is not sufficient for fixing

the bug, as another root cause exists. Due to the loop at 6des the pointetbp might already

reference an address outside of the buffigr at node 5, if the user carefully constructs the input

for pw. pw_gecos. This example shows that diagnosing one path for a fix is medyed sufficient to

correct the fault. Paths containing different root causesiksl be reported.

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 42

void buildfname(char* gecos, char* login, char* buf)

{
4 N\
9 pw = finduser(buf,&fuzzy)] 1 char *bp = buf
) 7
10 | buildfname(pw.pw_gecos,) p = gecos
pw.pw_name, nbuf) L)
v
(A
3 *p =0 && *pl=*)
| &&Fpl=" && *p =% |
v
(A
4 *p == ‘&’
. + J
(N
5 strepy (bp, login)
]
v
(A
6 *op 1=\
A J
v
(A
7 bp++
. T J
v
4 2\
8 pH+
A | J

Figure 3.3: Path-Sensitive Root Causes

3.1.2 Path Classification

Knowing the importance of distinguishing paths in faultedion and diagnosis, we develop a
path classification to define the types of paths that are paligruseful. The classification includes
the following four categories of paths:

Infeasible; Infeasible paths can never be executed. A path that dtgticaetermined as faulty
but actually infeasible is not useful for understandingrib@ cause or for guiding dynamic tools.
Although we are not able to prune all of the infeasible pattesprogram statically, research [Bodik
et al., 1997b] showed that 9-40% of the branches in a progsdnibiecorrelations, and at com-
pile time, we are able to identify infeasible paths causedhiege branch correlations. Therefore,

detecting these infeasible paths statically is importamtchieve more precise fault detection.

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 43

Safe Faults are only observable at certain program points, ke call potentially faulty
points where violation conditions can be determined. For exapgiea buffer access, we can
determine whether a buffer overflow occurs. However, notyepath that traverses such a program
point is faulty. A proper bounds checking inserted beforeféelb access can ensure the safetyness
of the buffer. Paths that execute a potentially faulty pbuttalways guarantee to be safe regardless
of the input are calledafepaths.

Faulty with different levels of severities or distinct root causes When a fault occurs, the
severity of the fault, or the root cause of the fault may béedint along different paths, even the
fault condition is perceived at the same program point. &ticianalysis, we are able to collect
information to predict the severity of a fault, and also idigtiish paths that potentially contain
distinct root causes. For example, we are able to deterrhimeaverity of a buffer overflow by
knowing who can, and what contents are allowed to, write édbiliffer. A buffer overflow written
by an anonymous network user is certainly more dangeroustktigaone that only can be accessed
by a local administrator. A buffer overflow that can be mafaged by any user supplied contents
is more serve than the one written by a constant string. Besdtie severity, we can prioritize
the buffer overflow warnings reported by static analysis.di&inguish paths with different root
causes, we highlight statements along a path that are r@gpofor producing the fault. Two paths
with distinctive sequences of impact statements likelytaiondifferent root causes.

Don’'t-Know : Besides the above three categories, there are also patsewhfety cannot be
determined statically due to the limited power of staticlgsia, which we calldon’t-knowpaths.
We further classify them based on the factors that cause doertrknow. The idea is that instead of
ad-hoc guessing the values of don’t-knows and continuia@ttalysis with unpredictably imprecise
results, we record the locations of these don’t-knows a$ agethe reasons that cause the don't-
knows. In this way, code inspectors can be aware of them. #atioas or controlled heuristics
can be introduced to further refine the static results ifrédsiln addition, other techniques such as
testing or dynamic analysis can be applied to address theowrkwarnings. We summarize the

following five don't-know factors:

1. Library calls: The source of library calls is often not igafale until link time. We model a

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 44

set of library calls that are frequently encountered andtifleothers that might impact the

determination of a path as don’t-know.

2. Loops and recursive calls: The iteration count of a loopeaursive call cannot always be
determined statically. Loops can be classified into thréegaaies: loops that have no impact
on the determination of a fault, loops where we can reasan sinbolic summary related
to the determination of a fault, and also loops where we cadet@rmine their impact on the

fault. The third type of loops is considered as don’t-know.

3. Non-linear operations: The capacity of a static analigbighly dependent on the constraint
solver, since the program property under examination \eiflibally converted to constraints.
Non-linear operations, such as bit operations, result mlimeear constraints which cannot

be well handled by practical constraint solvers.

4. Complex pointers and aliasing: Pointer arithmetic oresalvlevels of pointer indirection
challenges the static analyzer to precisely reason aboutonye especially heap opera-
tions. Imprecision ofpoints-toinformation also can originate from the path-insensiivit
context-insensitivity or field-insensitivity of a partiew alias analysis used in the detection.
In our framework, we apply a pointer analysis integratedhim Microsoft Phoenix frame-
work [Phoenix, 2004] to resolve memory indirection andshg, and report those that can-

not be handled as don’t-know.

5. Shared globals: Globals shared by multiple threads or bifiprocesses through shared

memory are nondeterministic.

3.1.3 Experimental Results

Here, we provide two sets of experimental data to demomstratt: 1) the path types we
defined can be found in real-world programs and 2) a pathitsenanalysis is more precise than a

path-insensitive analysis.

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 45

3.1.3.1 Existence of Path Classification

We selected 9 benchmark programs from BugBench [Lu et ad5R&nd the Buffer Overflow
Benchmark [Zitser et al., 2004]. Each benchmark is shippi abug report, indicating where
a known buffer overflow is located. In the experiment, we tdie@vulnerable statement, and de-
termine the types of paths that cross the given statemenbufier overflow, we classify paths as
faulty, safe, don’'t-know and infeasible. Based on the svef a faulty path, we further distinguish
it asvulnerableor overflow-user-independenélong vulnerable paths, user inputs can control the
overflowed buffer, while along overflow-user-independeathpthe buffer only can be overflowed
with a constant string.

We apply Marple [Le and Soffa, 2008] to determine the typepaihs across a given buffer
overflow statement. Our experiments consists of two stepthd first step, we compute paths for
a known buffer overflow statement in a benchmark programaowitttonsidering infeasibility of
paths. We then integrated our infeasible path detectioruhedd check the impact of the infeasible
paths on the fault detection.

We summarize the identified path types in Table 3.1. Uiddh Typeswe list the number of
vulnerable(\Vul), overflow-user-independent (CNST), ddmow(UnK) and safe(Safe) paths com-
puted for the given buffer overflow. We mayksunder Columnnf if infeasible paths are detected
in the part of the code where the analysis for path classibicatan reach [Bodik et al., 1997b].
Our results show that all five types of paths exist in the berark programs. Six of nine programs
contain vulnerable paths, and two programs have don't-kpatlis due to the external library. One
program has overflow-user-independent paths. Seven oun@fnograms have safe paths. With-
out our paths detection, the code inspectors might expbdeemaths which will not be successful in
finding the vulnerability. For the prograbt-1.06 the total number of overflow-user-independent
paths is very large and we ran out of memory when we print thilespaActually, the number of
paths is not important because it is not necessary for a @inrer to inspect every path for diag-
nosis. In Marple, users can specify the number of paths tatmitied and then after fixing them,
they can check if vulnerable paths through the faulty statarstill exist.

In ColumnsvVul/Vul’, CNST/CNST'UnK/UnK’ andSafe/Safe'we use the notationto indicate

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a

46

Table 3.1: Different Types of Paths can Cross a Buffer OvwerStatement

Bechmark Size Path Types

(kloc) || Inf [VulMul' [CNST/CNST' [UnK/UnK' | Safe/Safe’
polymorph-0.4.0 0.9 yes 90/90 0/0 0/0 84/0
ncompress-4.2.4 1.9 yes| 288/288 0/0 0/0 2016/0
man-1.5h1 4.7 yes 16/16 0/0 0/0 24/24
gzip-1.2.4 5.1 no 1/1 0/0 0/0 0/0
bc-1.06 17.0 || yes 0/0 >50,000£50,000 0/0 >30,000£30,000
squid-2.3 93.5 || yes 0/0 0/0 8/4 4/2
wu-ftp: mapping-chdir|| 0.2 yes | 4320/4320 0/0 0/0 18624/18624
sendmail: ge-bad 0.9 no 48/48 0/0 0/0 648/648
BIND: nxt-bad 1.3 no 0/0 0/0 2/2 0/0

the path numbers after integrating infeasible path detecthmong the 9 programs, we identified
infeasible paths for 6 programs at the code relevant to thengfault. Using the infeasible path
information, the number of safe paths in three programs aedntimber of unknown paths in
one program are reduced. For example, dquid-2.3 4 out of 8 don’t-know paths are actually

infeasible. Diagnosing this overflow statement, we shoutdcbexploring the 4 infeasible paths.

3.1.3.2 Path-Sensitivity in Fault Detection

In this experiment, we compared the fault detection resefierted from Marple [Le and Soffa,
2008] and Splint [Evans, 1996], and studied the impact di4sansitivity on precision of detection
results. From our benchmark set, we found five programs #atbe successfully analyzed by
Splint, listed in the first column of Table 3.2. The first thege from BugBench [Lu et al., 2005],

and the last two are from the buffer overflow benchmark [Zigteal., 2004].

Table 3.2: Comparison of Splint and Marple

| Benchmark | Size(kloc)| Tm [Ts [(VUO)NTs | UNT. |
ncompress-4.2.4 1.9 24 | 14 1/11 71518
gzip-1.2.4 5.1 21 | 95 8/2 15/3/84
bc-1.06 17.0 110 | 133 2/4 72/28/105
wu-ftp:mapping-chdir 0.2 6 6 4/0 2/1/0
sendmail:ge-bad 0.9 6 8 2/2 3/1/5

In Table 3.2, ColumiTg presents the total number of warnings Splint generatesufibehover-
flow. ColumnT,, gives the total number of statements where Marple foundttiepaths of vul-

nerable, overflow-user-independent or don’t-know go tglouComparing these two columns, we

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 47

discovered that even if we do not use any further techniquel as heuristics or modeling of
library calls to remove don’t-knows, Marple generated bessnings, except for the benchmark
nconpress-4. 2. 4. Splint reported 10 less warnings than Marple on this bemckrbecause it
missed 11 statements we identified as overflow. We manuajyeicted the warnings missed by
Splint, and found that these 11 overflows are all real bufferfbows and the first buffer overflow
consecutively causes the 10 other overflows on 3 differeffietsu

The second colum(V UO)NTslists the intersection of statements containing paths efftow-
input-independent and vulnerable reported from Marple thedoverflow messages generated by
Splint. The number before/" is the number of statements that are listed in both Splidtiarple
results, while the number aftey™is the total number of confirmed overflows generated by Marpl
but missed by Splint. Columd NT, compares our don’t-know séd,, with the warning set Splint
produced excluding the confirmed overflows, annotate® atn each cell, we present three num-
bers separated by™. The first number is the number of statements listed ibut not reported by
T{. The second number counts the elements in both sets. Thentlninber reports the number of
statements fronT{, but not inU. We present a summary of the data from the last two columns in

Figure 3.4.

A=(VUO)NT;
B=(VUO)—A
C=Un(Te—A)
D=T,—A-C

E=U—-(UNTy

Figure 3.4: Summary of Comparison

The diagram in Figure 3.4 shows that for the 5 programs list&@ble 3.2, Splint and Marple
identified a total of 17 common overflows (see &eh Figure 3.4), and Marple detected 19 more
flaws that Splint did not reporB). There are 38 warnings both reported by Splint and the don't

know set from Marple@), and thus these statements are very likely to be an overflbete are a

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 48

total of 202 warnings generated by Splint but not includedunconservative don’t-know sebj.
We manually diagnosed some of these warnings includingesél somnconpress-4. 2. 4 and
Sendnmai |, 10 fromgzi p- 1. 2. 4 and 10 frombc- 1. 06 that belong td; we found that all of these
inspected warnings are false positives. The number ofrstatts that are in our don’t-know set but
not reported by Splint is 99), which suggests that Splint either ignored or applied iséas to
process certain don’t-know elements in the program. In a swwnmary, our comparison shows
that Marple is able to find more faults than Splint and repessifalse positives.

Limitations. Path-sensitivity is not the only factor that can impact trecgsion of the analysis.
Therefore, we should not conclude that the 202 additiokalylifalse positives reported by Splint
are all due to path-insensitive analysis. We inspectedrabwarnings from this set, and found that

path-sensitivity is the factor that causes some of the fadsgtives, but not all.

3.2 Selecting and Representing Path Information

Besides distinguishing path types, we also identify infation on a path that is potentially
useful. We hypothesize that although a program path canrigg faults manifest locality and only
a sequence of statements along a path are actually reslgofwmilproducing the fault. We thus
should focus on the most relevant information along the@dar sequence for fault detection and

diagnosis.

3.2.1 A Set of Useful Path Information

We identify the following six elements as the most relevarddtermine and diagnose a fault on
a path:potentially faulty pointproperty constraintimpact poinf property impactshortest faulty
path segmerindpath conditions Path conditions are constraints that ensure the execwioid
follow the path (see Definition 2.14). The other five elememesabout faults, defined as follows.

SupposeP is a program property anglis a program path.

Definition 3.1: If there exists a program poistalong p, at which the violation of can be

observed, we sayis apotentially faulty point

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 49

P holds for pathp if and only if all executions op satisfy theproperty constraintsP is violated
if and only if there exists an execution pfthat does not satisfy th@operty constraints

Definition 3.2: Property constraintslefines conditions on the program state at the potentially
faulty point.

At source level, given a type of fault, we can pinpoint certgpes of statements as potentially
faulty points. For example, in a program, the potentiallyltia points for buffer overflow are
statements that implement the buffer access.

Definition 3.3: Program points on a path that contribute to the productfanfault areimpact
points

Definition 3.4: At an impact point, any change of the program state thatléde® to the pro-
duction of property constraints is callegoeoperty impact

Mapped to the program source, the impact points of a faultaastice of statements along
the path that determines the outcome of the property contstrat the potentially faulty point. To
statically determine a fault, we need to identify the typest@tements that potentially impact points
of a fault, and we also need to know changes of the program atdhese statements.

Definition 3.5: A faulty path segmens the path segment that contains all of the impact points
and the potentially faulty point of a fault. The faulty patbgment isshortestif any sub-path
segment is not a faulty path segment.

In Figure 3.5, we summarize the six elements. In the figBfeSis a potentially fault point;
i1, andi, are impact points; ansl, s, ands; are program states related to the property constraints
at (i.e., right before executing), i, andPFS The transition betwees, ands, is the property
impact ati;, and the transition betweep ands; is the property impact as. If a fault is determined
as the violation of a safety constraint, the impact pointsuo®defore the potentially faulty point
along the execution. The shortest faulty path segnpastbetween the first impact point and the
potentially faulty point, ana is the path condition on the path segment. If a fault is relatea
liveness constraint, the shortest faulty path segmenttigdam the potentially faulty point and the

last impact point, shown in the rectangle at the right coafehne figure.

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 50

Program Path

5. Shortest Faulty

Path Segment
3. Impact Point i SRR 5
6. Path c :
Condition !
4. Property
P Z Impact
v
iz ?2
1. Potentially v 2. Property
Faulty Point PES oot 53 Constraints

Figure 3.5: Identifying Useful Path Information: the SieRlents

3.2.2 Representing Path Segments Using Path Graphs

There potentially exists a number of faulty path segmentsreport these path segments, it
is not always feasible to exhaustively enumerate them. approach, we can select one path
segment to report a fault, randomly or based on the structiuagprogram, e.g., the shortest path
segment; however, the selected path may be a false posititep complicated to be understood
in fault diagnosis. Sometimes, multiple root causes cast @ong different paths, and we have to
diagnose more than one path to ensure the correctness okéise fdeally, we should specify all
the path segments reported from static analysis in a rapamn, so that the users can decide how

many or what path segments to use. We devekih graphgo serve the purpose.

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 51

Definition 3.6: Suppose we have a set of path segm&is{p;} on an ICFGG = (N,E),
wherep; = (nj1,Niz, ...Nik), ande;j = <nij , nij+1> € E. We denote the set of the statements on a path
segment ad\; = {n;j|1 < j <k}, and the set of edges along the patiEas- {gj|1 < j <k}. A
path graphfor a set of path segmen&is an annotated grapBs = (Ns, Es), whereNs = [JN; and
Es= UE;. Each edge of the graph is annotated, specifying which mathigin the edge.

pl

2 p2

I
I
I
1
1
1
3@ 3
1
)
]
o

I
I
8 8@ 5

Figure 3.6: Using Path Graph to Represent a Set of Paths:lidashare shared edges for different

paths

In Figure 3.6, we give an example, where a set of path segraeatshown in the left, and the
path graph that represents the set is shown in the right.Hfae path segments ang; : (1,2,3,8),
p2:(6,7,3,8), andps: (2,3,4,5). In the path graph, each edge is marked with a set of pathifident
cations. For example, only pafi contains edgél,2) but not others; thus path identificatign is
marked on the edge. Among the edges, e@8) shared byp; and ps, and(3,8) shared byp; and

p2. Thus, the annotations for the two edges are the set of twoigentifications. For each fault we
identified, we report a set of path graphs, each of which sgmrtea group of path segments of the
same type. For example, paths with different root causesegarated into different path graphs,

and we therefore can diagnose one path from a group to enstine eoot causes are considered

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 52

Table 3.3: The Length of the Path Segments Computed for an@@uéfer Overflow
Average Path Size

Bechmark # PP’ | # BB
polymorph-0.4.0 2.7/2.5| 19.0/19.0
ncompress-4.2.4 2.0/2.0 | 29.3/27.8
man-1.5h1 1.8/1.8 | 14.3/14.3
gzip-1.2.4 3.0/3.0| 5.0/5.0
squid-2.3 1.0/1.0| 6.7/6.8
wu-ftp: mapping-chdir|| 3.8/3.8 | 33.6/33.6
sendmail: ge-bad 2.0/2.0 | 35.5/35.5
BIND: nxt-bad 2.0/2.0 | 23.5/23.5

For each path graph, either the entry (liveness propertgxibr(safety property) is the potentially

faulty point.

3.2.3 Experimental Results

We provide the experiment data that demonstrate the facdtlity. In this experiment, we
took the 9 benchmark programs listed in Table 3.1 (see Se8tib.3), and computed the length
of path segments explored to determine path classificatonthe given overflow statement. In
Table 3.3, we report the average length of the path segmetesms of the number of procedures
(not including library calls) and the number of basic blotikat are traversed by the paths. Under
#P/#P’, we give the procedure counts before (the first number indhenm) and after (the second
number) the infeasible path module was invoked. Similarhyer#B/#B’, we report the block
counts before and after considering the impact of path idesgi

The experimental results show that the path segments thatebavant to a buffer overflow
contain about 1-4 procedures on average, manifestingtipdalmost of the benchmarks, the faults
can be determined by inspecting 2-3 procedures, which @aphiat an interprocedural analysis is
required to identify these faults. The experimental dasa ahow that the number of basic blocks
is not always proportional to the number of procedural callsspecting the results, we found
that the path segments computed $endmailare actually longer and more complex than the path
segments computed fgeip, though the path segments fraandmailare 1 procedure shorter than

the segments frorgzip. Comparing the results frotaP and# P’, and from# B and# B’, we found

Chapter 3. The Value of Paths for Detecting and Diagnosingt$-a 53

that the impact of path feasibility on the length of path segts is not significant.

3.3 Conclusions

We have shown in this chapter that path information is vdkifdr detecting and diagnosing

faults, particularly in the following three aspects:

e Path-sensitive analysis is more precise than path-irnsengn identifying faults, as the in-
formation needed to determine the property is not mergedaaiches, and the identifiable

infeasible paths can be removed;

e Path information guides the manual diagnosis to follow dalyity paths; meanwhile, paths

that differ in severity and root causes can be distinguishad

e Path segments provide for efficient fault detection andrubads.

Based on the potential scenarios of applying path informnative develop a path classification,
consisting of types of infeasible, safe, faulty with vasoseverities and distinctive root causes,
as well as don't-know. We also identify information on a p#tht is relevant to determine and
understand a fault. This chapter clarifies the goals andvatains of the thesis. In the next chapter,

we develop techniques to automatically compute path indbion identified above.

Chapter 4

ldentifying Faulty Paths Using Demand-Driven Analysis

In this chapter, we present an innovative technique thaically identifies the paths along
which a fault occurs in a program. We classify program patlas ¢ross a potentially faulty point.
To further focus the code inspectors’ attention, we reduottest path segments that are relevant to
a fault. The scalability of path-sensitive analysis is @dded using a demand-driven analysis. Our
insight is that code is not equally faulty over the softwakdéault can only occur at certain program
points, and only statements that possibly update the prsopenstraints of a fault are relevant to
the vulnerability. Therefore, in fault detection, our fgds on the path segments starting from the
entry of the program to a potentially faulty point. Only staents that can reach the potentially
faulty point should be examined to determine the fault.

In this chapter, we used buffer overflow detection as a casly g0 evaluate the techniques.
In our experiments, we reported a total of 71 buffer overflever 8 benchmark programs, 14
previously reported and 57 not reported overflows. We detratesl the scalability of our tool
through successfully analyzing a Microsoft online XBox gamith over 570,000 lines of code
within 35.4 minutes. We also compared our analysis with reé\wexisting detectors in terms of

precision of the fault detection and speed of the analysis.

54

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 55

4.1 The Challenges

First, we identify challenges of applying a demand-drivaalgsis to detect paths that contain

a particular type of fault.

4.1.1 Applying a Demand-Driven Analysis

In demand-driven analysis, a demand is modeled as a set nésgjugiginating at a statement
of interest. For example, applying a demand-driven armalisidetermine constants, the query is
whether a certain variable in the program is a constant. dtify branch correlation, the query is
whether the branch can always be evaluated as true or false.

Applying demand-driven analysis to detect faults, our leimgle is to determine the contents
and resolutions of a query which can report a fault conditlaraddition, we need to decide where
in a program a query should be constructed, in which diradtie query should be propagated, and
when the propagation of the query should be terminated. dégmendent on the contents of the
query, we need to identify the potential locations in thersewcode where the information can be

collected for resolving a query, and also the rules to upttegguery.

4.1.2 Achieving Path-Sensitivity

To achieve path-sensitivity in a demand-driven analysis, siil face some challenges of a
traditional path-sensitive analysis. For example, we rieedake decisions on how a branch, loop
and procedure call should be traversed, and how the low @®teils of the program source code
should be handled, such as pointer aliasing or library .calls

In addition, due to applying a demand-driven analysis, wéonger select the program paths
purely based on the structure of the program, and insteacheed to consider the dependency
relationships between the demands and the informatiotahl@iin the source code to determine
the path traversal algorithm. Accordingly, the strategiestorage and reuse of intermediate results
as well as the policies for terminating the analysis needdsggded, as they will also be different

from traditional exhaustive path-sensitive analysis.

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 56

4.2 An Overview of the Analysis

In this section, we provide an overview of our analysis. W& fintroduce the components and
workflow of the analysis. We then use an example to intuiieplain how the analysis works to

identify faults. Finally, we show how the analyzer can bedusepractice.

4.2.1 The Components and Workflow

4 ——— N

Vulnerability

Model
-

A

s ~
Preparation Demand-Driven Report Path
(ICFG, Alias, Inf) L Analysis Information
J

/

Source Code Path Segments

Figure 4.1: Four Components

The analysis takes program source code as input and repantsggments of faults. As shown
in Figure 4.1, the analyzer consists of four components. Hilgparationmodule implements the
initialization routines required before we perform a detidniven analysis for fault detection. The
preparation tasks include: building an ICFG for the prograetermining aliasing relationships
for the pointers, and identifying infeasible paths. Themand-Driven Analysimodule encapsu-
lates the fault detection algorithm. In the analysis, wd fitnstruct queries as to whether each
potentially faulty point in a program is safe. Starting frevhere the query is raised, we propagate
it forward or backward (depending on the type of fault we dgtalong the control flow of the
program. Dependent on the contents of the query, symbdii@saranges or taint information are
collected from the program source to resolve the query. Tiadyais terminates when the query
is resolved as safe, faulty, don’t-know or infeasible. Thénerability Modelmodule interacts
with the analysis to supply information about the type ofitfate aim to detect. Th&®eport Path

Informationmodule returns the analysis results based on a user redairadt.

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 57

4.2.2 An Example

In Figure 4.2, we use integer faults and null-pointer dessfees as examples to explain how
our analysis works to determine faults. In the figure, angetesignedness error occurs at node 11.
In the first step, the analysis performs a linear scan andifeeennode 11 as a potentially faulty
statement, because at node 11, a signedness conversias fucntegerx to match the interface
of malloc. We raise a querMalue(x)> 0] at node 11, indicating for integer safety, the valuexof
should be non-negative along all paths before the signedt@wersion. The query is propagated
backwards to determine the satisfaction of the constréihhode 10, the query is first updated to
[Value(x)*8> Q] via a symbolic substitution. Along brangB, 7), the query encounters a constant
assignment and is resolved to [1024)] as safe. Along the other bran¢8 6), the analysis derives
the informationx < —1 from the false branch, which implies the constrawvl{ie(x)}> Q] is always
false. Therefore, we resolve the query as unsafe. Path s¢gfn8,10,11) is reported as faulty.

Null-pointer dereferences also can be identified in a simitay. Here, our explanation focuses
on how infeasible paths are excluded for better precisiomur analysis, identified infeasible path
segments are marked on the ICFGjmsandip, shown in Figure 4.2. To detect the null-pointer
dereference, the analysis starts at a pointer dereferéscevdred at node 13. Querydlue(p)+#
NULL] is constructed, meaning the poinfeshould be non-NULL before the dereference at node 13
for correctness. At brancfi3,12), the query encounters the end of the infeasible path andd®co
ip1 in progress. Along one pat{i3,12 9), the propagation no longer follows the infeasible path
and thus the query drojis:. The query is resolved as safe at node 9 beceadlcimplies a non-
NULL p (assuming memory allocation succeeds here). Along the ptitd (13— 10), no update
occurs until the end dp, is met at node 10. The query thus recapsin progress. When the query
arrives at brancis, 4), the start ofp; is discovered, showing the query traverses an infeasittke pa
The analysis terminates. Similarly, the propagation relisranch(5,3) for traversal ofip,. The

analysis reports node 13 as safe for null-pointer dereferen

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 58

void foo (bool test, int input)

10

Figure 4.2: Detecting Different Types of Faults

4.2.3 User Scenario

Our analysis can be used both to detect and diagnose faudtsiser would like to diagnose a
given faulty statement, she first inputs the source code egukssts to analyze the faulty statement.
If the analysis returns a faulty path segment, the user tbkows the impact points highlighted
on the path segment to understand and correct the root c&@ugeprevious experimental results
show that a path segment for a fault typically contains ohlgud 1-4 procedures. After the fix is
introduced into the code, the analysis is run again to deternf all faulty paths are eliminated.
If not, it returns another faulty path to the user for furtdéagnosis. The process iterates until all

faulty paths are corrected.

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 59

If the user prefers to inspect static results to diagnoseils father than using the interactive
method, she can request to print path graphs that contairedlulty and don’t-know path segments
computed for a given faulty statement. Since each path gegptesents a type of paths, the user
thus can take a path segment from each graph and determifiecthe

If the analysis is used for detecting faults, it checks eauflergiially faulty point, instead of a

specified one, and reports paths of requested numbers fdetbeted faults.

4.3 The Wulnerability Model and the Demand-Driven Algorithm

The two important modules of the analysis are the vulngtabiiodel and the demand-driven
algorithm. In this section, we give a detailed descriptiortlee two modules and also explain their

interactions. We use buffer overflow as an example to eléanar design.

Table 4.1: Partial Buffer Overflow Vulnerability Model

POS& UPS Q: Constraints E: Update Equations
strcpy(a, b) Sizéa) > Len(b) Leri(a) = Len(b)

strcat(a,b) Sizéa) > Len(a) + Len(b) — 1 | Lerl(a) = Len(b) + Len(a)
strncpy(a, b, n) Sizda) > Mln(Len(b) n) Ei%g% N 2: tggg § _ fg\rf(b»
ali] ="t Sizda) > Leri(a) =

char a[x] N/A Sizda) =

char *a = (char*)mlloc(x) | N/A Slze{a)_x/S

r(x) : Sizéx) < Len(x)

4.3.1 The Vulnerability Model
The vulnerability model for buffer overflow is a 5-tupl?OSd,UPSy,r), where

1. POSis a finite set of possible overflow statements where queresaised,

2. dis the mappindPOS— Q, andQ is a finite set of buffer overflow queries,

3. UPSis afinite set of statements where buffer overflow queriesipdated,

4. yis the mappingJ PS— E, andE is a finite set of equations used for updating queries, and

5. r is the security policy to determine the resolution of thergue

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 60

POS Buffer overflow only can manifest itself at certain statertse such as where a buffer is
accessed. We call such program poiptssible overflow statement®ur analysis raises queries
from these points and checks the safety for each of them. &rano is free of buffer overflow if
no violations are detected on any paths that lead to thelpessierflow statements in a program.
We recognize that a buffer can be defined only through a slitingry call or a direct assignment
via pointers or array indices. We therefore identify thegees of statements as possible overflow
statements for write overflow. Table 4.1 presents a partibderability model for buffer overflow.

In the first column of the table, the first four expressionstgpes of possible overflow statements.
For the language dependent features, we use C. In the thklejotationLen(x) represents the
length of the string in buffex (including the null characték0'), Ler((x) indicates the length of the
string in bufferx afterx is updatedSiz€Xx) is the buffer size ok, Min(x,y) expresses the minimum
value among andy, andr (x) is the security policy to determine if a write to buffeis safe.

0: POS— Q: The mapping provides rules for constructing a query fronossjble overflow
statement in the code. We model the buffer overflow query émhegpossible overflow statement
using two elements. The first element specifies whether &batfcess at the statement would be
safe, represented as an integer constraint of the bufferasid string length. The second element
indicates whether the user input could write to the buffenatated as a taint flag. The second
column in Table 4.1 displays the query constraints for the fgpes of possible overflow statements
listed in the first column.

UPS To update a query, the analysis extracts information frosetaof program points. We
identify two types of sources for information, includingt&ments of buffer definitions and allo-
cations, and statements where we are able to obtain valuesges of the program variables that
are relevant to the buffer size or string length, such astaahgassignment, conditional branch and
the declaration of the type. In Table 4.1, the first four egpi@ns in the first column are buffer
definitions and the next two are buffer allocations, and #reyall members di PS

y:UPS— E: The mapping formats the information as equations so tleaaiialysis can apply
substitution or inequality rules to update queries. In thidtcolumn of Table 4.1, we display the

equations we derive from the correspondihBS The symboko is a conservative approximation

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 61

for buffers wheré\0' may not be present.

r: The last part of the vulnerability model is a security pplaefined for the analyzer to de-
termine if an overflow could occur. We say a buffer definitisrsafe if after a write to the buffer,
the declared buffer size is no less than the size of the sstimged in the buffer (see the last row
of Table 4.1). It should be noted that here we only specifyuiiger bound of the buffer and only
model write overflows, but the technique can be easily exérid also include the lower bound
and read overflow. Based on how a query conforms to this pdiwy query can be resolved as
safe, vulnerable, overflow-input-independent, infeasdn don’t-know. These answers categorize

the paths through which the query propagates.

4.3.2 Interactions of the Vulnerability Model and the Analyzer

Figure 4.3 shows the interaction of the vulnerability mogiadl the analyzer. The analysis first
scans the code and identifies the statements that match $kibleocoverflow statements described
in the vulnerability model. Queries are constructed frowsthstatements based on the rules de-
fined in the vulnerability model. The analyzer processeseayqa time. Each query is propagated
backwards from where it is raised along feasible paths tdsviire program entry. A set of prop-
agation rules are designed in the analyzer to guide thersalveAt the node where information
could be collected, the query is updated using the equatitingvaluator follows to determine if
the query can be resolved. If not, the propagation continifethe query is resolved, the search
is terminated. To present the computed path graphs, theeastw the query are propagated to
the visited nodes to identify path segments of certain tyaed statements for understanding root

causes are highlighted.

4.3.3 The Algorithm

We present the algorithm for computing buffer overflow path&lgorithm 1. We only describe
the intraprocedural analysis here. Our actual frameworkteyprocedural, context-sensitive and

path-sensitive. The side effects of globals are also mddele

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 62

The Vulnerability P
Mo del rogram

#

O
Raise _
ueries The Demand-Driven

Path-Sensitive Analyzer

Queries

i
H

Propagate no

ueries

!

UPS Path

Update Classification
/:IITE =
| Polic Evaluate || Represent Root Cause
y Queries Paths Information

Figure 4.3: Interactions of the Vulnerability Model and thiealyzer

The analysis consists of two phasessolve queryandreport paths In the first phase, the
analysis first identifies the infeasible paths and marks tharthe ICFG, at line 1 [Bodik et al.,
1997b]. The analysis at lines 2—15 examines the buffers frossible overflow statements one by
one and classifies paths that lead to the buffer access. éblithe query is constructed based on
the query template stored in the vulnerability modal Q. The analysis uses a worklist to queue the
queries under propagation, together with the node to whipleay propagates. At lines 6—13, each
pair of the node and query is processed.

To update a query, the analysis first determines if the nodkl émpact the buffer we are cur-
rently tracking. If so, we extract the information and fotritanto equations. Procedutdpdat eQ
at lines 16—20 provides details. At line 17, the analysisoanters a node that defines a variable
relevant to the current query, but the range or value of thigable is not able to be determined
statically. We use&et Unknown to record this unknown factor based on rukeslefined in the vul-
nerability model. Line 19 finds that nodeis a member oJPS and the analysis then computes
infofrom nodenin Col | ect | nf 0. Finally, Resol ve at line 20 consumes the information to update

the query.

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 63

Input : ICFG (icfg), Vulnerability Model (vm)
Output: four types of paths: safe, vulnerable, overflow-inputependent and don’t-know

Detect&MarkinfeasibleP(ic f g)
foreachs e vmPV Sdo
initialize each node n with Q[n] ={}
setworklist to {}
g = RaiseQ(s, vmQ); add pair§,q) to worklist
while worklist # 0 do
remove painfode i, query q) from worklist
UpdateQ(, g, vmsS, vmE)
a = EvaluateQ(, q)
if a € {Vul, OCNST, Safe, Unknown}
then add pair{, a) to A[q]; else
foreachn € Pred(i) do PropagateQ(, n, g)
end
ReportP(A[q])

© O N o U A~ W N PP

I el e =
w N P O

[N
N

end

[
a1

16 Procedure UpdateQ(node n, query g, ups S,rule E)
17 if nis unknown

18 theninfo = GetUnknown (n, g, E)

19 else ifn € Stheninfo = Collectinfo(n, g, E)

20 Resolve(nfo, q)

21 Procedure EvaluateQ(node i, query Q)

22 SimplifyC(qg.c)

23 if g.c = true then a = Safe

24 else ifg.c = false A g.taint = CNST then a = OCNST
25 else ifg.c = false A g.taint = Userinput then a = vul

26 else ifg.c = undef A g.unsolved= 0 then a = Unknown
27 elsea = Unsolved

28 Procedure PropagateQgode i, node n, query Q)

29 if NotLoop(i, n, g.loopinfo)

30 then

31 status= CheckFeasibility(, n, g.ipp)

32 if status !=Infeasible A !FindCachedQ(@, Q[n])
33 then addq to Q[n]; add pair(, g) to worklist

34 end

35 else ProcessLoop(n,)

Algorithm 1: Categorizing Paths for Buffer Overflow

After the query is updatedtval uat eQ at line 9 checks if the query can be resolved as one of
the defined answers. Lines 21-27 describes uat eQin a more detailSi npl i f yC at line 22 first
simplifies the constraints in the query. Based on the stdttieauery after the constraint solving,

four types of answers can be drawn. For example, at linei#6yown is derived from the fact that

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 64

the constrainty.c is undetermined and the unresolved variablegetsolved is empty. If a query
is resolved, its answer, together with the node where theygseesolved is recorded i q] (see
line 11). If the query cannot be evaluated to be any of aboue tigpes of answerg)nsol ved is

returned and the query continues to propagate at line 12.

Propagat eQ at line 28-35 interprets the rules we designed for propagdtie query through
infeasible paths, loops and branch@seckFeasi bi | i ty atline 31 checks if the propagation from
the current node to its predecessor encounters an infegsdth and thus should be terminated.
Fi ndCachedQ at line 32 determines if the same query has been computedebefd line 35, the
analysis processes the loop. We observe that when a quemng entobop, one of the following sce-
narios could occur: 1) the loop does not update the quernthenguery remains the same after each
iteration of the loop; 2) the query is updated in the loop dr@ddop iteration count can be symboli-
cally represented, e.g., lobpr (int i=0; i<c; i++) iteratesctimes; and 3) the query is updated
in the loop and the number of iterations cannot be simplyasgmted using integer variables. For
example, we are not able to express the iteration count éloibpwhi | e(a[i] '= "\\") using
integer variables. When the first type of loop is encountetteel analyzer stops traversing the loop
after it determines that the query does not change in the Idopdeal with the second and third
cases, the analyzer reasons the impact of the loop on the lpased on the update of the query per
iteration, and the number of iterations of the loop; sinarittitial query at the loop exit is known
(note our analysis is backwards), the analysis is able tqpobterthe query at the loop entry. In the
third case, we introduce a don’t-know factor to represeatitiration count and use it to compute
the query at the entry of the loop. If a loop contains multipéths that can update the query dif-
ferently, we cannot summarize the update of the query folotye. Therefore, we will traverse the
loop a fixed number of times (requested by the user), anddut® a don't-know factor to indicate
that the query update beyond the certain number of itemi®onknown.

If the user is only interested in obtaining one faulty palie &analysis terminates when the first
resolution of vulnerable or overflow-user-independene&ched. If the user would like to obtain
a classification of the paths across potentially faulty pdine analysis terminates when all the

resolutions of the query are reached. The paths the quesrées can be output. If the path graph

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 65

is requested, an additional phase has to be performed, sablime 14 inreport paths At this
phase, the analysis propagates the answers from the nodes vesolutions are obtained to the
nodes that have been visited in the analysis.

Optimizations for Scalability. We developed techniques to further speed up the analysis.
One observation is that queries regarding local and globtiets are propagated in a different
pattern during analysis. Queries that track local buffecs€ into a new procedure only through
function parameters or return variables, and the computédir local buffers often does not involve
many procedures. However, global buffers can be accessadybgrocedure in the program, and
those procedures are not necessarily located close on Ete. lié the worst case, the query cannot
be resolved until the analysis visits almost every procedur the ICFG, and the demand-driven
approach cannot benefit much.

To address this challenge, we develop an optimization named Our experience analyzing
real-world code demonstrates that although global vaabhn be defined at any procedure, the
frequency of the accesses in a procedure is often low, he.ptocedure possibly just updates the
variable once or twice. Our approach is that when we build@#&s for a program, we record the
location of the global definitions in the procedures. Sirtee dnalysis is demand-driven, we are
able to know before entering a new procedure the variablesterfest. If all variables of interest
are globals, we can simply search the global summaries attloedure, and hop the query directly
to the node that defines the unresolved variables in the gsidpping most of the irrelevant code.
This hoptechnique also can be applied intraprocedurally when welerter a complex procedure
with many branches and loops. Similar to the global hop, wereaord the nodes that define local
variables in the summary. Although the number of branch saeild potentially be large, the
number of nodes that define variables of interest often aively small. Therefore, guided on
demand, we are always able to resolve a query within a linmitedber of hops. In addition to hop,
we apply optimizations of advancing and caching as develbyeDuesterwald et al. [Duesterwald
et al., 1997].

Limitations. Although our framework introduces the concept of don’tnto handle the

potential imprecision of the analysis, there is still uo&able imprecision that could impact the de-

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 66

tection results. For example, we do not model control flowgdnted by signal handlers or function
pointers, and do not handle concurrency properties sudiieasdmemory. Another example is that
we use an intraprocedural field-sensitive and flow-semsilias analyzer from Phoenix [Phoenix,
2004], which is conservative. We also can miss infeasibtespfiom our infeasible paths detection

since identifying all infeasible paths is not computable.

4.4 Experimental Results

The goal of our experiments is to investigate the scalshalitd capabilities of our analysis for
detecting buffer overflow. We selected 8 benchmark progifaons BugBench [Lu et al., 2005], the
Buffer Overflow Benchmark [Zitser et al., 2004] and a Micrbdindows application [Microsoft
Game Studio MechCommander2, 2001]. All benchmarks arewedt code, and they all contain
some known buffer overflows documented by the benchmarkydess, which are used to estimate
the false negative rate of Marple. We examined the scatgbiliour analysis using MechComman-
der2, a Microsoft online XBox game published in 2001 with 37K lines of C++ code [Microsoft
Game Studio MechCommander2, 2001].

We conducted two sets of experiments. We first ran our anatyzr 8 benchmark programs
and examined the detection results. In the second set ofigygr®, we evaluated Marple using 28
programs from the Buffer Overflow Benchmark and comparedresults with the data produced
by 5 other representative static detectors [Zitser et @04R We applied the metrics of probability
of fault detection and false positives for comparison. Témults for these two sets of experiments

are presented in the following sections.

4.4.1 Path-Sensitive Detection

In this experiment, we ran Marple on every write to a buffes program to check for a potential
overflow. For each buffer write, we excluded infeasible paémd categorized paths of interest from
program entry to the possible overflow statement into safflow-input-independent, vulnerable

and don't-know types. We identified a total of 71 buffer ovesfs over 8 programs, of which 14

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 67

have been previously reported by the benchmark designer&amad not been reported before.
Among all vulnerable and overflow-input-independent wagsi Marple reports, only 1 message is
a false positive, which we confirmed manually.

We show the detailed experimental results in Table 4.2. @olBenchmarkKists the set of
benchmarks we used, the first 4 from BugBenaln,ft p, sendmai |, andBI ND from the Buffer
Overflow Benchmark, and the last XBox application MechComdesa2. ColumrPOSshows the
number of possible overflow statements identified in thesgrams. ColumiKnown Bugsecords

the number of overflow statements documented in the bengismar

Table 4.2: Detection Results from Marple
Known || Detected Bugs|| Path Prioritization|| Root Cause Info

Benchmark POS Bugs || Known|[New || V [O] U Stmt | Ave No.
polymorph-0.4.0 15 3 3 4 6 1 2 2.9 1.7
ncompress-4.2.4 38 1 1 11 8 4 12 3.9 1.0
gzip-1.2.4 38 1 1 9 7 3 18 4.2 1.7
bc-1.06 245 3 3 3 3 3| 108 7.1 1.0
wu-ftp:mapping-chdir|| 13 4 4 0 3 1 4 6.8 1.0
sendmail:ge-bad 21 2 2 2 3 1 6 6.5 1.2
BIND:nxt-bad 48 1 0 0 0 0 22 N/A N/A
| MechCommander2 [[1512]] 1 || 0 | 28 [[28/1[0] 487 || 94| 1.0 |

ColumnDetected Bugsummarizes our detection results. It contains two subcatur§ubcol-
umn Knowndisplays Marple’s detection of previously reported ovavo Comparing the results
from this subcolumn to the numbers listed underown Bugswe show Marple detected 14 out of
total 16 reported overflows. Marple identified 1 overflonBIfND as don't-know, because the anal-
ysis is blocked by some library call, and we missed 1 bug indEnmander2, because we do not
model function pointers. Subcolunitiewshows 57 previously not reported overflows we found
in the experiment. We manually confirmed that these overflanesactually real buffer overflows.
Many of these overflows are located in BugBench. For exammefound 11 previously not re-
ported overflows imconpr ess- 4. 2. 4 and 9 ingzi p- 1. 2. 4. Bugbench uses a set of dynamic error
detectors such as Purify and CCured to detect overflow [LU,e2@05]. These dynamic detectors
terminate when the first buffer overflow on the path is encenadt; therefore, other overflows on

the same path can be missed. We inspected the overflowseegorn Marple but not included

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 68

in BugBench, and we found that many of the new detected bafferflows are actually located on
the same path as other overflows, but not always involvederséme buffers.

The above results show that Marple not only identified moshefdocumented overflows, but
also discovered buffer overflows that have not been repttete benchmark designers.

ColumnPath Prioritizationpresents the results of our path classification. Subcolim@sand
U show the number of statements Marple reported in the progmatrcontain paths of vulnerable,
overflow-input-independent and don’t-know. We manuallpiected the vulnerable and over-flow-
input-independent warnings and identified 1 false positivdechCommander2. The false positive
results from the insufficient range analysis for the intgmeameters of aprintf (). Marple can
properly suppress false positives because we use a rglgineeise path-sensitive analysis, and we
successfully prioritized warnings that are truly buffeediows by categorizing the low confidence
results into the don't-know set. For the don’t-knows repdrin SubcolumrJ, we explain what
factors cause the don't-know and where the reason for thié-kioow appears in the source code.

Consider the benchmaltic- 1. 06 as an example to illustrate the don’t-know warnings we gen-
erate. Among a total of 108 statements that contain dorotskpaths, 43 are marked with the
factor of complex pointers, 28 result from recursive cdllsare caused by loops and 12 are due to
non-linear operations. There are also 8 blocked by libraflg @nd 6 dependent on environmental
factors such as uninitialized variables. One statemeriddoel labeled with more than one type
of don't-know factor, since paths with different don’t-kmdactors can go through the same state-
ment. The computed factors indicate that we can further ovgthe analysis by applying better
memory modeling to resolve pointers, trying to convert finaar constraints to linear constraints,
or annotating the library calls that affect the analysise Tésults also help in manual inspection to
follow up the don't-know warnings.

The above results validate our hypothesis that althougherears may be in the don’t-know
set, we are able to report a good number of buffer overflows véty low false positives.

The last column of the tablRoot Cause Inf@resents the assistance of our analysis for helping
identify root causes. In our bug report, we highlight stegata that update the query during analy-

sis. We count the number of those statements for each oveplitiwsegment. In Subcolun8tmt

O©CoO~NOOUA~WNPE

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 69

we report the average count over all overflow path segmerttseiprogram. The results suggest
that to understand an overflow, the number of statementghbaitser has to focus on are actually
less than 10 on average. We also experimentally validatgdtib root causes can be path-sensitive.
SubcolumnAve No displays the average number of root causes per overflowlfovalflow state-
ments in the program. If the result is larger than 1, theretrexist some overflow in the program
resulting from more than one root cause. We manually inspeaterflow paths and discovered 3
out of 8 programs containing such overflows, and the differeot causes for the overflow are all

located on different paths.

4.4.2 Buffer Overflow Examples from Results

Here, we show three buffer overflows from two examples whiehdiscovered but had not
been previously reported. The first example is frioeal. 06. In Figure 4.4, the overflow occurs
at line 8, since the number of elements written to buéfer_ar gv is determined by the number of
iterations of thenhi | e loop at line 6 and thef condition at line 7. However, the execution of both
thewhi | e loop and the f condition are controlled bgnv_val ue, a string that is set through the

environment variable at line 2.

charx env_argv[30];
env_value = getenv ("BC_ENV_ARGS");
if (env_value !'= NULL){
env_argc = 1;
env_argv[0] = "BC_ENV_ARGS";
while (xenv_value !'= 0){
if (xenv_value 1= ! "){
env_argv[env_argc++] = env_value;
while (xenv_value != !’ & xenv_value != 0)
env_value++;
if (xenv_value = 0){
xenv_value = 0;
env_value++; }

}

else env_value++; }

Figure 4.4: An Overflow in bc-1.06, main.c.

1
2

3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 70

char SourceFiles[256][256];
void languageDirective Yyoid) {
char fileName[128]; char fullPath[255];

while ((curChar!=""") & (fileNameLength<127)){
fileName[fileNameLength++] = curChar;
getChar ();

}

fileName[fileNameLength] = NULL;
if (curChar==-1) strcpy(fullPath ,fileName);

elseg{
strcpy (fullPath , SourceFiles[0]);

fullPath[curChar+1] = NULL;
strcat (fullPath ,fileName); }
if ((openErr = openSourceFile(fullPath))...)

}

long openSourceFile ¢harx sourceFileName){
strcpy(SourceFiles[NumSourceFiles], sourceFileNgme

}

Figure 4.5: Overflows in MechCommander2, Ablscan.cpp.

The second example in Figure 4.5 presents two overflows weifigel in MechCommander2.
Atline 13, two strings are concatenated into buffelr| Pat h: the stringf i | eNanme, with the possi-
ble length of 127 bytes, ar@bur ceFi | es[0] , whose maximum length could reach 255 bytes. Both
buffersfi| eName andSour ceFi | e are accessible to the user, eggt Char () at line 6 gets the in-
put from a file that users can access, to the glabalChar, which is then copied intbi | eName
at line 5. Therefore, given the size of 255 bytesffok| Pat h at line 3, the overflow can occur at
line 13 with the user input. This overflow further propagatethe procedurepenSour ceFi | e at

line 14, and makes buffeSour ceFi | es[NunBSour ceFi | es] at line 17 also unsafe.

4.4.3 Comparison with Other Buffer Overflow Detectors

We also compared Marple with other static buffer overflovedgirs using the Buffer Overflow
Benchmark developed by Zister et al. [Zitser et al., 200#{eirms of both fault detection and false
positive rates. The Buffer Overflow Benchmark contains altof 14 benchmarks constructed
from real-world applications includingu- f t pd, Sendmai | andBlI ND. Each benchmark contains
a “bad” program, where several overflows are marked, and r@gmonding “ok” version, where

overflows in the “bad” program are fixed. Zister et al. evadddive static buffer overflow detectors:

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 71

ARCHER, BOON, UNO, Splint and PolySpace (a commercial toalth the Buffer Overflow
Benchmark. The results show that 3 out of the 5 above desecport less than 5% of the overflows
in the benchmarks, and the other 2 have higher detectios, rbté the false positive rates are
unacceptably high at 1 false positive in every 12 lines ofecand 1 in every 46 lines of code.

The results of the evaluation have been plotted on the ROCefRer Operating Characteristic)
curve shown in Figure 4.6 [Zitser et al., 2004]. Tyraxis p(d) shows the probability of detection,
computed by the formul&(d)/T(d), whereC(d) is the number of marked overflows detected by
the tool andT (d) is the total number of overflows highlighted in the “bad” prag. Similarly, the
x-axis p(f) represents the probability of false positives, compute€bly) /T (f), whereC(f) is
the number of “ok” statements identified by the tool as anftmer andT(f) is the total number
of fixed overflow statements in the “ok” version of the prograithe diagonal line in the figure
suggests where a static analyzer based on random guessind veolocated. The uppermost and

leftmost corner of the plot represents an ideal detectdn 0% detection and 0% false positive

rates.
1 -¢ Ideal Tool
0.y Marple-B PolySpace
(0.42, 0.88) (0.5,0.87)
0.75 A
Marple-A
= (0.04,0.49) Splint
A& 0.5 (0.43,0.57)
0.25 -
BOON ROC Curve
4 'ARCHER, UNO
0 - T T T T 1
0 0.25 0.5 0.75 1

P(f)

Figure 4.6: Comparison of Marple with other five static deiesson ROC plot

We ran Marple over the Buffer Overflow Benchmark and rendergdesults ofp(f) andp(d)

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 72

Table 4.3: Benefit of Demand-Driven Analysis

Benchmark Size Blocks Procedures || WorkList Time
(kloc) || Total | Visited | Total | Visited || Max Size
polymorph-0.4.0 0.9 323 41 11 4 6 13s
ncompress-4.2.4 0.9 473 269 13 4 56 13s
gzip-1.2.4 5.1 1,218 482 42 17 110 26.2s
bc-1.06 17.0 || 3,035 | 1,489 | 119 77 677 3.5 min
wu-ftp:mapping-chdir|| 0.2 84 50 5 5 31 2.1s
sendmail:ge-bad 0.9 140 81 7 4 12 1.1s
BIND:nxt-bad 1.3 226 83 9 3 1 09s

MechCommander2 || 570.9 || 57,883] 25,069] 3,259] 1,689 [944 | 35.4min|

on the plot. In Figure 4.6, we computed two points for Marlar ple A is computed using only
overflow-input-independent and vulnerable warnings, &kibrple B is derived also using don't-
know messages, i.e., a don’t-know warning is counted badthGnd) as a detection and into(f)

as a false positiveMarple_A shows that we can detect 49% of overflows with a 4% false pesiti
rate. Marple B achieves better results both in false positive and negadites than PolySpace
and Splint. Our results indicate that Marple can more pedgidetect buffer overflows with high
detection and low false positive rates. We discovered ttiaagh the don’t-know warnings should
not miss overflows since they are computed conservativedyplbtained 88% detection rate. The
reason for this is that some overflows in the benchmarks argecaby integer errors or they are

read overflows, and we have not yet modeled these in our amnalys

4.4.4 Benefit of Demand-Driven Analysis

To evaluate the scalability of our analysis, we measureld thet time and memory of analyzing
8 programs. The platform we used for experiments is the DrektiBion 490, one Intel Xeon 5140
2-core processor, 2.33 GHz, and 4 GB memory. Table 4.3 Cobizaiists the size of benchmark
programs in terms of thousands lines of code. ColuBinsksandProceduresompare the number
of total blocks and procedures on the ICFG of a program,disteder Subcolumn$otal, to the
number of blocks and procedures Marple visited during ais|lglisplayed in Subcolumnasited
The results show that because we direct the analysis oriiyetodde relevant to buffer overflow, the

analysis only visited an average of 43% nodes and 52% proegdun the ICFG for 8 programs.

Chapter 4. Identifying Faulty Paths Using Demand-Driveralgis 73

ColumnWorkList Sizeshows the maximum number of elements in the major worklistnalysis.
The actual memory measurement reports that all 8 benchmegkems can be analyzed using less
than 4 GB memory.

ColumnTimereports the time that Marple uses to analyze each programredults show that
the analyses for all benchmarks can finish within a reasertabke, and we successfully analyzed
MechCommander2 within 35.4 minutes. We compared the pagnce of our analysis with two
path-sensitive tools, ARCHER [Xie et al., 2003] and IPSSiv$hits and Lam, 2003]. ARCHER
uses an exhaustive based search and achieves the speeti/nhgnd21.4 lines of code per sec-
ond [Xie et al., 2003]. IPSSA detects buffer overflows on tiEA&nnotated with path-sensitive
alias information; its average speed for 10 programs in #pe@ments is 155.3 lines per sec-
ond [Livshits and Lam, 2003]. Marple reports the speed ofyaiveg 254.7 lines per second over

our benchmark programs.

4.5 Conclusions

This chapter presents a demand-driven analysis that addréise challenges of path compu-
tation for faults. Both the discussions of the methodologyl experimental evaluation focus on
buffer overflow detection; however, we show in the next cegfhat the techniques are applicable
to detect other types of faults. The main contributions & thork include a vulnerability model
that enables the application of demand-driven analysislétecting faults, and a demand-driven,
path-sensitive analysis that achieves the practical gitand scalability. We experimentally show
that our analysis can detect faults that are previously eybdnted in the benchmarks, and 99% of
overflows reported by our tool are real buffer overflows. Caregd to the other tools in our study,

Marple achieves better precision, and is more scalabletactieg and reporting faults.

Chapter 5

Automatically Generating Path-Based Analysis

In this chapter, we present a novel framework which enalblestitomatic generation of scal-
able, interprocedural, path-sensitive analyses thattleser-specified faults. The framework con-
sists of a general algorithm, a specification technique gageherator that unifies the two to produce
an analysis. The key idea is to address the scalability ¢f-pansitive fault detection in a general
demand-driven algorithm and automatically generate thk-$pecific parts of the analysis from a
specification.

The framework is general in that it can handle both data- antfal-centric faults. Data-centric
faults require the tracking of variable values and rangesdé&tection, e.g., buffer overflow and
integer faults, while control-centric faults, such as staée violations, mainly focus on the order
of operations. Although different types of information aeguired to determine different types of
faults, there are commonalities in detecting them. Oughnss that 1) many types of faults are only
observable at certain types of program statements, and #)eopaths to such observable points,
only certain types of statements can contribute to ther&ilBy identifying suctpotentially faulty
points (see Definition 3.1), we can construct a query at those poegarding whether the fault
can occur and propagate the query along the paths for reswutSimilarly, givenimpact points
(see Definition 3.3), we know where to collect informatiorrégolve the query and determine the
fault. Therefore, by supplying potentially faulty/impaaints and the corresponding actions at the

points, we are able to guide a general analysis to locatedasieed faults.

74

Chapter 5. Automatically Generating Path-Based Analysis 75

Specification Analyzer
Parser
Language Generator

Demand-Driven Specification
Template Repository

(a) Five Components

Syntax trees Code modules Analyzer for

Spec
Spec Analyzer Demand-Driven
Parser
Generator Template

(b) Work Flow

Figure 5.1: The Framework

In our experiment, we demonstrate that the framework cantifgebuffer overflows, integer
faults, null-pointer dereferences and memory leaks. Thectien capability of the produced anal-

ysis is comparable with ones that are targeted for a paaticype of fault.

5.1 An Overview of the Framework

Our framework takes a user-defined specification and gerseimterprocedural, path-sensitive
analyses that identify path segments of the specified falilie framework is 1eneralin that it
can handle both data- and control-centric faults, andc2jable and precise that the analyses
report path segments where a fault occurs and only the catlestielevant to the faults is analyzed.

In Figure 5.1(a), we present the five components of the framrlevil heSpecification Language
consists of the syntax and semantics of our specificatiogulage. TheParserand theAnalyzer
Generatortranslate the specification and produce the parts of theysinahat target the speci-
fied fault. A general, path-sensitive, demand-driven algor is developed in th®emand-Driven
Templatewhich implements our design decisions for handling thélehges of precision and scal-
ability. TheSpecification Repositogonsists of specifications for common fault types. Rathan th

having users to specify these faults, the framework prevapeecifications for a set of fault types,

Chapter 5. Automatically Generating Path-Based Analysis 76

e.g., buffer overflows, integer faults, null-pointer dereihces and memory leaks. The user also can
define her own faults using the language provided by our freorie

As shown in Figure 5.1(b), given a specification, Baserfirst produces a set of syntax trees.
Based on the semantics of the specification, Ahalyzer Generatogenerates the code modules
that implement the rules for determining the specified aulhe code modules are plugged into
the Demand-Drive Templat® produce the analyzer. The specifications for multiplesypf faults
can be integrated to generate one analysis that handlesfaygats of faults. The advantage of such
an analysis is that we can reuse the intermediate resuytsfeasibility or aliasing information, for
analyzing different types of faults, and also explore theractions of different types of faults [Le

and Soffa, 2011].

5.2 Specification Language

The goal of specifications is to express both a fault and tfwrration needed to statically

determine the fault.

5.2.1 Fault Signatures and Detection Signatures

A specification consists dault signaturesanddetection signaturefor a type of fault the user
desires to detect. A fault signature defines “what is a faldtised on the definition of the fault (see
Definition 2.1), we construct the fault signature as pairpantially faulty points and property
constraints.

For example, a buffer overflow occurs at a buffer access whetength of the string stored
in the buffer is larger than the buffer size. To model thetfawvk identify the code signatures of
buffer read and write, and we define the relation of the stiemgth and buffer size as constraints.
Similarly, to model “an opened file has to be closed”, we findecsignatures of “open file”, and
construct a constraint as “a close has to follow the open”.

Besides the above two examples, we show later that our ehmrilso can model integer fault,

null-pointer dereference and memory leak. For those fabl$ we can model, the constraints

Chapter 5. Automatically Generating Path-Based Analysis 77

can be about the order of operations, which we calitrol-centric or otherwisedata-centricif
the constraints define relations of value or range of progvariables. Types such as missing a
statement or misuse of a variable do not belong to this catego

A detection signature contains a set of information needesthtically determine a type of fault.
We model the detection signature based on the dynamic falévior. At runtime, a set of changes
of program states at certain program points lead to the tieolaf the property constraints along
the execution. Thus, to statically determine the violatidrconstraints, we need to identify the
potentialimpact pointgsee Definition 3.3) in the program source and their corneging property
impacts(see Definition 3.4).

The constraints at a program point can be about the histofytore of an execution. For
example, it is the values generated along the executionhgdtite reaching the buffer access that
contribute to the buffer overflow. On the other hand, in theedipen-close example, we require that
for a “file open”, the corresponding “file close” should bedked in the future. Based on the types
of constraints, we know where the information that deteasithe resolutions of the constraints is

located. Therefore, we can choose either backward or forgtatic analysis for fault detection.

5.2.2 Grammar and Semantics

To express a fault signature and detection signature, wedmteattributesin our specifica-
tion to represent an abstraction of program statéributesare properties of program objects such
as program variables or statements. For instance, anu¢tridan be value, range, or typestate of
individual program variables, or relations of multiple izdnles. To express the fault and detec-
tion signatures, the key is to specify the constraints ardhtgrules using attributes of program
variables.

The specification language provides a set of commonly useduaes, as well as the operators
computation comparison compositionandcommand Each attribute takes a program variable(s),
and returns an integer, Boolean, or set. Based on the dothaicprresponding computation and
comparison operators can be applied. The command opedsfine common actions for updating

a constraint, e.g., symbolic substitution or integratiba oonstraint.

Chapter 5. Automatically Generating Path-Based Analysis 78

Specification— Vars VarList FaultSignature FaultSigListDetectionSignatureDetectSigList
VarList — Var”

Var — VarTypenamelist

VarType— VbufferVint|VanyVptr|...

FaultSigList— FaultSigltem(or FaultSigltem*

DetectSigList— DetectSigltem(or DetectSiglten"

FaultSigltem— CodeSignatureProgramPoin§_Constraint Condition
CodeSignatureProgramPoin¥/_Constraint Condition

DetectSigltem— CodeSignatureProgramPointUpdate Action

ProgramPoint— $LangSyntaxfCondition$LangSyntax$&&Condition

Condition— Attribute Comparator AttributéCondition|/[Condition|Condition&&Condition
Condition|| Condition

Action — Attribute:=Attributel A ConditionCondition— Action|[Action||Action&&Action |
Action || Action

Attribute — PrimitiveAttribute(var, ...)|ConstanfAttribute Op Attributémin(Attribute,Attribute)
[Attribute, Attribute]| —Attribute|!Attribute| Attribute o Attribute| [Attribute]

PrimitiveAttribute— SizeLenValud MatchOperandiTMaxXTMin|...

Constant— O|true|falsd...

Comparator-= | # | > | <|>|<|€|¢

Op— +|—|*[uU]n

Figure 5.2: The Grammar of Specification Language

The grammar of the language is shown in Figure 5.2. In thisngrar, we show how a set of
advanced language constructs can be composed from thecbastcuct of attributes. In the gram-
mar, terminals are highlighted: keywords use bold fonts, #e predefined constants, functions
and types are italicized.

A specification consists of three sections, shown as therfitstin Figure 5.2. In the first
section, we defingpecification variableThe specification variables represent the program objects
of interest, such as statements or operands. The/arlshows a variable is defined by a type and a
name. A set of built-in types are listed in the producti@Type The naming convention for each

type indicates to which category of program objects the t@bers. For example, a specification

Chapter 5. Automatically Generating Path-Based Analysis 79

variable that corresponds to a program variable has a tgpenst with aV, followed by a name
indicating the type of program variable suchirts

After the definition of variables, the grammar provides tdtf signatureFaultSigList and the
detection signatureDetectSigList FaultSigListconsists of pairs of potentially faulty points and
property constraints, using the keywadfor multiple pairs. SimilarlyDetectSigListists pairs of
impact points and property impacts. The constRicigram Pointprovides code signatures or/and
conditions to identify the types of program statements tarest. We use keywords Constraint
andL_Constraint to distinguish whether the fault is related to a safety overless constraint. The
productionConditioncompose constraints of attributes. The basic rule is to ecinmvo Attribute
with aComparator A condition is a Boolean. Therefore, a set of Boolean opesatan be applied.
Symbol| | is used to define the priority of the computation. The coms$tAction specifies the
actions that can be taken on attributes with the operatars fifr assignment and for integrating
conditions. An action can be conditional and only be perftravhen a certain condition is sat-
isfied, which we use the operates to specify. Attributesused to compos€onditionand Action
specify the properties of variables. In our specificatiorglzage, we define a set of commonly used
primitive attributes as terminals, shown in tReimitiveAttribute production. A set of operators

are defined to compose attributes from these primitivebaties (see the productioAdgtributesand

Op).

5.2.3 Specification Examples

We show a buffer overflow specification in Figure 5.3. Un#&aultSignature the keyword
CodeSignaturgrovides a set of program points where the buffer consgdiate to be enforced.
Three examples are the library calls sifcpy and memcpyas well as the direct assignment to a
buffer. We use5S_Constrainto indicate that the buffer overflow constraint is a safetystint. It
can be specified using a comparater’“on attributes ofSize(a) the size of buffei, andLen(b)
the length of the strin@. The role of variables such asandb is to locate the operands in the code
signature for constructing constraints.

UnderDetectionSignaturenve show a set of program points that potentially affect thfésh size

Chapter 5. Automatically Generating Path-Based Analysis

80

Vars Vbuffera, b; Vintd; Vanye;
FaultSignature
CodeSignature skrcpy(a, b)$
S_Constraint Size(a)Len(b)
or
CodeSignature rncpy(a, b, d)$
S_Constraint Size(@min(Len(b), Value(d))
or
CodeSignature & d] =e$
S Constraint Size()Value(d)

DetectionSignature

CodeSignature skrcpy(a,b)$
Update Len(a) := Len(b)
or
CodeSignature skrcat(a,b)$
Update Len(a) := Len(a)+Len(b)
or
CodeSignature & d] =e$ && Value(e)="\0’
Update (Len(a)>Value(d) Len(a)=o)
— Len(a) := Value(d)
or
CodeSignature dsstrlen(b)$
Update Value(d) := Len(b)

Figure 5.3: Partial Buffer Overflow Specification

or string length as well as the update rules for these progmints. The first pair says that after a
strcpyis executed, the length of the string stored in the first ameeqjuals the length of the string
stored in the second operand. The third pair introduces dittmmal command using the symbol
—. It says when a\0’ is assigned to the buffer, if the current stringans either longer thal,
Len(@)>Value(), or not terminated, Leaj=c, we can assign the string lengthaivith the value of
b. It should be noted that Marple integrates a symbolic suhisth module to automatically handle
integer computation, e.g., using ruldalue(x):=Value(y)or the program poink =y. The detection
signature provided in the specification only gives rules #ra potentially useful for determining
defined faults; in the case of buffer overflow, the rules amuabtring libraries and their semantics.

We also present a specification for detecting memory lealkksgare 5.4. The constraint for

Chapter 5. Automatically Generating Path-Based Analysis 81

memory leak is that a memory allocation is safe only if a frééhe memory is invoked in the
future. It is a liveness constraint and defines a controtrzefault. In the specification, we use
the attributeTypeState(ajo record the order of operations performed on the sectiomerhory
tracked bya. The L_Constraintsays that whemypeState(agquals 1, the leak does not occur.
Under DetectionSignaturethe first rule indicates that if &ee is called on the tracked pointer,
TypeState(adeturns 1, and the program is safe. The code signatures fr@setond to fourth rules
present the cases when the pointer is no longer associatedhwimemory: either it is reassigned,
or its scope ends. At these program points, we need to deterwinethera is the only pointer
that points to the tracked memory; if so, a memory leak ocairgerwise, we remova from the
reference seRRef(a)(the reference set contains a set of pointers that curreniht to the tracked

memory). The last rule in the specification adds the aliapwmigter to the reference set.

Vars Vptra,b; Vintc
FaultSignature

CodeSignature &l | oc(c)$

L _Constraint TypeState(a) ==
DetectionSignature

CodeSignature f$ee(a)$

Update TypeState(a) := 1
or
CodeSignature &nal | oc(c)$
Update |Ref(a)|==6-Ref(a) := {a} ||
|Ref(a)|==1-TypeState(a):=0)
|Ref(a){t1l,0—~Ref(a):=Ref(a)-{a}
or
CodeSignature &b$
Update |Ref(a)|==1 TypeState(a):=()
|Ref(a){t1—Ref(a):=Ref(a)-{a}
or
CodeSignature Isend(a)
Update |Ref(a)|==1 TypeState(a):=0
|Ref(a){:1—Ref(a):=Ref(a)-{a}
or

CodeSignature I#a$
Update Ref(a):=Ref(a)+{b}

Figure 5.4: Partial Memory Leak Specification

Chapter 5. Automatically Generating Path-Based Analysis 82

5.2.4 User Scenario

To specify a type of fault, the user first needs to identifyghegram points and the constraints
that define the fault. If the faults are data-centric, the gs@ reuse the detection signatures we
developed to compute buffer overflow and integer faults. idalthl rules also can be introduced
to document the semantics of library functions, or certgpes of operators in the program. If the
faults are control-centric, the user needs to identifyestents that potentially impact the order of
operations defined in the constraint. Intuitively, a finitécemata, FA, can potentially be converted
to our specification: the fault signature can be derived fitbm end states and their incoming
edges of FA, and the detection signature can be obtained thiamsitions between states in FA.
To extend Marple for supporting a new type of fault, in the starase, we need to add a few new
primitive attributes and operators. Our assumption is tiatrequired abstractions in the analysis,
i.e., attributes, are always limited to certain types, dnd the composition of the attributes that

specify different types of faults and their detection.

5.3 Demand-Driven Template

The above specifications can be integrated in a generat stadilysis for detecting specified
faults. To achieve the scalability and precision that apgieable for a variety of faults, we develop
an interprocedural, demand-driven, path-sensitive aisiy theDemand-DrivenTemplate, shown
in Algorithm 2. TheDemand-Driven Templatie a skeleton of a demand-driven algorithm, which
mainly provides query propagation rules that are generaidintifying different types of faults.
The skeleton has “holes”, where the fault-dependent infion is missing. In Algorithm 2, the
“holes” areMatchF Signaturet line 4 andMatchDSignaturet line 10.MatchFSignatureexamines
whether a given program statement matches the code signaitar fault; if it does, a query will
be constructed using the constraints in the fault signatdegchDSignaturaeletermines whether a
given statement matches the code signature for updatin@ry;dtiso, the query is updated. The

two "holes" will be filled in using the code automatically geated from thé\nalyzer Generator

Chapter 5. Automatically Generating Path-Based Analysis

83

© 0O N o g b~ W NP

N e O T =
N o o~ W N R O

18
19
20
21
22
23

24
25
26
27
28
29

Input : program @)
Output: path segments for faults

icfg = BuildICFG(p);AnalyzePtr(ic fg); IdentifyInfP(icfg);
set worklistL to {};

foreachseicfgdo

MatchFSignature(s)

/I holey: raise queryy, if smatched code signature
if gthenadd @,s) toL

end

while L # 0 do

remove ¢, s) fromL;

MatchDSignature (q,9);

/Iholex: update query, if smatched code signature
a=EvaluateQ(q,s);

if @ £Unresolved then add@,s) to A[q];

else

foreachn € Next(s) do PropagateQé,n,q;

end
ReportP(A)

Procedure EvaluateQ(query g, stmt n)

SimplifyC(qg.c, n)

if g.c = true then a = Safe

else ifg.c = false then a = Fault

else ifg.c = undef A g.unknown# 0 then a = Don’t-Know
elsea = Unresolved

Procedure PropagateQétmt i, stmt n, query Q)

if OnFeasiblePath{, n, g.ipp) then
ProcessBranchi, n, g)
ProcessProcedura(n, q)
ProcessLoopi, n, g)

end

and scalability for the analysis. Without loss of the geliigrave use a backward demand-driven
analysis as an example to explain this algorithm. As a petjoar stage shown at line 1, the analysis
first builds an interprocedural control flow graph (ICFG) the program. The pointer analysis is
performed to determine aliasing information and models+3/Gtructures. We also conduct a
branch correlation analysis to identify infeasible paths; discovered infeasible paths are marked
on ICFG [Bodik et al., 1997a]. The demand-driven analysislfdecting faults is invoked at lines 3-
16.

Algorithm 2: the Demand-Driven Template

Using Algorithm 2, we explain a set of design decisions we entmdachieve the precision

Chapter 5. Automatically Generating Path-Based Analysis 84

The analysis first performs a linear scan of statements ifGR& to match the fault signature.
If the match succeeds, a query will be returned and added trkdist at line 6. A query contains
the constraints of a fault, as well as in-progress inforamatracked by the analysis, such as to
which nodes it has been propagated.

After the demand is collected, a path-sensitive analysisiformed on the code reachable from
where the query is raised. At line 10, if a statement is matdbea detection signature, the query
will be updated, either via a general symbolic value sulistib, or by fault-specific flow functions.
For each update, we evaluate if the query is resolved at Bne 1

Lines 18-23 present the evaluation of the query. At line 18,finst simplify the constraints
using the algebraic identities and inequality properti&s.integer constraint solver is also called
to further determine the resolution of the constraint. @ering its performance overhead, we do
not invoke the constraint solver at every query update bat@infigurable frequency, e.g., when
the query is propagated out of a procedure. If the constrairnstrue, the safety rule always
can be satisfied; otherwise,fdlse a fault is discovered. We report the querydas’'t-knowif its
resolution is dependent on variables or operations thatwalysis cannot handle, e.g., a variable
returned from a library or an integer bit operation. The wsial terminates for the query if its
resolution is determined.

If the query is not resolved, we continue to propagate it tothfer information. At line 15,
Nextfinds the predecessors (in a backward analysis) or sucee@aax forward analysis) of the
current node.PropagateQat lines 24-29 integrates a set of propagation rules to kam@nches,
procedures and loops, where the path-sensitivity is adddesAt line 25, the analysis determines
whether the propagation encounters an infeasible pattot,|ime propagation proceeds.

When propagating through branches, the query is copieadotk point, each of which is ad-
vanced into separate branches. At the branch merge poariegdrom different branches continue
to propagate along the paths. We also check at the condibicarach, whether any variables tracked
in the constraints are dependent on the condition at thebya#rso, we integrate the condition into
the query.

An interprocedural propagation includes the following teases. If the beginning of the pro-

Chapter 5. Automatically Generating Path-Based Analysis 85

cedure is reached, the query is propagated to the callerviroich the query originally comes to
preserve the context-sensitivity. If instead, a proceldeaiti is met, we perform a linear scan for
the call to determine if the query can be updated in that &&B. only propagate the query in the
procedure if the update is possible.

ProcessLoopat line 28, integrates our strategies to handle loops. A&sitl loops into three
types, based on the update of the query in the loop. We prap#gaquery into the loop to deter-
mine the loop type. If the loop has no impact on the query, tlexygadvances out of the loop. If the
iteration count of the loop and the update of the query indlog can be symbolically identified, we
update the query by adding the loop’s effect on the originedrg Otherwise, we precisely track
the loop effect on the query for a limited number of iterasighased on the user’s request). If the
query is still not resolved, we introduce a “don’t-know” tegrecord the imprecision.

The analysis terminates when the resolutions for all theigsién the worklist are determined.
At line 17, we report path segments that are traversed byubeygThe path segments start where
a query is raised and end where the resolution of the quemtésmined. Along the path segment,
the constraints of a fault 1) either are always resolved lag favhich implies that as long as the
execution traverses the path segment, the fault can betddgor 2) report violations on some user
input, which says any execution that crosses the path segmih a proper input can trigger the

fault.

5.4 Generating Analysis

This section presents an algorithm that automatically gees the fault-specific modules,

MatchFSignatureandMatchDSignaturein Algorithm 2 from a specification.

5.4.1 An Overview of the Approach

A specification consists of three types of objects: 1) cogeatures, 2) constraints and updates
composed using the attributes and their operators; and 8) af keywords whose roles are to

connect the previous two objects to constitute the faultdeidction signatures.

Chapter 5. Automatically Generating Path-Based Analysis 86

The parser first replaces the code signatures encapsufated symbol $ with constraints on
the operands and operator of the statement. The specifiaatiius converted into a stream of
constraints and updates. Each constraint or update iscoateea syntax tree, whose leaf nodes are
attributes or constants, while the parents are operatothdachildren. During code generation, the
syntax tree is traversed in a bottom up order. At the leaf sode find the code that implements
the corresponding attributes from tatribute library. This library is developed as a part of the-
alyzer Generatoin the framework. It implements the semantics of a set ofgfiadd attributes. At
the parent nodes, we compose the code from their childresdb@sthe semantics of the operators.
The code produced at the root implements the semantics dfeldeWe further integrate the code
from syntax trees based on their relations, which are defiyatie keywords in the specification,

such agode signatureconstraintor update

5.4.2 The Algorithm for Generating Analysis

Algorithm 3 provides in detail the code generation procé&ss algorithm takes a user-provided
specificationspe¢ and produces the code modulesuditchFSignatureand MatchDSignaturgas
well as a repository of calls invoked by the code moduftes,

At line 2, we use the grammadrgrammar to parse a specification. Consider the first pair of
CodeSignaturendS_Constraintfrom the buffer overflow specification in Figure 5.3. As shown
in Figure 5.5, the parser introduces the attribQe(s)to represent the operator of statement
andSrci(s) for theit" operands. Specification variablesindb, which represent the locations of
operands, are replaced accordingly for both the code sigmaind the constraint. The constraints
are converted to syntax treesfor the code signature, amgifor the buffer overflow constraint. The
symbolo in the figure is a composition operator, which performs a fiemccomposition between
Srg andSizélLen

As shown at line 2 in Algorithm 3, after parsing, a set of paifsyntax treessiglist, are
returned. Each pair of the syntax trees represents eithelearent of fault signature or an element
of detection signature in the specification. The first tre¢him pair is produced from the code

signature, while the second represents the correspondimgjraint or update.

Chapter 5. Automatically Generating Path-Based Analysis 87

Input : Specification of Fault{pe¢
Output: Code modulesNlatchFSignatureMatchDSignaturgA repository of calls invoked by
code modulesR)

setfs list, ds list to {}; initialize R=""

siglist = Parse(.grammarspeg

foreachsig € siglist do

isnode= CodeGenforTree(sig. first, "n")

if IsFSginature (sig) then
raiseQ=CodeGenforTree(sig.second"n")
case="If isnodethen g=raiseQ"
add case to fs_list

nd

Ise if when(sig. first) then
updateQ=CodeGenforTree(sig.second"n", "q")
case="If isnodethen updateQ"
add case to ds_list

© 0 N O U A~ W N P

PR e
N B O
@ @

=
w

end

[N
N

end
MatchFSignatures GenSignature(fs list)
MatchDSignature GenSignature(ds list)

B e
N o oo

18 Procedure&CodeGenforTree(treet, arglistps, p2...)
19 alist = SelectAttrimp (t, |.attr)

20 ftree= ComposeFundalist, t, |.semantics

21 Append (R, ftree)

22 returnCreateCallSignature(ftree, p1, p2,...)

23 ProcedurdgsenSignature(codelistlist)
24 foreachcasec list do Append(case,code
25 returncode

Algorithm 3: GenerateMatchFSignature andMatchDSignature

Lines 3-15 in the algorithm generate the code modules fransyimtax trees. At line 4Zode-
GenforTreetakessig.first the syntax tree of the code signature, dntl, a variable nhame, and
generates a call that implements the semantics of the tree.réiurn variableisnode stores the
call signature, while the actual implementation of the saihcorporated in the code repositoR;,
SeeCodeGenforTreat lines 18-22 for details. At line 19, we select attributadiions from the
attribute libraryl .attr, which are composed based on the semantics of operas@santicsfrom
the syntax tred, Atlines 21 and 22, we add the generated functiori® and create a call signature
using n” as an actual parameter.

As an example, Figure 5.6 shows the actual code generatéuefopde signature in Figure 5.5.

The Step 1box displays the implementation for the attrib@e. The function returns the opcode

Chapter 5. Automatically Generating Path-Based Analysis 88

p
CodeSignature: $ strcpy(ab) $
L S_Constraint: Size(a) > Len(b)

Replace Code Signature ﬂ

-
CodeSignature: Op(s) = strcpy

\S_Constraint: Size(Src,(s)) = Len(Src,(s))

Produce Syntax Tree J L
CodeSignature, S_Constraint

Figure 5.5: Parsing Specification

for a statement from the program. The codeStep 2implements the semantics of a comparison
operator,=, which checks whether the value returns from the left leafenequals to the one from
the right node. In th&tep 3 the call signature is returned.

Figure 5.6 displays one example fienodeat line 4. The code foraiseQ and updateQalso
can be generated in a similar way. At lines 7-8, calls fisnodeandraiseQare integrated in an
I--Thenclause and added fs_list At lines 12-13,isnodeandupdateQare combined and added
to ds_list fs_list consists of cases where a code signature of a fault is matelmeda query is
raised, whileds_listconsists of cases where a code signature for updating thg gumatched,
and the query is updated. Using the two liggenSigatureproducesMatchFSignatureat line 16
andMatchDSignatureat line 17. The two code modules can be plugged directly imtcdiemand-
Driven Template at lines 4 and 10 in Algorithm 2

Based on whether the specification integréde€onstraintor L_Constrainf Nextand Propa-

gateQat line 15 in Algorithm 2 will be instantiated using a backdar forward analysis template.

Chapter 5. Automatically Generating Path-Based Analysis 89

Step 1. find the function that
Tree A: Code Signature implements the semantics of Op

) int Op (statement t
Q C._Syntax()
return t. opcode

1 [Op] [strcpy]
Step 2: construct a functlon that
implements the semantics of node 2

bool IsNode (statement t)
if (Op(t)=="strcpy”)
return true;
else return false

IsNode(n

TN 0 =g (¢ T.

Step 3: create the call s1gnaturew

Figure 5.6: Generating Code from Syntax Tree
5.5 Experimental Evaluation

We experimentally evaluate our framework to demonstraaettie analysis we produced can
identify multiple types of faults, and the scalability anegision of our detectors are comparable

to manually constructed ones and those that only analyze $pecific type of fault.

5.5.1 Experimental Setup

In the experiments, we generate an analysis that can igdmtifer overflows, integer trun-
cation/signedness errors, null-pointer dereferencegrardory leaks. In our implementation, we
automatically generated code fgtatchFSignatureat line 4 in Algorithm 2. MatchDSignatureat
line 10 in Algorithm 2 is obtained via interpreting the sgieeition. The detection for the first three

types of faults applies a backward analysis, while the aimfjor memory leak is forward. The

Chapter 5. Automatically Generating Path-Based Analysis 90

analysis first performs an infeasible path detection, aed tfetects each type of fault one at a time.
We construct a benchmark suite, consisting of 9 C/C++ prograthe first five are selected
from BugBench [Lu et al., 2005] and the Buffer Overflow Benetnkn[Zitser et al., 2004], and the
rest are deployed mature applications. Among the nine progy eight contain 1-2 known faults,
which were either reported by users or discovered via staiadysis, runtime detection or manual
inspection. We estimate false negatives of the analysisbgking whether we are able to identify
these known faults. We also use SPEC CPUINT 2000 to comparmennory leak detector with

other memory leak detectors.

5.5.2 Detecting Multiple Types of Faults

In the first experiment, we run the generated analysis on then8hmark programs. We eval-
uate the effectiveness of the analysis using four metriegeation capability, false negatives, false
positives and the path information provided for diagnosis.

In Table 5.1, for each type of fault, we report the number afftmed faults under Columd,
the number of the faults that are missed under Colamhand the number of false positives under
Columnfp. For each program, we also give the length of the paths foidéetified faults, in
terms of the minimal and maximum number of procedures, shovder Columrp. Faults here are
counted as the number of statements where the constralatisis are found along some paths.
We manually confirmed the data in the table.

UnderBuffer, we show a total of 33 buffer overflows with 5 false positivéé&e do not miss any
known buffer overflow. Among the 33 identified, 26 are newlyodivered buffer overflows. The 5
false positives are all diagnosed as being on infeasiblespdts identification of infeasible paths is
undecidable, we cannot exclude all infeasible paths siticThe four programsyuftp:mapping-
chdir, sendmail:ge-badpolymophyandgzip have also been used before to evaluate our manually
constructed buffer overflow detector [Le and Soffa, 2008he Tesults show that the generated
detector is able to report all buffer overflows detected tefdJnderinteger, we report a total of
41 detected integer faults, 33 of which were not previousfyorted. We missed a fault fputty

because we do not model function pointers. Besides insififiihfeasible path detection, imprecise

Chapter 5. Automatically Generating Path-Based Analysis 91

pointer information is also a cause for false positives,civttéads to 1 false positive fapacheand
2 for ffmpeg We identified a total of 8 null-pointer dereferences. The fdentified fromapache
are cases where the pointer returned fromadlocfunction is never checked for NULL before use,
which is inconsistent with the majority memory allocatiaradled in the program. We missed two
null-pointer dereferences ffimpegas they are related to interactions of integer faults, whieldid
not model in this experiment. We also identified 2 memory sedkfromsendmail:ge-baénd the
other fromffmpeg where one cleanup procedure missed a member. For the leoatttoic faults
of null-pointer dereference and memory leak, we only repddtal of 3 false positives, compared
to 15 generated by the data-centric faults. Our inspectiows that the infeasible paths related to
the control-centric faults are often simple, e@4NULL, and thus easily detected by our analysis;
however, integer faults and buffer overflows are more likebated along an infeasible path that is

complex and not able to be identified.

Table 5.1: Detecting Multiple Types of Faults

Benchmarks Size Buffer Overflow Integer Fault Null-Ptr Deref Memory Leak
(Kloe) | d [mf[fp | p d[mf[fp] p dimf[fp] p dimf[fp] p
wuftp:mapping-chdir|| 0.2 4100|111 O - 0 - o - 1|0 - 0| - 0 -
sendmail:tTflag-bad || 0.2 0|0 |1 - 310|322} 0] -1]0 - 0 0 -
sendmail:ge-bad 0.9 4 10| 0] 14 0 - 0 - 2 -]1]0]13]1 0|44
polymophy-0.4.0 0.9 8|0 |0]| 14 O 2 - 0| - |0 - 0 0| -
gzip-1.2.4 5.1 10 0 | 2 | 1-35|/ 15| - | O |1l16(0| - | O 0 0
tightvnc-1.2.2 454 1 0| -]0 - 1100|130 - |0] - 0 0| -
ffmpeg-0.4.9pre 48.1 || O 0 - 6| 02111 2]|0|33]1 0|22
putty-0.56 60.1 || 7 2115 4| 1|1 |129¢ 0| - | 1] - 0 20 -
apache-2.2.4 26891 O 0 - 2(-12]12}|5|-|0]|13]|0 0

Summarizing the fault detection results from the table, demntified a total of 84 faults of the
four types from 9 benchmarks; 68 are new faults that were retiqusly reported. Inspecting
these new faults, we find that many of them are located aloagdime paths. As a result, the
dynamic approaches halt on the first fault and never find tbie e missed 3 known faults and
reported a total of 18 false positives for the detectionntyadue to the precision of pointer analysis
and infeasible path detection. Our experimental resultsaistrate that the generated analyses
are able to identify both control- and data-centric faulithweasonable false positives and false
negatives. The results for buffer overflow detection shdwas the capability of generated detectors

are comparable with manually constructed ones.

Chapter 5. Automatically Generating Path-Based Analysis 92

Path information about identified faults is also reportetie Tesults undep in the table show
that although the complete faulty paths can be very longyrfeauits, independent on the types, can
be determined by only visiting 1-4 procedures. The data fyaip and putty imply that although
in general, the faults were discovered by only propagatingugh several procedures, we are able
to identify faults deeply embedded in the program which €rb&e maximum of 35 procedures.
Without path information, it is very difficult for manual ipsction to understand how such a fault

is produced.

5.5.3 Scalability

To evaluate the scalability of our technique, we collectezikpental data about time and space
used for our analysis. The machine we used to run experingentains 8 Intel Xeon E5345 4-core

processors, and 16 GB of RAM. All of our experiments finisheshg memory under 16 GB.

Table 5.2: Scalability

Benchmark icfg Buffer Integer Pointer Leak
ptr,inf q | t q | t q | t q] t
wuftp:mapping-chdir|| 10.1s 13 | 71.4s 0 0 12 11s || O 0
sendmail:tTflag-bad || 12.3m 1 |28.8m 6 46.6m 12 | 17.3s|| O 0
sendmail:ge-bad 5.1s 32 4.7s 7 1.2s 44 43s || 2 3.2s
polymophy-0.4.0 1.8m 15 8.1s 3 6.4s 9 12s || O 0
gzip-1.2.4 251m | 39 | 185m| 82 709s 116 | 6.2s || 2 7.3s
tightvnc-1.2.2 219m || 21 | 549m || 1480| 183m || 847 | 1.6m || 27 | 3.4m
ffmpeg-0.4.9pre 49.8m || 307 | 88.1m|l 410 | 33.6m || 1970| 4.2m || 76 | 12.1m
putty-0.56 26.4m || 150 | 37.9m| 79 441m || 256 | 3.2m || 14| 24m
apache-2.2.4 102.8m|| 518 | 53.0m || 423 | 160.6m| 2730| 9.6 m || 21 | 8.2m

In Table 5.2, we first give the time used for preparing thetfdetection, including building
the ICFG, and conducting pointer analysis and infeasiblle gatection. We then list for each type
of fault, the number of queries we raised and the time useddtaction (Columng| andt). The
experimental data show that all the benchmarks are ableish firithin a reasonable time. The
maximum time of 160.6 minutes is reported from analyzapgchefor integer faults. Adding the
columns undeBuffer, Integer, PointerandLeak we obtain the total time for identifying four types
of faults. For exampleapachereports a total time of 231 minutes for fault detection, dreltecond

slowest isfmpeg which uses 137 minutes. The time used for analysis is n@yaveroportional to

Chapter 5. Automatically Generating Path-Based Analysis 93

the size of the benchmark or the number of queries raisecipribgram. The complexity involved

to resolve queries plays a major role in determining the dmdahe analysis. For example, the
small benchmarlsendmail:tTflag-badakes a long time to finish because all the faults are related
to nested loops.

Another observation is that the identification of contrehtric faults is much faster than the
detection for data-centric faults, as for the control-denfaults we no longer need to traverse
paths of loops to model symbolic update for the query. We atgice that, running on a general
framework, our buffer overflow detection is slower than thenomally constructed one reported in
Chapter 4. Besides the overhead of translating the spamficgenerality also impacts the speed of
analysis in an additional two ways: 1) in order to improvedeé&ction capability of integer faults,
null-pointer dereferences and memory leaks, we handle rdanit-knows reported by Marple;
after don't-know factors are resolved, some queries catiram propagating along the paths and
slow down the analysis; and 2) the optimizations we develapeChapter 4 targeted at detecting

buffer overflows are no longer used in the general framework.

5.5.4 Comparing Our Framework with Other Tools

In the second experiment, we analyze SPEC CPUINT 2000 usimgraory leak detector
produced from our framework. This benchmark has been useduiyple memory leak detec-
tors [Cherem et al., 2007, Clause and Orso, 2010, OrlovichRugina, 2006] for evaluation, and
we thus are able to get the data for comparison.

In the first and second columns of Table 5.3, 12 programs stelli and their sizes are given.
We compare three existing memory leak detectors with oulysisa The first two [Jeffrey et al.,
2008, Orlovich and Rugina, 2006] are static, and their tesuk displayed unddiool | andTool II.
Tool | applies a backward analysis. It first assumes thataodecurs at the current program point.
A memory leak is discovered if the collected information ttadicts the assumption [Orlovich and
Rugina, 2006]. Tool Il converts the detection for memonkléaa reachability problem using a
guarded value flow graph [Jeffrey et al., 2008]. Neither eftibols is path-sensitive; however the

impact of the conditional branch is considered in Tool Il.eThird tool is dynamic and used to

Chapter 5. Automatically Generating Path-Based Analysis 94

Table 5.3: Comparison of Memory Leak

size Marple Tool | Tool Il || Dynamic

CINT2000 (kKloc) || d [fp | time [[d]fp || d [fp traces
181.mcf 1.3 014 O 28s || 0| O 0|0 0
256.bzip2 2.9 11| 0| 245s (1| 0 0|0 10
197.parser 6.4 0 0| 265s | 0| O 0|0 2
175.vpr 9.6 2]l 0|2685s||0| 0 0|1 47
164.gzip 100 2 || O 80s ||1] 2 0|0 4
186.crafty 113 | 0 || 0 | 563m| 0| O 0|O0 37
300.twolf 151 || 17| 0 | 257m | 0| O 2|0 1403
252.eon 19.3 1| 0| 582s}| -] - - - 380
254.gap 31.2 1| 0|121.0s}| 0| 1 0|O0 2
255.vortex 44.7 1 1| 710s| 0|26 0| O 15
253.perlbmk|| 64.5 143 |171m| 1| 0 1|3 3481
176.gcc 12844 27|l 2| 72h || -| - || 35] 2 1121

compare false negatives among the static detectors, asmé&aks found in this dynamic tool are
always real faults [Clause and Orso, 2010].

Under Columnd, we report the number of memory leaks that are confirmed tcelk and
underfp, we give the number of false positives. The numbers undetvtbecolumns count the
memory allocation sites where a leak can occur along sonfes pat dynamic analysis, however,
the memory leak is reported as the number of traces that estrilie leak (see Coluntraceg.
The numbers in the column show whether a memory leak exigtgeiprograms, but it cannot be
compared with the number reported under

Our experimental data show that we are able to report moreameleaks than the other static
tools. We identify a total of 53 memory leaks, compared total tof 3 shown undeifool I, and
38 underTool Il. We are able to report leaks that neither of the other toddbls to identify. For
example, forvortex the result from the dynamic tool shows that there existdaakhe program;
however, neither of the other two static tools reports anitsawhile Marple does. Also, we handle
the C++ benchmarkonand report a memory leak, while the other two tools are only tthanalyze
C programs. We report a total of 6 false positives, shown ufmleompared to 29 reported by Tool
| and 6 by Tool Il. We are more precise than Tool | because wéyappath-sensitive analysis but
they do not. For Tool I, our intuition is that besides usihg guards on the value flow graph to

help precision, other techniques are also introduced tpresp the false positives, which adversely

Chapter 5. Automatically Generating Path-Based Analysis 95

impact the detection capability of the tool. Therefore, weable to report more faults.

We also list the time used to detect the memory leakst takes the longest time, using 7.2
hours, which was still able to finish in a nightly run. Comphte the larger benchmarkpache
gccis much slower because we find many global pointergdg also we encounter more don't-

know factors when analyzingpache and thus is able to terminate the analysis early.

5.5.5 Limitations

We use Phoenix to build the ICFG, which currently does notehodrtain control flows such as
function pointers and virtual functions. Therefore, cerfaarts of the code in a benchmark might
not be able to be analyzed. Also, for detecting buffer overlad memory leak, we only identify a
set but not all of the code signatures where a query can bedrfos checking safety. For example,
we do not construct queries r@alloc for memory leak. We can miss faults related to such program

points.

5.6 Discussion

This chapter addresses the generality of the techniqueldwyirsg that we are able to identify
both control- and data-centric faults as well as safety mediéss properties. Generality is achieved
via a fault model, a specification technique, and a generalysis. Here, we provide a further
clarification on how general our techniques actually arenftbe three perspectives.

In our fault model, faults are considered as violations ofyeirty constraints, and the constraints
here are specifically about data or control relations on tiegrnam objects. For example, many
vulnerabilities in web applications, such as cross-sitgpsing and SQL injection, are caused by
improper input validations [Lam et al., 2008] and can be falated as control violations, which are
handled by our framework. We do not consider cases such angia statement or use a wrong
variable.

The expressiveness of our specification language is deteddy its key construct, attributes,

and their operators. If a fault is related to some abstraatioprogram state that no attribute can

Chapter 5. Automatically Generating Path-Based Analysis 96

express, our framework cannot handle it. For example, atlyrén our specification language, we
are not able to specify deadlock conditions using attrboiethe locks.

Also, our techniques are static, and we are thus not ablertdiédaults whose detection is
beyond the capability of static analysis, e.g., perforneamags that cannot be mapped to any code
patterns. Furthermore, the types of faults we can handleeatected by the capability of constraint
solvers. For example, our analysis only handles integestcaints, and thus we are not able to find

faults related to complex float computation.

5.7 Conclusions

In this paper, we present a unifying framework, which inelsid general, scalable analysis, a
specification technique, and a generator for automatiggdlyerating desired fault detectors. The
generated analyses are path-sensitive and interpro¢edadareturn path segments where a fault
occurs. Our experiments show that the produced analyseageatify the common faults of buffer
overflow, integer fault, null-pointer dereference and mgni@ak. Applying a demand-driven, path-
sensitive analysis, the fault detection achieves conigefirecision and scalability. Although here
we mainly focus on traditional faults, with our techniqueets can write specifications and identify

their own defined faults.

Chapter 6

Path-Based Fault Correlation

Although a number of automatic tools have been developeeétectfaults, much of the diag-
nosis is still being done manually. To help with the diagimottsks, we formally introducéault
correlation a causal relationship between faults. We statically datex correlations based on the
expected dynamic behavior of a fault. If the occurrence @ fawlt causes another fault to occur,
we say they are correlated. With the identification of thealated faults, we can better understand
fault behaviors and the risks of faults. If one fault is ubyucorrelated with another, we know
fixing the first fault will fix the other. Correlated faults cée grouped, enabling prioritization of
diagnoses of the fault groups. In this chapter, we develomt@nprocedural, path-sensitive, and
scalable algorithm to automatically compute correlatadt$ain a program. In our approach, we
first statically detect faults and determine their errotesta By propagating the effects of the er-
ror state along a path, we detect the correlation of pairaolty. We automatically construct a
correlation graph which shows how correlations occur ammongiple faults and along different
paths. Guided by a correlation graph, we can reduce the nuailfaults required for diagnosis
to find root causes. We implemented our correlation algariimd found through experimentation
that faults involved in the correlations can be of differgmtes and located in different procedures.
Using correlation information, we are able to automate mlisgjc tasks that previously had to be
done manually.

Our work is the first that formally defines and automaticaliynputes fault correlations. The

contributions of the work include:

97

Chapter 6. Path-Based Fault Correlation 98

e the definition and classification of fault correlations,
¢ the identification of the usefulness of correlations infaihgnosis,
e algorithms for automatically computing correlations,

e correlation graphs that integrate fault correlations dfedint paths and among multiple

faults, and

e experiments that demonstrate the common existence of dauklations and the value of

identifying them.

6.1 Motivation and Challenges

Fault diagnosis, done statically on the program source,a@ides to identify and fix the causes
of detected faults. Diagnosing faults is challenging fouaber of reasons. One reason is that the
root cause can be located far from where the fault is deteatieite the code around the fault can be
complex. Unlike debugging, in fault diagnosis, there isuatime information available to assist in
explaining faults. Also, in static analysis, real faults aften mixed with an overwhelming number
of false alarms and benign errors.

In this chapter, we explore relationships among faultsdattfdiagnosis. We show that a causal
relationship can exist between faults; that is, the ocoweef one fault can cause another fault to
occur, which we caltorrelation As an example, in Figure 6.1 we show a fault correlationalisc
ered inf f npeg- 0. 4. 8. The correlation exists between an integer signednessarmode 2 and a
null-pointer dereference at node 5, as any input that leattsstinteger violation at node 2 triggers
the null-pointer dereference at node 5 along gatR, 5). The trigger can occur because the variable
current track at node 2 is not guaranteed to get the unsigned vali® dqL.32(&ead[i +8])
(see the macro definition at the bottom of the figure). If adarglue is assigned, the signed inte-
gercurrent _track would get a negative value at runtime. Whemmrent _track is negative, the
branch(2,5) is taken and the memory allocation at node 4 is skipped, ©gube dereference of

fourxm >tracks at node 5 to encounter a null-pointer.

Chapter 6. Path-Based Fault Correlation 99

(" int current_track = -1; N
fourxm->track_count = 0;
1 fourxm->tracks = NULL;
i=0;
_ i < head_size - 8 Y,
T
v
4 I
current_track = AV_RL32 (&header[i+8]);
2 current_track+1 > fourxm->track_count
N J
yes
4 N | o
fourxm->track_count = current_track+1;
3 fourxm->track_count >=
UINT_MAX/sizeof (AudioTrack)
_
!
/

fourxm->tracks = av_realloc(fourxm->tracks,
fourxm->track_count * sizeof(AudioTrack));
fourxm->tracks != NULL

- J

es

""" fourxm->tracks[current_track].adpem =
AV_RL32(&headerl[i+12]);

>

i++;

yes I

#define AV_RL32(x) ((((const uint8_t*) (x))[3] << 24)| (((const uint8_t*) (x))[2] << 16) |\
(((const uint8_t*)(x))[1] << 8) | ((const uint8_t*)(x))[0])

Figure 6.1: Fault Correlation in ffmpeg-0.4.8

Fault correlation is a relationship defined on the dynamtwabior of faults. When a program
runs, an initial root cause can propagate and cause a segoémcoperty violations along the
execution before an observed symptom, e.g., crash, istddteln traditional static tools, the de-
pendencies of those property violations are not identiggther only the first violation is reported
or all the violations are reported but as separate faultarfibey et al., 2007, Evans, 1996, Le and
Soffa, 2008, Schwarz et al., 2005]. For the above examég stetection only reports that node 2
contains an integer violation, but it cannot explain whethis benign or malignant, and if harmful,

how severe is the consequence. A static detector for nidkgrodereference also cannot discover

Chapter 6. Path-Based Fault Correlation 100

the vulnerability, because the detector may not be awareyfraeger violations. When the im-
pact of integer fault is not considered, the static analy&isld report the patiil,2,5) infeasible,
asAV_RL32(x) always returns a non-negative integer and thus the resthiecdddition at node 2
should be always larger thdrour xm >t rack_count 's initial value 0. However, given the fault
correlation, we know that: there exists a null-pointer fEnence at node 5; its root cause is the
integer fault at node 2; and by fixing the integer fault, th#-painter dereference can also be fixed.
Fault correlation helps fault management in the followingys: 1) we can detect new faults
with introduced fault impact, e.g., the null-pointer dereince shown in Figure 6.1. These faults are
impossible to be identified using traditional static detext 2) we can confirm and prioritize real
faults by revealing their potential consequences; and Jamegroup faults based on their causes.
Determining fault correlations in current static tools atlenging for three reasons. First,
identification of correlations of faults requires knowledgf fault propagation, which only can be
obtained when program paths are considered; however, stivmstatic analysis based on full path
exploration is not scalable. Another reason is that mosicsiaols only detect one type of fault,
while correlations often occur among faults of differemidg as shown in the above example. Also,
in order to statically compute the propagation of a faulg potential dynamic impact of a fault

needs to be modeled, which is typically not done in the stabts.

6.2 Defining Fault Correlation

We first define fault correlations. We also provide exampbedeimonstrate correlations.

6.2.1 Preliminaries

An important concept to define fault correlation®isor state

Definition 6.1: Theerror stateof a fault is the set of values produced at runtime as a re$ult o
property violations.

Intuitively, an error state is the manifestation of a faulthat is, after executing a program

statement, there exists a set of values from which we camndiete that property constraints are

Chapter 6. Path-Based Fault Correlation 101

violated and a fault occurs. The set of values constituteranm state. If a crash would occur, we
consider the values that cause the crash as the error statmodel the error state of a fault based
on the fault type using constraints. The modeling is emgiiadnd based on the common symptoms

of faults a code inspector might use to manually determiol faopagation.

Table 6.1: Error State of Common Faults

| Fault Type || Code Signature | Error State |
buffer overflow strcpy(a, b) len(a)>size(a)
. . . value(i)==value(a)+
integer overflow unsi gned i=a+b value(b)-C
integer int j...unsigned i3 value(i)>2°1-1
signedness unsigned i...int =i value(j)< 0
integer truncation| unsigned i...uchar | =i value(j)<value(i)
resource leak Socket s=accept(); avail(Socket}=
s=accept () avail(Socket)-1

Table 6.1 lists the error state for several common faultsddd@ode Signaturewe give ex-
ample statements where a certain type of fault potentiatlus. UnderError State we show
constraints about corrupted data at the fault. The type ofupted data is listed in bold. The
first row of the table indicates that when a buffer overflowwsg the length of the string in the
buffer, | en(a), is always larger than the buffer sizd,ze(a). From the second to fourth rows,
we simulate the effect of integer faults. When an integerfémg occurs, the value stored in the
destination integewral ue(i), should equal the result of integer arithmetiel ue(a) +val ue(b),
minus a type-dependent constahte.g., 22. Similarly, when an integer signedness error occurs,
we would get an unexpected integer value. For example, wisggnad integer casts to unsigned,
any results larger tharf2— 1 (the maximum value a signed 32 bit integer possibly stoneligates
the violation of integer safety constraints [Brumley et 2007]. When an integer truncation occurs,
for instance, betweeumchar andunsi gned as shown in the table, the destination integer would get
a smaller value than the source integer. In the last row, veeausocket as an example to show
that when resource leaks occur, the amount of availableiress in the system is reduced, and we

model the error state asVai | (Socket) ==avai | (Socket) - 1].

Chapter 6. Path-Based Fault Correlation 102

[1] char a[2]; char c[2]; X [1] unsigned i = 8* strlen(input);
X [2] strepy (a, input); [value(i) == 8*len(input)- C |
[len(a) > size(a) |)
\ [2] if (i < size (a))
X [3] strcpy (c, a); X [3] strepy (a, input);
(a) uniquely correlate via data (b) uniquely correlate via control
[1] char a[2]; [1] char a[2]; char c[6] = “hello” ;
X [2] strcpy (a, input); [2] strepy (a, input);
[len(a) > size(a) | [len(a) > size(a) |
\ <~ — __ No Dependency
~ T~
X [3] strcat (a, “!”); [3] strepy (a, ¢); len(c)? size(a) ?
(c) correlate but not unique (d) not correlate

Figure 6.2: Defining Fault Correlation: correlated faults marked withx, error state is included
in [], and corrupted data are underlined

6.2.2 Correlation Definition

Supposef; and f, are two program faults.

Definition 6.2: f; and f, arecorrelatedif the occurrence of, along pathp is dependent on the
error state off;. We denote the correlation ds — f,. If f, only occurs withf; along pathp, we
say f1 uniquely correlatesvith f,, denoted ag; 41,

The occurrence of, along p is determined by the property constraints on a set of vaabl
collected alongp. If such variables are control or data dependent [SnelfiB§6] on the corrupted
data at the error state d¢f, f; and f, are correlated. Intuitively, gively — fp, f; occurs first on
the path, and the error state produced gbropagates along and leads to the property violation
at f,. Therefore,f; and f, have a causal relationship. Givéﬂi fp, f1is a necessary cause ff
which means, iff; does not occurf, cannot occur. If the correlation is not unique, there is othe
cause(s) that can lead fg.

Consider Figure 6.2(a) in which the variableput stores a string from the untrusted user.

A correlation exists between the buffer overflow at line 2 #mel one at line 3, as there exists a

Chapter 6. Path-Based Fault Correlation 103

valueflow on variabl@, shown in the figure, that propagates the error state of thdlow at line 2
to line 3. When the first buffer overflow occurs, the second alscurs. The faults are uniquely
correlated.

In Figure 6.2(b), we show a correlation based on control degecy between faults. The integer
overflow at line 1 leads to the buffer overflow at line 3, as tbeupted datayal ue(i), produced
at the integer fault impacts the conditional branch at lirferRwhich line 3 is control-dependent).

In Figure 6.2(c), buffer overflow at line 2 correlates witke thne at line 3. However, the first
overflow is not the only cause for the second because whernvér@aw at line 2 does not occur,
the overflow at line 3 still can occur.

As a comparison, the two buffer overflows presented in Figu2éd) are not correlated. At
line 3, both the size of the buffer and the length of the stusgd to determine the overflow are not
dependent on the corrupted datm(a) in the error state at line 2.

By identifying fault correlation, we can better understahd propagation of the faults and
thus fault behavior. We demonstrate the value of fault ¢atigns in two real-world programs. In
the first example, we show giveln — f,, we can predict the consequencefgfthrough f,, and
prioritize the faults. The correlation also helps group ander faults, as in the case 6f — fo,
fixing f1 will fix f,. See Example 2.

Example 1: Figure 6.3 presents a correlation found in the progaapi d- 1. 0. 8. In this exam-
ple, we show how a fault of resource leak can cause an infoofg dnd lead to the denial of service.
The code implements a daemon that waits for connection fignts and then processes events
sent via connected sockets. In Figure 6.3 vilnd e loop at node 1 can only exit at node 5, when an
event is detected by thml | () function at node 2 and processed by the server. Corresmgindin
along the pathg(1—4)*,1—2,5), the sockef d is created by the functiond_accept at node 3,
and released byl ean_exit at node 5. However, if a user does not send legitimate resjuibst
branch(2,3) is always taken, and the created sockets at node 3 cannotclased. Eventually,
the list of sockets in the system is completely consumed argboket is able to be returned from
ud_accept at node 3. As a result, the conditibd<0 always returns true. The execution enters an

infinite loop ((1— 3)*). In this example, the impact of the resource leak makes theution always

Chapter 6. Path-Based Fault Correlation 104

follow the false branch of node 2 and the true branch of nodadsing the program to hang. With
fault correlation information, we can automatically id&nthat the root cause of the infinite loop
is the resource leak. To correct this infinite loop, we canm@ddurce release code in the loop, as

shown in the figure.

!

- N
1 while(1)

N J

v Correction:
4 N\
lose_dead_socket:

) ¢ = poll(ar, fd, -1): close_dead_sockets ()

L ar[0].revents 4_)_

g 1 no . v yes
3| fd = ud_accept(sock, &creds); | | /* process event */

fd<0 clean_exit(EXIT_SUCCESS);
N J

yes

L no

/* successfully obtain sockets */
acpid_add_client(fd, buf);

yes |

Figure 6.3: Correlation of Resource Leak and Infinite Loopdpid

Example 2: Static tools potentially report many warnings for a prograspecially when they
analyze newly written code or legacy but low quality code.n§lder the example in Figure 6.4
from pol ymor ph- 0. 4. 0. There exist 7 buffer overflows in the code, located at lines02 12, 14,

16, 19 and 21. Although these overflows are not all locatedhénsame procedure and even the
buffers involved in the overflow are not all the same, we firat ttorrelations exist among them.
For example, the overflow at line 2 correlates with the onenat 16 along patq1—7,16), and

line 16 correlates with line 21 alond 6,17,21). We can group these correlated faults and diagnose
them together.

To further understand the correlations in real-world paogs, we conducted a study on 300

vulnerabilities in the Common Vulnerabilities and Exp@as(€VE) database [Common Vulnera-

©CoO~NOULEA WNPE

Chapter 6. Path-Based Fault Correlation 105

char filename[2048];
strcpy(filename, FileData.cFileName);
convert_fileName(filename);
void convert_filename¢harx original){
char newname[2048];char xbslash = NULL;
if (does_nameHaveUppers(original)){
for (i=0; i<strlen(original); i++){
if (isupper(originall[i]))
{ newname[i] = tolower(original[i]);
continue; }
newname[i] = original[i];
}
newnamel[i] = '\0’;
}
else strcpy(newname, original);
if (clean)({
bslash = strrchr (newname, ’'\\');
if (bslash != NULL) strcpy(newname, &bslash[1]);
oo
strcpy(original , newname);
}

Figure 6.4: Correlations of Multiple Buffer Overflows in gatorph

bilities and Exposure, 2010], dated between 2006-2009. Afeually identified fault correlations
on 8 types of common faults, including integer faults, buffeunds errors, dereference of null-
pointers, incorrect free of heap pointers, any types ofuesnleak, infinite loops, race conditions
and privilege elevations. Our study shows that correlatmmmonly exist in real-world programs.
In fact, the reports suggest that security experts manualielate faults in order to understand the
vulnerabilities or exploits.

Table 6.2 classifies the correlations we found. We mafkhe fault listed in the row uniquely
correlates with the fault in the column, and for correlations that are not unique. Comparing
the rows ofint andrace in the table, we found that integer faults and data race leehike in
correlations. Intuitively, both integer violation and datce can produce unexpected values for
certain variables, and thereby trigger other faults. Frbendtudy, we also found that a fault can
trigger different types of faults along different executjgaths and produce different symptoms. We

mark v* in the table if the faults from the column and row can be triggeby the same fault along

Chapter 6. Path-Based Fault Correlation 106
different paths.

Table 6.2: Types of Correlated Faults Discovered in CVE
\ [int | buf | nullptr | free | leak | loop | race] privilege |

int * * X * * * X Vv *
buf * * v * v *
nullptr v v v *
free * v %
leak * *

loop V | xx Vv v

race * * X * * * * *
privilege X

6.3 Computing Fault Correlation

In this section, we present an algorithm to statically cotafault correlation. The approach has
two phases: fault detection and fault correlation. In faeltection, we report path segments where
faults occur in terms of path graphs. In fault correlatior, model the error state of detected faults
and symbolically simulate the propagation of the errorestddng program paths to determine its
impact on the occurrence of the other faults. The goals d¢ksend phase are to identify 1) whether
a fault is a cause of another fault detected in the first praaw2) whether a fault can activate faults
that had not been identified in the first phase. As the deteatinimof fault correlation requires path

information, we use a demand-driven analysis for scatgbili

6.3.1 Overview of the Approach

We first review the steps for fault detection shown on thedifé of Figure 6.5. The demand-
driven analysis first identifies program statements whegeviblation of property constraints can
be observed, namelgotentially faulty points At those statements, the analysis constructs queries
as to whether property constraints can be satisfied. Eadly qgipropagated backwards along all
reachable paths from where it is raised. Information iseoddd along the propagation to resolve
the query. If the constraints in the query are resolvetiahse, implying a violation can occur, a

fault is detected. The path segments that produce the feuitiantified as faulty.

Chapter 6. Path-Based Fault Correlation 107

Phase 1: Fault Detection Phase 2: Fault Correlation
l Program l Faults
4 N\ (N\
Construct Query 1 Model Error State | !
- J & J
A 4 A 4
e N e N
Propagate Query 2 Impact on Feasibility | 2
- J . J
'd l N\ e l R
Resolve Query 3 Impact on Faults | 3
o J - J
no vyes . p A
Identify Paths 4 Detefmme 4
L) L Correlation Type)
l Path Segments of Fault l Correlations

Figure 6.5: Fault Detection and Fault Correlation

To improve the precision of the fault detection, we run aredsible path detection using a
similar query based algorithm, where the query is congtdiat a conditional branch as to whether
the outcome of the branch can always be true or false [Bod@t.e1997b]. After the infeasible
paths are identified and marked on the ICFG, we run variodsdatectors. In the fault detection,
when the query that is being used to determine faults enemuanh infeasible path, the propagation
terminates.

In the analysis, we cache queries and the resolutions atrstats where the queries have been
propagated. Both the cached query and the identified pathesgg will be reused to compute fault
correlations. All the detected faults are checked for dati@n in the next phase.

We developed four steps to determine the fault correlatiown on the right in Figure 6.5.
In the first step, we model the error statefefbased on its fault type (see Table 6.1). The error
state is instrumented on ICFG as a constraint. For exangié¢hé integer fault in Figure 6.1, we
insert al ue(current _track)<0] at node 2, and for the resource leak in Figure 6.3, we add at

node 3 pvai | (Socket)==avai | (Socket)-1]. Next, we examine whether the error statefef

Chapter 6. Path-Based Fault Correlation 108

can change the results of branch correlation analysis, apdate of the conditional branch can
lead to the change of feasibility, which then impacts theuoance off,. In the following step,
we determine the impact df directly on f,, and finally we check if the identified correlation is

unique.

6.3.2 Examples to Find Correlations

Based on the definition of fault correlation, for— f, to occur, we require two conditions: 1)
there exists a program pagtthat traverses both andf,; and 2) alongp, constraints for evaluating
f, are dependent on the error statefafin this section, we use examples to show how the steps of

fault detection and fault correlation presented in Figubgg8oceed to determine the two conditions.

6.3.2.1 Correlation via Direct Impact on Faults

In Figure 6.6, we show an example on the left, and the acteentin the analysis on the right.
UnderFault Detection we present the transitions of the query in fault detectioase. Each table
describes the propagation of a query along one path. Thediksinn of the table gives the nodes
where a query propagated and updated. The second colusithistjuery after being updated and
cached at the node. In Tablgs, we show that, to detect integer overflow, we identify nodes5 a
a potentially faulty point and raise the quemalue(i)*8<(C] (Cis the type-dependent constant
2%2), inquiring whether the integer safety constraints holde Tuery is propagated backwards and
resolved a$al se at node 4 due to a user determined inpwhown in the second row of Tab(g;.
Path (4,5) is thus determined as faulty and marked on ICFG. The querys@ @ropagated to
node 3 and resolved &sue (this path is not listed in the figure due to space limitatjoimilarly,
to detect buffer overflows, we identify nodes 8, 10 and 11 asrially faulty and raise queries to
determine their safety. Tab(@g, Q10 andQq; present the propagation of the three queries. Take
as an example. At node 8, we raise an initial queri ie(i) <si ze(p)], inquiring whether the
buffer constraints are satisfied. At node 6, the query isémanged to§*val ue(i) <val ue(x)].

A symbolic substitution at node 5 further updates the quergtval ue(i) <8*val ue(i)]. We

thus resolve the query asue and report the buffer at node 8 safe. In the fault detectiasehwe

Chapter 6. Path-Based Fault Correlation 109

identify three faults, an integer overflow at node 5, andduffverflows at nodes 10 and 11. We

determine in the next step whether the correlation existthfese faults.

unsigned i, unsigned x Fault Detection Fault Correlation

Q
1| char a[128] ? 5| value(i)*8 After Node 5
<C
value(x) == 8* value(i)-C
4 | INPUT*8
2 F <C
Qs
y
8| value(i)
3 i=128 4 [scanf (“%d”,&i) < size(p) F;— Fg (new)
6 | 8*value()) | | 6|8%value(i) || 6 |8*value(i)<
5 < value(x) <value(x) || F [8*value(i)-C

5 |8*value(i)<
T | 8*value(i)

6 QlO
10| len(y) After Node 10
<128 len(a) >128
! 9| INPUT
y n F <128
1 Q F,,— F,; (existent)
8 | memcpy (p.y.i) 9£scanf ("%s”,y) r —
I J 11| len(@)+1 | _ |11} len(a)+1 |11 128+1
Py <128 <128 |[|F| <128
10 strepy (a, y) 10] len(y)+1
<128
. 9| INPUT+1
strcat (a, “\”) F| <128

Figure 6.6: Correlation via Direct Impact

Under Fault Correlationin Figure 6.6, we list the steps for computing correlatioklige first
model the error state. For the integer overflow at node 5, wednce {al ue(x) ==8*val ue(i)-C]
as an error state, shown in the first box uniéault Correlation We italicizedval ue(x) to indicate
it is the corrupted data at this fault. Conceptually, we neegdropagate the error state along all
program paths in a forward direction to examine if the caedpdataval ue(x) can impact the

occurrence of the faults at nodes 8, 10 and 11. Since oursisatydemand-driven, to determine

Chapter 6. Path-Based Fault Correlation 110

such impact, we actually propagate the queries raised asdlO and 11 in a backward direction
toward the fault located at node 5, and determine if the estaite can update the queries. As such
backward propagation has been done in fault detection, wéag@ advantage of cached queries to
compute correlation. In the figure, all queries listed inthigles are cached in the corresponding
nodes after fault detection. From Talfdg, we discover that at the immediate successor(s) of the
integer fault, i.e., node 6, querg*val ue(i) < val ue(x)] has been propagated to and is cached.
The query is dependent on the corrupted dataie(x) at the error state. We use a bold arrow in
the figure to show the dependency. The query is thus updatbdive error state and reaches a new
resolutionf al se. In this case we discover a fault that was not reported irt fdetlection. Using a
similar approach, we introduce the error staten[a) >128)] after node 10 for a buffer overflow.
With this information, the query for checking buffer ovevil@t node 11 is resolved tal se. In
this case, two previously identified faults are determinedarelated.

To determinef; — f,, we examine wheri; is fixed, whetherf; still can occur. As forf; — f5,
f1 is the necessary cause &f and fixing f; ensures the correctness Bf Our approach is to
replace the inserted error state with the constraints thatyi the correctness of the node. For
example, in Figure 6.6, we replace the error state at nodérb[wal ue(x) ==8*val ue(i)], and at
node 10 with [en(a) <128]. With the new information, node 8 is determined as safeicaithg
the correlation of node 5 and node 8 is unique, while node illregports unsafe, showing the
correlation between nodes 10 and 11 is not unigue.

In our approach, the two conditions for determining faultretation are ensured by two strate-
gies. First, in fault correlation, if queries are updatethwtie error state of; and still not resolved,
we continue propagating the updated query along the faalty of f;, which assuref, and f; are
located along the same path. For instance, in the above dxaifrthe buffer overflow query raised
at node 8 is not resolved at node 5 with the error state, it dvoahtinue to propagate along path
(5,4) for resolution, as the error state is only produced alongfahéty path(5,4). Second, we
establish the dependency betweferand f; by assuring the error state &f can update the queries

of f, and the variables in the queries are dependent on the cedrdpta in the error state.

Chapter 6. Path-Based Fault Correlation

6.3.2.2 Correlation via Feasibility Change

Fault Detection

Fault Correlation

111

* Q3 int
(h After Node 3
1 p=NULL 3 len(>é),+1
L y < value(i)<0
i 2 | INPUT+1
F <C
21 scanf (“%s”, x)
Q; branch
I 4| value(i) 4| value(i)
3| inti= strlen(x >0 >0 F
3| len(x)+1 ‘
T >0 /I
4 Qg ptr y - /
6 | value(p) /
20 '/ Vs F,— F; (new)
° 4| INF 1| w7 vatuew amm
) #0 F
Q, buf I’
6| value(i) ’
>0 v F,— F, (new)
4 INF 4 INF 4| value(i) 4 0>0
>0 F

Figure 6.7: Correlation via Feasibility Change

The error state off; also can impactf, indirectly by changing the conditional branchés

depends upon, shown in Figure 6.7. The program is a simphfeegion of Figure 6.1. Under

Fault Detection we list the query transitions to detect infeasible paths faults. UnderfFault

Correlation, we show the query update in fault correlation. In this exiangur focus is to present

how an integer error found at node 3 changes the branch aborebat node 4 and then impacts other

faults. An error statevjal ue(i) <0] is modeled after node 3. Examining cached query at node 4,

we find that the error state can update the branch quahug(i) >0] and resolve it td al se. The

change of the resolution implies that the path this querpg@gated along is no longer infeasible as

identified before. Therefore, all the queries that are obadgpendent on this branch are potentially

impacted, and we need to evaluate all the queries cachedadfor new resolutions. For example,

Chapter 6. Path-Based Fault Correlation 112

we restart the queryfl ue(p) #£0] from node 4 and resolve it at node 1fas se, and a null-pointer
dereference is discovered. Similarly, we restart the buiferflow query yal ue(i) >0] at node 4,
where we find the query is resolvedfad se with the information from the error state. In this case,
the error state of the integer fault first impacts the bramzhactivates the propagation of the query
at node 4; then the error state also has a direct impact onuitry @nd changes its resolution to

fal se.

6.3.3 The Algorithm of Fault Correlation

For identifying fault correlations, Algorithm 4 takes thmputsic f g andn, whereic f g represents
the ICFG with fault detection results (including the caclyg@ries and marked faulty paths), and
nis the node where the fault is detected. Our goal is to ideatlfthe correlations for the fault at
noden.

At line 2, we model the error state. For each query cachedeaintimediate successor(s) of
the fault, we identify queries that are dependent on ther stede. See lines 3-5. If the query is
resolved after updating with the error state, we add it tostieof resolved querieA at line 7.
Otherwise, if the updated query was used to compute fauksadd it to the lisFQ at line 8. If
the query was used to compute branch correlation, we addhgetést|Q at line 10. Lines 11-12
collect queries stored at the brang'traise. The faults associated with these queries are potentially
impacted by the feasibility change, and thus need to be lesea. After queries are classified to
the listsFQ andIQ, we compute the feasibility change at line 17 usi@gand then determine the
impact of the error state directly on the faults at line 1> Q.

The determination of the resolutions of updated querietigsva inResol ve at line 19. The
analysis is backwards. At line 21, we first propagate theigsi¢o the predecessors of the faulty
node. We then use a worklist to resolve those queries at2ige28.Pr opagat e at line 30 indicates
that we need to only propagate the queries along feasibléaityg paths. After a query is resolved
at line 26, we identify paths and mark them on ICFG at line 29.tFanch query, they are adjusted

infeasible paths, while for queries to determine faults,ghths show where the correlation occurs.

Chapter 6. Path-Based Fault Correlation 113

Input : ICFG with fault detection resultso(f g);
faulty node ()
Output: Correlations fon

initialize 1Q = {} and FQ = {}
er = ModelErrState (n);
foreachm e Succf) do
foreachq € Q[m| do
g = UpdateWithErrState (er, q);
if o # qthen
if .an = resolvedthen addd’ to A
else if IsFaultQ(@’) then addq to FQ
else
addg' to1Q
foreachx € Q[.raise] do
if IsFaultQ(x) then addxto FQ
end

© 0 N o o b~ W N

=
N B O

=
w

end

N
~

end

=
[$,]

end
Resolve(Q)
ResolvefFQ)

19 Procedurdresolve(querylistQ)

20 foreachqe Qdo

21 | foreach p ePred(n) do Propagate(n, p,)
22 end

23 while worklist # 0 do

24 remove {,) from worklist

25 UpdateQ(, q)

B e
o N o

26 if g.an = resolvedthen addqto A
27 else foreachp ePred(i) do Propagate(i, p, q)
28 end

29 ldentifyPath(A)

30 Procedurd’ropagate(nodei, nodep, queryq)
31 if OnFeasiblePath{, p, g.ipp)A

32 OnFaultyPath(i, p, g.f pp) then

33 add (p, q) to worklist

Algorithm 4: Compute Fault Correlations

6.4 Correlation Graphs

Our algorithm computes the correlation between pairs didavVe integrate individual fault
correlations in a graph representation to present coisaktimong multiple faults and along dif-

ferent paths for the whole program.

Chapter 6. Path-Based Fault Correlation 114

Definition 6.3: A correlation graphis a directed and annotated gragh= (N, E), whereN is
a set of nodes that represent the set of faults in the prograhi as a set of directed edges, each
of which specifies a correlation between two faults. Eméry nodesn the graph are nodes that
do not have incoming edges, and they are the faults that ditstiin the propagation. Thexit
nodesare nodes without outgoing edges, and they are the faultstheonger further propagate.
Annotations for a node introduce information about a fauoktjuding its location in the program,
the type, and the corrupted program objects at the faultyif @&nnotations for the edge specify

whether the correlation is unique and also the paths wheredirelation occurs.

[2,int, current_track J [3, leak, socket]
/ \ '
5, nullptr, 5, buf, 1 1oo
fourxm->tracks fourxm->tracks ’ P
(a) graph for Figure 6.1 (b) graph for Figure 6.3

2,buf filename

[10,buf,newname J[12,buf,newname I

14,buf, newname J ‘ 16,buf,newname

19,buf,newname

21,buf,original

(c) graph for Figure 6.4

Figure 6.8: Correlation Graphs for Examples: + marks a tafiom that is not unique

The correlation graph groups faults of the related causethéoprogram. The entry nodes of
the graph and the nodes whose correlation are not uniquddsheufocused to find root causes.
Using the correlation graph, we can reduce the number ofsféuht need to be inspected in order

to fix all the faults. In Figure 6.8, we show the correlatioaiis for examples we presented before,

Chapter 6. Path-Based Fault Correlation 115

Figure 6.8(a) for Figure 6.1, 6.8(b) for Figure 6.3, and &).8¢r Figure 6.4.

In Figure 6.1, we have shown a correlation of integer fautt aull-pointer dereference along
path (1,2,5). Actually the integer fault at node 2 also correlates withuffds bounds error at
node 5 along patfi(1—5)*,1,2,5). See Figure 6.8(a). If the buffer bounds error continues to
cause privilege elevation, the correlation graph wouldwshochain of correlated faults to help
understand the exploitability of the code. On the other h&nidoth the null-pointer dereference
and buffer underflow at node 5 are reported via a dynamic tietagcsing the correlation graph,
we are able to know the two failures are attributable to theesaoot cause and can be fixed by
diagnosing the integer fault at node 2. Similarly, the retathip of the resource leak and infinite
loop shown in Figure 6.3 is depicted in Figure 6.8(b).

The correlation graph in Figure 6.8(c) integrates all datrens for 7 buffer overflows in Fig-
ure 6.4. To use this graph for diagnosis, we start from theyemde of the graph, as it indicates
the root cause of all 7 correlated faults. Diagnosing theyartiide we discover that when the input
Fi | eDat a. cFi | eNane is copied to the i | enane buffer at line 2, no bounds checking is applied.
We thus introduce a fix for line 2. The correlation graph iatls that all other correlated faults can
be fixed except the fault at line 14, as in the graph, the edga fhe fault at line 2 to the fault at
line 14 indicates the existence of an additional root caWgethus diagnose line 14 and introduce

the second fix.

6.5 Experimental Results

To demonstrate that we are able to automatically computedaurelations and show that fault
correlations are helpful for fault diagnosis, we impleneehbur techniques and chose three types
of common faults as case studies: buffer out-of-boundsgett truncation and signedness errors,
and null-pointer dereference. In the experiments, we finstfault detection and update the ICFG
with faults detected. We model the error state of integer laufter faults using the approaches
shown in Table 6.1 and then determine the fault correlatioshould be noted that although in our

experiments, we use our fault detector to identify faultd #ren compute fault correlations, our

Chapter 6. Path-Based Fault Correlation 116

technique is applicable when faults are provided by othelstoWe used a set of 9 programs for
experimental evaluation: the first five are selected frontherarks that are known to contain 1-2
buffer overflows in each program [Lu et al., 2005, Zitser et2004]; the rest are deployed mature
applications with a limited number of faults reported by auwlt detector. The experimental data
about fault correlation are presented in the following feeetions. The results have been confirmed

by manual inspection.

6.5.1 Identification of Fault Correlations

In the first experiment, we show that fault correlations camabtomatically identified. Table 6.3
displays identified correlations. In the first column of thble, we list the 9 benchmark programs.
Under Faults from Detectionwe display the number of faults identified for each progranour
fault detection. Buffer bounds errors are reported in Collouf/corr. Integer faults are listed in
Columnint/corr and the null-pointer dereferences are shown in Colpinigorr. In each column,
the first number gives the identified faults and the seconsl fiee number of detected faults that
are involved in fault correlation. Our fault detector refgaa total of 80 faults of three types, 51 of
which are involved in fault correlation.

Under Fault Correlations we list the number of pairs of faults in the program that anenti
to be correlated. For example, undet_buf we count the pairs of correlated faults where the
cause is an integer fault, which leads to a buffer overflonm@aring the integer faults involved in
the correlations undént_bufandint_ptr with the ones found in fault detection, we can prioritize
the integer faults with severe symptoms. In the last columBaallt Correlations we give a total
number of identified correlations. In our experiments, wenfib fault correlations for 8 out of 9
programs. Correlations occur between two integer fauttsneger fault and a buffer overflow, an
integer fault and a null-pointer dereference, two buffezriews, as well as a buffer overflow and
an integer fault.

The experiments also validate the idea that the introdaabioerror states can enable more
faults to be discovered. We identify a total of 25 faults dgrfault correlation from 5 benchmarks,

including buffer overflows, integer faults, and null-p@ntiereferences, shown undeults during

Chapter 6. Path-Based Fault Correlation 117

Correlation
Consider the benchmarzi p-1. 2. 4 as an example. We discover a total of 25 faults and

22 pairs of them are correlated. A new buffer overflow is foafigr introducing the impact of
an integer violation. Buffer overflow correlates with intedgault whenstr| en is called on an
overflowed buffer which later is assigned to a signed integénout proper checking. We also
found that the new faults generated during fault corretatian further correlate with other faults.
In putty-0. 56, two integer faults found during fault correlation resdifeom another integer fault
are confirmed to enable a buffer overflow. The propagatiomesge faults explains how the buffer

overflow occurs.

Table 6.3: Automatic Identification of Fault Correlations _

Benchmarks Faults lfrom Detection o _ Fault Correlations _ Faults dulrlng
buf/corr [int/corr | ptr/corr || int_int | int_buf [int_ptr | buf_buf [buf_int | total Correlation

wuftp:mapping-chdir 4/4 0 0 0 0 0 7 0 7 0
sendmail:tTflag-bad 0 3/1 0 0 1 0 0 0 1 1 (buf)
sendmail:ge-bad 4/4 0 1/0 0 0 0 3 0 3 0
polymorph-0.4.0 8/8 0 0 0 0 0 13 0 13 0
gzip-1.2.4 9/9 15/7 0 0 7 0 9 6 22 1 (buf)
ffmpeg-0.4.8 0 612 1/0 0 10 1 0 0 11 || 11 (1 ptr, 10 bud)
tightvnc-1.2.2 0 11/8 0 9 8 0 0 0 17 7 (2int, 5 buf)
putty-0.56 716 a2 0 3 3 0 4 0 10 || 5(3int, 2 buf)
apache-2.2.4 0 2/0 5/0 0 0 0 0 0 0 0

6.5.2 Characteristics of Fault Correlations

We also collected the data about the characteristics of ¢awntelations, shown in Table 6.4.
In ColumnUnique/Not we count, for all the correlations identified, how many anguely cor-
related (see the first number in the column) and how many drésae the second number). The
data demonstrate that both types of correlations existdrb#nchmarks. ColumBir/Indir shows
whether a correlation occurs directly between two faultsndirectly as a result of feasibility
change. The first number summarizes the direct correlatimasthe second number counts the
indirect ones. The results show that most correlations ismdered via direct query interactions,
and only two programs report the correlations identifieanfri@asibility change. We also inves-
tigated the distances between the correlated faults. Theriexental data unddnter/Intra show

that along the correlated paths, the two faults can be Idcaiteer intraprocedurally or interpro-

Chapter 6. Path-Based Fault Correlation 118

cedurally. Therefore an interprocedural analysis is megufor finding all correlations. A related
metric is the distance of correlated faults along the cati@h paths in terms of number of proce-
dures. ColumrCorr-Proc gives both the minimum and maximum numbers of proceduresdset

two correlated faults in the benchmark. We are able to fincttreelation where two faults are 19

procedures apart.

Table 6.4: Characteristics of Fault Correlations
Benchmarks Unique/Not | Dir/Indir | Inter/Intra| Corr-Proc
wuftp:mapping-chdir 4/3 710 710 1-10
sendmail:tTflag-bad 1/0 1/0 0/1 1-1
sendmail:ge-bad 0/3 3/0 0/3 1-1
polymorph-0.4.0 11/2 13/0 8/5 1-3
gzip-1.2.4 12/10 2171 15/7 1-19
ffmpeg-0.4.8 11/0 1/10 0/11 1-1
tightvnc-1.2.2 14/3 17/0 16/1 1-2
putty-0.56 10/0 10/0 2/8 1-3

6.5.3 Computing Correlation Graphs

A correlation graph is built for each benchmark in the expents. In Table 6.5, we first give
the size of benchmarks in terms of thousands lines of cod€olomnNode we report the total
number of nodes in the correlation graph. The nodes incladisfidentified from fault detection
and fault correlation. The types of identified faults aréelisin ColumnType For example, for
the progrant f npeg- 0. 4. 8, we find faults of all three types. In ColuntBroup we provide the
number of groups of correlated faults for each program. Wained the number by counting the
connected components in each correlation graph. The seslubiw that although the number of
faults can be high in a program, many of the faults can be grdwnd diagnosed together. For
7 out of 9 programs, the faults are clustered to less thanfeoh&ult groups which will assist
diagnosis.

Under Analysis Costwe report the analysis costs for computing correlatiorplgsa includ-
ing the time used for detecting faults (see the first numbehéncolumn) and the time used for
computing fault correlations (see the second number). Taehine we used to run experiments

is the Dell Precision 490, one Intel Xeon 5140 2-core pramesa33 GHz, and 4 GB memory.

Chapter 6. Path-Based Fault Correlation 119

The experimental data show that the analysis cost for fatéadion is not always proportional to
the size of the benchmarks; the complexity of the code aldtensa For example, the analysis for
sendnai | : t Tf | ag- bad takes a long time to finish because all the faults are relateeveral nested
loops. The additional costs of computing fault correlatidor most of the benchmarks are under
seconds or minutes, except i p- 1. 2. 4, which contains the most faults among the benchmarks
and many faults are found to impact a large chunk of the cotieeiprogram. The data suggest that
the important factors that determine the analysis costudf rrelation are the number of faults

and the complexity of their interactions.

Table 6.5: Correlation Graphs and their Analysis Costs

| Benchmarks || Size(kloc) [Node [Type | Group| Analysis Cost]
wuftp:mapping-chdir 0.2 4 1 1 3.9m/43.2s
sendmail:tTflag-bad 0.2 4 2 3 108.0m/5.6s
sendmail:ge-bad 0.9 5 2 2 10.8s/3.7 s
polymorph-0.4.0 0.9 8 1 1 39.4s/9.3s
gzip-1.2.4 5.1 25 2 9 29.3m/90.0 m
ffmpeg-0.4.8 39.8 18 3 7 114.2m/3.4m
tightvnc-1.2.2 45.4 18 2 6 60.3m/2.4m
putty-0.56 60.1 16 2 7 62.8m/1.2m
apache-2.2.4 268.9 7 2 7 217.8m/2.1s

6.5.4 False Positives and False Negatives

In our experiments, both false positives and false negatiae been found. Because we
isolate don’t-know warnings for unresolved library caltsps and pointers, our analysis does not
generate a large number of false positives. In fault caicglawe consider the following two cases
as false positives: 1) at least one of the faults involvedoimeadation is false positive; and 2) both
faults in the correlation are real faults, but they are notatated. In our buffer overflow detection,
we report a total of 7 false positives for all programs, 1 freemdnai | : t Tf | ag- bad, 4 from
gzi p and 2 fromput ty. For integer fault detection, we report a total of 10 falssifes, 3 from
sendnmai | : t Tf | ag- bad, 2 from pol ynor ph, 2 fromffnpeg, 1 fromputty and 2 fromapache.
We find 25 correlations reported are actually false postig3 of which are related to case (1),
and 2 to case (2) where the correlation paths computed afgroed as infeasible. However, we

did not find that any new faults reported during fault cortiela (see the last column in Table 6.3)

Chapter 6. Path-Based Fault Correlation 120

are false positives. Interestingly, we found false posifaults can correlate with each other and
thus be grouped. In our implementation, we have applied sagielations to quickly remove false
positives and improve the precision of our analysis. Welgelthe false positives when reporting
the faults and fault correlations in Tables 6.3, 6.4 and 6.5.

We miss fault correlations mainly in two cases: 1) we reporralated paths between two
faults as don’t-know; and 2) the correlation occurs amoegypes of faults not investigated in our
experiments. For example, in the benchmiarght vnc- 1. 2. 2, three integer faults are reported as
not correlated, shown undé&aults from Detectionn Table 6.3; however, our manual inspection
discovers that these faults can cause buffer read overflowvghvwvas not considered in our fault

detection.

6.6 Conclusions

As faults become more complex, manually inspecting indisldaults becomes ineffective. To
help with diagnosis, this chapter shows that identifyingaasal relationship among faults helps
understand fault propagation and group faults of relatedes With the domain being statically
identifiable faults, this chapter introduces definitionsfanilt correlation and correlation graphs,
and presents algorithms for their computation. Our expenisidemonstrate that fault correlations
exist in real-world software, and we can automatically tdfgrihem. The benchmarks used in our
experiments are mature applications with few faults. Hawedetermining correlation is espe-
cially important for newly developed or developing softeavhich would have many more faults.
Although the fault correlation algorithm is tied to our fadetection for efficiency, a slightly mod-
ified correlation algorithm would work if faults are discoged by other tools and presented to the

correlation algorithm.

Chapter 7

Path-Guided Concolic Testing

Concolic testing [Sen et al., 2005] has been proposed adexutied technique to automatically
test software. The goal of concolic testing is to generateiiguts to find faults by executing as
many paths of a program as possible. However, due to the &eage space, it is unrealistic to
consider all of the program paths for test input generatRather than exploring the paths based
on the structure of the program as current concolic testoesdin this research, we generate test
inputs and execute the program along the paths that havéfidepotential faults.

We present a path-guided testing technique that combia#es ahalysis with concolic testing.
A novelty of our work is that our technique is path-based, wee direct dynamic testing to the
path segments rather than a program point. Compared togmmogoints, path information is more
precise, and can help further reduce the search space tffamgas generation.

This research addresses three challenges. Consideringhéhaumber of suspicious paths
can still be huge, we need to develop a representation ofipftttmation used in testing. Also,
static analysis produces false positives and false negatiwe need to understand the impact of
the potential imprecision in guiding test input generatidiurthermore, not every execution that
exercises a faulty path necessarily triggers the fauligleegath constraints, we also need to track
fault conditions for test input generation.

Our technique proceeds in three steps. First, the prograteruest is analyzed by a path-

sensitive static analysis tool. Both the suspicious statgrand corresponding path segments along

121

Chapter 7. Path-Guided Concolic Testing 122

which a fault could occur are identified, represented usimmath graph Second, reachability
relationships from each branch to these path segments ameuted. In the third step, we execute
the program with an initial input, and use the reachabilifipimation and the path graph to select
the paths of interest. During execution, we generate tgaiténthat 1) can reach a suspicious
statement along a corresponding suspicious path segnmeh)aan trigger the fault condition at
the suspicious statement.

We have implemented our techniques in a tool called MAGIC (Mé&-Gulded Concolic test-
ing). Currently, this tool handles buffer overflows for C grams; however the technique is applica-
ble for multiple types of faults, including both data- andahtrol-centric faults. In our experiments,
MAGIC confirmed 73% of statically reported faults. It failéal trigger 5 static faults whose de-
tection requires an environment which is different from venBIAGIC is running, and it missed 2
faults due to the capability of concolic testing. Compai@ddncolic testing, MAGIC found about
2.5 times more faults, and using the path information, MA®&i@gers the faults 1.1-66.3 times
faster over a set of benchmarks.

The main contributions of this chapter include:

e automatic test input generation to exploit statically iifeed faults,

e application of static path information for reducing thetooisdynamic testing,
¢ the implementation of the techniques for detecting bufferfiows, and

e an experimental study that demonstrates the effectivasfess technique.

7.1 An Example

First, we use an example to intuitively explain the techaguln Figure 7.1, we show a piece
of code adapted from the benchmark wu-ftp [Zitser et al. 4200his example contains three paths
and two buffer write statements at lin@sand 10 respectively. A buffer overflow exists at lirl.
Using this example, we compare how traditional concolitingsand our technique find this buffer

overflow.

Chapter 7. Path-Guided Concolic Testing 123

Applying concolic testing for buffer overflow [Xu et al., 28]) we first execute the program
with an initial input. We assume in the first ruargc=1, which means that no command line
argument is supplied to the program. Under this input, thegm@m takes the execution path
(2,3,4(T),5). During execution, the symbolic path constraiatgc !=2] is collected. As the goal
of concolic testing is to cover as many paths as possiblehdrsecond run, the tester inverts the
path constraint togrgc=2], aiming to exercise the bran@{F). Suppose a command line argument
“a” is generated foargv[1l]. Running this input, patk2, 3,4(F),6,7,8(F), 10) is taken. Along this
path, the tester checks the buffer safety at li@esd 10, and determines that both lines 6 and 10
are safe for this execution. Meanwhile, the tester alsovéerihat line 10 can be an overflow if
the length of argv[1] is larger than 8. Using this buffer di@v condition, the tester can generate
an input “aaaaaaaaa” fargv[1], which leads the execution to pat®, 3,4(F),6,7,8(F),10), and
exploits the buffer at line 10. Since there are still pattet tiave not been covered, the concolic
testing continues to invert the path constraint at line &g to take brancl®(F). A string“” is
generated as the input fargv[1] to exercise2, 3,4(F),6,7,8(T),9).

Concolic testing terminates either when 1) no more new pedhsbe further executed due to
incapability of solving complex constraints, 2) all of thatlps in a program have been executed,
or 3) a time threshold is reached. Considering that thera iexaonential number of paths, often
only a small portion of the program paths are actually cavéseconcolic testing [Godefroid et al.,
2005] [Sen et al., 2005]. For this example, concolic testioggers all the three paths of the program
and generates a total of three test inputs. Buffer writestants at lines 6 and 10 are checked for
each path that exercises them.

Our observation is that not all of the buffer write statersesnte equally suspicious for buffer
overflows. Even for a suspicious statement, not all the phthistraverse it are faulty. To save the
cost of test input generation, we should direct the testiogcasuspicious paths.

Applying our technique, we first statically identify thatdi10is suspicious for buffer overflow
along path segmen®,7,8(F),10), and line6 is safe, which implies that no checks are needed
for this statement at run time. We then perform a reachglilitalysis, and find that branet{F)

reaches the suspicious path segment, but bra¢icytannot. Based on the above static information,

Chapter 7. Path-Guided Concolic Testing 124

main(int argc, char sxargv){
char mapped_path[10];
char xpath;
if (argc !'= 2)
return ;
strcpy (mapped_path,**/"");
path = argv[1];

if (path[0] == "."))
return ;
strcat(mapped_path, path);

Figure 7.1: Comparing Concolic Testing and MAGIC Using amuiEple

we run a concolic testing. The program is first executed watanguments along pat®, 3,4(T),5).
As branch4(F) can reach the suspicious path segment, we inverse the sgmhth constraint and
generate an inpua” . Under this input, the program execut&s3, 4(F),6,7,8(F),10). Since the
suspicious path segment is traversed, the tester detegtihthe buffer overflow is triggered. As the
buffer overflow is not triggered under this input, the testéegrates the buffer overflow condition
at line 10, and generates a new ingiathaaaaaaaa” to exploit the buffer overflow.

With the static information, we do not need to explore thegpam nodes that cannot reach
the suspicious path segment, e.g., braafh). Only paths that cross a suspicious path segment
are checked for buffer overflow. For instance, no effort isdexl to generate test input for path
(2,3,4(F),6,7,8(T)). Testing can be terminated early when the potential fautsriggered. We
exploit the overflow at linel0 by only generating two test inputs, and the possibility offdau

overflow is checked only once along one path.

7.2 An Overview of MAGIC

This section provides a high level description of MAGIC luding the components of MAGIC

and their interactions.

Chapter 7. Path-Guided Concolic Testing 125

7.2.1 The Components

MAGIC consists of five components, shown in Figure 7.2. Magid the reachability analyzer
are the two static components. Marple is a static pathsemsinalyzer that reports the suspicious
statements as well as the suspicious path segments. Tinvabddg analyzer calculates reachability
relationships from each branch of the program to the sumjgbath segments. The dynamic testing
components are built based on concolic testing, includimpogram instrumentor, a test input
generator and a test driver. The program instrumentortsiséstements to the program to collect
symbolic constraints and concrete values during testinige fEst input generator generates test
inputs using symbolic path constraints and fault condgiomhe test driver executes the program

with test inputs and performs symbolic evaluation simudtausly.

Static Analysis Dynamic Testing

Path-Sensitive Fault Program Intrumentor

Detector

Test Input Generator

Reachability Analyzer

Test Driver

Figure 7.2: The Components of MAGIC

Our testing components make several improvements onitnaditconcolic testing. First, we
use boundary values to initiate the test input, which is grpentally shown to achieve a better
branch coverage than using a fixed given value as the inpubth&n enhancement is that we
dynamically change the program state at runtime when aifapérceived to avoid the crash of the
program; otherwise, manual effort has to be involved to fiex fllt before testing can continue.
Furthermore, we model program operations that are potignigdated to the production of a certain
type of fault. For instance, to trigger a buffer overflow, wantlle string libraries and pointer
operations. Concolic testing might never be able to exerésired paths if these operations are not

modeled. In addition to path constraints, we also consfaudt conditions for test input generation.

Chapter 7. Path-Guided Concolic Testing 126

The goal is to ensure the generated inputs not only can eeegicdesired path but also trigger faults.

7.2.2 The Workflow of MAGIC

As shown in Figure 7.3, MAGIC first statically analyzes thegmam and reports suspicious
statements and path segments. Based on the program sodrtteegrath segments, MAGIC runs
a reachability analysis to determine, for each branch, kndréhe execution at the branch is able to
reach any of the suspicious path segments. MAGIC instrusrteetprogram to collect information
needed at runtime. Testing runs on the instrumented progvitiman initial test input. During
execution, the tester determines whether the current égaccan traverse any suspicious path
segment. Meanwhile, the tester collects concrete and djgnl@ues; when a suspicious fault is
encountered, the symbolic constraints regarding pathti@nts and fault conditions are solved by
a constraint solver for potential test inputs. Testing taates when a program input is discovered
that can trigger the fault, or the paths that traverse theossuspicious path segments are all
examined, which show that the suspicious statement isylikafe along the reported suspicious

path segments. The details of static and dynamic compoaeasresented in Section 7.3 and 7.4.

Instrumented Testing
Program Reports
yes
4. Test Input
Reachability
Relationships

Figure 7.3: The Workflow of MAGIC

3. Program
Instrumentation

Suspicious Path
Segments

2. Reachability
Analysis

p 1. Path-Sensitive
rogram Static Analysis

no

5. Test Input
Execution

Chapter 7. Path-Guided Concolic Testing 127

7.3 Obtaining Static Path Information

In MAGIC, a program is first analyzed using our path-sensitwalysis to obtaisuspicious
statements&nd correspondinguspicious path segmentdere, we consider botfaulty anddon't-
know path segments reported by Marple as suspicious and anynstatevhere a suspicious seg-
ment can traverse is suspicious statementn this section, we first describe our choice of static
information provided to dynamic testing, and we then pred@nreachability analysis customized

for our purpose.

7.3.1 The Choice of Path Information

To determine what path information we should provide to dyicacomponents, we first need
to understand the semantics of two types of suspicious piments. In our analysis, a path
segment is determined as faulty if: 1) along the path segniemfault always occurs independent
of program inputs, e.g., a buffer overflow with a constanngiror 2) there exists an entry point
along the path segment, where users can supply an inpug¢etrihe fault, e.g., a buffer overflow
with an external string. As its determination is indeperdemany other information beyond the
path segment, any execution that traverses the faulty egtient (with a proper input supplied at
the entry point along the path segment for the second casdjigger the fault. A don’t-know path
segment is determined when the query encounters don't-Kacters. If the don’'t-know factors
are resolved, the query is potentially propagated furtieéore being determined as faulty, in which
case, the don't-know path segment can be viewed as a patity fpath segment. Some of the
don’t-know paths can be safe and thus executions along-8oaoi paths do not necessarily trigger
the fault.

There is also the choice on the number of suspicious pathesgignve should present. In test-
ing, we only need to demonstrate the exploits of the bufferitew along one execution. However,
presenting one path segment for test input generation isuféicient. The reasons are twofold.
First, static information can be imprecise. For examplenex buffer overflow potentially occurs at

the statement, a suspicious path segment randomly pickedtfre static results can be infeasible.

Chapter 7. Path-Guided Concolic Testing 128

Although we have applied a static analysis to remove someeoinfeasible paths, infeasible path
detection is an undecidable problem, and we can not rembgétakem for a program. The second
reason is that concolic testing is not always able to geaexdést input to exercise a given path,
as some of the symbolic constraints are too complex to salVe.also can choose to enumerate
all of the suspicious path segments; however, this solusioit scalable as there potentially exists
a large number of suspicious path segments, and both stanidgiccessing them at runtime can
incur unacceptable overhead. There is also the choice of @sfixed number of path segments.
The challenge is to determine a reasonable number and ed¢egsés to select the path segments.

In our work, we appliepath graphs(see Definition 3.6) to represent a set of suspicious path
segments that end at the same suspicious statement. E&opraph contains a type of paths for
a fault. The path graphs are generated by Marple. In Margmpatation of path graphs is a
forward analysis following the fault detection. As shownGhapter 4, in fault detection, queries
are propagated backwards for resolutions. During projpagaqueries are stored at each program
node. To construct the path graph, we start at the node whiaeltaor don’t-know resolution
was derived. These nodes are first added to the graph as edeg.nMarple then determines for
each successor, whether the query at the current node weaslagiropagated from either of its
successors; if so, the successor(s) is added to the graglanaedge between the predecessor and
successor is also added into the graph. The process camtintiethe suspicious statement, where
the query was initially raised, is reached.

For example, we show in Figure 7.4 (a) and (b), two suspicmath segments ending at the
same suspicious statements; ands, are two resolution points. Figure 7.4(c) is the path graph
constructed for the suspicious path segments in (a) and (b).

The choice here is whether we use the annotations on the ggih @ testing. The tradeoff is
that using the annotated path graph, more information neells compared at runtime, incurring
additional performance overhead; if annotations on thegdge not considered when we use the
path graph, some path-sensitive information is potegtlait and we potentially lead the test input
generation to some safe path. In MAGIC, we use the path gnajtheut annotations.

In concolic testing, generating an input that potentiathyers a path segment in a path graph

Chapter 7. Path-Guided Concolic Testing 129

(@) (b) (c)

Figure 7.4: A Path Graph for Two Suspicious Path Segments

is more efficient than generating an input based on indivigath segments. The reasons are as
follows. Concolic testing generates a test input for a neth jy inverting a particular branch.
Given a path, concolic testing potentially needs to invesgtzof branches from an initial execution,
and take several iterations before a desired test input eayeberated. On the other hand, if a set
of path segments are given in a graph, concolic testing has flexibility in choosing which path

to exploit. The testing terminates as long as any suspigatts segment in the graph is triggered.

7.3.2 Reachability Analysis

In our dynamic testing, we need to generate test input fop#ik that starts at the beginning
of the program and traverses any path segment in path grapesuse reachability analysis to
determine whether any of the branches in a program can Bcrealch the entries of the path
graphs; if not, we terminate the test input generation atbegcorresponding branch.

Algorithm 1 takes the interprocedural control flow graph pfagram (ICFG), and a set of path
graphs reported by our analysis as inputs. The results ohaddity are stored in a map, where for
each branch, we report a set of entries of path graphs thdurémeh can reach. In Algorithm 1,
lines1-5determine for each branch statement, whether the entribg giath graph can be reached.
The core analysis is achieved in a recursive proce@aach(see line8). At line 10, we get the
immediate successors of the current brahcliror each successoy, if bj is an entry of the path
graph, then we add it to the geiachableat line 13; otherwise, we recursively call procediReach

onb; at line14.

Chapter 7. Path-Guided Concolic Testing 130

Algorithm 1. Calculating Reachability Relationship

INPUT: icfg: the ICFG of the progranG: a set of path graphs

OUTPUT: reachability amap<branch<set> entries of path graphs
for each branch statemeititin icfg

initialize reachable {}

Reaclfb, &reachablé

1

2

3

4 reachabilityfb] := reachable

5 end

6 return reachability

7

8 PROCEDURE: Reach(statemetut setreachablg

9 /lrecursively traverse statements can be reached from b

10 setsuccessorss immediate successor statementd of icfg

11 for each statementb; in successors

12 if b; is an entry of any path graghe G
13 reachablepush{y)

14 Reachy;, reachablg

15 end

16 end

7.4 Dynamic Testing

In our dynamic testing, we apply the reachability inforroatand the suspicious statements/-
path segments computed above. Since collecting and sobyimdpolic constraints are important
for generating the test input, we symbolically model fadhditions, as well as the semantics of
certain program statements that are relevant to triggétsfain this section, we first present the
goals of program instrumentation and techniques. We thew slur modeling techniques for four
types of program statements. Finally, we explain how thicstéformation is used to generate test

inputs.

Chapter 7. Path-Guided Concolic Testing 131

7.4.1 Program Instrumentation

Instrumentation is inserted in the program source. Dyndgasting runs on the instrumented
programs and takes actions according to the instrumentafigeneral goal is to collect symbolic
path constraints and fault conditions needed for test igumeration at runtime. Four types of

actions are applied based on the types of program statements

e if an input statement is encountered, we add a new inputhilariato asymbolic map The
symbolic map records the symbolic values of current livéades, and also symbolic path

constraints and fault conditions;
e if a binary and unary variable operation is met, we recordstmbolic values of the results;

e for conditional branches, we record the conditions for fatke and true branches in the

symbolic map; and

e for a suspicious statement, suchsagpyor pointer dereferences, we construct fault condi-

tions to determine inputs that can trigger the fault.

7.4.2 Buffer Overflow Vulnerability Model

One main difference of MAGIC and concolic testing is that Mi&Gs focused to trigger partic-
ular types of fault. Here, we describe the vulnerability mlode developed for buffer overflow. In
this model, we provide a mapping from a buffer write statentemn overflow condition. We also
provide the actions we take at statements related to bufiéipainter operations. For each buffer,
we not only consider the buffer size and the string lengthalso the contents of the buffer up to a

certain number of bytes. We specify a buffer using a 3-tugileg(L, C), where:

e sizeis a symbolic expression for the size of the buffer;

e L ={lem, lem, ...,len,} is a set of symbolic expressions representing the lengtlstrings
stored in the buffer, as shown in Figure 7.5. Sifi@ can occur multiple times in a buffer, we
record string lengths that are relevant to ev&fy for precision. Dependent on the location
of the pointerp to the buffer, the string obtained viacan be relevant to any of recorded

lengths.

Chapter 7. Path-Guided Concolic Testing 132

Table 7.1: Modeling Buffer Overflow Conditions
| Suspicious Operations | Overflow Conditions \

Supposepq = (addrg, of fy) | (bg (Size, Ly, Cs) := d(addry)) # null;
Supposeps = (addrs, of fs) (bs (sizg, Ls, Cs) :=d(addrs)) # null;
strepy (R, Ps) Len(bs, ps) - of fs >=sizg - of fy
Supposepq = (addrg, of fy) | (bg (Size, Ly, Cs) := d(addry)) # null;
Supposes = (addrs, of) (bs (size, Ls, Cs) := 6(addrs)) # null;

strcat(py, Ps) Len(bs, ps) - of fs + Len(bg, p4) >= sizey
Supposep = (addr, of f) (b (size, L, C}y= d(addr)) # null;
*p = var off > size

e C=¢y, Cy, ...,Cyis a sequence of symbolic expressions representing the firgtracters of
the buffer [Xu et al., 2008]. The tradeoff here is that the encontent of a buffer is modeled,

more precise the symbolic analysis can achieve, howevdr,higher overhead.

=Ien1= l pointerp
buffer \0 \0
pointerp len;

Figure 7.5: Multiple Strings in a Buffer

We use a pairdddr, off) to specify a pointer to a buffer, wheealdr is the beginning of the
buffer andoff specifies the symbolic offset froaddr. In Table 7.1, we show how buffer overflow
conditions can be constructed based on the type of progratrenstnts at runtime. In the first
column, we show three examples of suspicious statementsexyfain the construction of buffer
overflow conditions in the second column. Consider the fgt of the table as an examplgs
and pg are two pointers. A string in the buffer pointed to pyis copied to the buffer pointed to
by pg. At runtime, when such a suspicious statement is encouhtere first find in the symbolic
map the buffers associated wipg and py. This action is specified usinin the second column. If
the mapping is successful, shownkgs# null andbs £ null in the table, we determine whether the

string from ps copied topy potentially cause an overflow (see Figure 7.6).

Chapter 7. Path-Guided Concolic Testing 133

Offd

sizey
offs

leng=Len(bg, ps)

Figure 7.6: Buffer Overflow Condition

In the figure, we show that the available buffer spadsiisg — of fy]. The string being copied
has a length ofiens — of 5], wherelens represents the length of the string stored in busfeks we
mentioned in Figure 7.5, multiple string lengths can be r@ed for a buffer, and we need to select
a proper length depending on the location of the pointer. ¥étan(bs, ps) to represent this action.
The second column first row in the table indicates that if trieg length is larger than or equal to
the available buffer size, a buffer overflow can occur.

Besides operations modeled by concolic testing [Sen é2@05], our testing components also
model additional buffer and pointer operations. Table Te&ents a partial list. In the first column,
we present the type of program statements, and in the seotunah, we specify actions MAGIC
takes at the statement to construct the symbolic map. Cemsie first row of the table. When
the program executes the statemgitaddr, off) := input(sizg, MAGIC creates a hew buffds on
the symbolic map. The three parameters of a buffer are linéd the size of the buffer isize
a string length is alsgize and the firsin bytes of characters are set based on the input string.
After the buffer is created, MAGIC establishes a mappingveen the buffer and the pointer using
addr:=&b andoff:=0.

7.4.3 Path-Guided Test Input Generation

Algorithm 2 takes the path graphs of suspicious path seggwepbrted by Marple, and gener-

ates the program inputs that can trigger faults.

Chapter 7. Path-Guided Concolic Testing 134

Table 7.2: Symbolic Semantics of String and Pointer Opamati
\ Operations Symbolic Semantics \
create a buffeb (size {siz4, { ci, C, ...,Cn}),
addr:= &b, off :=0
create a buffeb (size {}, {}),
addr:= &b, off :=0
suppose = (addr, off) b := d(addr)

p (addr, off) := input(size)

p (addr, off) := malloc(size)

free(p) deleteb
supposestr = (addr, off) create a new buffdo (size {siz4, {}),
char stisizd addr:= &b, off :=0

supposeyq = (addry, of fg)
supposeps = (addrs, of fs) | addy :=add,, of fy =offs £ v

Pd = Ps =V
suppose = (addr, off) b (size, L, C)= d(addr)
p="\0’ L :=L U {off}

At line 2, initial program inputs are generated. Primitive inputiables are given valu@, and
strings are initialized as empty strings. If boundary valoéthe inputs are known, MAGIC uses
their lower and upper bounds.

In the second step, MAGIC executes the program with the géegtinputs (seRun_Program
at line 3). During execution, MAGIC collects both the branches that éxecution covers and the
symbolic path constraints at the branches. When a pathds\giged to traverse a suspicious path
segment in any given path graph, MAGIC determines if a budferflow occurs; if not, MAGIC
integrates the buffer overflow conditions with a set of pathstraints and generates a new test input.
If a buffer overflow is confirmed, MAGIC removes the path grapiresponding to this suspicious
statement. Also, when a buffer overflow is determined, MAG@IGcates a new memory space for
the buffer with the overflowed size and continues the exenutn an attempt to trigger more faults
along the same execution. When the execution terminatestave a sequence of branches and
symbolic path constraints, collected along the execuiiutio, the branch lisB and the constraint
list C.

Path_Guided_Searcht line 6 uses the branch li& and the constraint list collected from the
previous execution to generate test inputs that exciseu$gicgous paths. Thior loop at line8

examines the collected branch one by one in a reverse oatezath branch, MAGIC determines

Chapter 7. Path-Guided Concolic Testing 135

whether itspaired branchis either able to reach the entries of any path grap® {(see linell) or

on a suspicious path segment (see liBg If so, at line21, MAGIC attempts to generate a new test
input using a set of path constraints collected al¢Bd],B[2],...,B[i — 1]) with the inverted path
constraint at brancB[i]. The generated input at lir®8 executes patkB[1],B[2], ..., B[i — 1],B—[i]>.

If the current branch cannot reach the entries of the patbhgrar is not on any suspicious path
segment, MAGIC proceeds to examine the next branch at8iimethe same way. The testing
process terminates when all suspicious statements ageited or all suspicious path segments are

covered.

Chapter 7. Path-Guided Concolic Testing

Algorithm 2. Path-Guided Test Input Generation

INPUT: G{01, 92, ---,01}: a set of path graphs of suspicious path segments

1

© 00 N o o b~ w N

N NN N NN P PR P R R R R PP R
g & W N P O © ©® N © 0o M W N B O

26
27

initialize branch list B {}andconstraint list C {}
| = Genlnitinput()

Run_Program(&B, &C)
Path_Guided_Seard)(C)

PROCEDURE: Path_Guided_Search(branchBstconstraintlisiC)
bool inversePath= false
for (i:=sizeOfB); i >=1;i--)
get the PairedBrandBli|
for each suspicious path grapgh in G
if B[i] can reach any stop point gk
inversePath= true
break
end

else ifpath<B[1], ...B[i-l],B_[i]> traverses a path segmentgi

inversePath= true
break
end
end
if (inversePath= true)
I' := solve C[1] N C[2] N ... N C[i-1] N = (CIi]))
initialize branch list B’ {} andconstraint list C’ {}
Run_Progrant(, &B’, &C’)
Path_Guided_Sear@i(C)
end
end

end

136

Chapter 7. Path-Guided Concolic Testing 137

7.5 Implementation and Evaluation

We implemented MAGIC for testing buffer overflows. Our goats to evaluate its capability
for generating inputs to detect and trigger faults and astetermine its performance. For compar-
ison, we also constructed two other tools. Tool | impleméhéstechniques of SPLAT [Xu et al.,
2008], which model buffer lengths and the first several bgfdauffer content on top of basic con-
colic testing to trigger buffer overflows. Different from MAC, it does not use boundary values as
initial inputs, and terminates when a fault is found. In thpeximents, we needed to fix the fault
and run the tool again until no more faults were found. We taoted Tool Il by isolating the dy-
namic testing components from MAGIC; that is, it does notarsg static information. Comparing
Tool Il and MAGIC, we can determine the usefulness of the patirmation in guiding test input
generation.

MAGIC is implemented on top of CREST [Burnim and Sen, 2008] &arple [Le and Soffa,
2008]. Both MAGIC and Tool | are implemented using MicrosBfioenix SDK, and applied
the Yices constraint solver The machine used for experiments is the Intel Duo Core 2146 G
processor with 2GB memory. We selected a set of benchmagkants, including wu-ftp:mapping-
chdir, sendmail:ge-bad, polymorph-0.4.0 and gzip-1.ZHe first two are buffer overflow bench-
marks [Zitser et al., 2004], containing typical and reaigiuffer overflows. Polymorph-0.430
is a real-world program, used to simplify file names in UNIXziB1.2.4' is a file compression
program.

We ran a preliminary set of experiments to determine the thmeshold we could use for the
tools. The experimental results show that for all of the bhemarks, testing either terminates within
1500seconds, or is no longer able to trigger more faults beyi@iDseconds. Thus, in our exper-
iments, we decided to double the number and set the timehibiceat3000seconds for all three
tools. The goal is to ensure that for most of the benchmadsting terminates before reaching

this threshold, and even when the termination is forced bytithe threshold, the number of faults

Lhttp://connect.microsoft.com/Phoenix
2http:/lyices.csl.sri.com/
Shttp://sourceforge.net/projects/polymorph/
“http://www.gzip.org/

Chapter 7. Path-Guided Concolic Testing 138

reported by the tools reflect the actual detection capglafithe tools.

7.5.1 Capability of Triggering Faults

We first ran experiments to determine the capability of thedtiools for triggering faults. The
results are shown in Table 7.3. The first two columns give #rebmark programs and their sizes.
For each tool, we show the number of faults triggered, thelrarmof faults that were missed and
the total time that it takes to finish the testing. By manuabiyfirming suspicious statements/path
segments reported from Marple, we are able to know the nuofiaiffer overflows a testing tool
is supposed to trigger. We therefore can determine the nuofbaults missed in testing. For
gzip-1.2.4 Marple reports 9 buffer overflows. Four of these requirecBjeenvironment variables
to have long lengths that are not possible in the system wM&®@IC runs. In this testing envi-
ronment, MAGIC does not miss any faults for this benchmarkaddition to the fault detection
capability, we also report the performance of dynamic nigstiThe performance of static analysis

can be found in Chapter 4.

Table 7.3: Comparison of Testing Time and Fault Detectiopabdity

Benchmarks Size | Tool I: SPLAT techniques [Tool Il: MAGIC without Static Information | MAGIC |
(kloc) [Detect | Miss] Time | Detect | Miss | Time | Detect [Miss [Time |
wu-ftp:mapping-chdir| 0.2 2 0 1342 s 5 0 1325s 5 0 20s
sendmail:ge-bad 0.9 3 1 1618 s (crash) 4 0 1459 s 4 0 171s
polymorph-0.4.0 0.9 0 7 >3000 s 5 2 >3000 s 5 2 >3000 s
gzip-1.2.4 5.1 3 2 463 s 5 0 1071s 5 0 951's

Comparing the results of Tool | and Tool II, we find that morelfaare triggered using Tool Il
than Tool I. Across all benchmarks, Tool | missHeifaults and Tool Il only misse@. The reasons
for being able to trigger more faults in Tool Il are: 1) MAGIQatels string contents more carefully,
e.g., tracking multiplé\O' for a buffer; and 2) MAGIC uses boundary values, instead okedfi
default value, which enables more branches to be coveregstimg. The times used in testing
are comparable for the two tools, except for gzip-1.2.4, rehiool 11 executes more paths than
Tool | due to the use of the boundary value, and thus takeslalagterminate. Since more paths
are executed, more faults are found. The constraint sofverashed when we run Tool | for

sendmail:ge-badfter 1618 seconds.

Chapter 7. Path-Guided Concolic Testing 139

Comparing Tool Il to MAGIC, we discover that 1) both the totigger the same number of
faults, which shows Marple does not report false negatifti@s ¢an impact this testing, and 2)
MAGIC is more efficient to find these faults. The testing timeeduced because paths which do
not traverse any suspicious path segment are avoided. Atherfigenchmarks, the time reduction
in gzip-1.2.4 is the least. One reason is that for this berchnTool Il is not able to cover a certain
number of paths due to complex symbolic constraints, ansl tlsting terminates early. Another
reason is that for this benchmark, some of the don't-knovih gggments are short, and thus in

MAGIC, the guidance is not significant.

7.5.2 The Effort to Generate Test Inputs

In another experiment, we compared the effort of generagsginputs with the three tools.
Table 7.4 presents the experimental results for each toatletAttempts we display the number
of paths (or path segments) that are targeted for test irgnérgtion, i.e., the number of times that
symbolic constraints are sent to the constraint solver &emtial test inputs. UndeBenerated
we give the number of test inputs that are successfully géeeifrom the constraint solver. The
numbers count both the test inputs that can trigger fautis tlae inputs generated in the process of
searching for suspicious path segments. Urfd®ie we show the total time spent in the constraint

solver in generating test inputs from the symbolic constsai

Table 7.4: Comparison of Test Input Generation Costs

Benchmarks Tool I: SPLAT techniqugs Tool Il: MAGIC without Static In_formation MAGIC]
Attempts | Generated| Time Attempts | Generated Time Attempts | Generated| Time
wuftp:mapping-chdir| 13995 1748 30.9s 7828 1254 19.4s 23 20 0.2s
sendmail:ge-bad 1335 1084 545s 30377 1201 39s 5362 253 0.7s
polymorph-0.4.0 492061 3335 116.7s| 46019 1615 66.7 s 227 122 0.7s
gzip-1.2.4 4258 485 8.7s 12533 1178 256 s 5687 1178 50s

Our experimental results show that MAGIC largely reducessiiarch space for generating test
inputs, as both the number of paths explored and the numhlesiihputs generated in the testing
process reported by MAGIC are much less. The time used foinjest generation is also reduced

accordingly.

Chapter 7. Path-Guided Concolic Testing 140

7.6 Conclusions

This chapter presents MAGIC, a path-guided concolic tgdtemmework for automatically gen-
erating test inputs to exploit statically identified faultMAGIC consists of both the static and
dynamic components: the static components include a patitsre analyzer, and a reachability
analyzer; and dynamic components implement concolicnigghiat in particular is able to trigger
buffer overflows in a program. Our experiments show that in®l3, the dynamic testing confirms
statically reported buffer overflows, and also determimesesof the don’t-know static warnings as
faulty. MAGIC also helps classify false positives, as if mputs can be generated to exploit the
suspicious path, we are more confident that the suspicidisipaafe. We also find that guided
by the path information, our testing runs 1.1-66.3 timetefathan concolic testing over a set of
benchmarks. Although we only implemented buffer overflowedion for our experiments, more

types of faults can be included.

Chapter 8

Conclusions and Future Work

This thesis presents a practical framework that staticgalyputes and reports path informa-
tion to predict dynamic fault behavior. The main insighthatt path information is essential for
addressing the precision problem faced by traditionaicsgatalysis. In addition, if program paths
are given, we are able to explore likely-dynamic behavistgh as propagation of a fault or in-
teractions of multiple faults, which has not been done iditienal static analysis. The computed
path information is shown not only helpful for understamdand fixing the faults [Le and Soffa,
2007,Le and Soffa, 2008, Le and Soffa, 2010], but also usefiguiding dynamic testing to exploit
the faults [Cui et al., 2011].

An important contribution of this work is that we developedieemand-driven analysis to address
the state space explosion problem faced in path-sensitisl/sis, and make the computation of
path properties feasible for a variety of faults and foréadgployed software [Le and Soffa, 2008].
With the improved scalability, we are able to further apmghniques to make path computation

more precise, general and usable [Le and Soffa, 2011].

8.1 Contributions and Impact

This thesis demonstrates that static computation of pdtbertain fault properties can be valu-
able (see Chapter 3, 4, 6 and 7), practical (Chapter 4 anddraadly applied (Chapter 5 and 6).

We developed a set of path-based techniques which compditgsarpath information for detecting

141

Chapter 8. Conclusions and Future Work 142

and diagnosing faults. In the following, we summarize thetdbutions of our work from these

three aspects:

¢ Identification of Path Information: We demonstrajesth diversityandfault locality. Path
diversitysays paths across the same program point can differ in tisenpre, the root cause
or severity of a fault, or its analyzability with regard t@tst analysis. Therefore, using path
information, we can more precisely characterize the benafipotential executions. A path
classification is developed including the typesnééasible faulty with various consequences
and root causessafe anddon’t-know Fault locality says that faults often are only relevant
to a sequence of execution, instead of the whole program lpased on which, we developed

efficient algorithms to detect and diagnose the path segntleait contain faults.

e Computation of Path Information: We developed a demandedranalysis to automatically
detect paths of a type of fault, and the path information jmreed in path graphs. Using
a fault-model and specification technique, we automayicgdinerated path-based analyses
to detect user-specified faults. Generality is achievecconputing both safety and live-
ness properties, and both control and data-centric typtsuti§, including buffer overflows,

integer faults, null-pointer deferences and memory leaks.

e Ultilization of Path Information: Based on the paths of npidifaults, we developed an algo-
rithm to automatically compute the relationships betweertipie faults. Fault correlations
are shown to be valuable in grouping faults and prioritiziiiggnostic tasks. Using path in-
formation, we also developed a hybrid test input generagchnique, which generates test
inputs to confirm statically identified faults, and can mouelly trigger faults compared to

traditional concolic testing.

The prototype tool, Marple, developed in this research lentused to studyeducing the
cost of test input generation using static informatiand parallelization of static analysigMi-
tali Parthasarathy and Soffa, 2010]; it also has been usezhtt basic concepts of static analysis
and the Microsoft Phoenix Infrastructure. The Phoenix aigb®er groups have integrated our

feedback and bug reports for developing Phoenix and Disolve

Chapter 8. Conclusions and Future Work 143

With the results of this thesis, industry can better undedthe value of precise and rich path
information for reducing the manual cost of fault detect@o diagnosis; the techniques related to
scalability, precision and generality of static path cotagian can be integrated into the industrial

software assurance process to further improve produgtivit

8.2 Future Work
Future work includes:

e Further exploring the use of paths. Static path informaisanteresting because it specifies
likely dynamic behavior but has a broader coverage thanrdin#aces. In this thesis,
we have shown that paths are useful to guide testing. Sigilgath information also can
benefit other dynamic tools, such as runtime monitors orunstntors. In addition, we
also can compare information between paths, or betwees pathdynamic traces to derive
interesting properties. The challenge here is to identify eepresent the path information

for a particular application to achieve desired functiggaind efficiency.

e Investigating the application of the framework to identdther types of faults. We have
demonstrated the effectiveness of our framework in detgdtie four types of faults. How-
ever, we hypothesize that our techniques are applicableyttypes of faults that traditional
static analysis handles, and will be more efficient. For gdamit is interesting to model
and handle concurrent bugs with our framework. When muétitting is involved, the state
space we need to handle is even bigger, the question is how demand-driven analysis

can help here to further improve the scalability and preaisif fault detection.

e Researching more types of fault interactions and theiregafar software assurance. We have
shown a causal relationship between faults and their caatipat Other fault relationships
may exist, e.g., one fault can disable another or multipldtamay collaborate to cause a
vulnerability. With more types of faults integrated into @ur framework and more types

of fault relationship considered, we can predict more ggeng properties regarding fault

Chapter 8. Conclusions and Future Work 144

propagation and potential dynamic symptoms, e.g., we wikddo determine the potential

impact of a data race in a program.

e Processing the don't-know warnings. We have shown thanhtestin exploit some of the
don’'t-know paths to confirm them as vulnerable. Based on thet-tnow factors, these
warnings can be further refined by other solutions. For exanvpe can apply a statistical

analysis to reason the potential behavior of certain pdgsuarce code.

e Parallelizing our demand-driven, path-sensitive algonit Demand-driven analysis is natu-
rally parallel. Our initial exploration shows there existpotential to further speed up the
analysis. For example, each query for determining thesafetach potentially faulty point
is independent, and thus can be parallelized. Also, forlviegpeach query, the propaga-
tion of the queries along different paths can be run in paltallhe challenge is to enable

parallelization and meanwhile maximize the reuse of thermediate results.

Bibliography

[PC, 2006] (2006). Personal communication with Mingdongri&hand Haizhi Xu, Code Review-

ers at Microsoft.

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (898 Compilers: principles, tech-

nigues, and toolsAddison Wesley.

[Alpern and Schneider, 1985] Alpern, B. and Schneider, £1B85). Defining livenesdnforma-
tion Processing Letter21(4):181-185.

[Babich and Jazayeri, 1978] Babich, W. A. and Jazayeri, M78). The method of attributes for

data flow analysis: Part Il demand analyssta Informatica 10(3).

[Ball et al., 2004] Ball, T., Cook, B., Levin, V., and Rajamag. K. (2004). SLAM and static
driver verifier: Technology transfer of formal methods @esimicrosoft. Technical Report MSR-

TR-2004-08, Microsoft Research.

[Ball et al., 2003] Ball, T., Naik, M., and Rajamani, S. K. (). From symptom to cause: local-
izing errors in counterexample traces. ROPL'03: Proceedings of the 30th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages

[Biere et al., 2002] Biere, A., Artho, C., and Schuppan, W0(2). Liveness checking as safety
checking. InFMICS’02, Formal Methods for Industrial Critical System#lume 66(2) of
ENTCS

145

Bibliography 146

[Blume and Eigenmann, 1995] Blume, W. and Eigenmann, R.519Demand-driven, symbolic
range propagation. IRroceedings of the 8th International Workshop on LanguagesCom-

pilers for Parallel Computingpages 141-160.

[Bodik and Anik, 1998] Bodik, R. and Anik, S. (1998). Patmstive value-flow analysis. In
POPL'98: Proceedings of the 25th ACM SIGPLAN-SIGACT sympo®n Principles of pro-

gramming languages

[Bodik et al., 1997a] Bodik, R., Gupta, R., and Soffa, M. L99¥a). Interprocedural conditional
branch elimination. IlPLDI'97: Proceedings of the ACM SIGPLAN Conference on Paogr

ming Language Design and Implementation

[Bodik et al., 1997b] Bodik, R., Gupta, R., and Soffa, M. L99Fb). Refining data flow informa-
tion using infeasible paths. IRSE’05: Proceedings of the 6th ACM SIGSOFT International

Symposium on Foundations of Software Engineering

[Brumley et al., 2007] Brumley, D., cker Chiueh, T., JohnsBn, Lin, H., and Song, D. (2007).
RICH: Automatically protecting against integer-basecheundbilities. INDSS’07: Proceedings

of the 14th Symposium on Network and Distributed Systemsityec

[Burnim and Sen, 2008] Burnim, J. and Sen, K. (2008). Heiagdor scalable dynamic test gen-
eration. INASE’08: Proceedings of the 23rd IEEE/ACM International &wence on Automated

Software Engineering

[Bush et al., 2000] Bush, W. R., Pincus, J. D., and Sielaff).[f2000). A static analyzer for finding

dynamic programming error§oftware Practice and Experience

[Cadar et al., 2008] Cadar, C., Dunbar, D., and Engler, DO820KLEE: unassisted and automatic
generation of high-coverage tests for complex systemsranogy InOSDI'08: Proceedings of

the 8th USENIX conference on Operating systems design gpidrimentation

Bibliography 147

[Cadar et al., 2006] Cadar, C., Ganesh, V., Pawlowski, PDill,,D. L., and Engler, D. R. (2006).
EXE: automatically generating inputs of death.G€S’06: Proceedings of the 13th ACM con-

ference on Computer and Communications Security
[CERT, 2010] CERT (2010)htt p://www. cert.org/.

[Chen and Wagner, 2002] Chen, H. and Wagner, D. (2002). M@RSnfrastructure for exam-
ining security properties of software. ©CS’02: Proceedings of the 9th ACM Conference on

Computer and Communications Security

[Chen et al., 2003] Chen, S., Kalbarczyk, Z., Xu, J., and,lirerK. (2003). A data-driven finite
state machine model for analyzing security vulnerabditi;m DSN'03: the IEEE International

Conference on Dependable Systems and Networks

[Chen et al., 2005] Chen, S., Xu, J., Sezer, E. C., Gaurigani. lyer, R. K. (2005). Non-control-
data attacks are realistic threats. Rroceedings of the 14th conference on USENIX Security

Symposium

[Cherem et al., 2007] Cherem, S., Princehouse, L., and Ru&n(2007). Practical memory leak
detection using guarded value-flow analysis.PlrDI '07: Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design and impittien

[Clause and Orso, 2010] Clause, J. and Orso, A. (2010). ladakppinpointing the causes of
memory leaks. INCSE’10: Proceedings of the 32nd International ConferenoeSoftware

Engineering

[Common Vulnerabilities and Exposure, 2010] Common Vudihdities and Exposure (2010).

http://cve.mtre.org/.

[Csallner and Smaragdakis, 2006] Csallner, C. and Smakégdé (2006). DSD-Crasher: A hy-
brid analysis tool for bug finding. I'8STA’06: Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis

Bibliography 148

[Cuietal., 2011] Cui, Z., Le, W., and Soffa, M. L. (2011). MAG Path-guided concolic testing.

In review

[Das, 2005] Das (2005). Manviur das, keynote talkhttp://ww. cs. und. edu/ ~pugh/

BugWor kshop05/ present at i ons/ das. pdf .

[Das et al., 2002] Das, M., Lerner, S., and Seigle, M. (20@3P: path-sensitive program verifi-
cation in polynomial time. IfiPLDI'02:Proceedings of the ACM SIGPLAN 2002 Conference on

Programming language design and implementation

[David and Wagner, 2004] David, R. J. and Wagner, D. (2004)diRg user/kernel pointer bugs

with type inference. IfProceedings of the 13th conference on USENIX Security Siomo

[Duesterwald et al., 1996] Duesterwald, E., Gupta, R., anfthSM. L. (1996). A demand-driven
analyzer for data flow testing at the integration levellQI$E’'96: Proceedings of 18th Interna-

tional Conference on Software Engineering

[Duesterwald et al., 1997] Duesterwald, E., Gupta, R., afthSM. L. (1997). A practical frame-
work for demand-driven interprocedural data flow analy8iSM Transactions on Programming

Languages and Systems

[Dwyer et al., 2007] Dwyer, M. B., Elbaum, S., Person, S., &uwlandare, R. (2007). Parallel
randomized state-space search.IG$SE’'07: Proceedings of the 29th international conference

on Software Engineering

[Engler et al., 2001] Engler, D., Chen, D. Y., Hallem, S., Ghé., and Chelf, B. (2001). Bugs
as deviant behavior: a general approach to inferring emosgstems codeSIGOPS Operating

System Reviev85(5):57-72.

[ESC-Java, 2000] ESC-Java (2000). ESC-Java. http://web.archive. org/ web/
20051208055447/ htt p: //research. conpag. com SRC esc/ .

Bibliography 149

[Evans, 1996] Evans, D. (1996). Static detection of dynamémory errors. [lPLDI'96: Pro-
ceedings of the ACM SIGPLAN 1996 Conference on Programnanguage Design and Imple-

mentation

[FindBugs, 2005] FindBugs (2005). http://findbugs.sotoge.net/.

[Ghosh et al., 1998] Ghosh, A. K., O’'Connor, T., and Mcgraw(1®98). An automated approach
for identifying potential vulnerabilities in software. 998 IEEE Symposium on Security and

Privacy.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., anchsS&. (2005). DART: directed auto-
mated random testing. IRLDI'05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation

[Godefroid et al., 2007] Godefroid, P., Levin, M. Y., and Mal, D. (2007). Automated whitebox
fuzz testing. Technical Report MSR-TR-2007-58, Microgéisearch.

[Goradia, 1993] Goradia, T. (1993). Dynamic impact analysi cost-effective technique to en-

force error-propagationSIGSOFT Software Engineering Nates

[Hackett et al., 2006] Hackett, B., Das, M., Wang, D., andg/af (2006). Modular checking for
buffer overflows in the large. IICSE’06: Proceeding of the 28th International Conferenoce o

Software Engineering

[Hallem et al., 2002] Hallem, S., Chelf, B., Xie, Y., and EagID. (2002). A system and language
for building system-specific, static analyses. AbDI'02, Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Impittien

[Hamadi, 2002] Hamadi, Y. (2002). Disolver : A Distributeai@traint Solver. Technical Report
MSR-TR-2003-91, Microsoft Research.

[Hatton, 2008] Hatton, L. (2008). Testing the value of cHistk in code inspectionslEEE Soft-
ware, 25:82—88.

Bibliography 150

[Heckman and Williams, 2009] Heckman, S. and Williams, L0q2). A model building process
for identifying actionable static analysis alerts. IBST '09: Proceedings of the 2009 Interna-

tional Conference on Software Testing Verification anddédion

[Heintze and Tardieu, 2001] Heintze, N. and Tardieu, O. 20@emand-driven pointer analysis.
In PLDI'0O1: Proceedings of the ACM SIGPLAN 2002 Conference mgfRmming Language

Design and Implementation

[Henzinger et al., 2002] Henzinger, T. A., Jhala, R., Majamd., and Sutre, G. (2002). Lazy
abstraction. IiPOPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT syimposn Prin-

ciples of programming languages

[Inquiry Board, 1996] Inquiry Board (1996). Ariane 5: FlighO1 failure. http://sunnyday.

mt. edu/ acci dent s/ Ari ane5acci dentreport. htni.

[Investigation Board, 1999] Investigation Board (1999)anslclimate orbiter mishap investigation

board phase | reporht t p: // sunnyday. ni t . edu/ acci dent s/ MCO _report. pdf .

[Jeffrey et al., 2008] Jeffrey, D., Gupta, N., and Gupta, B08). Fault localization using value
replacement. ISSTA'08: Proceedings of the 2008 international symposinr8oftware testing

and analysis

[Kaner et al., 2001] Kaner, C., Bach, J., and Pettichord,2B0{). Lessons Learned in Software

Testing: A Context-Driven ApproachViley.

[Kremenek et al., 2004] Kremenek, T., Ashcraft, K., Yangahd Engler, D. (2004). Correlation

exploitation in error rankingSIGSOFT Software Engineering Nates

[Kremenek and Engler, 2002] Kremenek, T. and Engler, D. 220-ranking: Using statistical
analysis to counter the impact of static analysis approtiona. InSAS’02: Proceedings of the

10th International Static Analysis Symposium

[Lam et al., 2008] Lam, M. S., Martin, M., Livshits, B., and \alky, J. (2008). Securing web

applications with static and dynamic information flow trextk In PEPM '08: Proceedings

Bibliography 151

of the 2008 ACM SIGPLAN symposium on Partial evaluation amdantics-based program

manipulation

[Le and Soffa, 2007] Le, W. and Soffa, M. L. (2007). Refiningffeu overflow detection via
demand-driven path-sensitive analysis. PARSTE’'07: 7th Workshop on Program Analysis for

Software Tools and Engineering

[Le and Soffa, 2008] Le, W. and Soffa, M. L. (2008). Marple: enthnd-driven path-sensitive
buffer overflow detector. IFFSE’'08: Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering

[Le and Soffa, 2010] Le, W. and Soffa, M. L. (2010). Path-lobfault correlations. IFSE’10:
Proceedings of the 16th ACM SIGSOFT International Symposin Foundations of software

engineering

[Le and Soffa, 2011] Le, W. and Soffa, M. L. (2011). A path-dédsramework for automatically

identifying multiple types of software faults. haview

[Leveson and Turner, 1993] Leveson, N. and Turner, C. S.3)L98n investigation of the therac-

25 accidentsht t p: // cour ses. c¢s. vt. edu/ ¢s3604/1i b/ Therac_25/ Therac_1. htm .

[Livshits and Lam, 2003] Livshits, V. B. and Lam, M. S. (2003)racking pointers with path and
context sensitivity for bug detection in ¢ programs.HBE’'03: Proceedings of 11th ACM SIG-
SOFT International Symposium on Foundations of Softwagirteering

[Luetal., 2005] Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., adlou, Y. (2005). Bugbench: Bench-
marks for evaluating bug detection tools. Pmoceedings of Workshop on the Evaluation of

Software Defect Detection Tools

[Marcus and Stern, 2000] Marcus, E. and Stern, H. (20@lueprints for high availability: de-

signing resilient distributed systemdohn Wiley & Sons.

[Microsoft Game Studio MechCommander2, 2001] Microsoftm@a Studio MechCommander2

(2001).ht t p: // www. m cr osof t. com ganmes/ nechcommander 2/ .

Bibliography 152

[Mitali Parthasarathy and Soffa, 2010] Mitali ParthasiayatV. L. and Soffa, M. L. (2010). Paral-
lel path-based static analysis. Technical Report CS-ZB)IDepartment of Computer Science,

University of Virginia.

[Necula et al., 2005] Necula, G. C., McPeak, S., and Weimer,(2005). CCured: type-safe
retrofitting of legacy code. ACM Transactions on Programming Languages and Systems Vol-

ume 27 Issue.3

[NIST, 2002] NIST (2002). Software errors cost u.s. econ®f9.5 billion annually. News Re-

lease: National Institute of Standards and Technologyaiegent of Commerce.

[Orlovich and Rugina, 2006] Orlovich, M. and Rugina, R. (BDOMemory leak analysis by con-

tradiction. INSAS’06: Proceedings of the 13th International Static Asialpymposium
[Phoenix, 2004] Phoenix (2004)t t p: / / resear ch. ni crosof t . com phoeni x/ .

[Ruthruff et al., 2008] Ruthruff, J. R., Penix, J., Morgeaittr, J. D., Elbaum, S., and Rothermel, G.
(2008). Predicting accurate and actionable static arslyarnings: an experimental approach.

In ICSE '08: Proceedings of the 30th international confereaneSoftware engineering

[Schwarz et al., 2005] Schwarz, B., Chen, H., Wagner, D., LinTu, W., Morrison, G., and West,
J. (2005). Model checking an entire linux distribution fecarity violations. InProceedings of

the 21st Annual Computer Security Applications Conference
[SecurityTeam, 2010] SecurityTeam (2010)t p: // www. securiteam coni .

[Sen et al., 2005] Sen, K., Marinov, D., and Agha, G. (2005UTE: a concolic unit testing en-
gine for c. InFSE’05: Proceedings of the 13th ACM SIGSOFT internatioryahizosium on

Foundations of software engineering

[Snelting, 1996] Snelting, G. (1996). Combining slicingdagonstraint solving for validation of
measurement software. 8AS'96: Proceedings of the 3rd International Static Anialg/mpo-

sium

Bibliography 153

[Strom and Yemini, 1986] Strom, R. E. and Yemini, S. (1986)pdstate: A programming lan-
guage concept for enhancing software reliabilityeEE Transaction Software Engineering

12(1):157-171.

[Visser et al., 2000] Visser, W., Havelund, K., Brat, G., ddrk, S. (2000). Model checking
programs. InNASE’00: Proceedings of the 15th IEEE international confies2 on Automated

software engineeringpage 3.

[Wagner et al., 2000] Wagner, D., Foster, J. S., Brewer, EaAd Aiken, A. (2000). A first step
towards automated detection of buffer overrun vulneradsli In NDSS’00: Proceedings of

Network and Distributed System Security Symposium

[Wu and Malaiya, 1993] Wu, K. and Malaiya, Y. (1993). The effef correlated faults on software
reliability. In ISSRE’93: Proceedings of Software Reliability Enginegridth International

Symposium an

[Xie and Aiken, 2007] Xie, Y. and Aiken, A. (2007). Saturn: Aadable framework for error de-

tection using boolean satisfiabilitACM Transaction Program Language Syst&9(3).

[Xie et al., 2003] Xie, Y., Chou, A., and Engler, D. (2003). BRER: Using symbolic, path-
sensitive analysis to detect memory access errors&:SE'03: Proceedings of 11th ACM SIG-

SOFT International Symposium on Foundations of Softwaggrteering

[Xu et al., 2008] Xu, R.-G., Godefroid, P., and Majumdar, B0@8). Testing for buffer overflows
with length abstraction. IMSSTA'08: Proceedings of the 2008 international symposiumm

Software testing and analysis

[Yang et al., 2006] Yang, J., Evans, D., Bhardwaj, D., Bhat,ahd Das, M. (2006). Perracotta:
mining temporal api rules from imperfect traces.IGSE '06: Proceedings of the 28th interna-

tional conference on Software engineering

Bibliography 154

[Zitser et al., 2004] Zitser, M., Lippmann, R., and Leek, 2004). Testing static analysis tools
using exploitable buffer overflows from open source codel-3$&'04: Proceedings of the 12th

International Symposium on Foundations of Software Ergging.

