
SOURCE LEVEL DEBUGGING TECHNIQUES

AND TOOLS FOR OPTIMIZED CODE

by

Clara Ines Jaramillo

B.S., Computer Science, University of New Orleans, 1987

M.C.S., Computer Science, Rice University, 1994

Submitted to the Graduate Faculty of

Arts and Sciences in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2000

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Clara Ines Jaramillo

It was defended on

August 18 2000

and approved by

Dr. Mary Lou So�a

Dr. Rajiv Gupta

Dr. Panos Chrysanthis

Dr. Thomas Gross (CMU)

Committee Chairperson

ii

Copyright by Clara Ines Jaramillo

2000

iii

SOURCE LEVEL DEBUGGING TECHNIQUES

AND TOOLS FOR OPTIMIZED CODE

Clara Ines Jaramillo, Ph.D.

University of Pittsburgh, 2000

As compilers increasingly rely on optimizations to achieve high performance, the

technology to debug optimized code continues to falter. The problem of debugging opti-

mized code is twofold because errors in an optimized program can originate in the source

program or be introduced by the optimizer. Therefore, tools must be developed to help ap-

plication programmers debug optimized code and optimizer writers debug optimizers from

the point of view of the source program.

This dissertation �rst analyzes the e�ects of optimizations and the complexities in

maintaining correspondences between the source and optimized code statements. A variety

of code transformations are considered, including classical and aggressive statement level

transformations, loop transformations, and inlining. A mapping technique is developed for

determining the correspondences between the source and optimized code statements while

code transformations are performed. The mappings capture the impact that optimizations

have on statements and their instances and thus are useful for a wide range of optimizations.

Two complementary debugging techniques for optimized code are then developed

and experimentally evaluated. The techniques are based on the mappings, and the e�ec-

tiveness of the techniques rely on the use of both dynamic and static information. The

�rst technique, called comparison checking, is oriented to help optimizer writers debug and

validate optimizers. The technique compares values computed in both the unoptimized

and optimized executions of a source program and detects semantic di�erences between

the versions. This technique can be modi�ed to check di�erent levels of optimizations or

tailored for speci�c optimizations, and in particular global register allocation. The second

technique, a full reporting source level debugger for optimized code, helps application pro-

grammers �nd errors in source programs even though the optimized code executes. This

technique reports more expected values than previously developed source level debuggers

for optimized code. Both techniques are demonstrated using a compiler that performs a

iv

set of global statement level optimizations for C source programs. The techniques do not

restrict the set of optimizations applied, and the optimized code is not modi�ed, except

for the setting of breakpoints. Experimental results are performed and demonstrate the

approaches are e�ective and practical.

v

Acknowledgements

I am indebted to my co-advisors, Mary Lou So�a and Rajiv Gupta, for their sup-

port, encouragement, friendship, and guidance throughout my graduate studies. Without

them, this dissertation would not have been possible. I am also grateful to Panos Chrysan-

this and Thomas Gross, who took the time to be on my committee and provided suggestions

concerning this research.

I would like to thank my sisters, Bibi and Marisol, and my parents, Angela and

Ivan, for their overwhelmingly faith in my ability to achieve my goals and for putting

up with me all these years. I thank my husband Ralf, for his love and understanding

of the importance of this research to me. Finally, I thank God, for giving me so many

opportunities.

vi

To my parents, Angela and Ivan.

vii

Table of Contents

List of Figures . xi

List of Tables . xiv

1 Introduction . 1
1.1 Overview of this research . 5
1.2 Organization of this dissertation . 6

2 Background and Related Work . 8
2.1 Source level debugger . 8
2.2 Prior work on source level debuggers . 11

2.2.1 Transparent behavior by limiting optimizations 12
2.2.2 Transparent behavior by inserting code 12
2.2.3 Transparent behavior by \undoing" optimizations 12
2.2.4 Exposing the e�ects of optimizations 13
2.2.5 Detecting and managing the e�ects of optimizations 14

2.2.5.1 Using static information . 14
2.2.5.2 Using dynamic information 17

2.2.6 Relative debugging . 18
2.2.7 Bisection debugging . 18

2.3 Prior work on tools for debugging optimizers 18
2.4 Prior work and this dissertation . 19

3 The E�ects of Program Transformations . 22
3.1 Terminology . 23
3.2 Statement level optimizations . 23

3.2.1 The e�ects of modifying statements 23
3.2.2 The e�ects of deleting statements . 24
3.2.3 The e�ects of moving statements . 24

3.2.3.1 Code hoisting transformations 25
3.2.3.2 Code sinking transformations 27
3.2.3.3 Summary of moving statements 28

3.3 Loop transformations . 29
3.3.1 E�ects of duplicating loop bodies . 29
3.3.2 E�ects of modifying the iteration space 30
3.3.3 E�ects of merging and splitting loops 31
3.3.4 E�ects of altering the index and bounds of a loop 32
3.3.5 Summary of loop transformations . 33

3.4 Inlining . 33

viii

3.5 Summary . 34

4 Capturing the E�ects of Program Transformations Through Mappings 36
4.1 Mappings . 37
4.2 Generating mappings . 40

4.2.1 E�ects of statement level optimizations 41
4.2.2 Example . 45
4.2.3 E�ects of loop transformations . 46

4.2.3.1 E�ects of duplicating loop bodies 46
4.2.3.2 E�ects of modifying the iteration space 48
4.2.3.3 E�ects of merging and splitting loops 48
4.2.3.4 E�ects of altering the index and bounds of a loop 48

4.3 Series of code transformations . 49
4.3.1 E�ects of inlining . 54

4.4 Summary . 54

5 Comparison Checking . 55
5.1 Comparison checker overview . 58

5.1.1 Comparison checking scheme example 60
5.2 Annotations . 61

5.2.1 Supporting statement level optimizations 61
5.2.1.1 The Check Suopt annotation 61
5.2.1.2 The Save Sopt annotation 63
5.2.1.3 The Delay Suopt and Checkable Suopt annotations 63
5.2.1.4 The Delete S annotation 64
5.2.1.5 The Check-self S annotation 64

5.2.2 Algorithms to place annotations for statement level optimizations . 65
5.2.2.1 Algorithm to introduce Check, Delay, and Checkable anno-

tations . 66
5.2.2.2 Algorithm to introduce Check-self annotations 67
5.2.2.3 Algorithm to introduce Save annotations 68
5.2.2.4 Algorithm to introduce Delete annotations 68

5.2.3 Supporting loop transformations and inlining 71
5.3 Implementation and experiments . 72
5.4 Summary . 74

6 Register Allocation Checking . 76
6.1 Register allocation checker overview . 78
6.2 Annotations . 80

6.2.1 The Check v; r annotation . 80
6.2.2 The Register assign [v;] r annotation 81
6.2.3 The Load [v;] r annotation . 81
6.2.4 The Store v; r annotation . 82
6.2.5 The Register move r; r0 annotation 82
6.2.6 Combining annotations . 82

6.3 Annotation placement . 83
6.4 Register allocation checker example . 83
6.5 Summary . 85

ix

7 Source Level Debugger . 86
7.1 Challenges of reporting expected values . 88

7.1.1 Overwritten early in the optimized program 89
7.1.2 Written late in the optimized program 90
7.1.3 Computed in the unoptimized program but not in the optimized pro-

gram . 91
7.2 FULLDOC's approach . 92
7.3 Reportability debug information . 95

7.3.1 Simply reportable . 95
7.3.2 Overwritten early . 96
7.3.3 Written late . 97
7.3.4 Never reportable because deleted along a path 99
7.3.5 Path sensitive nonreportability/reportability when deleted 101
7.3.6 Path sensitive nonreportability/reportability when written late . . . 102

7.4 Computing the reportability debug information 103
7.4.1 Determining statements that overwrite early or write late. 103
7.4.2 Computing SaveDiscardPoints[] and EarlyAtBkpts[]. 104
7.4.3 Computing StopPoints[] and LateAtBkpts[]. 105
7.4.4 Computing AvailAtBkpts[,]. 106
7.4.5 Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[]. 107
7.4.6 Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[]. 107
7.4.7 Computing EndDelPoints[] and EndLatePoints[]. 108
7.4.8 Computing PotFutBkptsDel[] and PotFutBkptsLate[]. 108

7.5 Supporting loop transformations and inlining 109
7.6 Implementation and experiments . 110
7.7 Summary . 114

8 Conclusion and future work . 115
8.1 Summary of contributions . 115
8.2 Future work . 118

Bibliography . 122

x

List of Figures

2.1 Source program and its unoptimized and optimized program versions example 10

2.2 Example of prior mappings . 20

3.1 Constant propagation example . 24

3.2 Dead code elimination example . 24

3.3 Code hoisting transformation examples . 25

3.4 Code hoisting transformation examples cont. 26

3.5 Code hoisting transformation examples cont. 26

3.6 Local instruction scheduling example (sinking) 27

3.7 Code sinking transformation examples . 28

3.8 Loop unrolling example . 30

3.9 Loop interchange example . 31

3.10 Strip mining example . 31

3.11 Loop distribution example . 32

3.12 Loop normalization example . 32

3.13 Inlining example . 33

4.1 Loop invariant code motion mapping example 39

4.2 Partial dead code elimination mapping example 39

4.3 Loop interchange mapping example . 39

4.4 Partial redundancy elimination mapping example 44

4.5 Mappings for unoptimized and optimized code example 45

xi

4.6 Loop unrolling . 47

4.7 Loop interchange e�ects on initial
�!

one!
�!

one mappings 47

4.8 Strip mining e�ects on initial
�!

one!
�!

one mappings 47

4.9 Loop normalization e�ects on initial
�!

one!
�!

one mappings 49

5.1 The comparison checking system . 56

5.2 Program example for comparison checking 57

5.3 Comparison checker algorithm . 59

5.4 Comparison checking scheme example . 60

5.5 Annotated unoptimized and optimized code example 62

5.6 Types of annotations . 64

5.7 Types of annotations . 65

5.8 Algorithm to introduce Check, Delay, Checkable annotations 69

5.9 Algorithm to introduce Check-self annotations 69

5.10 Algorithm to introduce Save annotations . 69

5.11 Algorithm to introduce Delete annotations 70

5.12 Annotated loop reversal example . 71

5.13 Annotated loop unrolling example . 72

6.1 Program example for register allocation checking 78

6.2 Register allocation checker algorithm . 80

6.3 Annotations example . 81

6.4 Register allocation checker example . 84

7.1 Overwritten early example . 89

7.2 Written late example . 91

7.3 Not computed in the optimized program example 92

7.4 FULLDOC's strategy with respect to user inserting breakpoints 93

7.5 FULLDOC's strategy with respect to breakpoints hit 94

xii

7.6 FULLDOC's strategy with respect to user queries 94

7.7 Debug information . 95

7.8 Overwritten early example . 97

7.9 EarlyAtBkpts and SaveDiscardPoints reportability debug information for
overwritten early example in Figure 7.8 . 97

7.10 Overwritten late example . 98

7.11 LateAtBkpts and StopPoints reportability debug information for overwritten
late example in Figure 7.10 . 99

7.12 Dead code elimination example . 100

7.13 NotRepDelAtBkpts reportability debug information for the example in Fig-
ure 7.12 . 100

7.14 NotRepLateAtBkpts reportability debug information for the example in Fig-
ure 7.10 . 100

7.15 MaybeDelAtBkpts, EndDelPoints, and PotFutBkptsDel reportability debug
information for example in Figure 7.12 . 101

7.16 MaybeLateAtBkpts, EndLatePoints, and PotFutBkptsLate reportability de-
bug information for example in Figure 7.10 102

7.17 Algorithm to compute the reportability debug information 103

7.18 Overwritten late example . 106

7.19 Loop reversal example . 110

7.20 Expected values not reportable . 112

xiii

List of Tables

4.1 Dead code elimination e�ects on mappings of S with one0::n ! one0::n labels 41

4.2 Statement level optimization e�ects that do not a�ect the mappings of S
with one0::n ! one0::n labels . 41

4.3 Statement level optimizations which move statements to outer loops and
a�ect mappings of S with one0::n ! one0::n labels 42

4.4 Partial redundancy elimination e�ects on mappings of S with one0::n !
one0::n labels . 42

4.5 Statement level optimizations e�ects on h�i0::m ! h�i0::n mappings 49

4.6 Loop invariant code motion e�ects on mappings 50

4.7 Partial dead code elimination e�ects on mappings (when statements are
moved across loop boundaries) . 50

4.8 Partial redundancy elimination e�ects on mappings 51

4.9 Loop transformation e�ects on
�!

h�i!
�!

h�i mappings 52

4.10 Loop transformation e�ects on
�!

h�i!
�!

h�i mappings cont. 53

5.1 Execution times (minutes:seconds) . 74

7.1 Percentage of local variables per breakpoint that are not reportable 111

7.2 Static statistics . 113

7.3 Runtime statistics . 113

xiv

Chapter 1

Introduction

Ever since optimizations were introduced into compilers more than 30 years ago,

the di�culty of debugging optimized code has been recognized. This di�culty has grown

with the development of increasingly more complex code optimizations, such as path sensi-

tive optimizations, code speculation, and aggressive register allocation. The importance of

debugging optimized code has also increased over the years as almost all production com-

pilers apply optimizations to achieve high performance. Today's software applications are

complex and consist of millions of lines of code. Optimizations are often required because

of the time and memory constraints imposed on some systems. Also, current trends in

processor design increasingly rely on compiler optimizations to achieve high performance.

Code transformations restructure programs to reduce the number of instructions executed,

exploit locality for e�ective use of caches and registers, and uncover parallelism at various

levels of granularity for overlapping computations. For example, classical optimizations

are applied for all types of architectures to reduce the number of instructions executed.

Code reordering, register allocation, and loop transformations are applied for superscalar

and VLIW architectures to uncover instruction level parallelism and exploit locality. Loop

transformations are applied for parallel architectures to uncover loop level parallelism and

exploit data locality.

Debugging optimized code is di�cult because of the lack of e�ective debugging

tools that support optimized code. If the output of the execution of the optimized code is

incorrect, no tools exist to help the programmer determine the origin of the error. Program-

mers typically assume that if the unoptimized version of the program executes correctly but

the optimized version does not, then the optimizer is responsible for the change in seman-

tic behavior. Given an input, the semantic behaviors of an unoptimized program and its

optimized program version are the same if all corresponding statements executed in both

programs compute the same values. However, di�erences in semantic behaviors between un-

optimized and optimized program versions can be caused by either (1) the application of an

1

2

unsafe optimization, (2) an error in the optimizer, or (3) an error in the source program that

is exposed by the optimization. For instance, reordered operations under certain conditions

can cause over
ow or under
ow or produce di�erent
oating point values. The optimized

program may crash because of instruction reordering. For example, a statement may be

moved out of a loop in the optimized code, and at runtime, the program crashes because

the statement divides by zero. The application of an optimization may assume that the

source code being transformed follows a programming standard (e.g., ANSI standard), and

if the code does not, then an error can be introduced by the optimization. The optimizer

itself may also contain an error in the implementation of a particular optimization. And

lastly, the execution of the optimized program may uncover an error that was not detected

in the unoptimized program. For example, code transformations change the data layout of

a program. This change may cause an uninitialized variable to be assigned di�erent values

in the unoptimized and optimized programs causing both program versions to behave dif-

ferently. Thus, for a number of reasons, a program may execute correctly when compiled

with the optimizer turned o� but fail when the optimizer is turned on, and if application

programmers intend to ship optimized code, then the fully optimized version should be fully

debugged.

If an optimization is incorrectly implemented and thereby caused the error, then

the optimizer is responsible for the error. In this situation, the programmer is the optimizer

writer and the optimizer must now be debugged. The task of debugging an optimizer is

di�cult and tedious. The optimizer writer must �rst locate the incorrect code in the op-

timized program. Because of the lack of source level debugging tools for optimized code,

optimizer writers typically resort to examining and debugging the assembly code to locate

the incorrect code in the optimized program. Then the optimizer writer must determine

what code transformation(s) produced the incorrect code, and subsequently locate the er-

ror(s) in the code transformation(s). Unfortunately, little work has been done to help isolate

and analyze errors in the optimizer, and isolating errors in the optimizer remains an open

problem.

If an error originates in the source program, then the application programmer is

responsible for the error. In this case, the programmer must debug the optimized code to

determine the cause of the error. However, since application programmers typically have

no knowledge of the optimizations that were applied to the source program and do not

understand how the application of optimizations a�ect a source program, examining and

debugging the assembly code to locate the incorrect code in the optimized program is not

3

an option. Instead, application programmers must rely on source level debugging tools to

debug optimized code.

Unfortunately, conventional source level debuggers cannot be used to help debug

and understand the execution behavior of optimized code. A conventional source level de-

bugger allows a user to suspend the execution of a program and examine the suspended

program state with respect to the source program. If the unoptimized version of the source

program is debugged and executed, a debugger simply reports the actual contents of the

locations of requested variables at breakpoints, as these are the values a user expects to

observe. However, by debugging and executing the optimized version, the actual content of

a variable's location at a breakpoint can di�er from the value the user expects to observe

(if instead the unoptimized version were being debugged and executed) because optimiza-

tions move, modify, insert, and delete code in the optimized program. Therefore, in such

situations, the debugger can mislead the user if the actual value is reported at the break-

point. Moreover, a conventional source level debugger allows a user to modify the values

of variables during the execution of a program, but because of the e�ects of optimizations,

variable modi�cation is not allowed if the debugger executes the optimized code.

The inadequate support of debugging optimized code is the reason that software

companies may not deliver optimized code. If the optimized version is shipped to customers,

future bugs arising during customer use are di�cult to correct within a reasonable amount

of time. Also, if the program crashes, the resulting core �le is useless since there is no way

to correlate the optimized program to the source program.

Several approaches to debugging optimized code have been proposed and are aimed

at either (1) avoiding the problems in debugging optimized code or (2) helping program-

mers understand the execution behavior of the optimized code. One approach is oriented to

application programmers and has the programmer turn o� optimizations during the devel-

opment of the software application but turn on the optimizations for the production version

to gain the performance bene�ts provided by optimizations. In other words, debug the un-

optimized version of the program but ship its optimized version. This approach avoids the

problems associated with debugging optimized code. Unfortunately, when the application,

apparently free of errors, is optimized, its behavior may not be the same as the behav-

ior of the unoptimized program. As mentioned earlier, in this situation, the application

programmer is likely to assume errors in the optimizer are responsible for the change in

behavior. The optimizer is then turned o�, the unoptimized version is shipped, and all of

the performance bene�ts of optimizations are lost. In fact, after a programmer experiences

this situation several times, all con�dence is lost in the optimizer and the programmer will

4

typically not use the optimizer in future programs. However, the optimizer may be cor-

rect, but the unoptimized version of the program may contain an error that is exposed by

the optimizer. Clearly in this case, instead of shipping the incorrect unoptimized program

version, the application program should be further debugged.

Another approach, equally unsatisfactory, is to execute the optimized code and

require the programmer to be su�ciently knowledgeable about optimizations. The pro-

grammer must determine what debugging query can be issued to get an expected response

from the source level debugger[14]. While an optimizer writer may be able to utilize this

approach, an application programmer is seldom familiar enough with optimizations to ac-

complish this burdensome task.

Instead of debugging optimized code from the point of view of the source code,

another approach allows the programmer to debug optimized code from the point of view

of a modi�ed version of the source program, which displays the e�ects of optimizations[45].

However, the programmer must become familiar with a di�erent version of a program, which

can greatly di�er from the source program. This approach bene�ts optimizer writers since

the information can be used to understand how the source program has been transformed.

However, this approach is too burdensome on application programmers.

The most researched approach to debugging optimized code is to use a specialized

source level debugger that attempts to report expected values when they can be determined

from the optimized code and also report when an expected value cannot be determined.

Progress has been made in the development of debuggers that report more and more ex-

pected values. The early techniques focused on determining expected values using infor-

mation computed statically [27, 21, 19, 49, 10]. Recent techniques have proposed using

information collected during execution, along with the static information, to improve the

reportability of values [22, 51, 50]. Despite the progress, none of the techniques are able

to report all possible expected values of variables at all breakpoints in the source program,

and thus, the optimizer writer and application programmers cannot easily debug optimized

code from the point of view of the source code. The design of a source level debugger for

optimized code that has the same debugging capabilities as for unoptimized code remains

an open problem.

As optimizers continue to perform more sophisticated optimizations to exploit

more demanding architectural features, the demand for tools to help optimizer writers

debug and validate optimizers is ever increasing. The need for tools to help programmers

determine the origin of an error in the optimized code is also increasing. Moreover, as

application programmers continue to rely on optimizations to achieve high performance,

5

the importance of debugging optimized code from the point of view of the source program

increases. A programmer should be able to debug optimized code from the point of view

of the source program. Also, a programmer should be able to suspend the execution of

an optimized program between any two source statements and query all expected values

of source variables at the suspended execution points. The optimized program that a

programmer debugs should be identical to the version that is released. In other words, for

debugging purposes, an optimizer should not be restricted to apply only a certain set of code

transformations nor should the applicability of code transformation be restricted. Since the

optimized program is generally the desired �nal version of a program, the optimized code

should not be modi�ed, except for the setting of breakpoints during debugging.

1.1 Overview of this research

This dissertation explores the following open problems in the area of debugging

optimized code:

� debugging and validating optimizers,

� source level debuggers for optimized code, and

� determining the origin of an error in the optimized code.

This dissertation develops di�erent source level debugging techniques and tools for

optimized code so that optimizer writers can debug optimizers and application program-

mers can debug optimized code from the point of view of the source program. In particular,

the use of dynamic information as well static information is explored to develop e�ective

source level debugging techniques for optimized code. The use of dynamic information has

bene�ted optimizers as dynamic information provides more opportunities to apply optimiza-

tions [15, 12]. Similarly, the use of dynamic information should increase the e�ectiveness of

source level debugging techniques for optimized code. Since the use of dynamic information

is expensive in terms of overhead, static information is used to minimize the amount of

dynamic information utilized.

This dissertation considers source programs written in the C programming lan-

guage. The techniques presented are demonstrated in a compiler that performs a set of

global statement level optimizations for source programs. The techniques do not restrict

the set of optimizations applied and the optimized code is not modi�ed, except for the

setting of breakpoints.

6

Before presenting the techniques and tools to debug optimized code, this disser-

tation analyzes the e�ects of optimizations and the complexities in maintaining the corre-

spondences between the source and optimized code statements. A variety of code transfor-

mations are considered, including statement level optimizations, loop transformations, and

inlining. Statement level optimizations include speculative code motion and path sensitive

optimizations. A mapping technique was developed for capturing the correspondences be-

tween the source and optimized code statements while code transformations are applied.

In particular, the mappings capture the impact that optimizations have on statements and

their instances and thus are useful for a wide range of optimizations.

Two complementary debugging techniques for optimized code were developed, im-

plemented, and experimentally evaluated. The �rst technique, called comparison checking,

is aimed at helping optimizer writers debug and validate optimizers. The comparison check-

ing technique compares values computed in both the unoptimized and optimized executions

of a source program and detects semantic di�erences between the two versions. This tech-

nique can be modi�ed to check di�erent levels of optimizations (high, intermediate, or low

level) or to check each optimization phase, or tailored for speci�c optimizations, and in

particular global register allocation.

Once an optimizer is debugged and validated, errors in the optimized code are the

responsibility of the application programmer. Thus, the second technique, a full reporting

source level debugger for optimized code, is developed to help application programmers �nd

errors in source programs that are optimized. The debugger reports more expected values

than previously developed source level debuggers for optimized code. To report expected

values that would otherwise not be reportable by previously developed debuggers, statically

computed information is utilized to guide the debugger in gathering dynamic information.

Using this static and dynamic information, the debugger can report expected values at

breakpoints when reportability is a�ected because values have been overwritten early, due

to code hoisting or register reuse, or written late, due to code sinking. The debugger can

also report values that are path sensitive in that a value may be computed only along one

path or the location of the value may be di�erent along di�erent paths. This dissertation

does not consider the user modi�cation of variables during a debugging session nor does it

consider debugging core �les.

1.2 Organization of this dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents

background information on source level debuggers and explains the problems imposed on

7

debuggers of optimized code which stem from the application of compiler transformations.

This chapter describes the prior work that has been performed in debugging optimized code,

including tools for debugging optimizers and source level debuggers of optimized code. Also,

the relationship of this dissertation and prior work is discussed. Chapter 3 discusses the

e�ects of optimizations and the complexities in maintaining the correspondences between

the source and optimized code statements. Chapter 4 presents a technique for generating the

correspondences between the source and optimized code statements that captures the e�ects

of optimizations. In Chapter 5, the comparison checking technique for debugging optimizers

is presented. Chapter 6 discusses how to tailor the comparison checker to debug and validate

speci�c optimizations, in particular global register allocation. Chapter 7 presents a full

reporting source level debugger for optimized code. Conclusions and directions for future

research are discussed in Chapter 8.

Chapter 2

Background and Related Work

Since most of the previous work on debugging optimized code focused on the devel-

opment of source level debuggers for optimized code, this chapter �rst provides background

information on source level debuggers and then describes the problems inherent in source

level debuggers of optimized code. Next, prior work that has been proposed in debugging

optimized code, including tools for debugging optimizers and source level debuggers of op-

timized code, is described. Also, the relationship of this dissertation and prior work is

discussed.

2.1 Source level debugger

A source level debugger is a tool that helps users understand the execution behavior

of a target program in terms of the source program. The debugger allows the user to control

the execution of the target program and examine the suspended program state with respect

to the source program. Breakpoints are used to suspend the execution of a program. The

most common form of a breakpoint is the control breakpoint, which speci�es the breakpoint

condition in terms of the source code, that is, at a speci�ed line, function, or between any

two source statements. Other types of breakpoints can suspend the execution of a program.

A conditional breakpoint is initiated only if some location-dependent predicate evaluates to

true. A conditional breakpoint is useful when the user wants to place a breakpoint in a

heavily executed region of code. For example, a conditional breakpoint can be placed in

a for loop with index i, and the condition i = n can be used to initiate the breakpoint

when variable i has the same value as variable n. A data breakpoint is initiated when a

variable is referenced (i.e., read or written). A data breakpoint is useful when the user

wants to suspend execution before every statement that references a particular variable

without having to insert an explicit control breakpoint at every such statement. Since most

of the previous work on debugging optimized code addressed source level debuggers and

8

9

considered only control breakpoints, the term debugger refers to a source level debugger

and the term breakpoint refers to a control breakpoint in the remainder of this dissertation.

Typically, a user starts a debugging session by inserting breakpoints in the source

program and then instructing the debugger to execute the target program. When execution

of the target program reaches a breakpoint, the debugger suspends the execution of the

program and returns control to the user. At this point, the user can continue the execution

of the program or examine the control state and/or the data state of the suspended program.

Since all user commands are in terms of the source program, the debugger must convert a

source level query to a target level query. Also, all debugger responses to the user are in

terms of the source program. Therefore, the debugger must be able to

(1) insert a breakpoint in the target program in response to a breakpoint in the source

code,

(2) determine when the current execution point of the target program corresponds to a

source location at which the user has requested a breakpoint,

(3) display the contents of a storage location in the execution of the target program

that corresponds to source variables at which the user has requested at the current

breakpoint, and

(4) display the current execution point of the target program in terms of the source

program.

To achieve these tasks, the debugger utilizes information relating the source program to the

target program. The compiler provides this debug information, which includes information

about the variables and statements in the source program and relates them to storage

locations and instructions in the target program.

Conventional debuggers are typically designed to execute the unoptimized version

of a source program. Debuggers for unoptimized code are straightforward to implement

because a source program and its unoptimized version have a direct correspondence. That is,

(1) source level statement boundaries are preserved, and (2) variables have unique memory

storage locations. Therefore, when the execution of a program reaches a breakpoint, all

statements prior to a breakpoint will have executed and all statements after the breakpoint

will not have executed. When the user queries the values of source variables, the debugger

simply reports the actual contents of the memory locations of requested variables at the

breakpoints, as these are the values the user expects to observe. Consider the source

program fragment and its unoptimized version in Figure 2.1. Suppose the user places a

10

’
’
’
’
’

’
’
’
’
’

’
’
’
’
’

’

5 z = x + y

Source Program

2. y = (b - c) * d

3. z = x + y

 Fragment Fragment
Unoptimized Program

3 x = a + t2
4 t3 = b - c
5 y = t3 * d
6 z = x + y

2 t2 = a * t1

1. x = a + a * (b - c) 1 t1 = b - c

Optimized Program
 Fragment

2 t2 = a * t1
3 y = t1 * d
4 x = a + t2

1 t1 = b - c

Figure 2.1: Source program and its unoptimized and optimized program versions example

breakpoint between statements 1 and 2 in the source code, and then at the breakpoint,

examines the current values of x and y. Notice all of the source level statement boundaries

are preserved in the unoptimized program. Statement 1 in the source program maps to

statements 10, 20, and 30 in the unoptimized program, statement 2 maps to statements 40

and 50, and statement 3 maps to statement 60. Thus, when the debugger executes the

unoptimized program version, the breakpoint is easily placed between statements 30 and

40 in the unoptimized program. Upon reaching the breakpoint during the unoptimized

program execution, the debugger displays the expected values of both x and y, as their

memory locations contain the expected and correct values.

However, if the optimized program version of the source program is debugged and

executed, a conventional debugger cannot always simply report the actual content of a

requested variable's location at a breakpoint because the expected value may di�er from

the actual value of the variable. If an unexpected value is reported, the debugger can

mislead the user. This di�culty faced by debuggers in reporting the expected values of

variables is caused by the e�ects of optimizations, which move, modify, insert, and delete

statements in the optimized program. Because of the e�ects of optimizations, two problems

surface when trying to debug optimized code from the viewpoint of the source program. The

code location problem relates to determining the position of a breakpoint in the optimized

code that corresponds to the breakpoint in the source code. The data value problem is

the problem of reporting the values of the source variables that a user expects to see at a

breakpoint in the source code, even though the optimizer may have reordered or deleted

the statements computing the values, or overwritten the values by register allocation.

Consider the same source program fragment and its optimized version in Figure 2.1.

The debugger has problems reporting the expected values of x and y, regardless of where the

breakpoint is placed in the optimized code. If the breakpoint is placed between statements

200 and 300, then upon reaching the breakpoint during the optimized program execution, x

11

contains an unexpected value. The user expects to see the value computed by statement

1 in the source program, but since the corresponding assignment (statement 400) in the

optimized program occurs after the breakpoint, the old value of x will be reported to

the user instead. If the breakpoint is placed between statements 400 and 500, then upon

reaching the breakpoint, y contains an unexpected value. The user expects to see the

value of y before the assignment of y in statement 2 of the source program, but since the

corresponding assignment (statement 300) in the optimized program was moved up in the

code and occurs before the breakpoint, the future value of y will be shown to the user

instead. These problems occur because the boundaries of source level statements 1 and 2

are not preserved in the optimized program. Statement 1 in the source program maps to

statements 100, 200, and 400 in the optimized program, statement 2 maps to statements 100

and 300, and statements 100, 200, and 400 overlap with 100 and 300. These code location and

data value problems exist when one of the aforementioned conditions does not hold in the

optimized program. These problems constrain the debugging capabilities of conventional

debuggers. Nonetheless, to be e�ective, debuggers should report the expected values of all

source variables accurately.

2.2 Prior work on source level debuggers

The problem of debugging optimized code has long been recognized [48, 27, 40].

As mentioned earlier, most of the previous work focused on the development of source level

debuggers for optimized code [27, 24, 52, 53, 39, 21, 26, 28, 14, 38, 9, 8, 10, 7, 20, 18, 19, 49,

22, 45, 51, 50]. Some debuggers provide transparent behavior [52, 53]. A debugger provides

transparent behavior with respect to an optimization if responses to user queries are the

same as the responses would be if the unoptimized program version is being debugged

instead. Since transparent behavior is very di�cult to achieve, approaches that provide

transparent behavior either constrain optimizations or modify the optimized code. Instead

of providing transparent behavior, other debuggers expose the e�ects of optimizations to

the user either in terms of the source program or a di�erent version of the source program.

Finally, in an attempt to provide transparent behavior when possible, some debuggers detect

and manage the e�ects of optimizations. Approaches that detect and manage the e�ects of

optimizations use static information and/or dynamic information.

12

2.2.1 Transparent behavior by limiting optimizations

Fritzson's [24] debugging system provides transparent behavior at the expense of

limiting optimizations to within a source statement. Code location and data value problems

do not exist since breakpoints are placed at source statement boundaries. Therefore, full

debugging capabilities are provided, but optimizations are limited.

2.2.2 Transparent behavior by inserting code

Gupta [26] considers debugging code reorganized by a trace scheduling compiler.

His approach compromises debugging features for optimizations. A user must �rst specify

monitor commands to view variables or conditions at speci�ed points in the program. Next,

any a�ected traces are recompiled, and monitor and renaming code is inserted into the

optimized program. Then the program is executed. Code location and data value problems

do not exist because monitor and renaming code are inserted into the optimized program.

Pineo and So�a [36, 37, 38] consider debugging parallelized FORTRAN programs

from a sequential source level program point of view. The parallel transformations consid-

ered are renaming, scalar expansion, loop interchange, source level spreading, global forward

substitution, loop �ssion, loop fusion, and strip mining. These optimizations are applied on

source level code. A program is converted into single assignment form to allow the tracking

of values during program execution. All values can be reported except values whose com-

putations are delayed past the breakpoint or deleted values. Thus, data value problems are

partially handled. Code location problems are handled by using syntactic breakpoints. A

syntactic breakpoint at statement S in the source program is placed at the original location

of statement S in the optimized program.

2.2.3 Transparent behavior by \undoing" optimizations

Pollock and So�a's [39] debugger inhibits compiler optimizations that a�ect de-

bugging requests. They consider programs optimized with constant folding, redundant store

elimination, global common subexpression elimination, copy propagation, and loop invariant

code motion. Annotated DAGS represent both the unoptimized and optimized programs.

They allow users to insert control and conditional breakpoints, examine and modify values

of variables, single step, and edit code. Also, full debugging features are possible from spec-

i�ed point to point. Debugging features must �rst be speci�ed before program execution.

Next, the program is incrementally compiled to inhibit necessary compiler optimizations.

Then the resulting program is re-executed. In some cases, the debugger can instead perform

13

on-the-
y recovery of variables. Code location and data value problems do not exist, but

the fully optimized program is not always debugged.

H�olzle, Chambers, and Ungar's [28] approach involves debugging and executing

the optimized code but dynamically deoptimizing the code to provide full debugging ca-

pabilities. When full debugging features are not needed, the optimized code is executed.

This switching between both program codes can occur only at interrupt points (method

prologues and end of loop bodies) such that the source level state can be reconstructed.

Their method applies to programs written in an object oriented language, SELF, optimized

with global constant propagation, constant folding, global register allocation, inlining, cus-

tomization and splitting, dead code elimination, strength reduction, global common subex-

pression, elimination of arithmetic expressions, loads, and stores, redundant computations

that cannot cause observable side e�ects as arithmetic over
ow, loop unrolling, and delay

slot �lling. This list is extensive, but the applicability of optimizations is restricted because

the source level state must be reconstructed at interrupt points. Code location and data

value problems do not exist, but the fully optimized program is not always debugged.

2.2.4 Exposing the e�ects of optimizations

Brooks, Hansen, and Simmons [14] take a di�erent approach to debugging. They

consider programs compiled with CONVEX FORTRAN and C compilers (with all levels

of optimizations). The source program and the assembly level program are highlighted

and animated, visually conveying the e�ects of optimizations on program behavior. Some

optimization e�ects are hidden and others are not. Program stepping is provided at several

levels: expression, statement, block, loop, and routine. Code location problems are partially

handled. Data value problems are partially handled by using compiler generated tables of

live ranges to determine if values of variables are available. Also, they can recover variables

deleted due to strength reduction and induction variable elimination.

Optview [46] generates an optimized source program version for C programs, which

conveys to the user the e�ects of copy propagation, constant folding, common subexpression

elimination, partial redundancy elimination, dead code elimination, code hoisting and sink-

ing, and instruction scheduling. Another related research e�ort is the Optdbx debugger [45],

which displays the optimized version of the source program that is generated by Optview.

All user commands and debugger responses to the user are with respect to the optimized

source program version. Also, Optdbx uses invisible breakpoints to recover variables that

are evicted from registers and determine the correct location of a variable whose location

14

depends on the execution path1. Since the user debugs from the point of view of the opti-

mized source program, data value and code location problems do not exist. However, the

user must be aware of the optimizations.

2.2.5 Detecting and managing the e�ects of optimizations

Most debugging techniques focus on detecting the e�ects of optimizations and pro-

viding expected behavior when possible. Some debugging techniques focus on determining

expected values using information computed statically [27, 21, 20, 18, 19, 49, 9, 8, 10, 7].

Other techniques have proposed using information collected during execution, along with

the static information, to improve the reportability of values [22, 51, 50] or to handle code

location problems [52, 53].

2.2.5.1 Using static information

Hennessy [27] considers debugging programs, written in a subset of PASCAL,

whose optimizations are applied at the intermediate code level. Annotated DAGS repre-

sent both the unoptimized and optimized programs. By statically analyzing the annotated

DAGS, Hennessy classi�es variables at breakpoints as current or noncurrent by determin-

ing if variables are endangered. A variable is endangered at a breakpoint b if there is a

path to b such that the variable may not have the correct value at b, due to a program

transformation. A variable is current at b if it is not endangered on any path to b. A

variable is noncurrent at b if it is endangered on all paths to b. Variables that are classi-

�ed as current at breakpoints are reportable by the debugger, as these variables contain

expected values at the breakpoints. Setting breakpoints and examining values of source

variables are the debugging features considered. Data value problems are partially handled

by conservatively detecting and recovering noncurrent variables. Algorithms are developed

to detect and recover noncurrent variables in programs with local optimizations: common

subexpression elimination, redundant store elimination, and code reordering. However, re-

covering values of noncurrent variables is not always possible. Techniques are described to

detect and recover noncurrent and endangered variables in programs with global optimiza-

tions: code motion from loops to preheader, induction variable elimination, and global dead

store elimination. These techniques use data
ow analysis to detect endangered variables.

Hennessy's technique for local optimizations does not modify the optimized code, unlike

his technique for global optimizations, which inserts
ag instructions to determine dynamic

1A variable v is evicted from a register if v is assigned to the register and then a value that is not from
an assignment to v is stored in the register.

15

program
ow. Code location problems are handled by restricting placements of breakpoints

and code generation.

The work of Coutant, Melloy, and Ruscetta [21] develops a symbolic debugger for C

programs optimized with global register allocation, induction variable elimination, constant

and copy propagation, and instruction scheduling. Debugging features include inserting

breakpoints and examining values of variables. Code location problems are handled by

using syntactic breakpoints. Data value problems are partially handled by using compiler

generated tables and recovering eliminated variables due to strength reduction and induction

variable elimination. A live range table is used to determine if a variable's value is available.

When values are not available, partial information is provided so that the user can try

recomputing the data. Also, another table is used to determine if a variable was modi�ed

early or late.

Adl-Tabatabai and Gross [9] consider the e�ects of global register allocation and

assignment on the residency problem, which determines if a variable will be in its assigned

register at a breakpoint. Data
ow analysis is used to determine whether a variable is evicted

from a register or uninitialized. They [8] also detect and recover endangered variables caused

by local instruction scheduling. Endangered variables are classi�ed as noncurrent or suspect.

A variable is suspect at a breakpoint b if the debugger is not able to determine whether the

variable's actual value is the expected value at b. To determine if a variable is endangered

at a breakpoint, the intermediate representation is annotated with the e�ects caused by

local instruction scheduling. Their solutions [9, 8] are implemented using the iWarp C

compiler with global optimizations, including register allocation and assignment, branch

optimizations, constant folding, and unreachable code elimination, and local optimizations,

including common subexpression elimination, value propagation, and instruction scheduling.

Code location problems do not exist, and data value problems are partially handled. They

are able to detect endangered variables and recover values by interpreting instructions.

However, full recovery of values is not achieved because they do not attempt recovery of

rolled back variables, as rolled back variables are di�cult to recover [27]. They do not

interpret function calls since they transfer control out of the current basic block and such

interpretation would be di�cult. They do not interpret loads since the values in memory

may be endangered.

Copperman [20, 18, 19] takes an approach more general than the previous work in

dealing with the data value problem. He uses data
ow analysis on a single graph, which rep-

resents both the unoptimized and optimized programs, to determine whether variables are

current, noncurrent, or endangered at breakpoints. Thus, data value problems are partially

16

handled. Source programs can be optimized with local and global common subexpression

elimination, constant and copy propagation, constant folding, dead code elimination, dead

store elimination, cross-jumping, local and global instruction scheduling, strength reduc-

tion, code hoisting, partial redundancy elimination, induction variable elimination, loop

unrolling, inlining, and other optimizations that do not change the order in which basic

blocks are entered. For example, loop interchange is not handled. This list is extensive

and applicable only at the intermediate code level. Code location problems are handled by

using syntactic breakpoints.

Wismueller's [49] approach is similar to Copperman's approach but more general

and gives the correct answer in the few circumstances where Copperman does not. For the

static analysis, loops are unrolled in the unoptimized and optimized control
ow graphs to

distinguish among di�erent instances of de�nitions. Then data
ow analysis is performed on

the unrolled unoptimized and optimized program control
ow graphs to determine whether

variables are current or noncurrent at breakpoints. Thus, data value problems are partially

handled. His algorithms are implemented on a C compiler, which applies global common

subexpression, global copy and constant propagation, global dead store elimination, loop

invariant code motion, composite breaking, and register allocation. The optimized program

is not modi�ed. The modi�ed control
ow graphs are only used during static analysis. Code

location problems are not considered, but his work is applicable with syntactic or semantic

breakpoints. A semantic breakpoint at statement S in the source program is placed at the

point at which the action speci�ed by statement S occurs in the optimized program.

Another approach similar to Copperman's approach is that of Adl-Tabatabai and

Gross [10]. Variables are classi�ed as current, noncurrent, or suspect at breakpoints by

using data
ow analysis on the intermediate representation, which is annotated with the

e�ects caused by optimizations. Nonresident and uninitialized variables are not considered.

They assume code is not moved arbitrarily in the program. That is, they assume a compu-

tation cannot be introduced into a path where it did not exist before. Their approach was

implemented using the cmcc compiler, which applied loop unrolling and peeling, induction

variable expansion, constant propagation and folding, assignment propagation, dead assign-

ment elimination, strength reduction, global register allocation, local instruction scheduling,

linear function test replacement, induction variable simpli�cation, induction variable elim-

ination, partial dead code elimination, partial redundancy elimination, branch optimiza-

tions, and register coalescing. Software pipelining and loop transformations, such as loop

interchange, are not considered. Code location problems are not considered. Data value

problems are partially handled. Some recovery techniques are described. Adl-Tabatabai [7]

17

extends his previous techniques by handling code location problems and recovery of val-

ues. He also describes how to handle speculative code motion with respect to data value

problems.

2.2.5.2 Using dynamic information

Zellweger's [52, 53] debugging system Navigator handles Cedar (an Algol-like lan-

guage) programs optimized with inline procedure expansion and cross-jumping. The de-

bugging features she considers are inserting breakpoints, viewing procedure tracebacks, and

examining values of variables. Data value problems do not exist because variables are al-

ways current. Code location problems are partially handled. In reference to breakpoints,

transparent behavior is partially provided by using compiler generated tables and invisible

breakpoints to collect an execution-history. In some cases, Zellweger's system does modify

the optimized program to collect information about the execution path.

Recent work has focused on utilizing dynamic information along with static infor-

mation to improve the reportability of values. Wu et al. [51, 50] selectively take control

of the optimized program execution and emulate instructions in the optimized code in the

order that mimics the execution of the unoptimized program. This execution reordering

enables the reporting of some of the expected values of variables that are otherwise not

reportable by other debuggers. Code location problems are avoided by altering the execu-

tion of the optimized program. However, altering the execution of the optimized program

masks certain user and optimizer errors [51]. Data value problems are partially handled.

The emulation technique does not track paths and cannot report values whose reportability

is path sensitive. Their approach was implemented using the IMPACT compiler [17], which

applied instruction scheduling, register allocation, and classical local and global optimiza-

tions such as induction variable optimizations, strength reduction, common subexpression

elimination, constant folding, copy propagation, loop invariant code motion, and store/copy

optimizations.

Dhamdhere et al. [22] developed a dynamic currency determination technique that

can also report some values of variables that are not reportable by other debuggers. They

create a minimal unrolled graph of a program and timestamp basic blocks to obtain a

partial history of the execution path, which is used to precisely determine what variables

are reportable at breakpoints. However, values that are overwritten early by either code

hoisting or register reuses are not always reportable. Thus, data value problems are partially

handled. Code location problems are not considered.

18

2.2.6 Relative debugging

Guard, a relative debugger, is similar to one of the debugging approaches ad-

vocated in this research in that two programs are executed and the values generated are

compared [44, 5, 2, 4, 3]. Using Guard, users can compare the execution of one program,

the reference program, with the execution of another program, the development version.

Guard requires the user to formulate assertions about the key data structures in both

versions and specify the locations at which the data structures should be identical. The

relative debugger is then responsible for managing the execution of the two programs and

reporting any di�erences in values. Guard is implemented using a debugging platform,

Dynascope [41, 42, 43], which provides an interface for process control, state access, and

breakpoint handling. Guard is not designed to debug optimized programs and could not

be easily extended. Some optimizations are low level and the user would have to formulate

assertions on assembly level statements. Guard has been extended to implement a parallel

relative debugger [6], but the user must still formulate assertions. The primary di�erence

between Guard and this research is that the latter scheme, which compares the executions

of the unoptimized and optimized programs, is transparent to the user.

2.2.7 Bisection debugging

The concept of a bisection debugging model also has as its goal the identi�cation

of semantic di�erences between two versions of the same program, one of which is assumed

to be correct [25]. The bisection debugger attempts to identify the earliest point where the

two versions diverge. However, to handle the debugging of optimized code, all data values

problems must be solved at all breakpoints.

2.3 Prior work on tools for debugging optimizers

Not much work has focused on developing tools to help debug optimizers. Bug�nd

[16] was developed to help debug optimizers by pinpointing which functions produce incor-

rect code. This tool also helps application writers by compiling each function to its highest

level of correct optimization. To achieve these tasks, functions must be placed in separate

�les.

Boyd and Whalley[13] developed two tools to help debug optimizers. The �rst

tool, vpoiso, identi�es the �rst transformation during optimization that causes the output

of the execution to be incorrect. In addition, the tool can identify the location and instance

the o�ending transformation is applied. To aid in identifying the error in the implementa-

19

tion of an optimization, a graphical optimization viewer, xvpodb, was developed and allows

users to view the state of the generated instructions before and after each application of

transformations. However, if the optimizer writer cannot conclude which speci�c instruc-

tions in the optimized code produce incorrect results, using xvpodb will be tedious since the

user has to potentially view the states of all instructions that are a�ected by the o�ending

transformation.

More recent work [34] statically compares the intermediate form of a program

before and after a compilation pass and veri�es the preservation of the semantics. This

work symbolically evaluates the intermediate forms of the program and checks that the

symbolic evaluations are equivalent. This translation validation system was demonstrated

in the context of the GNU C gcc compiler performed between each optimization phase.

Optimizations include branch optimization, local and global common subexpression elim-

ination, loop unrolling, loop inversion, induction variable optimizations, local and global

register allocation, instruction scheduling, procedure integration, and tail-recursion elimi-

nation. The work used the gcc version 2.7.2.2, which is known to exhibit bugs in the register

allocator and loop unrolling. In both cases, this translation validation system was able to

detect these bugs. However, the system also detects false alarms that are not necessarily

errors. This system does not obviate the need for extensive compiler testing suites. Also,

this system is not careful about instructions that might raise exceptions. Thus a statement

that is moved out of a loop and divides by zero at runtime remains undetected.

2.4 Prior work and this dissertation

None of the previous work successfully handles the code location and data value

problems faced by source level debuggers for optimized code. Prior work does not ensure

that the execution behaviors of the unoptimized and optimized programs are the same with

respect to the behavior of the source level program and the given input. Also, prior work

cannot help automatically pinpoint errors in the optimized code.

Another di�erence between the proposed work and previous work is the tracking

of the unoptimized program with the optimized program version. Mappings are used to

track information between the source or unoptimized program and its optimized program

version. The mappings developed in this dissertation are extensions of mapping techniques

previously developed for source level debuggers of optimized code, which capture only the

correspondences between statements in the unoptimized and optimized programs and not

statement instances. Most prior work statically analyzes the mappings to determine if

variables are resident, nonresident, current, noncurrent, or endangered. The results are

20

j = 1
i = 1

L2:
k = 1

L2:
i = 1

 S’ :a(i,j) = b(i,k) * c(k,j) + a(i,j)1
2 S’ :a(i+1,j) = b(i+1,k) * c(k,j) + a(i+1,j)

o S :a(i,j) = b(i,k) * c(k,j) + a(i,j)
loop

k = 1
L1:

if (k < 101) goto L3

Optimized Code Unoptimized Code

if (i < 101) goto L1

if (j < 101) goto L2
j = j + 1

k = k + 1

 i = i + 1

if (i < 101) goto L1

 a(i,j) = 0
a(i+1,j) = 0

k = k + 1

 i = i + 2

if (j < 101) goto L2
 j = j + 1

L3:

j = 1
L1:

a(i,j) = 0

L3:

if (k < 101) goto L3

loop

loop

loop
loop

loop

Figure 2.2: Example of prior mappings

conservative because dynamic information is not utilized and the correspondences between

statement instances in both programs are not captured. More recent work utilizes some

dynamic information to report more expected values [51, 50, 22].

Consider the example in Figure 2.2, in which the loops are interchanged, unrolled,

and jammed in the optimized code, and as a result, some instances of statements are

reordered and deleted. If only mappings of statements are used by a source level debugger

that executes optimized code, the debugger is ine�ectual. For any breakpoint placed within

a loop, all variables (except k) inside the loop are considered noncurrent and their values

cannot be reported. The debugger does not have knowledge of what values can be reported

because it does not have information about loop iterations and statement instances. For

example, if the user places a breakpoint after statement So in the innermost loop of the

unoptimized program and requests the value of a(i; j), the debugger cannot report the

expected value of a(i; j) regardless of where the breakpoint is placed in the optimized code.

The debugger does not know if the value has been computed because the instances of So

have been reordered and split amongst statements S01 and S02 and it has no information of

how the instances of So correspond with instances of S01 and S
0

2. Also, with these mappings,

it is di�cult to understand the optimized program, even with the original unoptimized

program.

21

This dissertation develops a mapping technique that captures the e�ects of code

transformations by capturing the correspondences between statement instances. Since the

mappings track the instances of statements, the mappings are able to capture the e�ects

of transformations, including loop transformations. This extra information is needed to

develop more powerful source level debugging tools for optimized code that utilize both

static and dynamic information.

Chapter 3

The E�ects of Program Transformations

Source level debugging tools for optimized code allow a user to debug optimized

code from the point of view of the source program. To develop such tools, a correspondence

between the source and optimized code must be established. Establishing a correspondence

between a source program and the optimized code requires determining the e�ects of the

applied program transformations. The class of program transformations considered in this

work include statement level optimizations, loop transformations, and inlining. Statement

level optimizations include speculative code motion and path sensitive optimizations. These

transformations move, modify, insert, and delete statements in the program code and a�ect

program statements in a number of ways. A transformation can a�ect the position of a

statement. A statement can be moved to an earlier/later position in the optimized program.

In this case, the statement would execute in the optimized code before/after it does in the

unoptimized version of the source code. A transformation can a�ect the number of times

a statement executes in the optimized code. A statement moved in the optimized code

may execute more or less times than it does in the unoptimized code. In fact, a statement

may execute in the unoptimized program but not in the optimized program, and vice versa.

Finally, a transformation can a�ect the order in which multiple instances of a statement

are executed.

Since a source program has a direct correspondence with the unoptimized version

of the program, the remainder of this chapter determines the e�ects of transformations

that must be captured so that a correspondence between the unoptimized and optimized

code can be established. The e�ects of transformations are determined by analyzing how

the position, number, and order of instances of a statement can change, given a particular

context, for statement level optimizations, loop transformations, and inlining.

22

23

3.1 Terminology

The correspondence between the unoptimized and optimized versions of a source

program is actually the correspondences between statements and their instances in both

the unoptimized and optimized programs.

De�nition 3.1 An execution of a statement S is called an instance of S.

De�nition 3.2 Let S be a statement in the unoptimized version of a source program

and S0 be a statement in the optimized version, which was derived from S by program

transformations. If there exists some instance i of S and some instance j of S0, denoted by

Si and S0j, such that they should compute the same value, then there is a correspondence

between S and S0 and Si corresponds with S0j.

If a statement is moved across a branch or loop boundary, the correspondence

between instances of the statement in the unoptimized and optimized programs depends on

the execution path taken.

De�nition 3.3 Let S be a statement in the unoptimized version of a source program and

S0 be a statement in the optimized version such S and S0 correspond. If S and S0 have

di�erent control dependences, then corresponding instances of S and S0 are path sensitive.

3.2 Statement level optimizations

Statement level optimizations (e.g., constant propagation, loop invariant code mo-

tion, dead code elimination, and partial redundancy elimination) operate on individual

statements. These optimizations modify, delete, and move statements in the program code,

and may a�ect the position and the number of instances of a statement in the program code.

Therefore, they may a�ect the correspondences between statements in the unoptimized and

optimized code.

3.2.1 The e�ects of modifying statements

Some optimizations simply modify statements for e�ciency purposes and do not

a�ect the correspondences between statements in the unoptimized and optimized programs.

For example, the constant propagation optimization propagates a constant that is assigned

to a variable by replacing the uses of the variable with the constant. In the unoptimized

24

code in Figure 3.1, the variable a is assigned the constant 5, which can be propagated to

statement S. After constant propagation is applied, the corresponding statement S0 in the

optimized code uses the constant 5 as one of its operands instead of the variable a, but the

correspondence between S and S0 is not a�ected.

 Optimized Code

 S’ :x = 5 + b

 a = 5

 S :x = a + b

Unoptimized Code

 a = 5

Figure 3.1: Constant propagation example

3.2.2 The e�ects of deleting statements

If an optimization removes a statement from the program code, the deleted state-

ment would not execute in the optimized code and the deleted statement has no corre-

spondence in the optimized code. For example, the application of dead code elimination

removes statements that are never used in a program. As illustrated in Figure 3.2, the

application of dead code elimination removes statement S. Thus, S has no correspondence

in the optimized code and would not execute in the optimized code.

 Optimized Code

 S :x = a + b

Unoptimized Code

Figure 3.2: Dead code elimination example

3.2.3 The e�ects of moving statements

Transformations that move statements to di�erent positions in the program code

are code motion transformations, which include simple reordering of statements in a straight-

line code segment, moving statements across branch boundaries, and moving statements

across loop boundaries. The change in the position of a statement causes the statement

to execute earlier/later in the optimized code as compared to the unoptimized program.

25

The change in the position of a statement can also cause its number of instances to in-

crease or decrease and therefore, the correspondence between statement instances can be

a�ected. Furthermore, the correspondence between statement instances may be path sen-

sitive. Lastly, a statement in the unoptimized code can correspond to several statements in

the optimized code (and vice versa).

3.2.3.1 Code hoisting transformations

Code motion transformations that move statements to earlier positions in the

program are code hoisting transformations. Statements that are moved to earlier positions

in the program will execute earlier than in the unoptimized program. For example, in

Figure 3.3(a), local instruction scheduling has moved statement S up in the optimized

code. As a result, the instance of S corresponds with the instance of S0, and S0 will execute

earlier than S.

 S :x = a + b

Unoptimized Code

 = x

 Optimized Code

 S’ :x = a + b

(b) speculative code motion example

 S’ :x = a + b

 Optimized Code

(a) local instruction scheduling example
(hoisting)

Unoptimized Code

 S :x = a + b
 = x

Figure 3.3: Code hoisting transformation examples

Code hoisting transformations can also move statements across branch boundaries.

The e�ects of hoisting code across branch boundaries depend upon the nature of the trans-

formations. For example, speculative code motion moves statements across branches (as

well as loop boundaries). In Figure 3.3(b), statement S is moved across the conditional

in the optimized code. Although S and S0 correspond with each other, the number of

times statement S0 executes may be more than the number of times S executes. The cor-

respondence between instances of S and S0 is path sensitive due to the di�erence in control

dependencies of S and S0 and therefore depends on the path taken during execution. If

both S and S0 execute during corresponding loop iterations, then the statement instances

correspond to each other. On the other hand, if S0 is executed and S is not executed

during corresponding loop iterations, then the instance of S0 has no correspondence in the

26

unoptimized code. The examples in Figure 3.4 illustrate more e�ects of code hoisting trans-

formations. In Figure 3.4(a), S is hoisted into both conditionals. As a result, S corresponds

with two statements in the optimized code and the correspondences between instances of S

and the instances of S0 and S00 are path sensitive due to the di�erence in control dependen-

cies. Similarly, in Figure 3.4(b), S and T are hoisted above the conditional. Both S and T

correspond to the same statement in the optimized code, and the correspondences between

the instances of S and T and the instances of S0 are path sensitive.

 S :x = a + b

 Optimized Code

 S’ :x = a + b S’’ :x = a + b

(a) code hoisting into conditionals example (b) code hoisting out of conditionals example

Unoptimized Code

 = x

 = x
 T :x = a + b

 = x

 = x

 Optimized Code

 S’ :x = a + b

Unoptimized Code

 S :x = a + b

Figure 3.4: Code hoisting transformation examples cont.

Code hoisting transformations can also move statements across loop boundaries.

Consider the loop invariant code motion optimization (LICM), which moves loop invariant

statements out and above loops. In Figure 3.5(a), statement S is moved out and above loop

L2 by LICM. The number of times statement S executes in the unoptimized code is greater

than the number of times the corresponding statement S0 executes in the optimized code,

and in each iteration of L1, all instances of statement S correspond to an instance of S0 in

the optimized code.

 T’: x = t

L1:

 = x
 S :x = a + b

Unoptimized Code

L2:

 = x

 Optimized Code

L1:

L2:

 S’ :x = a + b

Unoptimized Code Optimized Code

 S :y = a + b S’ :y = t

 R’ :t = a + b R’’ :t = a + b

(a) Loop invariant code motion example (a) Partial redundancy elimination example

 T: x = a + b

Figure 3.5: Code hoisting transformation examples cont.

Partial redundancy elimination (PRE) is also a code hoisting transformation. PRE

moves and modi�es computations in such a way that after the application of the transfor-

27

mation, the occurrences of such computations are minimized along paths. The statements

that are inserted in the optimized code correspond with existing statements in the unop-

timized code, and the correspondences between instances of such statements depend on

the positions of the statements and therefore may be path sensitive. For example, in Fig-

ure 3.5(b), the computation a+ b in statement S is partially redundant with statement T

in the unoptimized code. The application of PRE creates a new statement R0 that assigns

the partial redundant expression a + b to a temporary t and uses the temporary t instead

of recomputing the partial redundant expression in statements S0 and T 0. After PRE is

applied, the correspondence between S and S0 and the correspondence between T and T 0

are not a�ected. However, S corresponds with R0 and R00, and the correspondences between

the instances of S and R0 and the instances of S and R00 are path sensitive. Similarly, T

corresponds with R0.

3.2.3.2 Code sinking transformations

Code motion transformations that move statements to later positions in the pro-

gram are code sinking transformations. Statements moved to later positions execute later

during execution and the correspondences between statements may be a�ected. For exam-

ple, in Figure 3.6, local instruction scheduling has moved statement S down in the code. As

a result, the instance of S corresponds with the instance of S0, and S0 executes later than

S.

 S’ :x = a + b

 S :x = a + b

 Optimized CodeUnoptimized Code

Figure 3.6: Local instruction scheduling example (sinking)

Partial dead code elimination (PDE) sinks a statement that is dead on one path but

may not be dead on other paths. When statements are moved across branch boundaries,

a statement in the unoptimized program corresponds to one or more statements in the

optimized program. In Figure 3.7(a) the application of PDE moves statement S inside the

conditional. As a result, the number of times statement S0 executes may be less than the

number of times S executes. The correspondence between instances of S and S0 is path

sensitive. If both S and S0 execute, then the statement instances correspond to each other.

28

On the other hand if S is executed and S0 is not executed, then the transformation has

resulted in the deletion of the instance of S in the execution.

Unoptimized Code

x = x =

 S’ :x = a + b
 = x = x

 Optimized Code

 S :x = a + b

L2:

 = x

 S :x = a + b

L1:

(b) partial dead code elimination example
(across loop)

(a) partial dead code elimination example
(across branches)

Unoptimized Code

L1:

 = x

L2:

 S’ :x = a + b

 Optimized Code

Figure 3.7: Code sinking transformation examples

In Figure 3.7(b) statement S is moved out and below loop L2 by PDE. As a result,

statement S0 executes a fewer number of times than the corresponding statement S. During

each iteration of loop L1, only the last instance of statement S has a corresponding instance

in the optimized program, which is the instance of S0. All earlier instances of statement S

have been deleted by PDE.

3.2.3.3 Summary of moving statements

In summary, the application of code motion transformations a�ects the correspon-

dence between the unoptimized and optimized versions of a program in the following ways:

� Since statements can be reordered, a statement in the unoptimized code can execute

before/after its corresponding statement executes in the optimized code.

� New correspondences can be established to the statements in the unoptimized code.

Thus, a statement in the unoptimized code can correspond to one or more statements

in the optimized code.

� New correspondences can be established to the statements in the optimized code.

Thus, a statement in the optimized code can correspond to one or more statements

in the unoptimized code.

� The number of instances of a statement in the unoptimized code can increase or

decrease in the optimized program. Thus, the correspondence between statement

instances can change. One or more instances of a statement in the unoptimized code

29

can correspond to one instance in the optimized code. Instances of a statement in the

unoptimized code can have no correspondence in the optimized code.

� Two corresponding statements can have di�erent control dependences. Thus, the

correspondence between instances of a statement in the unoptimized and optimized

programs can be path sensitive. Instances of a statement in the unoptimized code

may or may not have a correspondence in the optimized code, and vice versa. The

establishment of corresponding instances of statements may only be established at

runtime.

3.3 Loop transformations

Loop transformations operate on loops as a unit and have the same e�ects as state-

ment level optimizations as well as other e�ects. The application of loop transformations

can duplicate loop bodies, modify the iteration space, merge and split loops, and alter the

index and bounds of a loop As a result, the correspondences between statements in the

unoptimized and optimized programs are a�ected because the instances of a statement in

the unoptimized program can be reordered and distributed among several statements in the

optimized program. Also, during execution of the unoptimized and optimized programs,

corresponding statements may execute earlier/later and in a di�erent order, and the number

of their instances may di�er.

3.3.1 E�ects of duplicating loop bodies

Loop transformations that duplicate bodies of loops a�ect the correspondences

between statements in the unoptimized and optimized programs (e.g., loop peeling, loop

unrolling, and software pipelining). Since statements in the loop body in the unoptimized

program are replicated in the optimized code, the instances of each such statement in

the loop body in the unoptimized program are divided among several statements in the

optimized program. Also, the loop in the unoptimized program executes more iterations

than the corresponding loop in the optimized program. For example, loop unrolling replaces

a loop body by several copies of the loop body. The number of copies is called the unrolling

factor, and the loop increment is adjusted to increment by the unrolling factor. Consider the

example in Figure 3.8 where the loop is unrolled two times and the loop header is modi�ed

to iterate half the time. Notice the statement in the loop body in the unoptimized code

corresponds to two statements in the optimized code: the odd instances of the statement

in the loop body in the unoptimized code correspond to the instances of one statement

30

in the optimized code, and the even instances of the statement in the loop body in the

unoptimized code correspond to the instances of the other statement in the optimized code.

Notice both loop initializations correspond. The loop tests correspond in that the odd

instances of the loop test in the unoptimized code correspond to the instances of the loop

test in the optimized code, and the last instances of both loop tests correspond. The loop

increments correspond in that the even instances of the loop increment in the unoptimized

code correspond to the instances in the optimized code.

for (j=1;j<=n;j=j+1) { for (j=1;j<=n;j=j+2) {

S’ : statement

S’’ : statement

Unoptimized Code Optimized Code

S : statement

}

}

Figure 3.8: Loop unrolling example

3.3.2 E�ects of modifying the iteration space

Loop transformations can reorder the instances of statements within loops (e.g.,

loop reversal, loop interchange, strip mining). As a result, the iteration space of statements

in the unoptimized program can di�er from that of the optimized program. For example,

loop interchange exchanges the positions of two loops in a loop nest, which changes the

order of loop iterations in the optimized code. In Figure 3.9, the two loops in the unopti-

mized program are interchanged in the optimized program. Although the statements within

the loop bodies remain within the same loops in both programs and therefore execute the

same number of times, the execution order of their instances di�er in both programs. Also,

the loop headers of both loops are a�ected. The corresponding loop headers of the inter-

changed loops appear in di�erent loop nest levels and thus, the number of instances of the

corresponding loop headers di�er in both programs. The statement instances of the header

of the outer loop in the unoptimized code will execute more often in the optimized code

because they are now in an inner loop in the optimized code. The statement instances of

the loop header of the inner loop in the unoptimized code will execute less often in the

optimized code because they are now in an outer loop in the optimized code.

Another loop transformation that a�ects the iteration space is strip mining, which

converts a serial loop into several loops (strips). The strips are essentially a series of

31

for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S’ : statement
}

}

for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S : statement
}

}

Unoptimized Code Optimized Code

Figure 3.9: Loop interchange example

vector operations. The application of strip mining a�ects the correspondences between

statements in the unoptimized and optimized programs in that instances of statements

in the unoptimized code are grouped together into one instance in the optimized code.

For example, in Figure 3.10, the loop has been strip mined with a strip size of 10. The

loop initializations in both programs correspond. Every tenth instance of the loop test

and increment in the unoptimized code correspond with each instance of the loop test and

increment in the optimized code. Also, the last instances of the loop tests in both programs

correspond. Finally, every 10 instances of the assignment to c in the unoptimized code

correspond with one instance of the vector assignment to c in the optimized code.

}
 S : c[j] = a[j] + b[j]

}

for (j=1;j<=n;j=j+1) {

 Unoptimized Code Optimized Code

for (j=1;j<=n;j=j+10) {

 S’ : c[j:j+9] = a[j:j+9]
 + b[j:j+9]

Figure 3.10: Strip mining example

3.3.3 E�ects of merging and splitting loops

Loop transformations can split loops and merge loops together. Although the

control
ow changes, the number and order of the instances of the statements in the loop

bodies are not a�ected. Loop distribution divides a loop into two or more loops with the

same loop headers. The statements in each loop in the optimized code enclose a subset of

the statements in the loop in the unoptimized code. Also the loop header in the unoptimized

32

code corresponds with both loop headers in the optimized code. For example, in Figure 3.11,

the loop in the unoptimized code has been distributed in the optimized code. Notice each

instance of the loop headers in the unoptimized code corresponds to two instances in the

optimized code.

}

a[j] = x * j

b[j] = y * j

 c[j] = a[j] + b[j]

 c[j] = a[j] + b[j]

}

for (j=1;j<=n;j++)

a[j] = x * j

b[j] = y * j
}

for (j=1;j<=n;j++)for (j=1;j<=n;j++)

Unoptimized Code Optimized Code

Figure 3.11: Loop distribution example

3.3.4 E�ects of altering the index and bounds of a loop

Loop transformations can alter the loop headers of a loop and yet the number and

order of the instances of the statements in the loop bodies remain the same. For example,

loop normalization changes the loop header of a loop so that the loop's index is initially

1 and is incremented by 1 on each iteration. In Figure 3.12, the loop in the unoptimized

code has been normalized in the optimized code. The statements within the loop bodies

execute the same number of times and in the same order. The loop initializations and the

loop increments have no correspondences, and although the loop test has changed in the

optimized code, there is a correspondence between the instances of the loop tests in both

programs.

}

S : statement

for (j=init;j<=limit;j=j+step) { for (j=1;j<= (limit - init + step)/step ; j=j+1) {

}

S’ : statement

Unoptimized Code Optimized Code

Figure 3.12: Loop normalization example

33

3.3.5 Summary of loop transformations

The e�ects of loop transformations a�ect the correspondence between the unopti-

mized and optimized versions of a program the same way as that of statement level trans-

formations. Moreover, the correspondences between statement instances can change as a

result of reordering the instances of a statement and dividing the instances of a statement

in the unoptimized code among several statements in the optimized code.

3.4 Inlining

Function inlining replaces calls to a function in the unoptimized code by the bodies

of the function in the optimized code. The instances of the statements in the function in

the unoptimized code correspond with the instances of the statements that were inlined in

the optimized code, and the instances of the call sites in the unoptimized code that were

inlined in the optimized code have no correspondences in the optimized code. For example,

in Figure 3.13, function f has been inlined two times. Each statement in the function

in the unoptimized code corresponds with two statements in the optimized code, and the

statements in the function in the unoptimized code execute the same number of times as

the corresponding statements in the optimized code.

.

.

procedure f(a,b,c)
t1 = a + b
t2 = b * c
c = t1 + t2

.

.

.

call f(a,b,c)

procedure main(a,b,c)

.

Unoptimized Code

t1 = a + 2

Optimized Code

procedure main(a,b,c)

s = s + c

i = 1

s = s + c
c = t1 + t2
t2 = b * c
t1 = a + b
i = 1

call f(a,2,b)

procedure f(a,b,c)
t1 = a + b
t2 = b * c
c = t1 + t2

c = t1 + t2
t2 = 2 * b

Figure 3.13: Inlining example

34

3.5 Summary

This chapter described the e�ects of transformations that impact the correspon-

dences between statements in the unoptimized and optimized programs. The e�ects of

transformations were established by analyzing how the position, number, and order of in-

stances of a statement can change, given a particular context, for statement level optimiza-

tions, loop transformations, and inlining. The application of these transformations a�ects

the correspondence between the unoptimized and optimized versions of a program in the

following ways.

� Statements and statement instances may have no correspondences.

� A statement in the unoptimized code can be relatively positioned before/after its

corresponding statement in the optimized code. Therefore, a statement in the un-

optimized code can execute before/after its corresponding statement executes in the

optimized code.

� New correspondences can be established. Thus, a statement in the unoptimized code

can correspond to one or more statements in the optimized code, and a statement

in the optimized code can correspond to one or more statements in the unoptimized

code.

� Since the number of instances of a statement in the unoptimized code can increase

or decrease in the optimized program, the correspondences between statement in-

stances in the unoptimized and optimized programs are not necessarily a one-to-one

correspondence.

� The instances of a statement in the unoptimized code can be reordered in the opti-

mized code.

� The instances of a statement in the unoptimized code can be divided among several

statements in the optimized code.

� The correspondence between instances of a statement in the unoptimized and opti-

mized programs can be path sensitive. Therefore, the instances of a statement in the

unoptimized code may or may not have a correspondence in the optimized code, and

vice versa, and the establishment of corresponding instances of statements may only

be established at runtime.

35

To establish a correspondence between the unoptimized and optimized versions of

a program, these e�ects are captured through mappings, which are discussed in the next

chapter.

Chapter 4

Capturing the E�ects of Program
Transformations Through Mappings

The previous chapter described the e�ects of program transformations that af-

fect the correspondence between the unoptimized and optimized versions of a program. In

this chapter, these e�ects are captured through mappings to establish the correspondences

between the statements in the unoptimized and optimized versions of a program. Map-

pings are established as transformations are applied. Since a number of transformations

may be applied and in any order, the mappings re
ect the combined e�ects of transforma-

tions. The mappings do not record the individual transformations applied nor the order in

which they were applied. Instead, the mappings between the unoptimized and optimized

programs at any time during optimization summarize the e�ects of all previously applied

transformations.

Since program transformations can change the correspondences between state-

ments and instances of statements in the unoptimized and optimized programs, the map-

pings associate corresponding statements and corresponding instances of statements in the

unoptimized and optimized programs. The mappings can associate a statement in one pro-

gram with zero, one, or more statements in the other program. Similarly, the mappings

can associate an instance of a statement in one program with zero, one, or more instances

of a statement in the other program. Since program transformations can divide the in-

stances of a statement in the unoptimized code among several statements in the optimized

code, the mappings can identify sequences of instances of a statement. Also, since program

transformations can reorder the instances of a statement, the mappings can identify ordered

sequences of instances of a statement. Although program transformations can change the

relative position of a statement, the mappings do not explicitly capture this change of posi-

tion. Instead, the mappings and the control
ow graphs of the unoptimized and optimized

programs can be analyzed to determine the relative positions of corresponding statements.

36

37

Similarly, the mappings and the control
ow graphs can be analyzed to determine the

correspondences between instances of statements that are path sensitive.

4.1 Mappings

Mappings are represented by labeled edges between corresponding statements in

the unoptimized and optimized programs. Labels identify the instances in the unoptimized

program and the corresponding instances in the optimized program. Thus, a mapping has

two components: an association of a statement in the unoptimized code with a correspond-

ing statement in the optimized code and an association of instances of the statements. A

mapping of a statement S in the unoptimized program and S0 in the optimized program is

of the form:

ordered sequence of instances of S ! ordered sequence of instances of S0.

The ordered sequences in the mappings express the correspondences between in-

stances of two statements. The number of elements in the two sequences may be the same

or may di�er. For example, if there is an one-to-one correspondence between the instances,

then the number would be the same. Corresponding instances may appear in the same

order or di�erent order (e.g., reverse order). If the number of instances is not the same, a

consecutive subsequence of instances in one sequence corresponds to a single instance in the

other. It should be noted that corresponding statement instances are computed statically

but the mappings are between all potential dynamic instances. All of the instances in both

sequences may not execute, but for the instances that do execute, the mappings capture

the dynamic correspondences.

To refer to one or more instances of a statement, the loop iterations in which

the instances execute are speci�ed, as the number of instances of a statement executed

is governed by the loops enclosing the statement and these instances are ordered by the

order of the iterations of the loops. Therefore, each statement in the program is viewed

with respect to the looping structure in which it is enclosed. Without loss of generality,

a program is assumed to be enclosed within a loop of one iteration, denoted by L0. A

statement S is identi�ed as being nested within a loop nest L = L0; L1; : : : ; Ln where L is a

collection of loops enclosing S, numbered successively from the outermost to the innermost

loop, and n + 1 is the number of loop nest levels. Each iteration of loop nest L uniquely

identi�es instances of statement S, and instances of statement S are ordered by the order

of iterations of loop nest L. An ordered sequence of instances of a statement within loop

nest L = L0; L1; : : : ; Ln is speci�ed by an (n+ 1)-dimensional vector. Each element in the

vector is subscripted such that an element with subscript i represents an ordered sequence

38

of iterations of loop Li. The order in which vector elements are speci�ed determines the

order of instances in the sequence.

An element i (0 � i � n) in a vector is of the following form:

\one" denotes an instance of S that executes in each iteration of loop Li.

\all" denotes all instances of S that execute in all of the iterations of loop Li.

\last" denotes the instance of S that executes in the last iteration of loop Li.

\c" denotes the instance of S that executes in the cth iteration of loop Li, where c is a

constant.

\flower; upper; stepg" and step � 0 denotes the instances of S that execute in the in-

creasing sequence of iterations (lower; lower + step; lower + 2 � step; : : : ; end) where

((end � upper and (end+ step) > upper)) of loop Li.
1

Let S represent a statement in the unoptimized program, S0 a statement in the

optimized program, and S(i) and S0(i) denote instance i of statement S and S0 respectively.

Examples of mapping labels generated from transformations are:

� Code reordering: (one0; one1)! (one0; one1) indicates that for each iteration (i; j) of

a loop nest, S(i;j) corresponds with S0(i;j).

� Loop reversal: one0; f10; 1;�1g1 ! one0; one1 indicates that for each iteration i; j of

a loop nest, Si;(11�j) corresponds with S0i;j.

� Loop invariant code motion: (one0; one1; all2) ! (one0; one1) indicates that for each

iteration (i; j; k) of a loop nest of L0, L1, and L2, S(i;j;k) corresponds with S0(i;j).

In Figure 4.1, (one0; one1;all2) instances of S map to (one0; one1) instances of S
0,

indicating that in each iteration of L0 and L1, all instances of S correspond to the

one instance of S0. The vector describing the instances of S has three dimensions

because programs are assumed to be implicitly enclosed within a loop of one iteration,

L0.

� Partial dead code elimination: (one0; one1; last2) ! (one0; one1) indicates S(i;j;last)

corresponds with S0(i;j). In Figure 4.2, (one0; one1; last2) instances of S map to

(one0; one1) instances of S
0, indicating that in each iteration of L0 and L1, the last

instance of S corresponds to the one instance of S0.

1A decreasing sequence can also be denoted similarly.

39

L1:

0

 = x

Unoptimized Code

L2:
 S :x = a + b

 S’ :x = a + b

 Optimized Code

L1:

L2:

 = x

21
all 0

1

one ,one ,
 one ,one

Figure 4.1: Loop invariant code motion mapping example

L1:

 = x

L2:

 S’ :x = a + b

 Optimized Code

0

L2:

 = x

 S :x = a + b

L1:

Unoptimized Code

1

1

0 last
2

one ,one , one ,one

Figure 4.2: Partial dead code elimination mapping example

0 one2 one1one , , one ,one ,one0 1 2

0 1
0

1

2
one ,

,one o
ne ,one

all

 T’: j < m;

 i = i + 1) {

 i < n;

}
}

 j = j + 1) {

 for (j=1;

for (i=1;

}
}

for (j=1;

 for (i=1;

 i < n;

Unoptimized Code Optimized Code

 S: c[i,j] = x S’ : c[i,j] = x

 i = i + 1) {

 T:j < m;

 j = j + 1) {

Figure 4.3: Loop interchange mapping example

40

� Loop interchange (on the loop body):

(one0; one2; one1) ! (one0; one1; one2) indicates S(i;k;j) corresponds to S0(i;j;k). In

Figure 4.3, (one0;one2;one1) instances of S map to (one0;one1;one2) instances of

S0, indicating that in each iteration of L0, L1, and L2, Si;k;j corresponds to instance

S0i;j;k.

� Loop interchange (on the loop header):

(one0; all1; one2)! (one0; one1) indicates S(i;j;k) corresponds with S
0

(i;k), as illustrated

in Figure 4.3.

For readability and ease of explanation, the following notations are used to refer

to vectors in the rest of this chapter. When all of the elements of an n + 1-dimensional

vector are of the same form, the shorthand vector notation ! can be used. For example,

(one0; one1; : : : ; onen) can be denoted by
�!

one. This notation is used when the loop nesting

level of a vector is not important for the explanation of how mappings are generated.

In some cases, a consecutive sequence of elements of a vector are of the same form. In

this case, a subscript range m::n can be used to refer to these elements. For example,

(one0; one1; : : : ; onen) can be denoted by one0::n. Finally, in some cases, when the sequence

of instances that an element i of a vector refers to is not important for the explanation of

how mappings are generated, h�ii is used to refer to the sequence of instances of element i.

The optimized program initially starts as an identical copy of the unoptimized

program with initial mappings between corresponding statements in the two programs.

Initially, all of the mappings have
�!

one!
�!

one labels because corresponding statements are

enclosed by the same loops. These mappings change as code transformations are applied.

The mappings for individual transformations are determined by using the semantics of

those transformations with respect to the unoptimized program. From the mappings of

individual transformations, the mappings for any series of transformations are determined.

As a subsequent code transformation is applied, the mappings are changed to re
ect the

composition of the previous mappings (the e�ects of all previously applied transformations)

by the e�ects of the current transformation.

4.2 Generating mappings

Code transformations can be applied in any order and as many times as desired

and applicable. After a code transformation is applied, the label of a mapping may change

and/or a new mapping may be established. The label of a mapping depends on the ap-

plied code transformation, positions of corresponding statements, and the mapping of the

41

a�ected statement. This section describes the e�ects on mappings after a single (initial)

transformation is applied. The subsequent section describes the e�ects on mappings after

a series of transformations are applied.

4.2.1 E�ects of statement level optimizations

The next several tables show the e�ects on mappings as a result of applying an

initial statement level optimization to a statement S in the unoptimized program. The

initial mapping of S to a corresponding statement S0 in the optimized program is of the

form one0::n ! one0::n.

Table 4.1: Dead code elimination e�ects on mappings of S with one0::n ! one0::n labels

Transformation Resulting mapping of S

dead code elimination delete

Table 4.2: Statement level optimization e�ects that do not a�ect the mappings of S with
one0::n ! one0::n labels

Transformation Resulting mapping label of S

code reordering within basic block one0::n �! one0::n
speculative hoisting in an acyclic one0::n �! one0::n
scheduler

constant propagation and folding one0::n �! one0::n
copy propagation one0::n �! one0::n
partial dead code elimination

(S within same loop) one0::n �! one0::n
partial redundancy elimination

(S within same loop) one0::n �! one0::n

Table 4.1 displays the e�ects on mappings as a result of applying dead code elimina-

tion. This transformation causes the removal of mappings because corresponding statements

in the optimized program are deleted.

The application of the statement level optimizations displayed in Table 4.2 do

not a�ect the mappings. The e�ects of the applications of code reordering within a basic

block, speculative hoisting in an acyclic scheduler, constant propagation and folding, copy

propagation, partial dead code elimination (where corresponding statements are within

the same loops), and partial redundancy elimination (where corresponding statements are

within the same loops) do not change the mappings nor the labels because statements are

42

Table 4.3: Statement level optimizations which move statements to outer loops and a�ect
mappings of S with one0::n ! one0::n labels

Transformation Resulting mapping label of S

loop invariant code motion
(S is in an inner loop) one0::n�1;alln �! one0::n�1

partial dead code elimination
(S is in an inner loop) one0::i; lasti+1::n �! one0::i

partial redundancy elimination
(S is in an inner loop) one0::i;alli+1::n �! one0::i

not moved across loop boundaries and new mappings that are established do not have

corresponding statements positioned across loop boundaries.

Table 4.4: Partial redundancy elimination e�ects on mappings of S with one0::n ! one0::n
labels

Partial redundancy elimination Resulting mapping label of S

(S is in an outer loop) one0::n �! one0::n; lastn+1::m, where m > n

(S is in a di�erent loop nest) one0::i;alli+1::n �! one0::i; lasti+1::m

Table 4.3 displays the labels of mappings generated as a result of applying state-

ment level optimizations that can move statements to outer loops or create correspondences

with statements in outer loops. The application of loop invariant code motion moves a state-

ment from a loop at loop nest level n to an outer loop at nesting level n � 1. After loop

invariant code motion is applied to statement S, in each iteration of this outer loop, all

instances of S correspond to one instance of S0. Thus, the label of the mapping between

S and S0 is changed to one0::n�1;alln ! one0::n�1. The application of partial dead code

elimination moves statements across branch boundaries or to an outer loop at nesting level

i. When partial dead code elimination moves a statement S to an outer loop at nest-

ing level i, in each iteration of this outer loop, the last instance of S corresponds to one

instance of S0. In this case, the label of the mapping between S and S0 is changed to

one0::i; lasti+1::n ! one0::i. The application of partial redundancy elimination modi�es a

statement S to use a temporary instead of recomputing an expression. Afterwards, state-

ment S has a correspondence with statement R0 (R0 assigns the redundant expression to

a temporary). When R0 is in an outer loop with loop nest level i with respect to S, as

illustrated in Figure 4.4(a), then in each iteration of this loop, all instances of S correspond

with one instance of R0. Thus, the label of the mapping between S and R0 is changed to

one0::i;alli+1::n ! one0::i.

43

Table 4.4 displays the remaining possible labels of mappings generated as a result

of applying partial redundancy elimination. If R0 is in an inner loop with loop nest level

m with respect to S, as illustrated in Figure 4.4(b), then in each iteration of the innermost

loop enclosing S, one instance of S corresponds with the last instance of R0. In this case,

the label of the mapping between S and R0 is changed to one0::n ! one0::n; lastn+1::m.

Finally, if S and R0 are in di�erent loop nests, as illustrated in Figure 4.4(c), then in each

iteration of the innermost loop enclosing both S and R0, all instances of S correspond to

the last instance of R0. Thus, the label of the mapping between S and R0 is changed to

one0::i;alli+1::n ! one0::i; lasti+1::m where i is the loop nest level of the innermost loop

enclosing both S and R0, n is the loop nest level of the innermost loop enclosing S, and m

is the loop nest level of the innermost loop enclosing R0.

44

0..n 0..none one , last n+1..m

Loop nest level n-1:

Loop nest level n:

...

Loop nest level m:
...

 Optimized CodeUnoptimized Code

 Optimized Code

Loop nest level i-1:

Loop nest level i:

... Loop nest level i-1:

Loop nest level i:

...

 S

 S

Loop nest level n: Loop nest level n:
... ...

Unoptimized Code Optimized Code

0..i
all i+1..none ,

 one
0..i

...

...

...
Loop nest level m:

Loop nest level m-1:

Loop nest level i:

Unoptimized Code

...

...

Loop nest level n:

Loop nest level n-1:

 S

all
0..i

i+1..n
0..i

last i+1..m

one ,

 one ,

Loop nest level n:

Loop nest level n-1:

...

...

...
Loop nest level m:

Loop nest level m-1:

Loop nest level i:...

 R’

a) S is inner loop w.r.t R’

 R’

 R’

c) S and R’ are in different loops

b) S is outer loop w.r.t R’

Loop nest level n-1:

Loop nest level n:

...

Loop nest level m:
...

Figure 4.4: Partial redundancy elimination mapping example

45

4.2.2 Example

In Figure 4.5, the mappings of an unoptimized program and its optimized version

are shown. This example will be used as a running example in subsequent chapters. The

mappings are illustrated by labeled dotted edges between corresponding statements in both

programs.

0..2one one
0..2

0..1
one one

0..1

0
one one

0

0..1
one one

0..1

0..2
one one

0..2

0..2
one one

0..2

0..1
one one

0..1

0
one one

0

0..2
one one

0..2

0..2

Unoptimized Code

S2 T1 = A

S14 E = D * 2

F
T

T

S3 T1=T1+A

S5 M = X * X
S6 B = M
S7 IF (B > T2)

S8 C = T2 + X

S9 C = T2 + X

S11 T2 = T2 + A
S12 IF (T2 < 100)

S7’ IF (M > T1)

F

T

S2’ T1 = 1
S5’ M = X * X

F

F

T

T

S1 A = 1

S12’ IF (T2 < 100)

S8’ C = T2 + X

S13’ IF (T1 < 100)

Optimized Code

S11’ T2 = T2 + 1

S4 T2 = 1

F

S4’ T2 = 1

S10’ D = M + T1

T

S13 IF (T1 < 100)

S9’ C = T2 + X

S10 D = B + T1

S3’ T1=T1+1

S14’ E = D * 2

F

0
1..2

one ,a
ll

one 0

0
one ,last one

0
1..2

0..2one
 one

0..2

0..2one one

Figure 4.5: Mappings for unoptimized and optimized code example

The following optimizations were applied to the code in Figure 4.5.

� constant propagation - the constant 1 in S1 is propagated, as shown in S20, S30, and

S110.

� copy propagation - the copy M in S6 is propagated, as shown by S70 and S100.

� dead code elimination - S1 and S6 are dead after constant and copy propagation and

thus the mappings of S1 and S6 are removed.

46

� loop invariant code motion - S5 is moved out of the doubly nested loop and thus all

the instances of statement S5 in the loops in the unoptimized code must map to one

instance of statement S50 in the optimized code.

� partial redundancy elimination - S9 is partially redundant with S8, and thus, a map-

ping is created between S9 and S80. Notice S9 now has two mappings.

� partial dead code elimination - S10 is moved below the outer loop and thus only the

last instance of statement S10 in the loops in the unoptimized code is mapped to one

instance of statement S100 in the optimized code.

4.2.3 E�ects of loop transformations

Loop transformations operate on loops as a unit, and therefore, their application

a�ects the mappings of statements within the loops, including statements in the loop headers

as well as the loop bodies. This section describes the kinds of mapping generated as a

result of applying an initial loop transformation where the initial mappings are of the form
�!

one!
�!

one.

4.2.3.1 E�ects of duplicating loop bodies

When a body of a loop is duplicated, the number of instances of a statement in the

loop body in the unoptimized code is divided among several statements in the optimized

code. Thus, a statement in the unoptimized code corresponds to several statements in

the optimized code, and the mappings are updated to re
ect the new correspondences

between the instances of these statements. For example, the application of loop unrolling

in Figure 4.6 has unrolled the loop at nesting level i two times in the optimized code. The

instances of statement S within the loop body at nesting level i in the unoptimized code

are divided as follows. The odd instances of S, denoted by f1;n;2g, correspond to the

instances of S0 in the optimized code, and therefore, the label of the mapping of S and

S0 are changed from
�!

one!
�!

one to one0::i�1; f1;n;2gi;
�!

one!
�!

one. The even instances of S,

denoted by f2;n;2g, correspond to the instances of S00, and therefore, a mapping is created

between S and S00 with label one0::i�1; f2;n;2gi;
�!

one!
�!

one.

47

one , ,one one0..i-1 i
{2,n,2}

0..i-1 i
{1,n,2} one , ,one one

L
oo

p
ne

st
 le

ve
l i

...

L
oo

p
ne

st
 le

ve
l i

...

for (j=1;j<=n;j=j+1) { for (j=1;j<=n;j=j+2) {

S’ : statement

S’’ : statement

Unoptimized Code Optimized Code

S : statement

}

}

Figure 4.6: Loop unrolling

0..i-1 onei+1 onei i+2one , , ,one , one one

for (k=1;k<=n;k=k+1) {

L
oo

p
ne

st
 le

ve
l i

+1

for (j=1;j<=n;j=j+1) {

S : statement
}

}

...

Unoptimized Code

L
oo

p
ne

st
 le

ve
l i

...

for (k=1;k<=n;k=k+1) {

for (j=1;j<=n;j=j+1) {

S’ : statement
}

} L
oo

p
ne

st
 le

ve
l i

+1

 Optimized Code

L
oo

p
ne

st
 le

ve
l i

Figure 4.7: Loop interchange e�ects on initial
�!

one!
�!

one mappings

0
({j=1,n,strip}

1 i 0..i {tj=j,min(n,j+strip-1),1})
 S’ : c[j:j+strip] = a[j:j+strip]

 + b[j:j+strip]

0..i-1

 S : c[j] = a[j] + b[j]
 one

}

for (j=1;j<=n;j=j+1) {

}

for (j=1;j<=n;j=j+strip) {

L
oo

p
ne

st
 le

ve
l i

...

 Unoptimized Code Optimized Code
L

oo
p

ne
st

 le
ve

l i

...
one ,

Figure 4.8: Strip mining e�ects on initial
�!

one!
�!

one mappings

48

4.2.3.2 E�ects of modifying the iteration space

When the iteration space of a loop is reordered, the instances of a statement in the

loop body in the unoptimized code are reordered in the optimized code, and the mappings

are updated to re
ect the new correspondences between the instances of these statements.

For example, the application of loop interchange in Figure 4.7 has interchanged the loop at

nesting level i with the loop at nesting level i+1, and thus, the instances of S are reordered

in the optimized code. This reordering e�ect is captured by permuting the elements of the

vector speci�ed in the label of the mapping between S and S0 to re
ect the ordering in the

optimized code. Therefore, the label of the mapping between S and S0 is changed from
�!

one!
�!

one to one0::i�1;onei+1;onei; onei+2;
�!

one!
�!

one.

In Figure 4.8, the loop at nesting level i has been stripped from the application

of strip mining. The instances of statement S within the loop body at nesting level i in

the unoptimized code are divided as follows. Instances 1 through n are divided into strips

of size strip, and each strip of instances of S corresponds to one instance of S0. Therefore,

the label of the mapping of S is changed from
�!

one!
�!

one to one0::i�1; (fj = 1;n; stripg0

ftj = j;min(n; j+ strip� 1);1g1)i ! one0::i. The indices in the sequences re
ect the

dependence of the inner loop limits on the outer loop index.

4.2.3.3 E�ects of merging and splitting loops

Merging or splitting loops does not reorder and split the instances of statements

within the loops. Subsequently, the mappings of the statements are not a�ected. However,

the instances of statements of the loops are reordered with respect to other instances of

statements in the loops.

4.2.3.4 E�ects of altering the index and bounds of a loop

Altering the index and bounds of a loop does not reorder and split the instances

of statements within a loop body. Subsequently, the mappings of the statements are not

a�ected. For example, the application of loop normalization, as illustrated in Figure 4.9,

does not a�ect the mappings of the statements of the loop bodies and thus, the label of the

mapping between S and S0 remains
�!

one!
�!

one.

49

one one

}

S : statement

for (j=1;j<= (limit - init + step)/step ; j=j+1) {

Unoptimized Code

for (j=init;j<=limit;j=j+step) {

L
oo

p
ne

st
 le

ve
l i

L
oo

p
ne

st
 le

ve
l i

... ...

}

S’ : statement

 Optimized Code

Figure 4.9: Loop normalization e�ects on initial
�!

one!
�!

one mappings

4.3 Series of code transformations

Code transformations can be applied in any order and as many times as desired

and applicable. As transformations are applied on statements, a mapping's label is changed

to re
ect the composition of the previous mapping (the e�ects of all previously applied

transformations) by the e�ects of the current transformation. Table 4.5 shows the e�ects

of statement level optimizations on mappings of statements with label h�i0::m ! h�i0::n.

The application of dead code elimination eliminates mappings while the application of

code reordering within a basic block, speculative hoisting in an acyclic scheduler, constant

propagation and folding, and copy propagation does not a�ect the label of the mappings,

and thus the label remains h�i0::m ! h�i0::n.

Table 4.5: Statement level optimizations e�ects on h�i0::m ! h�i0::n mappings

Transformation Resulting mapping label

dead code elimination mapping delete

code reordering within a basic block h�i0::m ! h�i0::n
speculative hoisting in an acyclic scheduler h�i0::m ! h�i0::n
constant propagation and folding h�i0::m ! h�i0::n
copy propagation h�i0::m ! h�i0::n

Tables 4.6 and 4.7 show the e�ects of loop invariant code motion and partial

dead code elimination (when statements are moved across loop boundaries) on the map-

ping labels. When a statement S0 is moved in the optimized program, the mapping of

S0 and corresponding statement S (in the unoptimized program) is updated to re
ect the

composition of the previous mapping by the e�ects of the current transformation. Row

two assumes statements S and S0 are within the same loop before the transformation is

applied. Row three assumes statement S is in an inner loop with respect to S0, and row

four assumes either statement S is in an outer loop with respect to S0 or both are in dif-

ferent loop nests. When statements are moved out of loops after an application of loop

50

invariant code motion, the last element h�im in the vector for S0 is removed. If the loop of

this element also encloses S, then all is applied to the current element h�im in the vector of

S. Similarly, when statements are moved across loop boundaries to a loop at nesting level

j after the application of partial dead code elimination, elements h�ij+1::m in the vector for

S0 are removed. If the loop enclosing element j+1 of S0 also encloses S, then last is applied

to the current elements h�ij+1::n in the vector of S. When statements are moved within the

same loop for partial dead code elimination, the labels of the mappings are not a�ected.

Table 4.6: Loop invariant code motion e�ects on mappings

Initial mapping label Resulting mapping label

S is in same loop as S0:
h�i0::m ! h�i0::m h�i0::m�1; all(h�im)m ! h�i0::m�1
S is in an inner loop:
h�i0::n ! h�i0::m h�i0::m�1; all(h�im)m; h�im+1::n ! h�i0::m�1
S is in an outer or di�erent loop nest:
h�i0::n ! h�i0::m h�i0::n ! h�i0::m�1

Table 4.7: Partial dead code elimination e�ects on mappings (when statements are moved
across loop boundaries)

Initial mapping label Resulting mapping label

S is in same loop as S0:
h�i0::m ! h�i0::m h�i0::j ; last(h�ij+1)j+1::last(h�im)m ! h�i0::j
S is in an inner loop:
h�i0::n ! h�i0::m h�i0::j ; last(h�ij+1)j+1::last(h�in)n ! h�i0::j
S is in an outer or di�erent loop nest:
h�i0::n ! h�i0::m h�i0::n ! h�i0::j

(if S is still in outer or di�erent loop nest)
h�i0::j ; last(h�ij+1)j+1::last(h�in)n ! h�i0::j
(if S is now in an inner loop)

Similarly, for partial redundancy elimination, after statement S is modi�ed to use

a temporary instead of recomputing an expression, statement S corresponds with S0 and

R0 (R0 assigns the redundant expression to a temporary). Therefore, a mapping is created

between S and R0, and the mapping of S and S0 is utilized to create the mapping between S

and R0. Table 4.8 displays the labels of the mapping between S and R0, given the previous

h�i0::m ! h�i0::n mapping of S and S0.

Finally, the tables shown in Figures 4.9 and 4.10 display the labels of mappings

generated as a result of applying a loop transformation where the mapping labels are of

51

Table 4.8: Partial redundancy elimination e�ects on mappings

Resulting mapping label of S and R00

S is in same loop h�i0::n �! h�i0::m
S is in an inner loop h�i0::i;all(h�ii+1)i+1::all(h�in)n �! one0::i
S is in an outer loop h�i0::n �! one0::n; lastn+1::m, where m > n

S is in a di�erent loop nest one0::i;all(h�ii+1)i+1::all(h�in)n �! one0::i; lasti+1::m

the form
�!

h�i!
�!

h�i. The mappings of statements within the loop bodies as well as the loop

headers may be a�ected.

52

Table 4.9: Loop transformation e�ects on
�!

h�i!
�!

h�i mappings

Loop peeling (one time before loop)

loop body h�i0::i�1;1(h�ii)i;
�!

h�i!
�!

h�i

h�i0::i�1; f2;n;1g(h�ii)i;
�!

h�i!
�!

h�i

loop initialization delete

loop test h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::i
h�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)i

loop increment h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::i

Loop unrolling (unroll factor = 2)

loop body h�i0::i�1; f1;n;2g(h�ii)i;
�!

h�i!
�!

h�i

h�i0::i�1; f2;n;2g(h�ii)i;
�!

h�i!
�!

h�i

loop initialization h�i0::i�1 ! h�i0::i�1
loop test h�i0::i�1; f1;n;2g(h�ii)i ! h�i0::i

h�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)i
loop increment h�i0::i�1; f2;n;2g(h�ii)i ! h�i0::i

Software pipelining (number of stages = 2)

loop body:

stage 1 h�i0::i�1;1(h�ii)i;
�!

h�i!
�!

h�i

h�i0::i�1; f2;n;1g(h�ii)i;
�!

h�i!
�!

h�i

stage 2 h�i0::i�1; f1;n � 1;1g(h�ii)i;
�!

h�i!
�!

h�i

h�i0::i�1;n(h�ii)i;
�!

h�i!
�!

h�i

loop initialization delete

loop test h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::i
h�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)i

loop increment h�i0::i�1; f2;n;1g(h�ii)i ! h�i0::i

Loop unswitching at nesting level i

loop body:
conditional h�i0::i�1;all(h�ii)i ! h�i0::i�1

other statements
�!

h�i!
�!

h�i

loop initialization h�i0::i�1 ! h�i0::i�1
loop increment h�i0::i ! h�i0::i
loop test h�i0::i ! h�i0::i

53

Table 4.10: Loop transformation e�ects on
�!

h�i!
�!

h�i mappings cont.

Loop reversal at nesting level i

loop body h�i0::i�1; fn;1;�1g(h�ii)i;
�!

h�i!
�!

h�i

loop initialization delete

loop test h�i0::i�1; fn;1;�1g(h�ii)i ! h�i0::i
h�i0::i�1; last(h�ii)i ! h�i0::i�1; last(h�ii)i

loop increment h�i0::i�1; fn� 2;1;�1g(h�ii)i ! h�i0::i

Loop interchange at nesting levels i and i+ 1

loop body h�i0::i�1; h�ii+1; h�ii; h�ii+2;
�!

h�i!
�!

h�i

loop initialization h�i0::i�1 ! h�i0::i�1;all(h�ii)i
h�i0::i�1;all(h�ii)i ! h�i0::i�1

loop test h�i0::i ! h�i0::i�1;all(h�ii)i; h�ii+1

h�i0::i�1;all(h�ii)i; h�ii+1 ! h�i0::i
loop increment h�i0::i ! h�i0::i�1;all(h�ii)i; h�ii+1

h�i0::i�1;all(h�ii)i; h�ii+1 ! h�i0::i

Loop distribution and loop jamming

loop body
�!

h�i!
�!

h�i

loop initialization
�!

h�i!
�!

h�i

loop increment
�!

h�i!
�!

h�i

loop test
�!

h�i!
�!

h�i

Strip mining loop at nesting level i

loop body h�i0::i�1; (fj = 1;n; stripg0
ftj = j;min(n; j+ strip� 1);1g1)(h�ii)i ! h�i0::i

loop initialization h�i0::i�1 ! h�i0::i�1
loop increment h�i0::i�1; fstrip;n; stripg(h�ii)i ! h�i0::i
loop test h�i0::i�1; f1;n; stripg(h�ii)i ! h�i0::i

h�i0::i�1; last(h�ii)i ! h�i0::i; last(h�ii)i

Loop normalization

loop body
�!

h�i!
�!

h�i

loop initialization delete

loop increment delete

loop test
�!

h�i!
�!

h�i

54

4.3.1 E�ects of inlining

The mappings can be extended to support function inlining, which replaces calls

to a function in the unoptimized code by bodies of the function in the optimized code.

Since each inlined body may be optimized di�erently, each inlined call site has its own

set of mappings. That is, for each inlined call site, separate mappings are maintained

between the statements in the function in the unoptimized code and the inlined copy in the

optimized code. When the function is examined or executed at runtime, the appropriate set

of mappings are selected and utilized by using the knowledge of the call site encountered

during program execution.

4.4 Summary

This chapter described a technique to automatically identify statement instance

correspondences between unoptimized and optimized code and generate mappings re
ecting

these correspondences as code improving transformations are applied. The mappings re
ect

the e�ects of transformations and are established by analyzing how the position, number,

and order of instances of a statement can change in a particular context when transforma-

tions are applied. No restrictions are placed on the order or number of transformations. The

mappings support statement level optimizations, inlining, as well as loop transformations.

Now that the correspondence between the unoptimized and optimized versions

of a program can be established through mappings, source level debugging techniques for

optimized code can be developed. The remainder of this dissertation focuses on developing

such techniques to help optimizer writers debug optimizers and application programmers

to debug optimized code from the point of view of the source program. The mappings

are utilized at compile time as well as runtime. Statically, the mappings along with the

control
ow graphs of the unoptimized and optimized programs are analyzed to determine

how corresponding statements are relatively positioned with respect to each other and

determine the corresponding statements that are path sensitive. Also, the mappings are

used to generate annotations for the unoptimized and optimized programs, which can guide

the actions of source level debugging tools for optimized code. At runtime, the mappings

are utilized to determine how statements that execute in the optimized program relate to

the unoptimized program version.

Chapter 5

Comparison Checking

A novel technique called comparison checking is presented in this chapter that

utilizes the mappings presented in the previous chapter. This technique helps users validate

and debug optimizers by verifying, for given inputs, that the semantics of a program are

not changed by the application of optimizations. The comparison checking technique deter-

mines if the semantics of the optimized version di�er from that of the unoptimized program

by comparing the internal execution behavior using values that are computed by the un-

optimized program with the corresponding values computed by the optimized program for

given inputs.

The comparison checking scheme, as illustrated in Figure 5.1, automatically orches-

trates the executions of both the unoptimized and optimized versions of a source program,

for given inputs, and compares values computed by corresponding executed statements from

both program versions. The mappings described in Chapter 4 specify the statements cor-

responding in the unoptimized and optimized programs. If the semantic behaviors are the

same and correct with respect to the source program, the optimized program can be run

with high con�dence. On the other hand, if the semantic behaviors di�er, the compari-

son checker displays the statements responsible for the di�erences and the optimizations

applied to these statements. The optimizer writer can use this information to locate the

incorrect code in the optimized program and determine what transformation(s) produced

the incorrect code.1

The semantic behavior of an unoptimized or optimized program with respect to

the source program is characterized by the outputs and values computed by source level

statements in the unoptimized or optimized program for all possible inputs. Therefore, the

semantic behaviors of the unoptimized and optimized programs with respect to the source

program are compared by checking that (1) the same paths are executed in both programs,

(2) corresponding source level assignments compute the same values and reference (i.e.,

1The checker can also be used to detect certain errors in a source program.

55

56

unsuccessful

Generate unoptimized
 program.

and optimized programs
executes the unoptimized
Comparison checker

and performs comparisons
on given inputs.

comparisons error in optimizer.

comparisons successful

Generate optimized
 program.

Use info about statements
and optimizations related
to failed checks to locate

Figure 5.1: The comparison checking system

read, write) the corresponding locations, and (3) the outputs are the same. The outputs

and the values computed by source level assignment statements and branch predicates

for given inputs are compared. In addition, for assignments through arrays and pointers,

checking is done to ensure the addresses to which the values are assigned correspond to each

other. All assignments to source level variables are compared with the exception of those

dead values that are not computed in the optimized code. This level of checking allows

the comparison checking system to locate the earliest point where the unoptimized and

optimized programs di�er in their semantic behavior with respect to the source program.

That is, the checker detects the earliest point during execution when corresponding source

level statement instances should but do not compute the same values. Therefore, the checker

can detect statements that are incorrectly optimized and subsequently compute incorrect

values.

Consider the unoptimized C program fragment and its optimized version in Fig-

ure 5.2. Assume the unoptimized program is correct and the optimizer is turned on. The

optimizer moves the assignment of x to the outside of the loop as a result of applying loop

invariant code motion. When the optimized program executes, it returns incorrect output.

The optimizer writer must debug the optimizer by �rst determining the cause of the error

in the optimized code. Using the checker, a di�erence is detected in the internal behavior of

the unoptimized and optimized programs at line 5 in the unoptimized program during the

second iteration of the loop and at line 4 in the optimized program. The checker indicates

that the value 4 is assigned in the unoptimized program and the value 3 is assigned in the

optimized program. The checker also indicates that loop invariant code motion was ap-

plied to statement 5. The optimizer writer can examine the unoptimized and/or optimized

versions of the program and then determine that loop invariant code motion was applied

incorrectly. The optimizer writer can �x the error in the implementation of the loop in-

variant code motion optimization and rerun the checker on the unoptimized and optimized

versions of the program.

57

 Fragment
Optimized Program
 Fragment

for (i=1; i<=n; i=i+1){

...
1) int i, n, x, y, z;

y = 1;
z = 2;

y = y + 1;

2)

6)
5)
4)
3)

7)

Unoptimized Program

}
8) print x,y,z 8) print x,y,z

x = y + z;

for (i=1; i<=n; i=i+1){

...
1) int i, n, x, y, z;

y = 1;
z = 2;

x = y + z;
y = y + 1;

2)

6)
5)
4)
3)

7) }

Figure 5.2: Program example for comparison checking

The merits of a comparison checking system are as follows.

� When a comparison fails, the earliest place where the failure occurred and the op-

timizations that are involved are reported. Information about where an optimized

program di�ers from the unoptimized version bene�ts the optimizer writer in debug-

ging the optimizer.

� Since the internal values computed in the optimized code are compared to that of

the unoptimized program, a �ner level of testing is provided than just comparing the

outputs. This level of checking can �nd errors in the optimized code that do not cause

the output of the program to be incorrect.

� The optimizer writer has greater con�dence in the correctness of the optimizer.

� A wide range of optimizations including classical optimizations, register allocation,

loop transformations, and inlining can be handled by the technique.

� Optimizations can be performed at the source, intermediate, or target code level.

� The comparison checker is language independent. The technique is applicable to a

variety of programming languages.

� The optimized code is not modi�ed except for breakpoints, and thus no recompilation

is required.

58

The comparison checking scheme is generally applicable to a wide range of op-

timizations from simple code reordering transformations to loop transformations. This

chapter focuses mainly on statement level optimizations. The end of the chapter describes

how to extend the comparison checking scheme to handle loop transformations and inlining.

The rest of this chapter is organized by presenting an overview of the comparison

checker in Section 5.1. Section 5.2 describes the annotations used by the comparison checker

to guide the checking of values and describes the algorithms to place the annotations.

Section 5.3 presents experimental results.

5.1 Comparison checker overview

The comparison checker scheme compares values computed by both the unopti-

mized and optimized program executions to ensure the semantic behaviors of both pro-

grams are the same. To automate this scheme, the comparison checker must (1) determine

which values computed by both programs need to be compared with each other, (2) de-

termine where the comparisons are to be performed in the program executions, and (3)

perform the comparisons. To achieve these tasks, three sources of information are uti-

lized. First, mappings between corresponding instances of statements in the unoptimized

and optimized programs, which are described in Chapter 4, are utilized to determine which

values computed by both programs should be compared. These mappings are generated

as optimizations are applied. Also, the statements that are a�ected by optimizations are

marked with the optimization applied so that the checker can report the optimizations that

are applied to statements. Second, after code is optimized and generated by the compiler,

the mappings are used to automatically generate annotations for the unoptimized and op-

timized programs, which guide the comparison checker in comparing corresponding values

and addresses. When a program point in either program version that has annotations is

reached, the actions associated with the annotations at that point are executed by the com-

parison checker. Annotations identify program points where comparison checks should be

performed. Third, since values to be compared are not always computed in the same order

in the unoptimized and optimized code, a mechanism saves values that are computed early.

These values are saved in a value pool and removed when no longer needed. Annotations

are used to indicate if values should be saved in the value pool or discarded from the value

pool.

A high level conceptual overview of the comparison checker algorithm is given in

Figure 5.3. To avoid modifying the unoptimized and optimized programs, breakpoints are

used to extract values from the unoptimized and optimized programs as well as activate

59

process annotations at breakpoints process annotations at breakpoints
Execute the optimized program and

If delay comparison check annotation then If save annotation then

If no delay annotation then

If delete value annotation then

If comparison check annotation on a delayed

Execute the unoptimized program and

 switch execution to the optimized program

 if error then report error, and

 to perform the check on the value.

 discard saved value.

 check then
 perform the comparison check
 and if error then report error.

 discard saved value.
If delete annotation then
 save value computed.

If comparison check annotation then
 perform the comparison check,

 switch execution to the unoptimized program.

 save value computed.

Figure 5.3: Comparison checker algorithm

annotations that are associated with program points in the unoptimized and optimized

programs. The execution of the unoptimized program drives the checking and the execu-

tion of the optimized program. Therefore, execution begins in the unoptimized code and

proceeds until a breakpoint is reached. Using the annotations in the unoptimized code, the

checker can determine if the value computed can be checked at this point. A breakpoint at

a program point in the unoptimized code that has a comparison check annotation indicates

that a value computed by a statement should be checked. Also, by default, a breakpoint

at a program point in the unoptimized code that has no associated annotation indicates

that the value computed by the most recently executed statement should be checked. If

a value should be checked, the optimized program executes until the corresponding value

is computed (as indicated by a comparison check annotation), at which time the check is

performed on the two values. During the execution of the optimized program, any values

that are computed \early" (i.e., the corresponding value in the unoptimized code has not

been computed yet) are saved in the value pool, as directed by the save annotations. If

a delay comparison check annotation is encountered, indicating the checking of the value

computed by the unoptimized program cannot be performed at the current point, the value

is saved for future checking. The checker continues to alternate between executions of the

unoptimized and optimized programs. Annotations also indicate when values that were

saved for future checking can �nally be checked and when the values can be removed from

the value pool. Values computed by statement instances that are deleted by an optimization

are not checked.

60

(b) Check traces

S2 T1 = A

F

S5 M = X * X
S6 B = M
S7 IF (B > T2)

S9 C = T2 + X
S10 D = B + T1
S11 T2 = T2 + A

F

F

T

T

S8 C = T2 + X

S3 T1=T1+A
S4 T2 = 1

S14 E = D * 2 Delete S10
Checkable S10

S13 IF (T1 < 100)

TF

F

F

Check S5 with S5’

Save S5’

T

T

Check S2
S5’ M = X * X

S11’ T2 = T2 + 1

S13’ IF (T1 < 100)

28

S9’ C = T2 + X S8’ C = T2 + X

S12’ IF (T2 < 100)

Check S10S10’ D = M + T1

Delay S10

Check S3

Check S9 with S8’ , S9’
Delete S8’,S9’

S1 A = 1

S12 IF (T2 < 100)

26
23

21

19

17
16

10

8

3

6

27

T

14

12

5

11

15

18

20

24

25

22

13

9

7

S3’ T1=T1+1

S2’ T1 = 1

S4’ T2 = 1

S7’ IF (M > T1)

S14’ E = D * 2

Delete S5’

Check S13

Check S11

Save S8’
Check S8

Check S7

2

1

Optimized CodeUnoptimized Code
Optimized

S3

S2
S1

S4

S5

S6
S7

S8

S9

S10

S11

S12

1

3

6

8

10

12

17

16

14

19

23

27

S8’

S7’

9

S4’

S2’

S5’

S3’

7

5

4

2

11

13

S12’

S13’

S10’

S14’

S11’

15

18

28

25

24

22

20

S14

Code Trace Code Trace
Unoptimized

4

S13

26

21

Check S4

Save S9’

Delete S10

Delete S10

Check S12

Check S14

(a) Annotated unoptimized and optimized code

Figure 5.4: Comparison checking scheme example

5.1.1 Comparison checking scheme example

Consider the annotated unoptimized and optimized code segments in Figure 5.4(a),

which illustrates the same unoptimized and optimized code example given in Figure 4.5 in

Chapter 4. Assume all the statements shown are source level statements and loops execute

for a single iteration. Breakpoints are indicated by circles. Breakpoints have been placed at

program points in the unoptimized and optimized code that are associated with annotations

as well as program points in the unoptimized code where comparison checks should be

performed. The switching between the unoptimized and optimized program executions by

the checker is illustrated by the traces in Figure 5.4(b). The traces include the statements

executed as well as the breakpoints (circled) where annotations are processed. The arrows

indicate the switching between programs.

The unoptimized program starts to execute with S1 and continues executing with-

out checking, as S1 was deleted from the optimized program. After S2 executes, breakpoint

1 is reached and the checker determines from the annotation that the value computed can

be checked at this point and so the optimized program executes until Check S2 is processed,

61

which occurs at breakpoint 2. The values computed by S2 and S20 are compared. The unop-

timized program resumes execution and the loop iteration at S3 begins. After S3 executes,

breakpoint 3 is reached and the optimized program executes until Check S3 is processed.

Since a number of comparisons have to be performed using the value computed by S50, when

breakpoint 4 is reached, the annotation Save S50 is processed and consequently, the value

computed by S50 is stored in the value pool. The optimized code continues executing until

breakpoint 5, at which time the annotation Check S3 is processed. The values computed by

S3 and S30 are compared. S4 then executes and its value is checked. S5 then executes and

breakpoint 8 is encountered. The optimized program executes until the value computed by

S5 can be compared, indicated by the annotation Check S5 with S50 at breakpoint 9. The

value of S5 saved in the value pool is used for the check. The programs continue executing

in a similar manner.

5.2 Annotations

Code annotations guide the comparison checking of values computed by corre-

sponding statement instances from the unoptimized and optimized code. Annotations (1)

identify program points where comparison checks should be performed, (2) indicate if values

should be saved in a value pool so that they will be available when checks are performed,

and (3) indicate when a value currently residing in the value pool can be discarded since all

checks involving the value have been performed. The set of annotations is complete, and

the placement of the annotations go hand in hand with the comparison checking algorithm.

5.2.1 Supporting statement level optimizations

Five di�erent types of annotations are needed to implement the comparison check-

ing strategy. In the example in Figure 5.5, which is the same example as in Figure 5.4,

annotations are shown in dotted boxes. The annotations used by the checker and their

actions follow. In the description, Suopt indicates a statement in the unoptimized code and

Sopt a statement in the optimized code.

5.2.1.1 The Check Suopt annotation

The Check annotation is associated with a program point in the optimized code

to indicate a check of a value computed by statement Suopt is to be performed. The cor-

responding value to be compared is the result of the most recently executed statement in

the optimized code. For example, in Figure 5.5, the annotation Check S2 is associated with

62

S20. The Check annotation is used to indicate a check should be performed on values of a

statement in the unoptimized code whose corresponding statement in the optimized code

remains in its original positions.

A variation of this annotation is the Check Suopt with Si; Sj ; : : : annotation,

which is associated with a program point in the optimized code to indicate a check of a

value computed by statement Suopt is to be performed with a value computed by one of

Suopt's corresponding statements Si; Sj; : : : in the optimized program. The corresponding

value to be compared is either the result of the most recently executed statement in the

optimized code or is in the value pool. For example, in Figure 5.5, the annotation Check

S5 with S50 is associated with the original position of statement S5 in the optimized code.

The Check with annotation is used to check statements in the unoptimized code whose

corresponding statements in the optimized code have been moved.

S11 T2 = T2 + A

S2 T1 = A

F

S5 M = X * X
S6 B = M
S7 IF (B > T2)

S9 C = T2 + X
S10 D = B + T1

F

T

T

S8 C = T2 + X

S3 T1=T1+A
S4 T2 = 1

S14 E = D * 2 Delete S10
Checkable S10

S13 IF (T1 < 100)

TF

F

F

Check S5 with S5’

Save S5’

T

T

Check S2
S5’ M = X * X

S11’ T2 = T2 + 1

S13’ IF (T1 < 100)

S9’ C = T2 + X S8’ C = T2 + X

S12’ IF (T2 < 100)

Check S10S10’ D = M + T1

Delay S10

Check S3

Check S9 with S8’ , S9’
Delete S8’,S9’

S12 IF (T2 < 100)

T

S3’ T1=T1+1

S4’ T2 = 1

S7’ IF (M > T1)

S14’ E = D * 2

Delete S5’

Check S13

Check S11

Save S8’
Check S8

Check S7

Optimized CodeUnoptimized Code

Check S4

Save S9’

Delete S10

Delete S10

Check S12

Check S14

S1 A = 1 S2’ T1 = 1

Figure 5.5: Annotated unoptimized and optimized code example

63

5.2.1.2 The Save Sopt annotation

If a value computed by a statement Sopt cannot be immediately compared with

the corresponding value computed by the unoptimized code, then the value computed by

Sopt must be saved in the value pool. In some situations, a value computed by Sopt must

be compared with multiple values computed by the unoptimized code. Therefore, it must

be saved until all those values have been computed and compared. The annotation Save

Sopt is associated with Sopt and indicates that the value computed by Sopt is to be saved.

In Figure 5.5, the statement S5 in the unoptimized code, which is moved out of the loops

by invariant code motion, corresponds to statement S50 in the optimized code. The value

computed by S50 cannot be immediately compared with the corresponding values computed

by S5 in the unoptimized code because S50 is executed prior to the execution of S5. Thus,

the annotation Save S50 is associated with S50.

5.2.1.3 The Delay Suopt and Checkable Suopt annotations

If the value computed by the execution of a statement in the unoptimized code,

Suopt, cannot be immediately compared with the corresponding value computed by the

optimized code because the correspondence between the values cannot be immediately es-

tablished, then the value of Suopt must be saved in the value pool. The annotation Delay

Suopt is associated with Suopt to indicate the checking of the value computed by Suopt should

be delayed, saving the value in the value pool. The point in the unoptimized code at which

checking can �nally be performed is marked using the annotation Checkable Suopt.

In some situations, a delay check is needed because the correspondence between

statement instances cannot be established unless the execution of the unoptimized code is

further advanced. In Figure 5.5, statement S10 inside the nested loop in the unoptimized

code is moved after the loops in the optimized code by partial dead code elimination. In

this situation, only the value computed by statement S10 during the last iteration of the

nested loops is to be compared with the value computed by S100. However, an execution of

S10 corresponding to the last iteration of the nested loops can only be determined when the

execution of the unoptimized code exits the loops. Therefore, the checking of S10's value

is delayed.

There is another situation in which a check is delayed for e�ciency reasons. Con-

sider the example in Figure 5.6(a) in which the computation of x's value is moved from

before the loop to after the loop. In this case, after x has been computed by the unop-

timized code, the execution of the optimized code is advanced to the point after the loop

and the value of x is checked. However, all values of y that are computed inside the loop

64

would have to be saved, resulting in potentially a large value pool. To avoid the creation

of a large pool, the checking of the value of x can be delayed until after the loop, as shown

in Figure 5.6(b).

0

0

one one

S: x = ...

y = ... y = ...

S’: x = ...

0

0

one one

(a) Using save annotation.

S: x = ...

y = ... y = ...

S’: x = ...Delete S
Checkable S

Delay S

Unoptimized Code Optimized Code

Check S

(b) Using delay annotation for efficiency.

Unoptimized Code Optimized Code

Check S

Figure 5.6: Types of annotations

5.2.1.4 The Delete S annotation

The Delete annotation is associated with a program point in the unoptimized/opt-

imized code to indicate a value computed previously by S and stored in the value pool can

be discarded. Since a value may be involved in multiple checks, a delete annotation must be

introduced at a point where all relevant checks would have been performed. In Figure 5.5,

the annotation Delete S50 appears after the loops in the optimized code because at that

point, all values computed by statement S5 in the unoptimized code would have been

compared with the corresponding value computed by S50 in the optimized code.

5.2.1.5 The Check-self S annotation

The Check-self annotation is associated with a program point in the unopti-

mized/optimized code and indicates that values computed by S must be compared against

each other to ensure the values are the same. The annotation is used when a mapping

refers to all instances of statement S in the optimized/unoptimized program. As the loop

enclosing S begins to execute, the �rst value computed by S is saved in the value pool.

Subsequent values computed by S are compared with the saved value. Since this annota-

tion causes a value of S to be saved in the value pool, a Delete S annotation is used to later

discard the value from the value pool.

In Figure 5.7, the mapping of statement S0 refers to all instances of S0. The

annotation Check-self S0 is associated with S0 and the annotation Delete S0 is introduced

after the enclosed loop. The checking of S and S0 is as follows. After S executes, the

checking of S is delayed and its computed value is saved in the value pool. The �rst time

65

S0 executes, its computed value is saved in the value pool. Subsequent values computed by

S0 are compared with the saved value. Once the unoptimized program execution reaches

the program point at Checkable S, the value computed by S can now be compared and the

optimized program executes until Check S with S0 is encountered. The values computed by

S and S0 are compared at this point, and then the values of S and S0 are discarded from

the value pool.

one one , all

0

0
1

Unoptimized Code Optimized Code

S: x = ...Delay S

Checkable S
Delete S

S’: x = ... Check-self S’

Delete S’
Check S with S’

Figure 5.7: Types of annotations

Depending on the position of a statement in the unoptimized code that has a

mapping referring to all instances, a Check-self annotation is not necessary, as illustrated in

Figure 5.5. Although the mapping of statement S5 refers to all instances of S5, as illustrated

in Figure 4.5 in Chapter 4, a Check S5 with S50 annotation can be used to perform all of

the comparison checks on S5.

5.2.2 Algorithms to place annotations for statement level optimizations

The selection and placement of annotations are independent of particular optimiza-

tions and depend only on which and how statement instances correspond and the relative

positions of corresponding statements in both the unoptimized and optimized programs.

The mappings and data
ow analysis, including reachability and postdominance, are used

to determine where and what annotations to use. Annotations are placed after all optimiza-

tions are performed and target code has been generated, and therefore, the code to emit

the annotations can be integrated as a separate phase within a compiler.

Four algorithms annotate the unoptimized and optimized programs. Three algo-

rithms, which introduce Check, Delay, Checkable, Check-self, and Save annotations, can be

consolidated and applied at the same time. The fourth algorithm, which introduces Delete

annotations, is applied after the other three algorithms are applied. For ease of explana-

tion, the algorithms use separate control
ow graphs, Gunopt and Gopt for the unoptimized

and optimized programs, respectively. However, these algorithms can easily be modi�ed to

66

handle the representation of both programs within a single control
ow graph. Also, some

of the algorithms use the following terminology.

Suppose a mapping exists between statement S in the unoptimized program and

statement S0 in the optimized program, which is denoted by S � S0. Statement S0 is either

rolled forward, rolled back, or neither rolled forward nor rolled back with respect to S. To

determine if S0 is rolled backward with respect to S (i.e., S0 is relatively positioned before

S), the original position of S and the actual position of S0 are compared in Gopt. Let

ORHead(S) denote the corresponding original position of S in Gopt. S
0 is rolled backward

with respect to S if a path P in Gopt exists from S0 to ORHead(S) such that P does not

include backedges of loops enclosing both S0 and ORHead(S). The backedge restriction on

P ensures that only the positions of the same instance of S0 before and after optimization

are considered. An enclosing loop would cause the incorrect examination of instances of S0

from two successive iterations of the loop. This restricted notion of a path is captured by

the SimplePath predicate.

De�nition 5.1 The predicate SimplePath(x; y) is true if 9 path P from program point x

to program point y in Gopt and P does not include backedges of loops enclosing both x and

y.

Using the SimplePath predicate, statement S0 with respect to S is rolled back

if SimplePath(S0; ORHead(S)) is true. Statement S0 with respect to S is rolled forward

if SimplePath(ORHead(S); S0) is true. In Figure 5.5, statement S50 is rolled back with

respect to S5, statement S100 is rolled forward with respect to S10, and statement S20 is

neither rolled forward nor rolled back with respect to S2.

5.2.2.1 Algorithm to introduce Check, Delay, and Checkable annotations

The Check, Delay, and Checkable annotations direct the comparison checker as

to when comparisons between values computed in both the unoptimized and optimized

programs are to be performed. Since the execution of the unoptimized program drives the

checking and the execution of the optimized program, these annotations are introduced for

statements in the unoptimized program. The algorithm, shown in Figure 5.8, takes as input

a statement S from the unoptimized program, the mappings of S, and the unoptimized and

optimized control
ow graphs Gunopt and Gopt. The algorithm is applied to every statement

in the unoptimized program that has a mapping.

All of the mappings of statement S are examined because the types of annota-

tions introduced depend on the relative positions of the corresponding statements of S as

67

well as the instances of S to be checked. When the corresponding statement S0 in the

optimized code is rolled forward, its check is delayed for e�ciency reasons. Also, when a

mapping of S � S0 refers to a last instance for either S or S0, its check is delayed. In this

case, the delay is necessary because a last loop iteration can only be determined after the

unoptimized/optimized code further executes and exits the appropriate loop. If a check is

delayed, then a Delay annotation is introduced for S. Check and Checkable annotations

are also introduced so that comparisons will be later performed on S. Otherwise, if the

checking of S is not delayed, then only Check annotations are introduced for S.

Check annotations are carefully placed to ensure that the number of Check anno-

tations encountered during runtime execution equals the number of comparisons that need

to be performed. For each mapping of S such that the corresponding statement in the

optimized program is rolled forward or a last instance is referred to in the mapping, the

�rst two conditions in the algorithm must be satis�ed. This ensures that instances of S

to be checked will not have extraneous nor too little Check annotations processed on its

behalf during the optimized program execution. For the remaining mappings of statement

S, a Check annotation is associated with the program point in the optimized code that

represents the original position of statement S.

5.2.2.2 Algorithm to introduce Check-self annotations

The Check-self annotation directs the comparison checker to check instances of

a statement computed in a loop against each other. The algorithm to introduce Check-

self annotations is shown in Figure 5.9. It is applied to all statements in the unoptimized

and optimized programs that have mappings and takes as input a statement S from the

unoptimized or optimized program, the mappings of S, and the unoptimized and optimized

control
ow graphs, Gunopt and Gopt.

Statements in the optimized programs whose instances are referred to as all in

one or more mappings have Check-self annotations associated with them. Statements in

the unoptimized code whose instances are referred to as all in one or more mappings and

have at least one of the corresponding statements rolled forward in the optimized code have

Check-self annotations associated with them. Also, statements in the unoptimized code

whose instances are referred to as all and last in one or more mappings have Check-self

annotations associated with them.

68

5.2.2.3 Algorithm to introduce Save annotations

Save annotations direct the comparison checker to save values that will be used

in future comparison checks. Statements in the optimized program whose instances are

referred to as last in one or more mappings or are rolled back with respect to corresponding

statements in the unoptimized program have Save annotations associated with them. The

algorithm to introduce these annotations is shown in Figure 5.10. It takes as input a state-

ment S0 from the optimized program, S0's mappings, and the unoptimized and optimized

control
ow graphs.

5.2.2.4 Algorithm to introduce Delete annotations

Delete annotations direct the comparison checker to discard values from the value

pool. Any statements in the unoptimized and optimized programs whose computed values

are saved in the value pool as a result of Delay, Save, and Check-self annotations use Delete

annotations. The algorithm, shown in Figure 5.11, is applied after all of the previous

algorithms are applied and takes as input the mappings and the annotated unoptimized

and optimized control
ow graphs.

For statements in the unoptimized program, Delete annotations are introduced in

the unoptimized program, and similarly, for statements in the optimized program, Delete

annotations are introduced in the optimized program.

Delete annotations are carefully placed to ensure that appropriate values are safely

discarded. Delete annotations are introduced where no more comparisons involving the value

(to be deleted) will be performed.

69

For each mapping S � S0 such that S0 is rolled forward with respect to S or

the mapping S � S0 refers to a last instance

Associate Delay S annotation on S (if not already delayed)

Associate Check S with S0 annotations on points P in Gopt such that

(i) points P postdominate S0 and the original position of S

(ii) points P are in the innermost loop Li enclosing S
0 such that

the element representing Li in the vector of S0 is one

Associate Checkable S on the same points P in Gunopt

End For

With the remaining mappings S � S0

1; S � S0

2; : : : ; S � S0

n

Associate Check S with S0

1; S
0

2; : : : ; S
0

n annotation at the original position of S in Gopt

If S has a Delay annotation then

Associate Checkable S at the position of S in Gunopt

End if

Figure 5.8: Algorithm to introduce Check, Delay, Checkable annotations

If 9 mapping that refers to all instances of S then

If S is a statement in Gopt then

Associate Check-self S annotation with statement S

Else /* S is in the unoptimized program */

If the corresponding statement of S is rolled forward

Associate Check-self S annotation with statement S

Else if 9 mapping that refers to last instances of S then

Associate Check-self S annotation with statement S

End if

End if

Figure 5.9: Algorithm to introduce Check-self annotations

If 9 mapping that refers to a last instance of S0 or

(9 mapping S � S0 and S0 is rolled back with respect to S) then

Associate Save S0 annotation with statement S0

End if

Figure 5.10: Algorithm to introduce Save annotations

70

For each statement S in the unoptimized program

For each mapping that refers to a last instance of S

Associate Delete S on the back edges of each loop Li in Gunopt enclosing S

such that the element representing Li in the vector of S is last

End for

If a Delay S was introduced for S then

Associate Delete S on points P in Gunopt such that P postdominates

all Checkable S annotations

End if

End For

For each statement S0 in the optimized program

If a Save S0 annotation was introduced for S0 then

For each mapping that refers to a last instance of S0

Associate Delete S0 on the back edges of each loop Li in Gopt enclosing S
0

such that the element representing Li in the vector of S0 is last

End for

End if

For each Save S0 or Check-self S0 introduced for S0

Associate Delete S0 on points P in Gopt such that

(i) P postdominates S0

(ii) 8 mappings S � S0,

P postdominates all Check S annotations introduced for mapping S � S0

(iii)If 9 mapping that refers to last or all instances of S0 then

The Delete S0 annotation is in the innermost loop Li enclosing S
0

such that 8 the mappings of S0, the elements representing Li in the

vectors of S0 are one

Otherwise the Delete S0 annotation is in the same loop nest as the

original position of statement S

End if

End for

End for

Figure 5.11: Algorithm to introduce Delete annotations

71

5.2.3 Supporting loop transformations and inlining

The previous sections support statement level optimizations. To support loop

transformations, the annotations are extended with su�xes to handle the instances of a

statement in the unoptimized code that are (1) reordered in the optimized code and (2)

divided among several statements in the optimized code. The su�xes describe speci�c

instances and sequences of instances as described by the mappings of such statements. The

placement of annotations is extended as follows. If the instances of a statement S in the

unoptimized code are reordered in the optimized code, the checking of such instances are

delayed. A mapping su�x is added to the Delay annotation to indicate the instances whose

checks are to be delayed and the order in which the values computed by these instances of

S are saved in the value pool by the comparison checker. This ordering re
ects the ordering

of the corresponding instances of S in the optimized code, which is the order in which

the comparison checks are performed. For each Checkable annotation, a su�x indicates

the instances of a statement referred by the annotations. For example, in Figure 5.12, the

loop in the optimized code has been reversed and thus, the instances of statements in the

unoptimized code are reordered in the optimized code. Delay annotations are placed for the

instances of statements S2; S3, and S4. Checkable annotations are placed after the loop to

indicate all of the instances of statements S2; S3, and S4 (whose checks were delayed) are

now ready to be checked.

 a[j] = j S4’ a[j] = j

 Optimized Code

}

S3’ j = j - 1) {

S2’ j > 0;

S1’ for(j=10;

S4

 Unoptimized Code

0

S1 for(j=1;

S2 j < 11;

S3 j = j + 1) {

Delay S4

Delay S2

Check S3

Check S4

Check S2

}

Checkable S2 [all]
Checkable S3 [all]
Checkable S4 [all]

last last

Delay S3

one ,{10,1,-1} one ,one0 1 1

one ,{8,1,-1} one ,one0 1 1

one ,{10,1,-1} one ,one0 1 10

0

Figure 5.12: Annotated loop reversal example

If the instances of a statement S in the unoptimized code are divided among several

statements in the optimized code, a separate check or delayed check is utilized for each set

of divided instances of S. A mapping su�x is added to the check annotation to indicate

the instances of the statement in the unoptimized code that will be checked. For example,

72

in Figure 5.13, the loop in the optimized code has been unrolled, and thus the instances of

statements in the loop in the unoptimized code are divided among two statements in the

optimized code. For statement S4, two check annotations are placed in the optimized code.

The �rst annotation refers to the odd instances of S4 and the second annotation refers to

the even instances of S4. For statement S2 (the loop test), the check annotation indicates

the checking of the odd instances and the last instance of S2. For statement S3 (the loop

increment), the check annotation indicates the checking of the even instances of S3.

 a[j] = j S4’ a[j] = j

Check S1

 Unoptimized Code

S1 for(j=1;

S3 j = j + 1) {

}

S2 j < 11;

 Optimized Code

S3’ j = j + 2) {

S4

S2’ j < 11;

1
}

S1’ for(j=1;

S5’ a[j+1] = j + 1

last last
one ,{1,11,2} one ,one

0

Check S2
1 0 1

Check S3
one ,{2,11,2} one ,one0 1 0 1

one ,{1,11,2} one ,one
Check S4

0 1 0 1

one ,{2,11,2} one ,one
Check S4

0 1 0

Figure 5.13: Annotated loop unrolling example

Function inlining, which replaces calls to a function in the unoptimized code by

bodies of the function in the optimized code, can also be supported. For each call site, a

separate mapping is maintained between the statements in the function in the unoptimized

code and the inlined copy in the optimized code. By analyzing the mappings corresponding

to each call site, a set of annotations is computed. At runtime, when the function is

executed, the comparison checker selects and follows the appropriate set of annotations by

using the knowledge of the call site encountered during program execution.

5.3 Implementation and experiments

The Comparison checker for OPtimized code, COP, was implemented, including

the instruction mapping, annotation placement, and checking. Lcc [23] was used as the

compiler for an application program and was extended to include a set of optimizations,

namely loop invariant code motion, dead code elimination, partial redundancy elimination,

register allocation, copy propagation, and constant propagation and folding. On average,

the optimized code generated by the optimized lcc executes 16% faster in execution time

than the unoptimized code.

73

As a program is optimized, mappings are generated. Besides generating target

code, lcc was extended to determine the mappings between the unoptimized and opti-

mized code, breakpoint information, and annotations that are derived from the mappings.

The code to emit breakpoint information and annotations is integrated within lcc through

library routines. Thus, compilation and optimization of the application program produce

the target code for both the unoptimized program and optimized program as well as aux-

iliary �les containing breakpoint information and annotations for both the unoptimized

and optimized programs. These auxiliary �les are used by the checker. Breakpoints are

generated whenever the value of a source level assignment or a predicate is computed and

whenever array and pointer addresses are computed. Breakpoints are also generated to

save base addresses for dynamically allocated storage of structures (e.g., malloc(), free(),

etc.). Array addresses and pointer addresses are compared by actually comparing their

o�sets from the closest base addresses collected by the checker. Floating point numbers

are compared by allowing for inexact equality. That is, two
oating point numbers are

allowed to di�er by a certain small delta [44]. Breakpointing is implemented using fast

breakpoints [32].

Experiments were performed to assess the practicality of COP. The main concerns

were usefulness as well as cost of the comparison checking scheme. COP was found to be very

useful in actually debugging the optimizer implemented for this work. Errors were easily

detected and located in the implementation of the optimizations as well as in the mappings

and annotations. When an unsuccessful comparison between two values was detected, COP

indicated which source level statement computed the value, the optimizations applied to

the statement, and which statements in the unoptimized and optimized assembly code

computed the values.

In terms of cost, the slow downs of the unoptimized and optimized programs and

the speed of the comparison checker are of interest. COP performs on-the-
y checking dur-

ing the execution of both programs. Both value and address comparisons are performed. In

the experiments, COP ran on an HP 712/100 and the unoptimized and optimized programs

on separate SPARC 5 workstations instead of running all three on the same processor as

described in Section 3. Messages are passed through sockets on a 10 Mb network. A bu�er

is used to reduce the number of messages sent between the executing programs and the

checker. Some of the integer Spec95 benchmarks as well as some smaller test programs

were used as test cases.

Table 5.1 shows the CPU execution times of the unoptimized and optimized

programs with and without annotations. On average, the annotations slowed down the

74

Table 5.1: Execution times (minutes:seconds)

Source Unoptimized Code Optimized Code COP
length annotated annotated (response

Program (lines) (CPU) (CPU) (CPU) (CPU) (CPU) time)

wc 338 00:00.26 00:02.16 00:00.18 00:01.86 00:30.29 00:53.33

yacc 59 00:01.10 00:06.38 00:00.98 00:05.84 01:06.95 01:34.33

go 28547 00:01.43 00:08.36 00:01.38 00:08.53 01:41.34 02:18.82

m88ksim1 17939 00:29.62 03:08.15 00:24.92 03:07.39 41:15.92 48:59.29

compress1 1438 00:00.20 00:02.91 00:00.17 00:02.89 00:52.09 01:22.82

li1 6916 01:00.25 05:42.39 00:55.15 05:32.32 99:51.17 123:37.67

ijpeg1 27848 00:22.53 02:35.22 00:20.72 02:33.98 38:32.45 57:30.74
1 Spec95 benchmark test input set was used.

execution of the unoptimized programs by a factor of 8 and that of the optimized programs

by a factor of 9. The optimized program experiences greater overhead than the unoptimized

program because more annotations are added to the optimized program.

Table 5.1 also shows the CPU and response times of COP. The performance of

COP depends greatly upon the lengths of the execution runs of the programs. Comparison

checking took from a few minutes to a few hours in terms of CPU and response times.

These times are clearly acceptable if comparison checking is performed o�-line (i.e., non-

interactively). The performance of the checker was found to be bounded by the processing

platform and speed of the network. A faster processor and 100 Mb network would consider-

ably lower these times. In fact, when COP executes on a 333 MHz Pentium Pro processor,

the performance is on average 6 times faster in terms of CPU time. Access to a faster

network was not possible. The pool size was measured during experiments and was fairly

small. If addresses are not compared, the pool size contains less than 40 values for each of

the programs. If addresses are compared, then the pool size contains less than 1900 values.

5.4 Summary

A novel approach to debug optimizers is presented. In the technique presented,

both the unoptimized and optimized versions of an application program are executed, and

computed values are compared to ensure the behaviors of the two versions are the same

under the given input. If the values are di�erent, the comparison checker displays where in

the application program the di�erences occurred and what optimizations were involved. The

optimizer writer can utilize this information to debug the optimizer. The automation of the

comparison checking scheme relies on the mappings described in chapter 4 and annotations

described in this chapter. The comparison checking scheme was implemented and executes

75

the unoptimized and optimized versions of C programs. Experimental results demonstrate

the approach is e�ective and practical.

In this chapter, the comparison checking technique compared the execution be-

havior of an unoptimized version of a program with the optimized version of the program.

However, the comparison checking technique can also be utilized to check di�erent levels of

optimizations. That is, the checking can be performed in phases just as optimizations are

often phased. For example, checking can be performed after loop optimizations are applied,

after statement level optimizations are applied, and after low level optimizations are ap-

plied. This phase checking can reduce the cost of checking as well as help optimizer writers

debug the optimizations that were applied in the phase that is to be checked. Furthermore,

the comparison checking technique can be tailored to help optimizers writers debug and

validate speci�c optimizations. In the next chapter, the comparison checking technique is

tailored to global register allocation.

Chapter 6

Register Allocation Checking

The comparison checking technique described in the previous chapter compared

the execution behaviors of an unoptimized version of a program with the optimized version

of the program. When the semantic behaviors di�er, the comparison checker displays the

statements responsible for the di�erences and the optimizations applied to these statements.

This technique can locate the earliest point during execution when corresponding source

level statement instances should but do not compute the same values and can indicate the

optimizations that were applied to the statement. However, this information is not always

helpful in that many optimizations may have been applied to the statement and detailed

information about the optimizations may not be available. To provide more e�ective infor-

mation, the comparison checking technique can be tailored to help optimizer writers debug

and validate speci�c optimizations. In particular, the comparison checking technique can

be tailored to help debug and validate an implementation of register allocation, which is a

code transformation that can be very tedious and di�cult to debug, especially when errors

are intermittent. In this chapter, a register allocation checker is developed that extends the

comparison checking technique in that the checker can detect errors in a register allocator

implementation and determine the possible cause(s) of the errors. This register allocation

checker can be incorporated into the comparison checker or can be used as a standalone

tool.

The register allocation checker is similar to the comparison checker in that the

semantic behaviors of the unoptimized and optimized programs are compared. However,

the register allocation checker saves di�erent kinds of information and utilizes a di�erent

set of annotations to track information about the variables that are assigned to registers

and verify that the expected values of these variables are used throughout the optimized

program execution. This level of checking and tracking allows the register allocation checker

to locate the earliest execution point where the unoptimized and optimized programs di�er

in their semantic behaviors and display to the user the actual cause(s) of the di�erences.

76

77

When a register allocation technique is implemented incorrectly, the incorrect

behavior can include

� using a wrong register,

� evicting a value from a register but not saving it for future uses,

� failing to load a value from memory, and

� using a stale value. A stale value of a variable is used in the optimized program when

a value of a variable is computed in a register, but instead of using the value of the

variable in the register, the optimized program uses the old value in memory.

The register allocation checker can determine when a register allocator exhibits

these types of behavior. Consider the unoptimized C program fragment and its optimized

version in Figure 6.1. Assume the unoptimized program is correct and the register allocation

is turned on. The register allocator assigns variables x, y, z, and a to registers r3, r1, r4,

and r5, respectively, in the optimized program, and copies the value of y in register r1 to

register r2. Assume the optimized program returns incorrect output. Using the checker, a

di�erence is detected in the internal behavior of the unoptimized and optimized programs

at line 3 in the unoptimized code and line 7 in the optimized code. The checker indicates

that the values used by y in the unoptimized and optimized programs di�er and indicates

that r1 is used inconsistently as y was evicted from r1 earlier during the execution of the

optimized program. The checker also indicates that the expected value of y is in register r2

and thus, r2 should have been used instead of r1. The optimizer writer can then use this

information to debug the implementation of register allocation.

78

3) a = y + y

2) z = x + 5

...

...

Unoptimized Code Optimized Code

2) load r2,2

1) x = 2 * y 1) load r1,y

6) add r4,r3,r1

7) add r5,r1,r1

8) store r5,a

3) mul r3,r1,r2
...

4) move r1,r2

5) load r1,5

...

Figure 6.1: Program example for register allocation checking

6.1 Register allocation checker overview

The register allocation checking scheme is similar to the comparison checking

scheme in that values computed in both the unoptimized and optimized programs are

checked, but the register allocation checking scheme also compares values of variables that

are used in both programs and tracks and veri�es information about the variables that

are assigned to registers throughout the optimized program execution. To automate this

scheme, the register allocation checker must

(1) determine which values are computed by both programs and need to be compared

with each other,

(2) determine where the comparisons are to be performed in the program executions,

(3) perform the comparisons,

(4) track information about variables assigned to registers in the optimized program

execution, and

(5) verify that the expected values of these variables are used throughout the optimized

program execution.

79

This tracking information includes maintaining at each program point of the execution of

the optimized program the

(1) current locations of values of variables,

(2) variables whose memory locations hold stale values,

(3) variables whose values in registers have been evicted, and

(4) variables that are currently assigned to registers.

To achieve these tasks, mappings and annotations are utilized. The mappings of

the comparison checker are extended to include the correspondences between the uses of

variables in the unoptimized and optimized intermediate programs. These mappings are

generated before register allocation is applied because the correspondence between the two

program versions is not changed by the application of register allocation. The mappings

capture only the e�ects of register allocation and not other optimizations because the check-

ing is performed on a program before registers are allocated and on a program after registers

are allocated. However, the unoptimized program can include the application of other op-

timizations, which are assumed to be correct. After register allocation is applied and code

is generated by the compiler, the mappings are used to automatically generate annotations

for the optimized program, which guide the register allocation checker in comparing corre-

sponding values and addresses and tracking and verifying information about the variables

that are assigned to registers throughout the program execution. When a targeted program

point in the optimized code is reached, the actions associated with the annotations at that

point are executed by the register allocation checker.

A high level conceptual overview of the register allocation checker algorithm is

given in Figure 6.2. This algorithm is similar to that of the comparison checker. Breakpoints

are used to extract values from the unoptimized and optimized programs as well as activate

annotations. Annotations guide the actions of the register allocation checker. However,

since values that are assigned to variables in the optimized code are the values that are

tracked and veri�ed, the execution of the optimized program drives the checking and the

execution of the unoptimized program. Therefore, execution begins in the optimized code

and proceeds until a breakpoint is reached. Depending on the annotation, the checker may

track variables assigned to registers, evicted variables, and stale variables, and/or determine

if a value computed or used should be checked at the current point of execution of the

optimized code. When a value should be checked at the current point, the unoptimized

program executes until the corresponding point of execution is reached, at which time the

80

check is performed on the two values. The checker continues to alternate between executions

of the unoptimized and optimized programs. If the values that are compared di�er, then

the checker informs the user of the possible causes of the di�erence. Also, as values are

tracked, the checker informs the user of any inconsistencies (e.g., a stale value is loaded,

unexpected value is stored to a memory location, etc.). Once an inconsistency of a value of

a variable is detected, the inconsistency is propagated through the uses of the value.

Do

Execute the optimized program and process annotations at breakpoint

If Check annotation then

Execute the unoptimized program until the equivalent execution

point (of the optimized program) is reached

Perform the comparison check

If error then report the error and the cause of the error

If Register Assign annotation or Load annotation or Store annotation

or Register Move annotation then

Update register/variable information

Verify the loaded or stored value is the expected value

Inform user of any inconsistencies

End if

While the optimized program has not �nished executing

Figure 6.2: Register allocation checker algorithm

6.2 Annotations

Similar to the comparison checking technique, code annotations guide the check-

ing of values in the unoptimized and optimized code. Code annotations are also used to

verify and track values of variables. Annotations (1) identify program points where compar-

ison checks should be performed and (2) indicate what values of variables/registers should

be tracked and veri�ed in the optimized code. Five types of annotations are needed to

implement the register allocation checking strategy. In the example in Figure 6.3, which

illustrates the same unoptimized and optimized code example given in Figure 6.1, annota-

tions are shown in dotted boxes.

6.2.1 The Check v; r annotation

The check v; r annotation is associated with a program point p in the optimized

code to indicate a check of a value of variable v in register r is to be performed. The register

allocation checker will execute the unoptimized program until the equivalent program point

p is reached. The corresponding value to be compared is the current value of v in the

81

S2) z = x + 5

...

...

S1) x = 2 * y

Load r2

Register move r1,r2
S3) a = y + y

Load r1

S8’) store r5,a Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

Figure 6.3: Annotations example

optimized code. For example, in Figure 6.3, a check annotation is associated with statement

S10 in the optimized code so that the contents of r1 in the optimized code is compared with

the value of y in the unoptimized code. Check annotations are used to check register loads,

stores, uses, and assignments.

6.2.2 The Register assign [v;] r annotation

The register assign annotation is associated with a program point in the opti-

mized code to indicate the tracking information for register r should be updated. The

register allocation checker records that the previous variable assigned to r is evicted. If

v is speci�ed, the register allocation checker updates its information to indicate that r

holds variable v, v is currently stored in r, the memory location of v holds a stale value,

and any other values of v currently in registers are evicted. For example, in Figure 6.3, a

register assign annotation is associated with statement S30 in the optimized code so that

the variable x is tracked with register r3 in the optimized code.

6.2.3 The Load [v;] r annotation

The load annotation is associated with a load instruction in the optimized code

and is used to track and verify the load information for register r. The register allocation

82

checker records that the previous variable assigned to r is evicted. If v is speci�ed, the

register allocation checker records that r holds variable v, v is currently stored in r, and

any other values of v currently in registers are evicted. Using the tracking information, the

checker veri�es if the loaded value is stale, and if so, records this information, informs the

user of the stale value of v, and informs the user of the current location of the expected

value of v, if it exists. For example, in Figure 6.3, a load annotation is associated with

statement S10 in the optimized code to track and verify the information in register r1.

6.2.4 The Store v; r annotation

The store annotation is associated with a store instruction in the optimized code

to track and verify the store information for register r. Using the tracking information, the

checker veri�es if r does not hold the expected value of v, and if so, informs the user that r

does not hold the expected value of v and informs the user of the current location of v, if it

exists. Also, the register allocation checker records that the memory location of v holds the

current value. For example, in Figure 6.3, a store annotation is associated with statement

S80.

6.2.5 The Register move r; r0 annotation

The register move annotation is associated with a move instruction in the opti-

mized code to track the information in register r0. The register allocation checker duplicates

the information pertaining to register r for that of register r0. For example, in Figure 6.3, a

register move annotation is associated with statement S40 in the optimized code to track

the information in register r2.

6.2.6 Combining annotations

When a Check annotation is associated with a Store annotation, the checker

veri�es that the value in the register stored in the memory location of the variable at a

program point in the optimized program matches the value of the variable at the equivalent

program point in the unoptimized program. If the values do not match, then if the register

currently holds the variable, then the checker informs the user why the value in the optimized

code is incorrect. Either the value is stale, uninitialized, or wrong (possibly because the

correct value was evicted and now the register contains the wrong value that will be stored).

If the register does not currently hold the variable, the checker informs the user (1) if

the expected value of the variable resides in another register, (2) the last location of the

variable, and (3) that either the wrong register or address was supplied in the instruction,

83

the expected value was evicted earlier and not saved, or the memory value already has the

expected value (because of an earlier store). A Check annotation associated with a Load

annotation is treated in a similar manner.

When a Check annotation is associated with a Register assign annotation, the

checker veri�es that the value assigned to the register at a program point in the optimized

code matches the value of the variable at the equivalent program point in the unoptimized

code. If the operands were incorrect, the checker will have already noti�ed the user of the

uses that have unexpected values. Otherwise, incorrect code was generated.

6.3 Annotation placement

Annotations are placed in the optimized program as follows. Using the mappings,

Check=Register assign annotations are placed on every variable assignment in the opti-

mized code and Check annotations are placed on every variable use in the optimized code.

Next, at every instruction in the optimized code that stores to a register, Register assign

annotations are placed, except at the program points where Check=Register assign anno-

tations have been placed. At every instruction in the optimized code that loads a variable

into a register, Check=Load annotations are placed. At all other load instructions in the

optimized code, Load annotations are placed. Similarly, at every instruction in the opti-

mized code that stores to a memory location of a variable, Check=Store annotations are

placed. At all other store instructions in the optimized code, Store annotations are placed.

Finally, at every move instruction in the optimized code, Register move annotations are

placed.

6.4 Register allocation checker example

Consider the annotated unoptimized and optimized program segments in Fig-

ure 6.4, which illustrate the same unoptimized and optimized code example given in Fig-

ure 6.1. Breakpoints are indicated by circles. Annotations are shown in dotted boxes. The

optimized program starts to execute with S10, and breakpoint 1 is reached. The checker

determines from the annotation that the value loaded into register r1 should be compared

with the value of y in the unoptimized code at the equivalent program point in the un-

optimized code. Thus, the unoptimized program executes until breakpoint 2 is reached,

at which time the checker compares the value of y in the unoptimized program with the

value of r1 in the optimized code. If the values are the same, the checker determines from

the Load annotation that information regarding y and r1 should be tracked. The checker

84

records that r1 now holds the value of y and that y is currently stored in r1. If y is stored

in any other register, the checker records that y is evicted from these other registers. Also,

if the loaded value is stale, the checker informs the user of the stale value and the location

of the expected value of the variable (if it exists).

The optimized program continues execution and breakpoint 3 is reached. The

checker processes the Load annotation by recording that the latest variable in r2 is now

evicted. The optimized and unoptimized programs continue executing in a similar manner.

4

10

12

1

3

6

7

8

5

9

11

13

2

2) z = x + 5

Load r2

Register move r1,r2

Load r1

Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

S8’) store r5,a

1) x = 2 * y

3) a = y + y

Figure 6.4: Register allocation checker example

Notice that when breakpoint 6 is reached, the checker processes the Register move

annotation and records that r2 holds the value of y and y is stored in r2. At breakpoint

7, the checker processes the Load annotation and records that y is evicted from r1. At

breakpoint 10, the checker processes the Check annotation by executing the unoptimized

program until breakpoint 11 is reached, at which time the value of y in the unoptimized

code is compared with r1. The values di�er and the checker informs the user that y was

evicted from r1 and the expected value of y in the optimized code is in r2.

85

6.5 Summary

The register allocation checker provides a �ner level of checking, which helps an

optimizer writer debug and validate an implementation of register allocation. This level of

checking and tracking enables the checker to locate the earliest execution point where the

unoptimized and optimized programs di�er in their semantic behavior and display to the

user the actual cause(s) of the di�erences. For example, the register allocation checker can

inform the user when a stale value is used, a wrong register is used, and when a value is

evicted from a register but not saved for future uses. The register allocation checker can be

incorporated into the comparison checker or can be used as a standalone tool that is used

after optimizations are applied.

Chapter 7

Source Level Debugger

In this chapter, the mappings described in Chapter 4 are utilized to develop a

source level debugger of optimized code that extends the class of reportable expected values

of previous work by reporting all expected values that are computed in the optimized

program. That is, every value of a source variable that is computed in the optimized

program execution is reportable at all breakpoints in the source code where the value of

the variable should be reportable. Expected values at breakpoints are reportable even

though reportability is a�ected because values have been overwritten early or written late.

Expected values at breakpoints are also reportable even though values are path sensitive

in that a value may be computed only along one path or the location of the value may be

di�erent along di�erent paths. The only values that are not reportable are those that are

deleted on a path by an optimization. However in these cases, the debugger reports the

value has been deleted. This level of reporting is considered \full reporting" and thus the

debugger developed in this dissertation is called FULLDOC, a FULL reporting Debugger

of Optimized Code.

The design of the source level debugger is more complex than that of the compar-

ison checker for a number of reasons. The comparison checker uses expected values that

are computed in the unoptimized and optimized programs only at certain program points

in order to perform comparison checks, but the debugger needs to be able to report ex-

pected values that are computed at all breakpoints within their reportable ranges. Next,

the comparison checker delays the comparison checking of those values computed in the un-

optimized program whose corresponding values are computed later in the optimized code.

For the case of the debugger, if a user queries a variable at a breakpoint whose expected

value is computed later in the optimized code, the debugger should not delay reporting the

expected value. Finally, the comparison checker utilizes all of the annotations to automate

the checking since all values computed in both programs are compared, but to minimize

86

87

the runtime overhead of the debugger, the debugger should only deal with reportability of

expected values that are a�ected at current user breakpoints.

FULLDOC extends the class of reportable expected values by judiciously using

both static and dynamic information. The overall strategy is to determine, by static pro-

gram analysis, those values that the optimizer has placed in a precarious position in that

their values may not be reportable. The reportability of these values may depend on run-

time and debugging information, including the placement of the breakpoints and the paths

taken in a program's execution. Thus, during execution, invisible breakpoints are employed

to gather dynamic information that aids in the reporting of precariously placed values.

Three schemes, all transparent to the user during a debugging session, are employed to

enable full reporting. To report values that are overwritten early with respect to a break-

point either because of code motion or register reuse, FULLDOC saves the values before

they are overwritten and deletes them as soon as they are no longer needed for reporting.

FULLDOC only saves the values if they are, indeed, the expected values at the breakpoint.

To report values that are written late with respect to a breakpoint because of code sink-

ing, FULLDOC prematurely executes the optimized program until it can report the value,

saving the values overwritten by the roll ahead execution so that they can be reported at

subsequent breakpoints. When reportability of a variable at a breakpoint is dependent on

the execution path of the optimized code, FULLDOC dynamically records information to

indicate the impact of the path on the reportability of a value, and thus is able to report

values that are path sensitive either because the computation of the value or the location

is dependent on the path.

FULLDOC's technique is non-invasive in that the code that executes is the code

that the optimizer generated. Also, unlike the emulation technique [51], instructions are

not executed in a di�erent order and thus the problem of masking user and optimizer errors

is avoided.

The capabilities of FULLDOC are as follows.

� Every value of a source variable that is computed in the optimized program execution

is reportable at all breakpoints in the source code where the value of the variable

should be reportable. Therefore, FULLDOC can report more expected values that

are computed in the optimized program execution than any existing technique [27, 21,

14, 37, 19, 49, 9, 8, 10, 7, 22, 51, 45]. Values that are not computed in the optimized

program execution are the only values that are not reported. However, FULLDOC

can incorporate existing techniques that recover some of these values.

88

� Runtime overhead is minimized by performing all analysis during compilation. FULL-

DOC utilizes debugging information generated during compilation to determine the

impact of reportability of values at user breakpoints and to determine the invisible

breakpoints that must be inserted to report a�ected values.

� The techniques are transparent to the user. If a user inserts a breakpoint where

the reportability of values is a�ected at the breakpoint or a potential breakpoint,

FULLDOC automatically inserts invisible breakpoints to gather dynamic information

to report the expected values.

� User breakpoints can be placed between any two source level statements, regardless

of the optimizations applied.

� The optimized program is not modi�ed except for setting breakpoints.

� Breakpoints in the source code are syntactically mapped in the optimized code.

While a wide range of optimizations from simple code reordering transformations

to loop transformations are supported, this chapter focuses mainly on statement level op-

timizations that hoist and sink code, including speculative code motion, path sensitive

optimizations (e.g., partial redundancy elimination), and register allocation.

The rest of this chapter is organized by Section 7.1 describing the challenges of

reporting expected values using examples. Section 7.2 describes FULLDOC's approach.

Sections 7.3 and 7.4 describe the debug information as well as how the debug information

is computed and used. Section 7.5 describes how to extend FULLDOC to support loop

transformations and inlining. Section 7.6 presents experimental results.

7.1 Challenges of reporting expected values

The reportability of a variable's value involved in an optimization is a�ected by

1. register reuse, code reordering, and code deletion,

2. the execution path, including loop iterations, and

3. the placement of breakpoints.

This section considers the e�ect of optimizations that can cause a value of a variable

to be overwritten early, written late, or deleted. Within each of these cases, the impact of

the path and the placement of breakpoints is considered. This section also demonstrates

how FULLDOC handles these cases. In the �gures, the paths highlighted are the regions

in which reportability is a�ected. Reportability is not a�ected in the other regions.

89

7.1.1 Overwritten early in the optimized program

A value val of a variable v is overwritten early in the optimized program if another

value val0 prematurely overwrites v's value. The application of a code hoisting optimization

and register reuse can cause values to be overwritten early. For example, consider the

unoptimized program and its optimized version in Figure 7.1(a), where Xn refers to the nth

de�nition of X. X2 has been speculatively hoisted, and as a result, the reportability of X is

a�ected. Regardless of the execution path of the optimized code, a debugger cannot report

the expected value of X at a breakpoint b along region 1jby simply displaying the actual

contents of X. The expected value of X at b is the value of X1, but since X2 is computed

early, causing the previous value (i.e., X1) to be overwritten early, the actual value of X at

b is X2.

1

X =
3

2

1

3

X =
2

X =
2

X =
1

X =
3

1

3

2

X =
2

X =
1

X =
3

1

2

3
T F

X =

Program

(a) is speculatively hoisted

Unoptimized

T

 execution

FULLDOC’s debugging
 strategy

Report saved

Save previous
value of X

Discard saved

Report current

value of X

value of X

value of X

Optimized program

b) true path taken during execution

T F

Program
Optimized

X
2

Figure 7.1: Overwritten early example

The path can also a�ect reportability. Assume now that a breakpoint b is placed

in region 2j. The expected value of X at b is either X2 , if the true path is taken, or X1 ,

if only the false path is taken within each loop iteration. However, since X2 is computed

before the branch, the actual value of X at b in the optimized code is X2. Thus, when

execution follows the true path, the expected value of X at b can be reported, but when

only the false path is taken, its value cannot be reported.

The number of loop iterations can also a�ect reportability. The expected value of

X at a breakpoint b along region 3jdepends not only on whether the true path was taken

but also on the current loop iteration. During the �rst loop iteration, the expected value

is X1 . On subsequent loop iterations, the expected value is either X2 (if the true path is

taken) or X1 (if only the false path is taken on prior loop iterations). However, since X2

is computed before the loop, the actual value of X at b in the optimized code is X2. When

execution follows the true path, the debugger can report the expected value of X at b on

90

subsequent loop iterations. Otherwise, the debugger cannot report the expected value of

X.

Using only dynamic currency determination [22], the expected value of X at break-

points along region 1j cannot be reported because the value has been overwritten. The

emulation technique [51] can report the expected value of X along region 1jand along the

true path of region 3j, but since the technique is not path sensitive, the expected value

cannot be reported along region 2jand along the false path of region 3jdue to iterations.

FULLDOC can report all of these expected values. During the execution of the

optimized code, if a value is overwritten early with respect to a breakpoint, FULLDOC

saves the value in a value pool. FULLDOC only saves what is necessary and discards values

when they are no longer needed for reporting. Figure 7.1(b) illustrates FULLDOC's strategy

when the optimized program in Figure 7.1(a) executes along the true path, assuming the

loop executes one time. FULLDOC saves X1 before the assignment to X2 and reports

the saved value X1 at breakpoints along regions 1j and 3j. FULLDOC discards the

saved value when execution reaches the original position of X2 . At breakpoints along the

non-highlighted path and region 2j, FULLDOC reports the current value of X. Notice

that values are saved only as long as they could have been observable at a breakpoint in the

source program, and thus, the save/discard mechanism automatically disambiguates which

value to report at breakpoints along region 2j. If X1 is currently saved at the breakpoint,

then only the false path was executed and the saved value is reported. Otherwise if X1 is

not currently saved, then the true path was executed and the current value of X is reported.

Notice that this saving strategy, as well as the other strategies, is performed with respect

to user breakpoints. In other words, if a user does not insert breakpoints along the regions

where the reportability of X is a�ected, then FULLDOC does not save the value of X.

7.1.2 Written late in the optimized program

A value val of a variable v is written late in the optimized program if the compu-

tation of val is delayed due to, for example, code sinking and partial dead code elimination.

In Figure 7.2(a), suppose X2 is partially dead along the false path and moved to the true

branch. As a result, the expected value of X at a breakpoint b along regions 1jand 2jis

not reportable in the optimized code.

Consider a breakpoint b placed in region 3j. The expected value of X at b is X2 .

However, the actual value of X at b in the optimized code is either X2 (if the true path is

taken) or X1 (if the false path is taken). Thus, only when execution follows the true path,

91

2
X =

X =
1

1

X executes

executing the
Save values while

2
program until

Program
Unoptimized

X =
1

X =
1

X =
2

1 1

2 2

along path
is computed

Remember X

3

Report X

Report current
value of X

2

value of X
Report current

 strategy
FULLDOC’s debugging

3
X =
3

X =
3

X =
3

3 3

b) true path taken during execution(a) is partially deadX
2

T

execution
Optimized program

X =
2

T

= X

Program
Optimized

T

= X

FF

= X

Figure 7.2: Written late example

can the expected value of X at b be reported. Reportability can also be a�ected by loop

iterations, which has the same e�ect as for the overwritten early case.

Using only dynamic currency determination [22], the expected value of X at break-

points along region 3jcan be reported provided the true path is taken but not along regions

1j and 2j. Since the emulation technique [51] is not path sensitive, the expected value

of X along region 3j cannot be reported. FULLDOC can report values in 1j and 3j

provided the true path is taken. Note that values in regions 1j, 2j, and 3jcould possibly

be reported by all schemes if recovery techniques are employed.

If a requested value is written late with respect to a breakpoint, FULLDOC

prematurely executes the optimized code, saving previously computed values before they

are overwritten (so that they can be reported at subsequent breakpoints). Figure 7.2(b)

illustrates FULLDOC's strategy when the optimized program in Figure 7.2(a) executes

along the true path. At breakpoints along region 1k, FULLDOC reports the expected value

of X by further executing the optimized code, saving previously computed values before

they are overwritten. The roll ahead execution stops once X2 executes. At breakpoints

along the non-highlighted path and region 3j, FULLDOC reports X2 .

7.1.3 Computed in the unoptimized program but not in the optimized

program

Finally, consider the case where a statement is deleted and thus its value is not

computed in the optimized code. For example, in Figure 7.3(a), suppose Y 2 is dead in the

unoptimized program and deleted. The expected value of Y at a breakpoint b along region

1j is Y 2 , which cannot be reported in the optimized code.

92

3

Y =
2

Y =
3

Y =1 Y =1

Program
Unoptimized

Program
Optimized

Y =3

2
2

2

1

Y =
1

Optimized program
execution

FULLDOC’s debugging
 strategy

Y =

2
is not computed

Report current
value of Y

Report value of Y

Disregard Y’s

Remember Y

along path
is not computed

nonreportability
along path

F
value of Y
Report current

Y (a) is dead
2

b) false path taken during execution

FT FT

2
1 1

Figure 7.3: Not computed in the optimized program example

Now consider placing a breakpoint at region 2j. The expected value of Y at b

along region 2j is either Y 1 (if the true path is taken) or Y 2 (if the false path is taken).

However, since Y 2 was deleted, the actual value of Y at b in the optimized code is Y 1 .

Thus, along the true path, the actual value is the expected value and can be reported, but

along the false path, the expected value cannot be reported.

The emulation technique [51] cannot report the expected value of Y along region 2j

because it is not path sensitive. Dynamic currency determination [22] as well as FULLDOC

can report the expected value of Y at breakpoints along region 2jif the true path is taken.

Figure 7.3(b) illustrates FULLDOC's strategy when the optimized program in

Figure 7.3(a) executes along the false path. At a breakpoint along the non-highlighted

paths, FULLDOC reports the current value of Y . When execution reaches the original

position of Y 2 , FULLDOC knows Y is not reportable along regions 1j and 2j, and

reports the expected value of Y is not computed. When execution reaches Y 3 , FULLDOC

disregards the non-reportability information of Y .

7.2 FULLDOC's approach

FULLDOC uses three sources of debug information for its debugging capabilities.

First, mappings between corresponding instances of statements in the unoptimized and

optimized programs, which are described in Chapter 4, are generated as optimizations are

applied. Second, after code is optimized and generated by the compiler, static analysis is

applied to gather information about the reportability of expected values. This reportability

debug information is used when user breakpoints are inserted, special program points are

reached in the program execution, or when a user breakpoint is reached. Third, during

93

source
program

if reportability affected

Static information
mappings

reportability
debug info

FULLDOC

breakpoints
set corresponding

user inserts
breakpoints

optimized

execution
code

set invisible breakpoints

Figure 7.4: FULLDOC's strategy with respect to user inserting breakpoints

execution, dynamic debug information indicating that these special points have been reached

is used as well as the position of the user breakpoints to enable full reporting.

Figure 7.4 illustrates FULLDOC's strategy with respect to a user inserting break-

points. When the user inserts breakpoints either before the program executes or during pro-

gram execution, FULLDOC uses the mappings to determine the corresponding breakpoints

in the optimized code. FULLDOC uses the reportability debug information to determine

the impact on reportability at the breakpoints and potential breakpoints:

� If a value is overwritten early with respect to a breakpoint, FULLDOC inserts

invisible breakpoints [52] to save the value during execution as long as the value should be

reportable and discard the value when it is no longer needed.

� If the reportability of a variable with respect to a breakpoint is path sensitive,

FULLDOC inserts invisible breakpoints to update the dynamic debug information regarding

the reportability of the value.

Figure 7.5 illustrates FULLDOC's strategy when either a user or invisible break-

point is reached. If a user breakpoint is reached, FULLDOC informs the user. When

invisible breakpoints are reached, FULLDOC performs the following actions. For a value

that is overwritten early, FULLDOC saves the value in a value pool and later discards the

value when it is no longer needed for reporting. For a value that is path sensitive, FULL-

DOC updates the path sensitive info regarding the reportability of the value depending on

the execution path taken.

Figure 7.6 illustrates FULLDOC's strategy with respect to user queries at a user

breakpoint. FULLDOC responds to user queries by using both static and dynamic infor-

mation. When the user requests the value of a variable, FULLDOC uses the reportability

debug information and dynamic debug information to determine the reportability of the

value. If the value is available at the location (in memory or register) of the variable or

94

in the value pool, FULLDOC reports the value. If the reportability of the value is path

sensitive at the breakpoint, FULLDOC uses the path sensitive information to determine

whether the value is reportable at the breakpoint. If the requested value is written late

with respect to the breakpoint, FULLDOC uses the reportability debug information to roll

ahead the execution of the optimized code, saving previously computed values before they

are overwritten. It stops execution once the value is computed and reports the value to the

user if it is computed. If the value is not computed in the execution, FULLDOC informs

the user that the value is not reportable.

optimized

execution
code

source
program

invisible breakpoint

FULLDOC
when

breakpoint hit

value pool
Dynamic information

rollahead info
path sensitive info

mappings
reportability
debug info

Static information

user breakpoint

Figure 7.5: FULLDOC's strategy with respect to breakpoints hit

optimized

execution
codeinvisible breakpoint

FULLDOC

value pool
Dynamic information

rollahead info
path sensitive info

mappings
reportability
debug info

Static information

memory

when user
queries

program
source

Figure 7.6: FULLDOC's strategy with respect to user queries

95

7.3 Reportability debug information

This section describes the reportability debug information computed through static

analysis of the optimized code that is provided to FULLDOC as well as how FULLDOC

employs this information at runtime and how it collects dynamic debug information in

response to the user setting breakpoints and requesting values of variables at these break-

points. The debug information is organized by tables, which are shown in Figure 7.7. Table

1 contains the debug information for the expected values of variables that are always re-

portable. Tables 2-3 contain the debug information for reporting the values of variables that

are overwritten or may have been overwritten early. Tables 4-9 contain the debug informa-

tion for reporting the values of variables that are written or may have been overwritten late.

Tables 10-13 contain the debug information for determining the values of variables that are

not computed in the execution of the optimized code. The rest of this section describes the

tables in detail.

3 SaveDiscardPoints[]

Table Information

1 AvailAtBkpts[]

Table Information

Overwritten Early in the
optimized code Variable always reportable

Computed in the unoptimized code
 but not in the optimized code optimized code

Written Late in the

Table Information Table Information

11 MaybeDelAtBkpts[]
12 EndDelPoints[]

13 PotFutBkptsDel[]

10 NotRepDelAtBkpts[]4 LateAtBkpts[]
5 StopPoints[]
6 NotRepLateAtBkpts[]
7 MaybeLateAtBkpts[]
8 EndLatePoints[]
9 PotFutBkptsLate[]

2 EarlyAtBkpts[]

Figure 7.7: Debug information

7.3.1 Simply reportable

The AvailAtBkpts table indicates the program ranges in the optimized code where

the expected values of source variables are always available for reporting.

AvailAtBkpts[b,v] = flocg or f(def1,loc1), (def2,loc2), ...g

If the value of variable v is always reportable at breakpoint b, then AvailAt-

Bkpts[b,v] provides the location (memory location or register name) where the value of v

96

can be found. In case the value can always be found at the same location, no matter what

execution path is taken, loc provides the location.

However, it is possible that the location of v depends on the path taken during

execution because b is reachable by multiple de�nitions of v, each of which stores the value

of v in a di�erent location (e.g., a di�erent register). In this case, the execution path taken

determines the latest de�nition of v that is encountered and hence the location where the

value of v can be found. Each of the potential de�nition-location pairs, (defi,loci), are

provided by AvailAtBkpts[b,v] in this case. When a breakpoint is set at b, the debugger

activates the recording of the de�nition of v that is encountered from among (def1, def2,

...) by inserting invisible breakpoints at each of these points. When an invisible breakpoint

is hit during execution, the debugger records the latest de�nition encountered by overwriting

the previously recorded de�nition.

7.3.2 Overwritten early

The EarlyAtBkpts table indicates the program ranges in the optimized code where

expected values of source variables are not available because such values may have been

overwritten early.

EarlyAtBkpts[b] = fes: es overwrites early w.r.t. breakpoint bg
SaveDiscardPoints[es] = (save, fdiscard1, discard2, ...g)

For FULLDOC to report such values at the e�ected program ranges, the EarlyAt-

Bkpts and SaveDiscardPoints tables are used as follows. If the user sets a breakpoint at b,

then for each statement es that overwrites early in EarlyAtBkpts[b], the save and discard

points in SaveDiscardPoints[es] are activated by inserting invisible breakpoints. This

ensures that the values of variables overwritten early with respect to breakpoint b will be

saved and available for reporting at b from the value pool in case they are requested by

the user. Note that the save and discard points must be activated immediately when a

breakpoint is set by the user so that all values that may be requested by the user, when

the breakpoint is hit, are saved. If a discard point is reached along a path and nothing is

currently saved because a save point was not reached along the same path, the debugger

simply ignores the discard point.

The example in Figure 7.8 (also illustrated in Figure 7.1 of Section 7.1) where X

is overwritten early is handled by this case. The highlighted regions are the regions where

reportability of X is a�ected. At breakpoints along region 1j, the reportability of X

is a�ected, regardless of the execution path taken. At breakpoints along region 2j, the

97

1

X =
3

1

3

2

X =
2

X =
1

1

2

3
X =
2

X =

point

T F

Program
Unoptimized

3
X =

T F

Program
Optimized

save
point

discard
point

discard

Figure 7.8: Overwritten early example

2 31 X =
2

3
X =

X =
2

X =
2

EarlyAtBkpts[]

X =
2

id of

...B
re

ak
po

in
ts

SaveDiscardPoints[]

Save:
current position of
Discard:

original position of
original position of

id of

St
at

em
en

t i
ds

Figure 7.9: EarlyAtBkpts and SaveDiscardPoints reportability debug information for over-
written early example in Figure 7.8

reportability of X is path sensitive. At breakpoints along region 3j, the reportability of

X is path sensitive and depends on the current loop iteration. These three cases where the

reportability of X is a�ected are handled by the EarlyAtBkpts and SaveDiscardPoints

tables. The save and discard points are illustrated in Figure 7.8 and the EarlyAtBkpts and

SaveDiscardPoints tables are displayed in Figure 7.9.

7.3.3 Written late

The LateAtBkpts table indicates the program ranges in the optimized code where

expected values of source variables are not available because such values may be overwritten

late and may still execute.

LateAtBkpts[b] = fls: ls writes late w.r.t. breakpoint bg
StopPoints[ls] = fstop1, stop2, ...g

For FULLDOC to report such values at the e�ected program ranges, the LateAt-

Bkpts and StopPoints tables are used as follows. Assume the user sets a breakpoint at b.

Then for each statement ls 2 LateAtBkpts[b], FULLDOC must �rst determine if ls is

written late with respect to the next instance of the breakpoint b. If the original position

of ls is reached during execution but the current position of ls is not reached (before the

98

breakpoint b is hit), then ls is written late. This information is determined as follows.

For each statement ls that is written late, FULLDOC inserts invisible breakpoints at the

original and current positions of ls and records if the original position of ls is encountered

during execution. When the current position of ls is reached during execution, the recorded

information is discarded. Now, suppose execution reaches b, and the user requests the value

of a variable v such that v is written late by a statement ls in LateAtBkpts[b]. If the

original position of ls is currently recorded, then v is late at the current instance of the

breakpoint b and the execution of the program rolls ahead until one of the stop points

in StopPoints[ls] is encountered. At a stop point, either the value of v has just been

computed or it is known that it will de�nitely not be computed (recall that sinking of

partially dead code can cause such situations to arise). Unlike the overwritten early case

where the save and discard points were activated when a breakpoint was set, here the stop

points are activated when the breakpoint is hit and a request for a value that is written late

is made.

The example in Figure 7.10 (also illustrated in Figure 7.2 of Section 7.1), where

the reportability of X along region 1j is a�ected is handled by this case. The stop points

are illustrated in Figure 7.10 and the LateAtBkpts and StopPoints tables are displayed in

Figure 7.11.

X =
1

X =
2

1

X =
3

3

2

Program
Unoptimized

X =
1

1

2

3
X =
3

4 4

Program
Optimized

T F

stop
point

X =
2

T F

point
stop

= X= X

Figure 7.10: Overwritten late example

99

X =
2

X =
2

B
re

ak
po

in
ts

1

X =
2

id of

...

StopPoints[]

St
at

em
en

t i
ds

LateAtBkpts[]

current position of
beginning of false path

id of

Figure 7.11: LateAtBkpts and StopPoints reportability debug information for overwritten
late example in Figure 7.10

7.3.4 Never reportable because deleted along a path

When (partial) dead code removal is performed, the value of a variable de�ned by

the deleted statement becomes unreportable. For each breakpoint b, the variables whose

values are never reportable at b, no matter what execution path is taken, are recorded in

NotRepDelAtBkpts[b] and NotRepLateAtBkpts[b], for statements removed from paths by

dead code elimination and partial dead code elimination, respectively.

NotRepDelAtBkpts[b] = fv: v is never reportable at b (deleted)g
NotRepLateAtBkpts[b] = fv: v is never reportable at b (late)g

When the user requests the value of a variable v at breakpoint b, if v is in

NotRepDelAtBkpts[b] or NotRepLateAtBkpts[b], FULLDOC reports to the user that the

value is not reportable because the statement that computes it has been deleted along the

execution path.

The example in Figure 7.12 (also illustrated in Figure 7.3 of Section 7.1), where the

reportability of Y is a�ected along region 1j, is handled by this case. The NotRepDelAt-

Bkpts table is displayed in Figure 7.13. Also, the example in Figure 7.10, where the reporta-

bility of X is a�ected along region 2j is handled by this case. The NotRepLateAtBkpts

table is displayed in Figure 7.14.

100

Y =
3

Y =
2

Y =
3

Y =1 Y =1

Program
Unoptimized

Program
Optimized

FT FT

2
1 1

2

Figure 7.12: Dead code elimination example

Yid of

...

NotRepDelAtBkpts[]

B
re

ak
po

in
ts

1

Figure 7.13: NotRepDelAtBkpts reportability debug information for the example in Figure
7.12

Xid of

...

NotRepLateAtBkpts[]

B
re

ak
po

in
ts

2

Figure 7.14: NotRepLateAtBkpts reportability debug information for the example in Figure
7.10

101

7.3.5 Path sensitive nonreportability/reportability when deleted

A value may be deleted on one path, in which case it is not reportable, and not

deleted on another path, in which case it is reportable. In this path sensitive case, the

reportability information must be updated during execution, based on the paths that are

actually executed (i.e., program points reached).

MaybeDelAtBkpts[b] = fds: ds may be deleted w.r.t. breakpoint bg
EndDelPoints[ds] = fEndDel1, EndDel2, ...g
PotFutBkptsDel[b] = fds: ds may be deleted at later breakpointsg

If a user sets a breakpoint at b, invisible breakpoints are set at each of the original

positions of any deleted statement ds in MaybeDelAtBkpts[b] to record if one of these

positions is encountered during execution. Invisible breakpoints are also set at the end of the

de�nition range of ds, stored in EndDelPoints[ds]. When EndDeli in EndDelPoints[ds]

is reached during execution, the recorded information is discarded. Now consider the case

when breakpoint b is reached, and the user requests the value of variable v de�ned by some

statement ds in MaybeDelAtBkpts[b]. If the dynamically recorded information shows that

the original position of ds was encountered, the debugger reports that the value of v was

not computed as ds was deleted. Otherwise the debugger reports the current value of v.

The example in Figure 7.12, where the reportability of Y along region 2jis path sensitive,

is handled by this case. The MaybeDelAtBkpts and EndDelPoints tables are displayed in

Figure 7.15.

original position of
3

Y =2
Y =2

Y =
2

id of

...B
re

ak
po

in
ts

2

EndDelPoints[]

St
at

em
en

t i
ds

id of
MaybeDelAtBkpts[]

Y =
2

id of

...

1

B
re

ak
po

in
ts

PotFutBkptsDel[]

Figure 7.15: MaybeDelAtBkpts, EndDelPoints, and PotFutBkptsDel reportability debug
information for example in Figure 7.12

The same strategy is used for each deleted statement in PotFutBkptsDel[b],

which prevents FULLDOC from setting invisible breakpoints too late. PotFutBkptsDel[b]

holds the deleted statements where reportability could be a�ected at potential breakpoints

even though reportability is not necessarily a�ected at b. Invisible breakpoints must now

be set so that during the execution to breakpoint b, FULLDOC gathers the appropriate

102

dynamic information for the potential breakpoints. The PotFutBkptsDel table for the

example in Figure 7.12 is displayed in Figure 7.15.

7.3.6 Path sensitive nonreportability/reportability when written late

Sinking code can also involve path sensitive reporting, because a statement may

be sunk on one path and not another. This case is the opposite to the previous one in that

if a late statement is encountered, it is reportable.

MaybeLateAtBkpts[b] = fls: ls may be late w.r.t. breakpoint bg
EndLatePoints[ls] = fEndLate1, EndLate2, ...g
PotFutBkptsLate[b] = fls: ls may be late at later breakpointsg

If the user sets a breakpoint at b, the debugger initiates the recording of the late

statements in MaybeLateAtBkpts[b] by setting invisible breakpoints at the original and new

positions of the late statements. The debugger will discard the recorded information of a late

statement ls when a EndLatei in EndLatePoints[ls] is encountered (EndLatePoints[ls]

holds the end of the de�nition range of ls). Now consider the case when breakpoint b

is reached, and the user requests the value of variable v de�ned by some statement ls

in MaybeLateAtBkpts[b]. If the dynamically recorded information shows that the late

statement ls was encountered, the debugger reports the current value of v. Otherwise if

only the original position of the late statement was encountered, the debugger reports that

the value of v is not reportable. The example in Figure 7.10, where the reportability of

X along region 3j is path sensitive, is handled by this case. The MaybeLateAtBkpts and

EndLatePoints tables are displayed in Figure 7.16.

The same strategy applies for each late statement ds in PotFutBkptsLate[b],

which prevents FULLDOC from setting invisible breakpoints too late. The PotFutBkpts-

Late table for the example in Figure 7.10 is displayed in Figure 7.16.

2

X =
2

id of

...

EndLatePoints[]

St
at

em
en

t i
ds

id of
MaybeLateAtBkpts[]

B
re

ak
po

in
ts

X =
2

id of

...B
re

ak
po

in
ts

3 original position of
3

X =2
X = 1 43

PotFutBkptsLate[]

Figure 7.16: MaybeLateAtBkpts, EndLatePoints, and PotFutBkptsLate reportability debug
information for example in Figure 7.10

103

7.4 Computing the reportability debug information

Mappings are used to compute the reportability debug information. The algorithm

in Figure 7.17 gives an overview of how this debug information is computed. Lines 2 � 6

determine what values are overwritten early and compute the SaveDiscardPoints[] and

EarlyAtBkpts[] information. Lines 7 � 10 determine what values are written late and

compute the StopPoints[] and LateAtBkpts[]. Lines 11-13 determine the rest of the

debug information by using data
ow analysis. More details about the particular steps

follow.

1 For each source de�nition Dv

2 If Dv overwrites x early then

3 Let discard1, discard2, ... = the corresponding positions of original

de�nitions of x that are reachable from ARHead(Dv) in the optimized code

4 SaveDiscardPoints [Dv] = (ARHead(Dv); fdiscard1, discard2,...g)

5 For each breakpoint B along a path from Dv to discard1, discard2,...,

6 EarlyAtBkpts[B] = EarlyAtBkpts[B] [f Dv g

7 Else If Dv writes late in the optimized code then

8 StopPoints [Dv] = fARHead(Dv)g [fp : p is an earliest possible program

point along paths from ORHead(Dv) where Dv will not executeg

9 For each breakpoint B along paths ORHead(Dv) to p 2 StopPoints [Dv] and/or

the corresponding positions of original de�nitions of x that are reachable

from ORHead(Dv) in the optimized code,

10 LateAtBkpts[B] = LateAtBkpts[B] [f Dv g

11 Compute AvailAtBkpts[,], NotRepDelAtBkpts[], and NotRepLateAtBkpts[]

by comparing ranges using ORHead(Dv) and ARHead(Dv)

12 Compute MaybeDelAtBkpts[] and MaybeLateAtBkpts[] by determining when

deleted and late statements occur on one path and not another

13 Compute EndDelPoints[], EndLatePoints[], PotFutBkptsDel[], and

PotFutBkptsLate[] by using reachability

Figure 7.17: Algorithm to compute the reportability debug information

7.4.1 Determining statements that overwrite early or write late.

To determine where values are overwritten early due to register reuse, suppose Dx

is a de�nition of a variable x and the location of x is in register r in the optimized code. If

Dx reaches an assignment to r in which r is reassigned to another variable or temporary,

then x is overwritten early at the reassignment.

To determine where values of variables are overwritten early due to code hoist-

ing optimizations, the original positions of the de�nitions and their actual positions in

the optimized program are compared in Gopt. Let ARHead(Dv) denote the actual po-

sition of a de�nition Dv and let ORHead(Dv) denote the corresponding original posi-

tion of Dv . The existence of a path P from ARHead(Dv) to ORHead(Dv) such that

104

P does not include backedges of loops enclosing both ARHead(Dv) and ORHead(Dv)

is determined. The backedge restriction on P ensures that only the positions of the

same instance of Dv before and after optimization are considered. This restricted no-

tion of a path is captured by the SimplePath predicate as given by De�nition 5.1. If

SimplePath(ARHead(Dv); ORHead(Dv)) is true and the location of v at the program

point before ARHead(Dv) is the same location that is used to hold the value of Dv,

then v is overwritten early at Dv in the optimized code. For example, in Figure 7.8,

SimplePath(ARHead(X2); ORHead(X2)) is true, and thus, X is overwritten early at

X2 .

To determine where values of variables are written late in the optimized program,

the original positions of the de�nitions and their actual positions in the optimized program

are similarly compared using Gopt. That is, for a de�nition Dv, the existence of a path

P from ORHead(Dv) to ARHead(Dv) such that P does not include backedges enclosing

both points is determined. Thus, if SimplePath(ORHead(Dv); ARHead(Dv)) is true, then

de�nitionDv is written late in the optimized code. For example, in Figure 7.10, X is written

late at X2 because SimplePath(ORHead(X2); ARHead(X2)) is true.

7.4.2 Computing SaveDiscardPoints[] and EarlyAtBkpts[].

If a value of x is overwritten early at Dv in the optimized code, then a save point

is associated at the position of Dv in the optimized code, and discard points are associated

at the corresponding positions of original de�nitions of x that are reachable from Dv in the

optimized code. Reachable original de�nitions, which is similar to the reachable de�nitions

problem, is determined by solving the following data
ow equation:

ReachableOrigDefs(B) =
[

N2succ(B)

Genrod(N) [(ReachableOrigDefs(N)�Killrod(N))

where

Genrod(B) = fDv : ORHead(DV) = Bg and

Killrod(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

For example, in Figure 7.8, the original de�nitions reachable from X2 in the optimized

code are X2 and X3 because ReachableOrigDefs(ARHead(X2)) = fX2 ;X3 g. There-

fore, for X2 , a save point is associated at ARHead(X2), discard points are associated at

ORHead(X2) and ORHead(X3), and SaveDiscardPoints[X2] = (ARHead(X2); fOR-

Head(X2); ORHead(X3)g).

After the save and discard points of Dv are computed, the breakpoints where

reportability is a�ected by Dv are determined. Dv 2 EarlyAtBkpts[b] if b lies along paths

105

from save to corresponding discard points of Dv. EarlyAtBkpts[] is easily computed by

solving the following data
ow equation on Gopt:

EarlyAt(B) =
[

N2pred(B)

Genea(N) [(EarlyAt(N)�Killea(N))

where

Genea(B) = fDv : Dv overwrites early and a save point of Dv is at Bg and

Killea(B) = fDv : Dv overwrites early and a discard point of Dv is at Bg.

Then Dv 2 EarlyAtBkpts[B] if Dv 2 EarlyAt(B). For example, in Figure 7.8, for a

breakpoint b along regions 1j, 2j, and 3j, EarlyAtBkpts[b] = fX2 g.

7.4.3 Computing StopPoints[] and LateAtBkpts[].

For a de�nition Dv of a variable x that is written late, StopPoints [Dv] are the

earliest points at which execution can stop because either (1) the late value is computed or

(2) a point is reached such that it is known the value will not be computed in the execution.

A stop point of Dv is associated at the ARHead(Dv). Stop points are also associated with

the earliest points along paths from ORHead(Dv) where the appropriate instance of Dv

does not execute. That is, p 2 StopPoint(Dv) if

p = ARHead(Dv) _ (7.1)

(Dv 62 ReachableLate(p) ^ (7.2)

6 9 p0(SimplePath(p0; p) ^ p0 2 StopPoint(Dv))): (7.3)

Condition 1 ensures a stop point is placed at Dv. Condition 2 ensures the rest of the

stop points are not placed at program points where the appropriate instance of the late

statement would execute. Condition 3 ensures stop points are placed at the earliest points.

ReachableLate(p) is the set of statements written late that are reachable at p. Reachable-

Late() is easily computed by solving the following data
ow equation on Gopt:

ReachableLate(B) =
[

N2succ(B)

Genrl(N) [(ReachableLate(N) �Killrl(N))

where

Genrl(B) = fDv : ARHead(Dv) = Bg and

Killrl(B) = fDv : ORHead(Dv) = Bg.

Consider the example in Figure 7.10. StopPoints [X2] = fARHead(X2); program point

at the beginning of the false pathg. Notice that condition 2 ensures that a stop point is not

placed along region 1j.

106

Unoptimized

X =
1

X =
2

Program
Optimized

1

2

X =

Program

1

Stop point for

2
X =

X =
2

X =
1

Stop point for

Figure 7.18: Overwritten late example

After the stop points of Dv are computed, the breakpoints where reportability is

a�ected by Dv (because Dv may be overwritten late and may still execute) are determined.

Dv 2 LateAtBkpts[b] if b lies along paths from ORHead(Dv) to the stop points of Dv and

the corresponding positions of original de�nitions of x that are reachable from Dv in the

optimized code, except for the paths between the stop points and the positions of original

de�nitions of x. The paths between the stop points and the positions of original de�nitions of

x are excluded because it is possible that de�nitionDv is sunk past the position of an original

de�nition of x and thus Dv should not be considered late with respect to breakpoints along

such paths. For example, in Figure 7.18, although the stop point of X1 is at ARHead(X1),

LateAtBkpts[b] = fX1 g for a breakpoint b along region 1jand LateAtBkpts[b] = fX2 g

for a breakpoint b along region 2j.

LateAtBkpts[b] is easily computed by solving the following data
ow equation

on Gopt:

LateAt(B) =
[

N2pred(B)

Genla(N) [(LateAt(N)�Killla(N))

where

Genla(B) = fDv : ORHead(DV) = Bg and

Killla(B) = fDv : B 2 StopPoints(Dv) _

(ORHead(D0

v) = B ^ D0

v is a de�nition of v)g.

Then Dv 2 LateAtBkpts[B] if Dv 2 LateAt(B). For example, in Figure 7.10, for a break-

point b along region 1j, LateAtBkpts[b] = fX2 g.

7.4.4 Computing AvailAtBkpts[,].

The mappings are used to construct program ranges of a variable's value which

correspond to the unoptimized code (real range) and the optimized code (actual range).

By comparing the two ranges, the program ranges in the optimized code corresponding to

107

regions where the value of the variable is always available for reporting are identi�ed. If

breakpoint B is in this program range for a variable v then AvailAtBkpts[B,v] is com-

puted by performing data
ow analysis to propagate the locations (memory and registers)

of variables within these program ranges.

7.4.5 Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[].

To determine the values of variables that are not reportable along a breakpoint

because of the application of dead code elimination, the deleted statements are propagated

where reportability is a�ected (regardless of the execution path taken) through the opti-

mized control
ow graph Gopt by solving the data
ow equation:

NonRepDel(B) =
\

N2pred(B)

Gennrd(N) [(NonRepDel(N)�Killnrd(N))

where

Gennrd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg and

Killnrd(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then for each breakpoint B, v 2 NotRepDelAtBkpts[B] if 9 Dv such that Dv 2 NonRep-

Del(B). For example, in Figure 7.12, for a breakpoint B along region 1j, Y 2 NotRepDelAt-

Bkpts[B].

NotRepLateAtBkpts[] is similarly computed by solving the following data
ow

equation on Gopt:

NonRepLate(B) =
\

N2pred(B)

Gennrl(N) [(NonRepLate(N)�Killnrl(N))

where

Gennrl(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg and

Killnrl(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then for each breakpoint B, v 2 NotRepLateAtBkpts[B] if 9 Dv such that Dv 2 NonRep-

Late(B) and Dv 62 LateAtBkpts(B). For example, in Figure 7.10, for a breakpoint B

along region 2j, X 2 NotRepLateAtBkpts[B] because X2 2 NonRepLate(B) and X2 62

LateAtBkpts(B).

7.4.6 Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[].

To determine the values of variables that may not be reportable along a path when

deleted, the data
ow equation on Gopt is �rst computed:

108

MaybeDel(B) =
[

N2pred(B)

Genmd(N) [(MaybeDel(N)�Killmd(N))

where

Genmd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg and

Killmd(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then Dv 2 MaybeDelAtBkpts[B] if 9 Dv such that Dv 2 MaybeDel(B) ^Dv 62 NonRep-

Del(B). For example, in Figure 7.12, for a breakpoint B along region 2j, Y 2 2 MaybeDel-

AtBkpts[B] because Y 2 2MaybeDel(B) ^ Y 2 62 NonRepDel(B).

MaybeLateAtBkpts[] is similarly computed by solving the following data
ow

equation on Gopt:

MaybeLate(B) =
[

N2pred(B)

Genml(N) [(MaybeLate(N)�Killml(N))

where

Genml(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg and

Killml(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then Dv 2 MaybeLateAtBkpts[B] if 9 Dv such that Dv 2MaybeLate(B)^Dv 62 NonRep-

Late(B) ^Dv 62 LateAtBkpts(B). For example, in Figure 7.10, for a breakpoint B along

region 3j, X 2 MaybeLateAtBkpts[B].

7.4.7 Computing EndDelPoints[] and EndLatePoints[].

For each variable v of a deleted statement ds 2 MaybeDelAtBkpts[], EndDel-

Points[ds] are the corresponding positions of original de�nitions of v that are reachable

from ORHead(ds) in Gopt. For example, in Figure 7.12, EndDelPoints[Y] = the original

position of Y 3 , which is ORHead(Y 3). Similarly, for a variable v of a late statement ls

2 MaybeLateAtBkpts[], EndLatePoints[ls] are the corresponding positions of original

de�nitions of v that are reachable from ORHead(ls).

7.4.8 Computing PotFutBkptsDel[] and PotFutBkptsLate[].

For each deleted statement Dv in MaybeDelAtBkpts[], Dv 2 PotFutBkptsDel[b]

if b lies along paths from the ORHead(Dv) to the corresponding positions of original de�ni-

tions of v that are reachable from ORHead(Dv) in the optimized code. PotFutBkptsDel[]

is easily computed by solving the following data
ow equation on Gopt:

109

PotBkptsDel(B) =
[

N2pred(B)

Genpbd(N) [(PotBkptsDel(N)�Killpbd(N))

where

Genpbd(B) = fDv : ORHead(Dv) = B ^Dv is deletedg and

Killpbd(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then Dv 2 PotFutBkptsDel[B] if Dv 2 PotBkptsDel(N). For example, in Figure 7.12,

for a breakpoint B along regions 1jand 2j, Y 2 2 PotFutBkptsDel(B).

PotFutBkptsLate[] is similarly computed. For each statement Dv that is over-

written late in MaybeLateAtBkpts[], Dv 2 PotFutBkptsLate[b] if b lies along paths from

the ORHead(Dv) to the corresponding positions of original de�nitions of v that are reach-

able from ORHead(Dv) in the optimized code. PotFutBkptsLate[] is easily computed by

solving the following data
ow equation on Gopt:

PotBkptsLate(B) =
[

N2pred(B)

Genpbl(N) [(PotBkptsLate(N)�Killpbl(N))

where

Genpbl(B) = fDv : ORHead(Dv) = B ^Dv is overwritten lateg and

Killpbl(B) = fDv : ORHead(D0

v) = B ^D0

v is a de�nition of vg.

Then Dv 2 PotFutBkptsLate[B] if Dv 2 PotBkptsLate(N). For example, in Figure 7.10,

for a breakpoint B along regions 1j, 2j, 3j, and 4j, X2 ;2 PotFutBkptsLate(B).

7.5 Supporting loop transformations and inlining

With loop transformations and inlining, loops that are transformed and functions

that are inlined are prematurely executed. That is, the debugger rolls ahead the execution

of the optimized program. The statement instances that are prematurely executed are

saved in the order of their corresponding instances in the unoptimized program. The values

overwritten by the roll ahead execution are also saved so that they can be reported at

subsequent breakpoints. The reportability debug information is extended to indicate the

(1) program ranges in the optimized code where loops have been transformed or functions

have been inlined, (2) start and stop points of execution for the roll forwarding, and (3)

program ranges of expected values of variables that are not reportable because they are not

computed in the transformed loop or the inlined code (but should be with respect to the

unoptimized program). For example, in Figure 7.19, the loop in the optimized code has

been reversed. Suppose a breakpoint is placed by a user at the beginning of the loop in

110

the unoptimized code and at each instance of the breakpoint, the user requests the value of

j. The debugger will roll forward the execution of the optimized program until the entire

loop executes. As values of source variables are computed, the debugger saves the values

in the order they would be computed in the unoptimized code. Then the debugger returns

control to the user. At each instance of breakpoint 1, the debugger reports to the user the

expected value of j. At breakpoint 2, the debugger reports that the expected of value of j

(i.e., 11) is not computed in the optimized program execution.

 a[j] = jS4 a[j] = j

}

S2’ j > 0;

S1’ for(j=10;

 Optimized Code
FULLDOC’s debugging

S4’

strategy

breakpoints, display expected

Save and reorder values
of source variables while
executing the program
until the loop executes.

values if they are computed

S3’ j = j - 1) {

S1 for(j=1;

S2 j < 11;

S3 j = j + 1) {

}

 Unoptimized Code

Breakpoint 1

Breakpoint 2 For each instance of the

Figure 7.19: Loop reversal example

7.6 Implementation and experiments

FULLDOC was implemented by �rst extending lcc [23], a compiler for C pro-

grams, with a set of optimizations, including (coloring) register allocation, loop invariant

code motion, dead code elimination, partial dead code elimination, partial redundancy elim-

ination, copy propagation, and constant propagation and folding. Lcc was also extended to

perform the analyses needed to provide the debug information to FULLDOC, given in the

previous section. FULLDOC was then implemented, using the debug information generated

by lcc, and fast breakpoints [32] for the implementation of invisible breakpoints.

Experiments were performed to measure the improvement in the reportability of

expected values for a suite of programs, namely YACC and some SPEC95 benchmarks.

For the purpose of evaluation, a user breakpoint was placed at every source statement,

and the improvement in reportability of FULLDOC over a technique that uses only static

information was determined. Also, for each breakpoint, the reasons why reportability is

a�ected is reported, and thus the improvement of FULLDOC's technique over techniques

that cannot report overwritten values or path sensitive values can be compared.

111

Table 7.1 shows for each benchmark, the percentage of values that could not be

reported by (1) using only statically computed information and (2) FULLDOC. The �rst

row gives the percentages of values that were deleted along all paths, and are thus not

reportable in FULLDOC (as noted, FULLDOC could recover some of these values, as other

debuggers can [27]). The next two rows give the percentages of values whose reportability

is a�ected because they are overwritten early, either because of code hoisting (row 2) or a

register being overwritten early (row 3). If a debugger does not include some mechanism

for "saving" values overwritten early, it would not be able to report these values. The

next three rows give the percentages of values whose reportability is a�ected because the

statements that computed the values were a�ected by partial dead code elimination. Row

4 indicates the percentages of values that are not reportable along paths before the sunk

values. Row 5 indicates the percentages of values that are not reportable along paths where

the sunk values are never computed. Row 6 indicates the percentages of values that are not

reportable along paths because the reportability of the values sunk is path sensitive. If a

debugger does not include some mechanism to \roll ahead" the execution of the optimized

program, it would not be able to report these values. The next two rows give the results

when reportability is a�ected by path sensitive information. The seventh row gives the

percentages that were not reportable for path sensitive deletes. In this case, the values

may have been deleted on paths that were executed. The eighth row gives the results when

the location of a value is path sensitive. A technique that does not include path sensitive

information would fail to report these values. The last row gives the total percentages that

could not be reported. On average, FULLDOC cannot report 8% of the local variables at

a source breakpoint while a debugger using only static information cannot report 30%.

Table 7.1: Percentage of local variables per breakpoint that are not reportable

Problems yacc compress go m88ksim ijpeg
static FULL static FULL static FULL static FULL static FULL

info DOC info DOC info DOC info DOC info DOC

deleted-all paths 0.96 0.96 15.03 15.03 0.75 0.75 1.87 1.87 10.42 10.42
code hoisting 0.19 0.00 0.34 0.00 0.30 0.00 0.14 0.00 4.15 0.00
reg overwrite 42.65 0.00 17.24 0.00 9.44 0.00 1.83 0.00 15.87 0.00
code sinking (rf) 0.19 0.00 0.64 0.09 1.40 0.39 0.57 0.07 1.79 0.09
del on path 0.00 0.00 0.02 0.02 0.10 0.10 0.06 0.06 0.28 0.28
path sens late 0.00 0.00 0.18 0.09 0.51 0.18 0.41 0.37 0.58 0.39
path sens delete 8.27 6.07 0.18 0.00 2.25 0.74 0.00 0.00 2.36 1.20
path sens location 3.95 0.00 0.07 0.00 1.14 0.00 0.32 0.00 1.43 0.00

total 56.21 7.03 33.70 15.23 15.89 2.16 5.20 2.37 36.88 12.38

112

Figure 7.20 shows for each benchmark, the percentage of values that could not be

reported by (1) using only statically computed information, (2) the timestamping technique,

(3) the emulation technique, and (4) FULLDOC. FULLDOC can report 31% more values

than techniques using only statically computed information. FULLDOC can report at least

28% more values than the emulation technique [51] since neither path sensitivity nor register

overwrites were handled. Finally, FULLDOC can report at least 26% more values than the

dynamic currency determination technique [22] since early overwrites were not preserved

and no roll ahead mechanism is employed.

0

10

20

30

40

50

60

yacc compress go m88ksim ijpeg

VWDWLF�LQIR
WLPH�VWDPS
HPXODWLRQ
)8//'2&

Pe
rc

e n
ta

ge
 o

f
lo

ca
l v

ar
ia

bl
es

 p
er

br
ea

kp
oi

nt
 th

at
 a

re
 n

ot
 r

ep
or

ta
bl

e

Figure 7.20: Expected values not reportable

Table 7.2 presents statistics from the static analysis for FULLDOC. The �rst two

rows show the number of source statements and the percentage of source statements whose

reportability is a�ected by optimizations. The next 6 rows give the number of entries in

each of the tables generated for use at runtime. It should be noted that the largest table is

for register overwrites. The last row shows that the increase in compilation for computing

all the debug information averaged only 10:9%.

Table 7.3 shows the average number of invisible breakpoints per source code

statement that was encountered during execution. These numbers are shown for each of

the various types of invisible breakpoints. These numbers indicate that not much overhead

is incurred at runtime for invisible breakpoints. The last three rows display the overhead

imposed by the roll ahead execution of the optimized program. On average, 9:7% of the

source assignment statements were executed during the roll aheads. The maximum number

of statements executed during a roll forward ranges from 5 to 4102 values, which means at

most 5 to 4102 number of values are saved from the roll ahead at any given moment. The

average roll ahead of source assignment statements ranges from 2 to 7 statements. The size

113

Table 7.2: Static statistics

yacc compress go m88ksim ijpeg

no. source statements 168 354 10876 5778 8214

% statements a�ected 85 57 59 52 56

number code hoisting 10 77 1502 987 2374
of table reg overwrite 517 234 11819 3961 9655
entries code sinking (rf) 13 177 5355 1839 3745

path sens late 0 117 2912 1203 1833
path sens delete 66 37 1785 397 1452

path sens location 48 59 1937 301 1447

% increase compile time 12.1 8.8 11.0 9.6 13.1

of the value pool holding values that are overwritten early was small with the maximum

size ranging from 8 entries to 77 entries, indicating that optimizations are not moving code

very far.

Table 7.3: Runtime statistics

yacc compress go m88ksim ijpeg

% breakpoints where
reportability a�ected 94 95 67 21 92

avg. no. code hoisting 0.12 0.03 0.04 0.05 0.35
invisible reg overwrite 1.03 0.13 0.26 0.02 0.35
breakpoints code sinking (rf) 0.03 0.03 0.07 0.03 0.12
per source path sens late 0.10 0.05 0.13 0.04 0.23
statement path sens delete 0.09 0.00 0.03 0.01 0.23

path sens location 0.07 0.02 0.02 0.00 0.05
overall 1.44 0.26 0.56 0.18 1.37

(duplicates removed) overall 0.56 0.14 0.37 0.17 0.43

% source assignments executed for roll forwards 1.33 4.11 17.39 6.01 19.8
maximum roll forward length 5 60 314 4102 1482
average roll forward length 2 4 7 5 4

Thus, the experiments show that the table sizes required to hold the debug in-

formation and the increase in compile time to compute debug information are both quite

modest. The runtime cost of FULLDOC's technique, which is a maximum of less than

one fast breakpoint per source level statement if all possible values are requested by the

user at all possible breakpoints, is also reasonable. The payo� of FULLDOC's technique

is substantial since it reports at least 26% more values than the best previously known

techniques.

The presence of pointer assignments in a source program can increase FULLDOC's

overheads because the strategies rely on determining the ranges in which the reportability of

114

variables are a�ected. For control equivalent code motion (assignments are not introduced

into new paths nor removed from paths), the ranges in which reportability of values are

a�ected even in the presence of pointer assignments can be statically determined. For the

case when the reportability of a value of a variable is a�ected and the end of its reportable

range is possibly at a pointer assignment (because of code deletion and non-control equiv-

alent code motion), FULLDOC's strategy has to dynamically track the range in which the

reportability of the value of the variable is a�ected.

7.7 Summary

This chapter presents FULLDOC, a FULL reporting Debugger of Optimized

Code that reports all expected values that are computed in the optimized program. That

is, every value of a source variable that is computed in the optimized program execution is

reportable at all breakpoints in the source code where the value of the variable should be

reportable. Experimental results show that FULLDOC can report 31% more values than

techniques relying on static information and at least 26% more over existing techniques that

limit the dynamic information used. FULLDOC's improvement over existing techniques is

achieved by statically computing information to guide the gathering of dynamic information

that enables full reporting. The only values that FULLDOC cannot reported are those that

are not computed in the optimized program execution, either because they are deleted along

all paths or a path that is executed.

Chapter 8

Conclusion and future work

Compilers apply optimizations to improve the performance of programs, but their

application creates challenges in debugging the optimized code. Debugging optimized code

is necessary because almost all production compilers apply optimizations to achieve high

performance, and current trends in processor design increasingly rely on compiler optimiza-

tions to achieve high performance. In many cases, only the optimized version of a program

can execute or execute within a reasonable amount of time. Finally, if application program-

mers intend to ship optimized code, then the optimized code must be debugged. Otherwise,

errors may be masked in the version of the program that is instead debugged.

Most prior work on debugging optimized code focused on the development of source

level debuggers for optimized code. However, the problem of debugging optimized code is

twofold because errors in an optimized program can be caused by errors in the original source

program or introduced by the optimizer. The optimizer may apply an unsafe transformation

or an error may exist in the implementation of an optimization. Therefore, source level

debugging techniques must be developed to help application programmers debug optimized

code from the point of view of the source program and to help optimizer writers debug

optimizers, which are becoming more complex pieces of software and tedious to debug.

Moreover, source level debugging techniques that are developed should (1) not modify the

optimized code, except for setting breakpoints, (2) be transparent to the user, and (3)

support more aggressive optimizations.

8.1 Summary of contributions

Developing source level tools to debug optimized code is hampered by the di�-

culties in establishing the correspondence between the source and optimized code. This

dissertation has analyzed the e�ects of optimizations and the complexities in maintaining

a correspondence between the unoptimized and optimized code. The scope of this research

115

116

covers a variety of code transformations, including statement level optimizations, loop trans-

formations, and inlining. Statement level optimizations include speculative code motion and

path sensitive optimizations. Optimizations such as dynamic memory management opti-

mizations are not considered. A mapping technique [29] was developed for tracking the

correspondences between the unoptimized and optimized code statements while code trans-

formations are performed. The mappings capture the impact that optimizations have on

statements and their instances and thus are useful for a wide range of optimizations.

This dissertation has explored the use of dynamic information to develop source

level debugging techniques that help optimizer writers and application programmers debug

optimized code. The mappings developed in this dissertation have been used to develop

two complementary source level debugging tools for optimized code, which have been im-

plemented and experimentally evaluated. These techniques can support more aggressive

optimizations, including speculative code motion, path sensitive optimizations, and loop

transformations, than previously developed techniques.

The �rst technique developed to help debug optimizers, called comparison check-

ing [30], is an approach that compares values computed in both the unoptimized and op-

timized executions of a source program and detects semantic di�erences between the two

versions. When a comparison fails, the earliest place where the failure occurred and the

optimizations that are involved are reported. Thus, the optimizer writer can utilize this

information to debug the optimizer, and the optimizer writer can have greater con�dence

in the correctness of the optimizer. Moreover, since the internal values computed in the

optimized code are compared to that of the unoptimized program, a �ner level of testing

is provided which can �nd errors in the optimized code that do not cause the output of

the program to be incorrect. The automation of the comparison checking scheme relies on

the mappings developed in this dissertation and annotations to guide the actions of the

comparison checker. This technique does not restrict the set of optimizations applied and

the optimized code is not modi�ed, except for the setting of breakpoints. The comparison

checking scheme was implemented and executes the unoptimized and optimized versions of

C programs. Experimental results demonstrate the approach is e�ective and practical. In

fact, this scheme proved very useful in debugging the optimizer that was implemented for

this work.

The comparison checking technique can be modi�ed to check di�erent levels of

optimizations. Just as optimizations are often phased, the checking can be performed in

phases. For example, checking can be performed after loop optimizations are applied, after

statement level optimizations are applied, and after low level optimizations are applied.

117

This phase checking can reduce the cost of checking as well as help optimizer writers debug

the optimizations that were applied in the phase that is to be checked.

Furthermore, the comparison checking technique can be tailored to help optimizers

writers debug and validate speci�c optimizations. This dissertation described how to tailor

the comparison checker to global register allocation. The register allocation checker can

detect errors in a register allocator implementation and determine the possible cause(s)

of the errors. For example, the register allocation checker can inform the user when a

stale value is used, a wrong register is used, and when a value is evicted from a register

but not saved for future uses. The register allocation checker scheme compares values

computed and used by both the unoptimized and optimized program executions and tracks

and veri�es information about the variables that are assigned to registers throughout the

program execution. The register allocation checker can be incorporated into the comparison

checker or can be used as a standalone tool.

The second technique, a full reporting source level debugger for optimized code

called FULLDOC, is used by application programmers to �nd errors in source programs [31].

This debugger can provide more of the expected program state than previously developed

source level debuggers for optimized code. That is, every value of a source variable that is

computed in the optimized program execution is reportable at all breakpoints in the source

code where the value of the variable should be reportable. FULLDOC's improvement over

existing techniques is achieved by statically computing information to guide the gathering

of dynamic information that enables full reporting. This technique is demonstrated in a

compiler that performs a set of global statement level optimizations for C source programs.

The technique does not restrict the set of optimizations applied and the optimized code is not

modi�ed, except for the setting of breakpoints. The techniques are transparent to the user.

If a user inserts a breakpoint where the reportability of values is a�ected at the breakpoint

or a potential future breakpoint, FULLDOC automatically inserts invisible breakpoints

to gather dynamic information to report the expected values. Experimental results show

that FULLDOC can report 31% more values than techniques relying on static information

and at least 26% more over existing techniques that limit the dynamic information used.

The only values that FULLDOC cannot reported are those that are not computed in the

optimized program execution, either because they are deleted along all paths or a path that

is executed.

118

8.2 Future work

There are a number of open interesting research problems. Although the mappings

were used in this dissertation to develop a comparison checker and source level debugger for

optimized code, the mappings can also bene�t a number of applications. Other problems

for future research include extending the debugging techniques to provide more debugging

features and to support more aggressive optimizations and other programming languages.

1. The mappings developed in this dissertation can be used to develop tools that bene�t

a number of other applications.

It is very di�cult to understand or inspect optimized code in isolation of the unop-

timized code. Even if the unoptimized code is available, it is still di�cult, especially

when there is no knowledge of what transformations were applied and/or someone

else wrote the program. The mappings can be used to develop a tool that enables

the understanding and inspection of optimized code by indicating which statement

instances in the unoptimized code correspond to statement instances in the optimized

code.

The mappings can enhance programming environment tools. For example, interactive

programming environment tools have been developed to assist users in parallelizing

programs. These tools help users decide how to restructure programs by analyzing and

performing transformations to detect and exploit parallelism. Integrating the map-

pings gives users a better understanding of the e�ects of the applied transformations

by visually seeing the di�erences between both the new version and the original pro-

gram version. This extra information can help users make better informed decisions

and verify that their decisions are indeed correct.

The mappings can be used to design other program development tools. For example,

pro�le-based performance analysis tools can identify performance bottlenecks. How-

ever, the results should be conveyed to users in terms of the unoptimized program.

Therefore, for the case of pro�ling optimized code, the mappings can be used to convey

the results of pro�led optimized code in terms of the unoptimized program.

2. Although this dissertation covers more aggressive optimizations than previously de-

veloped source level debugging techniques for optimized code, there is still the issue of

optimization coverage. For example, as more production compilers produce predicated

code [47, 11, 35] and/or code is dynamically optimized [15, 12], the need to develop

source level debugging tools to support such optimizations has to be addressed. The

119

support of dynamic optimizations would require the dynamic updating of the map-

pings between the unoptimized and optimized code and the dynamic analysis of the

mappings, unoptimized code, and optimized code. In terms of a source level debug-

ger, the predicated code would require invisible breakpoints to capture the execution

control
ow of the optimized code.

3. The source level debugger developed in this dissertation does not support the modi�-

cation of variables, nor does it e�ectively support asynchronous breakpoints and core

�les. Moreover, the debugger cannot report expected values that have been deleted

from the optimized code. Future research would extend the source level debugger

techniques to include such debugging features. The design of a source level debugger

for optimized code that has the same debugging capabilities as for unoptimized code

remains an open problem.

4. This dissertation focused on C source programs. It would be interesting to consider the

impact of features of other programming languages such as Java in developing source

level debugging tools for optimized code. Perhaps some of the problems encountered

in the C language can be avoided in Java. For example, memory can be uninitialized

in C but not in Java, and optimizations can reorder
oating point operations in C but

not in Java.

5. The comparison checker was tailored to help users �nd errors in the implementation of

global register allocation. It would be interesting to see how to tailor the comparison

checker to help users �nd errors in other optimizations.

6. The comparison checker could be embedded in a debugger. In this case, the response

time of the checker must be appropriate for use in a debugger. Therefore, the number

of comparisons would have to be reduced. The amount of checking can be limited

by checking certain regions of the source level code, as speci�ed by the user. This

strategy is useful when it is unnecessary to check an entire program. For example,

during testing, programs are typically executed under di�erent inputs and checking

the entire program under every input may be redundant and thus unnecessary. Al-

ternatively, a region can be de�ned by the statements a�ected by the application of

code transformations. This approach is optimization dependent. Analysis techniques

would need to be designed to determine what values may be a�ected by the program

changes.

Another approach, which is optimization independent, is to check only those values

that cannot be guaranteed to always be the same in both the unoptimized and op-

120

timized program executions. Static analysis techniques would need to be developed

to analyze both versions of the program and determine what values are always the

same under any execution and thus do not need to be checked. The values that can-

not be guaranteed would be checked. Of course, a conservative approach would be

taken. Only those checks where the analysis can guarantee the same value could be

eliminated.

7. Techniques can be explored to e�ectively develop a comparison checking technique for

parallelized code. This is a much harder problem than that of optimized code because

the execution behavior of sequential code is now compared with that of parallelized

code. The program executions cannot be easily orchestrated because the parallel

version would be required to perform a serial execution. Extracting values from shared

memory is another problem as values from memory must be extracted before the

values are overwritten by any one of the processes. With distributed memory, the

communication of values to the comparison checker may have to be optimized for

practicality purposes.

8. With the need to gather dynamic information for both the source level debugger

and comparison checker, more support from hardware should be provided to access

the program state and to control the execution of the program. For example, more

hardware assisted breakpoints should be provided. Also, perhaps a new mechanism

should be developed to allow a debugger that does not execute within the same context

as the debugged program to set breakpoints and extract the program state without

going through the operating system.

9. Currently the debug information supplied by the optimizing compiler to the debug-

ger has not been incorporated into existing debug formats such as stabs [33] and

DWARF [1] debug formats. These debug formats would have to be extended.

10. Although the comparison checking technique developed in this dissertation is designed

only for unoptimized and optimized versions of a program, the comparison checking

technique can possibly be extended to handle di�erent program versions. That is

one version is derived form the other version either by programming edits or other

programming tools such as source to source translators. Mappings would have to be

developed to establish the relationship between both program versions.

Bibliography

Bibliography

[1] DWARF Debugging Information Format. Industry Review Draft, Unix International
Programming Language Special Interest Group (SIG), 1993.

[2] Abramson, D. A., Foster, I., Michalakes, J., and Sosic, R. Relative Debugging and its
Application to the Development of Large Numerical Models. In Proceedings of IEEE
Supercomputing 1995, December 1995.

[3] Abramson, D. and Sosic, R. A Debugging Tool for Software Evolution. CASE-95,
7th International Workshop on Computer-Aided Software Engineering, pages 206{214,
July 1995.

[4] Abramson, D. and Sosic, R. A Debugging and Testing Tool for Supporting Software
Evolution. Journal of Automated Software Engineering, 3:369{390, 1996.

[5] Abramson, D., Foster, I, Michalakes, J., and Sosic, R. A New Methodology for Debug-
ging Scienti�c Applications. Communications of the ACM, 39(11):69{77, November
1996.

[6] Abramson, D., Sosic. R., and Watson, R. Implementation Techniques for a Parallel Rel-
ative Debugger. In Proceedings of International Conference on Parallel Architectures
and Compilation Techniques, October 1996.

[7] Adl-Tabatabai, A. Source-Level Debugging of Globally Optimized Code. PhD disserta-
tion, Carnegie Mellon University, 1996. Technical Report CMU-CS-96-133.

[8] Adl-Tabatabai, A. and Gross, T. Detection and Recovery of Endangered Variables
Caused by Instruction Scheduling. In Proceedings ACM SIGPLAN'93 Conf. on Pro-
gramming Languages Design and Implementation, pages 13{25, June 1993.

[9] Adl-Tabatabai, A. and Gross, T. Evicted Variables and the Interaction of Global
Register Allocation and Symbolic Debugging. In Proceedings 20th POPL Conference,
pages 371{383, January 1993.

[10] Adl-Tabatabai, A. and Gross, T. Source-Level Debugging of Scalar Optimized Code.
In Proceedings ACM SIGPLAN'96 Conf. on Programming Languages Design and Im-
plementation, pages 33{43, May 1996.

[11] Allen, J.R., Kennedy, K., Porter�eld, C., and Warren, J. Conversion of Control De-
pendence to Data Dependence. In Proceedings 10th POPL Conference, pages 177{189,
January 1983.

[12] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: A Transparent Dynamic Opti-
mization System. In Proceedings ACM SIGPLAN'2000 Conf. on Programming Lan-
guages Design and Implementation, pages 1{12, June 2000.

122

123

[13] Boyd, M.R. and Whalley, D.B. Isolation and Analysis of Optimization Errors. In
Proceedings ACM SIGPLAN'93 Conf. on Programming Languages Design and Imple-
mentation, pages 26{35, June 1993.

[14] Brooks, G., Hansen, G.J., and Simmons, S. A New Approach to Debugging Optimized
Code. In Proceedings ACM SIGPLAN'92 Conf. on Programming Languages Design
and Implementation, pages 1{11, June 1992.

[15] Burke, M.G., Choi, J., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., and Whaley, J. The Jalape~no Dynamic Optimizing
Compiler for Java. In Proceedings Java'99, pages 129{141, June 1999.

[16] Caron, J.M. and Darnell, P.A. Bug�nd: A Tool for Debugging Optimizing Compilers.
Sigplan Notices, 25(1):17{22, January 1990.

[17] Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.W. IMPACT: An
architectural framework for multiple-instruction-issue processor. In Proceedings of the
18th International Symposium on Computer Architecture, pages 266{275, May 1991.

[18] Copperman, M. Debugging Optimized Code Without Being Misled. PhD dissertation,
University of California, Santa Cruz, 1993. Technical Report UCSC-CRL-93-21.

[19] Copperman, M. Debugging Optimized Code Without Being Misled. ACM Transactions
on Programming Languages and Systems, 16(3):387{427, 1994.

[20] Copperman, M. and McDowell, C.E. Detecting Unexpected Data Values in Optimized
Code. Technical Report 90-56, Board of Studies in Computer and Information Sciences,
University of California at Santa Cruz, October 1990.

[21] Coutant, D.S., Meloy, S., and Ruscetta, M. DOC: A Practical Approach to Source-
Level Debugging of Globally Optimized Code. In Proceedings ACM SIGPLAN'88 Conf.
on Programming Languages Design and Implementation, pages 125{134, June 1988.

[22] Dhamdhere, D.M. and Sankaranarayanan, K.V. Dynamic Currency Determination in
Optimized Programs. ACM Transactions on Programming Languages and Systems,
20(6):1111{1130, November 1998.

[23] Fraser, C. and Hanson, D. A Retargetable C Compiler: Design and Implementation.
Benjamin/Cummings, 1995.

[24] Fritzson, P. A Systematic Approach to Advanced Debugging through Incremental
Compilation. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on High-Level Debugging, pages 130{139, 1983.

[25] Gross, T. Bisection Debugging. In Proceedings of the AADEBUG'97 Workshop, pages
185{191, May, 1997.

[26] Gupta, R. Debugging Code Reorganized by a Trace Scheduling Compiler. Structured
Programming, 11(3):141{150, 1990.

[27] Hennessy, J. Symbolic Debugging of Optimized Code. ACM Transactions on Program-
ming Languages and Systems, 4(3):323{344, July 1982.

124

[28] Holzle, U., Chambers, C., and Ungar, D. Debugging Optimized Code with Dynamic
Deoptimization. In Proceedings ACM SIGPLAN'92 Conf. on Programming Languages
Design and Implementation, pages 32{43, June 1992.

[29] Jaramillo, C., Gupta, R., and So�a, M.L. Capturing the E�ects of Code Improving
Transformations. In Proceedings of International Conference on Parallel Architectures
and Compilation Techniques, pages 118{123. Springer Verlag, October 1998.

[30] Jaramillo, C., Gupta, R., and So�a, M.L. Comparison Checking: An Approach to
Avoid Debugging of Optimized Code. In ACM SIGSOFT Symposium on Foundations
of Software Engineering and European Software Engineering Conference, pages 268{
284. Springer Verlag, September 1999.

[31] Jaramillo, C., Gupta, R., and So�a, M.L. FULLDOC: A Full Reporting Debugger
for Optimized Code. In 7th International Static Analysis Symposium, pages 240{259.
Springer Verlag, June/July 2000.

[32] Kessler, P. Fast Breakpoints: Design and Implementation. In Proceedings ACM SIG-
PLAN'90 Conf. on Programming Languages Design and Implementation, pages 78{84,
June 1990.

[33] Menapace, J., Kingdon, J., and MacKenzie, D. The "stabs" Debug Format. Free
Software Foundation, Inc., Contributed by Cygnus Support, 1993.

[34] Necula, G. Translation Validation for an Optimizing Compiler. In Proceedings ACM
SIGPLAN'99 Conf. on Programming Languages Design and Implementation, pages
83{94, June 2000.

[35] Park, J.C.H., Schlansker, M.S. On Predicated Execution. Technical Report HPL-91-58,
HP Laboratories, Palo Alto, CA, May 1991.

[36] Pineo, P.P. The High-Level Debugging of Parallelized Code Using Code Liberation.
PhD dissertation, University of Pittsburgh, April 1993. Technical Report 93-07.

[37] Pineo, P.P. and So�a, M.L. Debugging Parallelized Code using Code Liberation Tech-
niques. Proceedings of ACM/ONR SIGPLAN Workshop on Parallel and Distributed
Debugging, 26(4):103{114, May 1991.

[38] Pineo, P.P. and So�a, M.L. A Practical Approach to the Symbolic Debugging of
Parallelized Code. Proceedings of International Conference on Compiler Construction,
26(12):357{373, April 1994.

[39] Pollock, L.L. and So�a, M.L. High-Level Debugging with the Aid of an Incremen-
tal Optimizer. In 21st Annual Hawaii International Conference on System Sciences,
volume 2, pages 524{531, January 1988.

[40] Seidner, R. and Tindall, N. Interactive Debug Requirements. In Proceedings ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging, pages
9{22, 1983.

[41] Sosic, R. Dynascope: A Tool for Program Directing. In Proceedings ACM SIGPLAN'92
Conf. on Programming Languages Design and Implementation, pages 12{21, June 1992.

125

[42] Sosic, R. A Procedural Interface for Program Directing. Software Practice and Expe-
rience, 25(7):767{787, July 1995.

[43] Sosic, R. Design and Implementation of Dynascope, a Directing Platform for Compiled
Programs. Computing Systems, 8(2):107{134, Spring 1995.

[44] Sosic, R. and Abramson, D. A. Guard: A Relative Debugger. Software Practice and
Experience, 27(2):185{206, February 1997.

[45] Tice, C. Non-Transparent Debugging of Optimized Code. PhD dissertation, University
of California, Berkeley, 1999. Technical Report UCB-CSD-99-1077.

[46] Tice, C. and Graham, S.L. OPTVIEW: A New Approach for Examining Optimized
Code. Proceedings of ACM SIGPLAN Workshop on Program Analysis for Software
Tools and Engineering, June 1998.

[47] Towle, R.A. Control and Data Dependence for Program Transformations. PhD disser-
tation, University of Illinois, Urbana, IL, 1976.

[48] Warren, H.S. and Schlaeppi, H.P. Design of the FDS Interactive Debugging System.
Technical Report RC7214, IBM Yorktown Heights, Yorktown Heights, N. Y., July
1978.

[49] Wismueller, R. Debugging of Globally Optimized Programs Using Data Flow Analy-
sis. In Proceedings ACM SIGPLAN'94 Conf. on Programming Languages Design and
Implementation, pages 278{289, June 1994.

[50] Wu, L. Interactive Source-Level Debugging of Optimized Code. PhD dissertation,
University of Illinois, Urbana-Champaign, 2000.

[51] Wu, L., Mirani, R., Patil H., Olsen, B., and Hwu, W.W. A New Framework for
Debugging Globally Optimized Code. In Proceedings ACM SIGPLAN'99 Conf. on
Programming Languages Design and Implementation, pages 181{191, May 1999.

[52] Zellweger, P.T. An Interactive High-Level Debugger for Control-Flow Optimized Pro-
grams. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on High-Level Debugging, pages 159{171, 1983.

[53] Zellweger, P.T. Interactive Source-Level Debugging of Optimized Programs. PhD dis-
sertation, University of California, Berkeley, May 1984. Published as XEROX PARC
Technical Report CSL-84-5.

