
A DEMAND-DRIVEN APPROACH

FOR EFFICIENT INTERPROCEDURAL

DATA FLOW ANALYSIS

by

Evelyn Duesterwald

M.S., University of Pittsburgh, 1991

Submitted to the Graduate Faculty of

Arts and Sciences in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

1996

cCopyright by Evelyn Duesterwald

1996

ii

A DEMAND-DRIVEN APPROACH FOR EFFICIENT

INTERPROCEDURAL DATA FLOW ANALYSIS

Evelyn Duesterwald, PhD

University of Pittsburgh, 1996

Despite the increasing importance of data ow analysis, today's applications in com-

piler optimizations and software tools still rely on traditional exhaustive analysis algorithms.

Exhaustively computing data ow information, especially if interprocedural analysis is in-

volved, is known to be costly. This dissertation develops and experimentally evaluates a new

approach to interprocedural data ow analysis that is demand-driven rather than exhaus-

tive. Demand-driven analysis reduces the time and space overhead of exhaustive algorithms

by limiting the analysis e�ort to the collection of information that is actually needed.

A general framework is developed for deriving demand-driven interprocedural analysis

algorithms from a standard algebraic description of the data ow problem. This framework

models a demand for data ow information as a set of queries. A system of query prop-

agation rules is derived that formally describes the resolution of a query. The framework

includes a generic demand-driven algorithm that determines the response to a query by a

polynomially bounded number of applications of these rules.

Experimental results are presented that demonstrate the bene�ts of the demand-driven

approach in practice. Experimentation with two analysis problems, namely reaching def-

initions and copy constant propagation, shows that demand-driven analysis performs well

in practice and reduces the time and space requirements when compared with exhaustive

analysis. Additional experimentation evaluates the demand-driven approach when used

in a speci�c software engineering application. The experiments show that demand-driven

analysis, if used in the context of data ow integration testing, is signi�cantly faster than

exhaustive analysis and even outperforms an improved version of the exhaustive analysis

that is based on incremental updates.

While experimentation demonstrates that demand-driven analysis can achieve consid-

erable improvements over traditional exhaustive algorithms, the analysis may still include

redundant computations. To eliminate these remaining redundancies, the technique of

iii

congruence partitioning is developed. Congruence partitioning is performed to optimize

the performance of data ow analysis in a preparatory phase prior to the actual solution

computation. Congruence partitioning prevents redundant computations by directly ma-

nipulating and reducing the solution equation system. A general framework for congruence

partitioning is presented that can be used to optimize the performance of either exhaustive

or demand-driven analysis algorithms.

iv

ACKNOWLEDGEMENTS

My foremost thanks go to my co-advisor Mary Lou So�a. I thank her for �rst putting

the idea of pursuing a PhD in my mind during my exchange student year and for being my

mentor and a continuous source of support and inspiration in the years thereafter. I also

would like to thank my co-advisor Rajiv Gupta for his support and guidance throughout

my graduate studies. And thanks go to the other members of my committee Jaspal Subhlok

and Robert Daley.

I would hardly be where I am right now if it were not for my friends and I thank all of

them. Lastly, I want to dedicate this page to Juan Leon in remembrance of a late hour at

the Squirrel Hill Cafe.

v

Contents

Abstract iii

Acknowledgements v

Table of Contents vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Current Problems : 1

1.2 Previous Approaches for Reducing Analysis Cost : : : : : : : : : : : : : : : 3

1.2.1 Parallel Data Flow Analysis : 3

1.2.2 Forwarding Techniques : 4

1.2.3 Incremental Data Flow Analysis : 6

1.2.4 Demand-Driven Data Flow Analysis : : : : : : : : : : : : : : : : : : 6

1.3 Overview of the Research : 9

1.3.1 A Demand-Driven Analysis Framework : : : : : : : : : : : : : : : : 10

1.3.2 Congruence Partitioning : 11

1.4 Organization of the Dissertation : 12

2 Background 13

2.1 Program Representation : 13

2.2 Data Flow Frameworks : 14

2.2.1 The Intraprocedural Solution (Kam/Ullman) : : : : : : : : : : : : : 17

2.2.2 The Interprocedural Solution (Sharir/Pnueli) : : : : : : : : : : : : : 17

2.2.3 Abstract Interpretation : 20

2.3 Data Flow Analysis Algorithms : 20

2.3.1 Iterative Algorithms : 20

2.3.2 Elimination Algorithms : 21

2.3.3 Other Methods : 22

3 Overview 23

3.1 Example: Copy Constant Propagation : 23

3.1.1 Exhaustive Analysis : 25

3.1.2 Demand-Driven Analysis : 26

vi

3.2 The Demand-Driven Analysis Framework : : : : : : : : : : : : : : : : : : : 27

3.2.1 Component 1: Data Flow Queries : : : : : : : : : : : : : : : : : : : 27

3.2.2 Component 2: Query Propagation Rules : : : : : : : : : : : : : : : : 28

3.2.3 Component 3: Generic Analysis Algorithm : : : : : : : : : : : : : : 29

3.2.4 Generality : 29

3.3 Applications : 30

3.3.1 Compiler Optimizations : 30

3.3.2 Software Tools : 32

3.4 Parallelizing Demand-Driven Data Flow Analyses : : : : : : : : : : : : : : : 33

4 A Framework for Demand-Driven Data Flow 35

4.1 Framework Components : 35

4.1.1 A Query Propagation Algorithm : 42

4.1.2 Reverse Summary Functions : 42

4.1.3 Caching : 46

4.2 Procedures with Parameters : 47

4.2.1 Binding Functions : 48

4.2.2 Aliasing : 51

4.3 Parallelizing Demand-Driven Data Flow Analyses : : : : : : : : : : : : : : : 52

4.4 Non-Distributive Frameworks : 55

4.4.1 Approximate Demand-Driven Analysis : : : : : : : : : : : : : : : : : 55

4.4.2 Framework Variation : 57

4.5 Related Work on Demand-Driven Analysis : : : : : : : : : : : : : : : : : : : 61

5 A Demand-Driven Analyzer for Gen-Kill Problems 64

5.1 Gen-Kill Problems : 65

5.2 A Framework Instance for Gen-Kill Problems : : : : : : : : : : : : : : : : : 66

5.2.1 Specialized Queries and Propagation Rules : : : : : : : : : : : : : : 66

5.2.2 Demand-Driven Algorithm for Gen-Kill Problems : : : : : : : : : : : 68

5.2.3 Asymptotic Cost : 69

5.3 Application: Demand-Driven DU-Chain Analyzer : : : : : : : : : : : : : : : 72

5.3.1 Interprocedural REACH Analysis : 72

5.3.2 DU-Chains on Demand : 77

5.4 Query Advancing : 79

5.5 Experiments : 81

5.5.1 Experiment 1: Caching Demand-Driven versus Exhaustive : : : : : : 84

5.5.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive : : : 89

5.5.3 Experiment 3: Query Advancing : 91

5.5.4 Summary : 92

vii

6 A Demand-Driven Analyzer for Copy Constant Propagation 95

6.1 Copy Constant Propagation : 95

6.2 A Framework Instance for CCP : 96

6.2.1 Demand-Driven Algorithm for CCP : : : : : : : : : : : : : : : : : : 98

6.2.2 Asymptotic Cost : 102

6.2.3 Query Advancing : 102

6.3 Experiments : 103

6.3.1 Experiment 1: Caching Demand-Driven versus Exhaustive : : : : : : 103

6.3.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive : : : 108

6.3.3 Experiment 3: Query Advancing : 110

6.3.4 Summary : 112

7 Application in Software Testing 114

7.1 Motivation : 114

7.2 Data Flow Testing : 115

7.3 Integration Testing : 116

7.3.1 Computing Cross Chains : 120

7.4 Experiments : 121

7.4.1 Experiment 1: Demand-Driven versus Exhaustive Analysis : : : : : 122

7.4.2 Experiment 2: Demand-Driven versus Incremental Analysis : : : : : 127

7.5 Summary : 130

8 Congruence Partitioning 131

8.1 Overview : 132

8.2 A Framework for Congruence Partitioning : : : : : : : : : : : : : : : : : : : 133

8.2.1 Example : 134

8.2.2 Congruence Relations : 137

8.2.3 Congruence by Idempotence : 138

8.2.4 Partitioning Algorithm : 140

8.2.5 Congruence by Common Subexpression : : : : : : : : : : : : : : : : 146

8.2.6 Minimality : 147

8.3 Data Flow Solutions by Congruence Partitioning : : : : : : : : : : : : : : : 148

8.4 Comparison with Sparse Evaluation Graphs : : : : : : : : : : : : : : : : : : 150

8.5 Related Work : 151

8.6 Summary : 154

8.6.1 Congruence Partitioning and Exhaustive Analysis : : : : : : : : : : 154

8.6.2 Congruence Partitioning and Demand-Driven Analysis : : : : : : : : 155

9 Concluding Remarks 156

9.1 Summary : 156

viii

9.2 Merit of the Work : 157

9.3 Future Directions : 158

Bibliography 162

ix

List of Figures

1.1 A ow graph fragment with initial and optimized exhaustive equation system. 4

1.2 Date ow analyzer (DFA) design. : 5

1.3 The a�ected equations for incremental update after a change at node 5. : : 7

1.4 The partial and optimzed partial equation systems for a demand at node 5. 7

1.5 Demand-driven analyzer design. : 8

1.6 Demand-driven analyzer with congruence partitioning. : : : : : : : : : : : : 10

2.1 A program and its ICFG. : 14

2.2 Data ow at a node n : 15

2.3 Relevant data ow sets for REACH analysis of Figure 2.1. : : : : : : : : : : 19

3.1 The CCP lattice L (i) and the de�nition of the meet operator (ii). : : : : : 24

3.2 The ICFG for a sample program. : 26

4.1 Equation systems in the exhaustive Sharir-Pnueli framework. : : : : : : : : 36

4.2 A node ow function and its reverse function at a node n : : : : : : : : : : 38

4.3 Generic demand-driven analysis procedure. : : : : : : : : : : : : : : : : : : 43

4.4 Procedure Compute�r to compute reverse summary functions. : : : : : : : : 44

4.5 Procedure EnterCache for updating the cache. : : : : : : : : : : : : : : : : 46

4.6 Program with reference and value parameter passing and its ICFG. : : : : : 49

4.7 Analysis re�nements for reference and value parameter passing. : : : : : : : 50

4.8 Expression node in constant propagation. : : : : : : : : : : : : : : : : : : : 56

4.9 Demand-driven analysis algorithm variation for CP. : : : : : : : : : : : : : 59

4.10 Procedure SummaryMark called by Mark CP. : : : : : : : : : : : : : : : : : 60

5.1 Specialized propagation rules for Gen-Kill problems. : : : : : : : : : : : : : 67

5.2 Specialized procedure summary computation for Gen-Kill problems. : : : : 68

5.3 Specialized demand-driven analysis algorithm for Gen-Kill problems. : : : : 70

5.4 Procedure GenKill�r to compute Gen-Kill procedure summaries. : : : : : : 71

5.5 Program with data ow sets for REACH analysis. : : : : : : : : : : : : : : 73

5.6 Interprocedural du-chains with global variables x and y. : : : : : : : : : : : 75

5.7 Demand-driven du-chain computation. : 78

x

5.8 Query advancing in REACH analysis. : 80

5.9 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 87

5.10 Non-Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : 90

6.1 Example for CCP : 97

6.2 Specialized propagation rules (i) and reverse summary functions (ii) for CCP. 99

6.3 Demand-driven algorithm for CCP. : 100

6.4 Procedure CCP�r(p; y; val) for CCP. : 101

6.5 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 106

6.6 Caching (optimzied) demand-driven analysis vs exhaustive analysis. : : : : 109

7.1 Example program with interprocedural du-chains. : : : : : : : : : : : : : : 117

7.2 Cross-on-entry and cross-on-exit du-chains. : : : : : : : : : : : : : : : : : : 118

7.3 Procedure ComputeCross. : 119

7.4 Call graph with non-integrated call sites shown in dashed lines. : : : : : : : 120

7.5 Measured speedups of demand-driven over exhaustive analysis. : : : : : : : 125

7.6 Measured speedup curves of demand-driven over exhaustive analysis. : : : : 126

7.7 Measured speedups of demand-driven over incremental analysis. : : : : : : : 128

7.8 Measured speedup curves of demand-driven over incremental analysis. : : : 129

8.1 The translation of equations into graphs. : 134

8.2 A sample program and its control ow graph : : : : : : : : : : : : : : : : : 135

8.3 Data ow equations and graphical representation : : : : : : : : : : : : : : : 136

8.4 Idempotence congruences in equation systems : : : : : : : : : : : : : : : : : 138

8.5 Original and reduced equation systems : 140

8.6 Reverse DFST partition of the equation graph : : : : : : : : : : : : : : : : 141

8.7 Algorithm to construct a reverse DFST partition. : : : : : : : : : : : : : : : 142

8.8 Idempotence partitioning algorithm. : 143

8.9 Initial and �nal partition : 144

8.10 An adaption of Hopcroft's algorithm for minimizing �nite automata. : : : : 147

8.11 Algorithm to construct an ordered reverse DFST partition. : : : : : : : : : 150

8.12 A ow graph fragment (i) and the induced equation system for CP (ii) : : : 152

8.13 Idempotence congruence partiton and the reduced equation system : : : : : 153

xi

List of Tables

3.1 Flow functions for CCP. : 25

4.1 Reverse ow function for CCP. : 40

4.2 Re�ned ow functions for CCP. : 53

4.3 Re�ned reverse ow functions for CCP. : 53

5.1 Du-chains for the example from Figure 5.1. : : : : : : : : : : : : : : : : : : 77

5.2 Benchmark programs : 83

5.3 Exhaustive analysis. : 85

5.4 Demand-driven analysis with caching versus exhaustive analysis. : : : : : : 86

5.5 Demand-driven analysis without caching versus exhaustive analysis. : : : : 88

5.6 Tradeo�: caching versus non-caching. : 89

5.7 Query Advancing - Caching. : 91

5.8 Query Advancing - Non-caching. : 92

6.1 Flow functions and reverse ow functions for CCP. : : : : : : : : : : : : : : 96

6.2 Exhaustive analysis. : 104

6.3 Demand-driven analysis with caching versus exhaustive analysis. : : : : : : 105

6.4 Demand-driven analysis with caching vs. exhaustive analysis (full solution). 108

6.5 Demand-driven analysis without caching versus exhaustive analysis. : : : : 110

6.6 Tradeo�: caching versus non-caching. : 111

6.7 Query Advancing - Caching. : 112

6.8 Query Advancing - Non-caching. : 113

7.1 Benchmark programs. : 122

7.2 Analyis Times in seconds. : 123

7.3 Speedups : 124

xii

Chapter 1

Introduction

Static data ow analysis is the process of determining program properties that hold for

some or for all executions of a program. Various questions about the way variables and

other program objects are used in a program are formulated as data ow problems. Solving

a data ow problem precisely, without actually executing the program, is an uncomputable

problem. Thus, the computed data ow solution necessarily provides only an approximation

of the actual program behavior during execution.

Since its introduction in the early 70s, the use of data ow analysis has grown con-

siderably. Data ow analysis was �rst developed for optimizing compilers to enable e�-

cient register allocation and a large number of machine independent global optimizations

[ASU86]. Today's utilization of data ow analysis goes far beyond its initial application in

optimizations, and current compilers spend an increasingly large portion of the compilation

time in gathering global data ow information. The advent of parallel computer architec-

tures has created new challenges for compiler writers which must be addressed in order

to fully exploit the potential bene�ts of these architectures. The generation of parallel

code is heavily dependent on data ow information to perform such tasks as vectoriza-

tion and parallelization [AK87, PW86, FOW87], partitioning [SH86], and code scheduling

[Set76]. In addition, data ow analysis has also become the primary component of many

software engineering applications such as editing [RTD83], veri�cation [CC77a], debugging

[Wei84, DGS92a], software testing [RW85, HS89a, DGS92b], program integration [HPR89],

and parallel program analysis [CS89, EP89, SS88, DS91].

1.1 Current Problems

Along with the growing importance of data ow analysis in today's applications comes an

increased concern about the high time and space requirements of computing and main-

taining all data ow information that is needed. Computing data ow solutions, especially

if interprocedural analysis is involved, is costly. Experimental studies show that perform-

ing certain data ow analyses over even medium-sized programs can take several hours

1

2

[GN93, Lan92].

The problem with the considerable time and space overhead of data ow analysis be-

comes even more critical when it is considered that a program is typically analyzed more

than once. The need for multiple analyses may result from several sources. First, today's

compilers require data ow information for an increasing number of independent tasks, each

of which may require a distinct data ow problem to be solved. A program is then analyzed

multiple times, each time to provide the solution to a di�erent data ow problem. Second,

the solution to a single data ow problem may need to be computed more than once as a

result of code transformations. If code transformations are applied to a program, the data

ow information in the program changes and previously computed data ow solutions may

no longer be valid. Data ow must be either updated or re-computed following the applica-

tion of code transformations. Furthermore, the order in which various code transformations

are applied is often guided by heuristics. Thus, repeated phases of computing data ow and

transforming the code may be necessary for certain transformations to be e�ective. Finally,

data ow information may also be invalidated through program edits by the user. During

program development, program edits are expected and must be e�ciently handled. If it is

not possible to correctly update a previously computed data ow solution after a program

edit, the respective analysis may have to be repeated to provide the new data ow solution.

In spite of the increasing need for e�cient data ow analysis algorithms, current data

ow applications typically still rely on traditional exhaustive algorithms for computing data

ow solutions. Phrased in the traditional data ow framework [KU77], the solution to a

data ow problem is expressed as the �xed point of a system of data ow equations. Each

equation expresses the solution at one program point in terms of the solutions at immedi-

ately preceding (or succeeding) points. As a result, data ow solutions are computed in an

inherently exhaustive fashion: that is, information is computed at all program points. Such

an exhaustive solution de�nition is likely to result in very large equation systems limiting

both the time and space e�ciency of even the fastest �xed point evaluation algorithm.

Exhaustive data ow solutions are not only costly to compute, they are also inappro-

priate in applications that actually utilize only a part of the data ow information. For

example, several code transformations in optimizing compilers are applicable to only cer-

tain structures in a program such as loops. Thus, data ow information is needed only

for selected portions of the program. Even if optimizations are applicable everywhere in

the program, one may want to reduce the overall optimization overhead by restricting their

application to only the most frequently executed regions of the program (e.g., frequently

called procedures or inner loops). Other applications that require data ow information

only selectively are found in software development tools. Interactive software tools that aid

in debugging and understanding of complex code require information about various aspects

of a program. Typically, the information requested by a user is not exhaustive but selec-

tive, i.e., data ow for only selected points of the program is needed. For example, during

3

debugging a user may want to know where a certain value is de�ned in the program. Also

the actual amount of data ow information that is needed to satisfy the user's requests is

not �xed before the software tool executes. However, exhaustively precomputing all data

ow information that might be requested by the user can be very costly, especially for large

programs.

This thesis explores the de�ciencies of current exhaustive data ow analyzers and de-

velops two new systematic approaches to improve the performance of data ow analyzers

for today's applications. The �rst approach is a demand-driven approach to data ow anal-

ysis. A demand-driven approach reduces the analysis overhead by limiting the analysis

e�ort to the collection of information that is actually needed by the application. Although

demand-driven analysis can e�ectively reduce the analysis overhead, the analysis may not

be computationally minimal and may still perform redundant computations. Further im-

provements are possible by optimizing the analysis e�ort on the lower level of intermediate

computations. The second approach that is developed in this dissertation, congruence par-

titioning, addresses the elimination of low-level redundancies in the data ow computation.

Together, demand-driven analysis and congruence partitioning enable improvements in the

data ow analyzer that go well beyond the capabilities of previous methods to reduce the

analysis cost.

1.2 Previous Approaches for Reducing Analysis Cost

Several approaches have been developed to improve the performance of traditional exhaus-

tive data ow analysis. Consider Figure 1.1 (i) that shows a fragment of a program's control

ow graph. A hypothetical but realistic data ow equation system for a forward data ow

problem is shown in Figure 1.1 (ii). Each equation X(n) in the system expresses the data

ow solution at node n. The operator u denotes the meet operator that is applied to merge

equation values at conuence points in the graph.

The exhaustive approach determines the data ow solution by computing the �xed

point of all equations in the system simultaneously. Previous approaches to improve this

exhaustive �xed point computation fall into one of two classes: approaches that are aimed

at optimizing the exhaustive solution computation and approaches that completely depart

from exhaustively computing data ow and instead pursue a partial solution computation.

Approaches that fall into the former class are parallel data ow analysis and forwarding

techniques. Example of the latter class are incremental and demand-driven data ow anal-

yses.

1.2.1 Parallel Data Flow Analysis

If a multiprocessor system is available, data ow analysis can be sped up by parallelizing

the data ow computation [GZZ89, GPS90, LMR91, KGS94]. Parallel analysis algorithms

4

1

2

3 4

5

6

7 8

9

X(1) = init

X(2) = X(1)

X(3) = f3(X(2)))

X(4) = X(2)

X(5) = f5(X(4))

X(6) = X(5) uX(9)

X(7) = f7(X(6))

X(8) = f8(X(6))

X(9) = X(7) uX(8)

X(1) = init

X(3) = f3(X(1)))

X(5) = f5(X(1))

X(6) = X(5) uX(10)

X(7) = f7(X(6))

X(8) = f8(X(6))

X(9) = X(7) uX(8)

(i) (ii) exhaustive (iii) optimized exhaustive

Figure 1.1: A ow graph fragment with initial and optimized exhaustive equation system.

are obtained by decomposing the data ow problem into a series of subproblems that can

be solved in parallel. The results obtained for the subproblems are then combined to obtain

the complete data ow solution. The various parallel data ow algorithms that have been

developed di�er in the way they decompose a data ow problem. Although, moderate

amounts of parallelism may be detected using these techniques, the parallel analyses do not

scale well for large numbers of processors due to insu�cient parallelism in the exhaustive

data ow solution de�nition.

1.2.2 Forwarding Techniques

Other sequential approaches achieve performance improvements by reducing the amount of

intermediate computation that is performed during the analysis. Some of the intermediate

computations can be suppressed by directly forwarding information from the points where

it is generated to the points where it is used. Consider the equation system in Figure 1.1

(ii). Instead of repeatedly evaluating the copy equations X(2) and X(4) during the �xed

point iteration, their values can be directly forwarded to the equations that need them. The

resulting reduced equation system, after forwarding has been applied and the two equations

X(2) and X(4) have been eliminated, is shown in Figure 1.1 (iii).

Figure 1.2 illustrates the coupling of forwarding techniques with data ow analysis.

Figure 1.2 (i) depicts the traditional analysis design, where data ow analysis is applied in

an isolated phase and all analysis results are fed to the application afterwards. Figure 1.2 (ii)

5

DFA

program

DFA problem
equations solution application

data flow

(i) Exhaustive analyzer

DFA

program

DFA problem
equations solution applicationequations

restructured
direct

forwarding

data flow

(ii) Analyzer an optimizing forwarding preparatory phase.

Figure 1.2: Date ow analyzer (DFA) design.

shows the analysis design with a forwarding phase. Forwarding techniques are applied prior

to the actual analysis in order to restructure and optimize the solution de�nition for a faster

�xed point computation.

Forwarding techniques [CFR+91, FOW87, BMO90, DRZ92, JP93, CCF90] use some

form of a derived graph representation that provides direct connections (i.e., forwarding

edges) between the points that generate information and the points where the information

is needed. However, these graph based approaches are limited to certain kinds of data ow

problems that can actually take advantage of the introduced direct connection edges. Avail-

able expressions is an example of a data ow problem that does not bene�t from the direct

connection edges provided by these graphs. An exception are the sparse evaluation graphs

(SEG) [CCF90] that are explicitly constructed for each data ow problem to be solved. Al-

though SEGs are general, they are not equally e�ective for all problems. For example, the

SEG for the problem of live variables is likely to result in little or no improvements unless

the live variable problem is broken into a series of N subproblems, one for each program

variable, hence requiring the construction of one graph for each program variable.

Furthermore, although forwarding techniques can e�ectively reduce the amount of inter-

mediate computation during the analysis, the bene�ts of these techniques are limited by the

assumption that the data ow solution is to be computed everywhere in the program. Thus,

the analysis may still spend time and space in unnecessary computations if the application

actually requires only a subset of the complete data ow solution.

6

1.2.3 Incremental Data Flow Analysis

Analyses that explicitly depart from exhaustive solution computations have previously been

developed in an incremental context to handle evolving or changing software. The goal of

incremental data ow analysis [Ros81, Zad84, RP88, PS89, RR91] is to avoid costly re-

computations of the exhaustive solution in response to small changes in a program. Instead

of fully re-analyzing a program from scratch each time a change is made to the program, a

previously computed exhaustive solution, that has become invalid as a result of the change,

is incrementally updated. Given a point where a change occurred, incremental analysis

techniques identify the portion of the global solution that is invalidated by the change and

correct or re-compute data ow information only for the identi�ed portion.

Figure 1.3 illustrates the incremental analysis approach. Figure 1.3 (i) shows the control

ow graph fragment from Figure 1.1 but this time assuming that a program change occurred

at node 5 that invalidated the previous value of equation X(5). Instead of re-evaluating

the complete equation system from Figure 1.1 (i), incremental analysis identi�es and re-

evaluates only the portion of the equation system that is a�ected by the change at node

5. The a�ected equations are shown in Figure 1.3 (ii) and the ow graph portion that

corresponds to these a�ected equations is shown in bold in Figure 1.3 (i).

The illustration in Figure 1.3 shows that, unlike forwarding techniques or parallelization,

incremental analysis e�ectively avoids exhaustive computations and leads to a partial analy-

sis. However, incremental data ow analysis can only avoid exhaustive re-computations and

does not address the problem of having to compute a costly exhaustive solution initially.

1.2.4 Demand-Driven Data Flow Analysis

Developing an approach that, like incremental analysis, e�ectively avoids exhaustive com-

putations but that is also applicable for the initial solution computation leads to a demand-

driven analysis design. As shown in Figure 1.5 demand-driven data ow analysis is no longer

performed in isolation from the application. Instead, demand-driven analysis is interleaved

with the application in such a way that the computation of data ow is performed only

if triggered by a request from the application. A demand-driven analysis is partial rather

than exhaustive and evaluates only the portion of the data ow solution that is needed to

satisfy the actual demands.

Consider Figure 1.4 and assume that only the solution at node 5 is demanded. Since

only the value for equation X(5) is of interest, other equations in the system that do not

contribute to this value do not need to be evaluated. The portion of the equation system

that is actually needed to compute equation X(5) is shown in Figure 1.4 (ii). The portion of

the ow graph that corresponds to this partial equation system is shown in bold in Figure

1.4 (i).

Demand-driven analysis is a promising approach to reduce the analysis overhead in

applications that require data ow only selectively (i.e, only at some program points) and/or

7

1

2

3 4

5

6

7 8

9

X(5) = f5(X(4))

X(6) = X(5) uX(9)

X(7) = f7(X(6))

X(8) = f8(X(6))

X(9) = X(7) uX(8)

(i) (ii) incremental

Figure 1.3: The a�ected equations for incremental update after a change at node 5.

9

87

6

5

43

2

1

X(1) = init

X(2) = X(1)

X(4) = X(2)

X(5) = f5(X(4))

X(1) = init

X(5) = f5(X(1))

(i) (ii) partial (iii) optimized partial

Figure 1.4: The partial and optimzed partial equation systems for a demand at node 5.

8

program

DFA problem
equations

application

query response

partial

DFA

Figure 1.5: Demand-driven analyzer design.

sparsely (i.e., only a subset of the information at each selected point). Furthermore, a

demand-driven analysis approach naturally provides the capability to service user requests

in interactive software tools such as debuggers where the nature and extent of user queries

may vary depending on the user and the program.

Like incremental analysis, demand-driven analysis is an application-directed approach

that reduces analysis overhead by computing partial solutions rather than exhaustive ones.

However, the resulting partial analyzers are not necessarily computationally minimal. The

partial solution computation may still include redundancies, which are revealed when taking

a closer look at the intermediate computations. Eliminating these remaining redundancies

is the goal of forwarding techniques. In fact, demand-driven analysis and forwarding tech-

niques are orthogonal approaches that are targeted at di�erent types of redundancies in

the data ow computation. Consider again Figure 1.4. The partial equation system in (ii)

still contains unnecessary intermediate computations in the form of copies that could be

eliminated through forwarding. The resulting optimized partial equations after forwarding

is shown in Figure 1.4 (iii). Thus, in order to enable aggressive improvements of data ow

analyzers, both approaches should be considered.

Recently, two approaches to demand-driven analysis have been presented by Reps, Hor-

witz and Sagiv [RSH94, RHS95, SRH95a]. In these approaches, a demand-driven analysis

is modeled as a certain kind of graph-reachability problem. The graph for the reachability

problem, the exploded supergraph, is obtained as an expansion of a program's control ow

graph by including an explicit graphical representation of each node's ow function. A

disadvantage of the graph-reachability approach is the need to construct an exploded su-

pergraph for each data ow problem to be solved. The size of the exploded supergraph can

be substantial and, correspondingly, so can be the time needed for the graph construction.

The authors report that during experimentation with the graph-reachability analyzer for

copy constant propagation, the analyzer ran out of virtual memory for some C programs of

about 1,300 lines [SRH95b]. Although a recent variation of the graph-reachability approach

9

[SRH95a] results in a more compact version of the exploded supergraph for copy constant

propagation, the size of the graph is not reduced for other problems, such as the classical

bit vector problems.

Another problem with the graph-reachability framework results from the dependence

on a specialized graphical program representation. By departing from the standard �xed

point solution de�nition, the graph-reachability approach makes it di�cult to combine the

demand-driven analysis with other analysis improvements techniques that are �xed point

based, such as the forwarding or parallelization techniques.

1.3 Overview of the Research

This research develops and experimentally evaluates two systematic approaches to improve

the performance of traditional data ow analyzers. This �rst approach, which represents

the core of this research, consists of the development of a new demand-driven framework for

interprocedural data ow analysis. To avoid the de�ciencies of previous approaches aimed at

reducing analysis cost, the demand-driven analysis framework satis�es the following design

goals:

� Generality: The demand-driven approach is applicable to a general class of data ow

problems.

� Practicality: The demand-driven technique is e�cient in practice, which is demon-

strated through experimentation.

� Application-independence: The developed approach is applicable in classical compiler

applications as well as in applications for software tools.

� Fixed point based: The approach does not require the construction of a specialized

graphical program representation and models the problem based on well-understood

�xed point computations.

� Integratable: The demand-driven analysis algorithms can easily be integrated with

other �xed point based techniques, such as forwarding.

� Parallelizable: The developed demand-driven algorithms have a natural paralleliza-

tion.

Although the practicality and usefulness of the demand-driven approach is established

as part of this research through both analytical examinations and experimentation, there

is still room for further improvements. To complement the demand-driven approach and

to address the elimination of the remaining ine�ciencies in the data ow computation, this

research also includes the development of a second approach. This second approach consists

of a framework for a new generalized forwarding technique: congruence partitioning. A

10

program

DFA problem
equations

application

query response

min.
equationscongruence

partitioning

partial

DFA

Figure 1.6: Demand-driven analyzer with congruence partitioning.

congruence partitioning is computed to reduce the size of a data ow equations by identifying

and eliminating congruent equations from the system. Congruence partitioning is as general

as the previously most general approach to forwarding, that is, sparse evaluation graphs

[CCF90]. Thus, congruence partitioning is applicable to any monotone data ow problem.

However, congruence partitioning is more powerful than previous techniques and enables

optimizations of an equation system that can not be achieved using any of the previous

methods.

The demand-driven analysis approach and congruence partitioning constitute two com-

plimentary approaches for improving data ow analysis. The two approaches can be pursued

individually or in combination. The coupling of congruence partitioning with a demand-

driven analyzer is illustrated in Figure 1.6. In this combination congruence partitioning is

applied �rst in order to construct a reduced de�nition of the solution. Instead of exhaustively

evaluating the reduced equation system a demand-driven analyzer is used to compute only

what is needed by the application. The demand-driven framework and the framework for

congruence partitioning together enable improvements in interprocedural data ow analysis

that go well beyond the improvements achievable by previous techniques.

The remainder of this section provides a brief overview of the two approaches presented

in this thesis.

1.3.1 A Demand-Driven Analysis Framework

The �rst approach developed in this thesis consists of an algebraic framework for deriving

demand-driven interprocedural analysis algorithms. This framework models the demand-

driven analysis of a program as a query system. A demand for a speci�c subset of the

exhaustive solution is formulated as a set of queries. Queries are issued by the application

and may be generated automatically (e.g., in compiler optimization) or manually by the user

(e.g., in an interactive software tool). A query is a pair q =< y; n > speci�ed by a set of data

11

ow facts y and a program point n. Query q =< y; n > raises the question as to whether

the set of facts y is part of the exhaustive solution at program point n. A response, true or

false, to the query q is determined by propagating q from point n in the reverse direction

of the original exhaustive analysis until all points have been encountered that contribute

to the determination of the response for q. This query propagation is formally modeled as

a partial reversal of the original exhaustive data ow analysis. The framework includes a

generic algorithm that implements the partial reversal and provides a demand-driven query

propagation procedure.

The generic demand-driven algorithm is precise for the class of distributive data ow

problems with �nite lattices. If applied to a monotone problem the algorithm can still be

used to provide approximate but safe information. Alternatively, a less e�cient but precise

framework variation is presented to handle non-distributive data ow problems.

The practical bene�ts of the demand-driven framework are demonstrated through nu-

merous experiments. An experimental study of demand-driven algorithms for two problems,

namely reaching de�nitions and copy constant propagation, was conducted to evaluate the

performance of demand-driven analysis independently of a particular application. To com-

plete the experimental study, a second set of experiments was carried out that evaluates

demand-driven analyzers in a speci�c software engineering application.

As an additional bene�t, the developed demand-driven algorithms have a natural paral-

lelization. Individual queries can be propagated and resolved in parallel without requiring

a separate phase to explicitly uncover parallelism. Unlike previous techniques for data ow

analysis parallelization, the amount of parallelism in the data ow computation is indepen-

dent of the program structure and depends only on the size of the program and the number

of generated queries.

1.3.2 Congruence Partitioning

The second approach developed in this thesis consists of a framework for a new generalized

forwarding technique: congruence partitioning. Congruence partitioning reduces the size

of a data ow equation system through the discovery of congruence relationships among

solution equations. Two equations are congruent if their �xed points are equal. Thus, at

least one of two congruent equations is redundant and can therefore be eliminated. By

repeatedly applying this elimination process, an equivalent but smaller equation system

can be constructed that includes only a single equation from each class of congruent equa-

tions. The congruence partitioning framework includes e�cient partitioning algorithms for

computing di�erent kinds of congruence relations.

Congruence partitioning is applicable to both exhaustive and demand-driven analyzers.

As with other forwarding techniques, congruence partitioning is applied as a preparatory

phase prior to the actual analysis in order to restructure and optimize the data ow solution

de�nition. However, congruence partitioning is more powerful than previous forwarding

12

techniques in that it enables more aggressive equation system reductions.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides the back-

ground in global data ow analysis. An overview of the demand-driven analysis framework

along with a discussion of the applications of demand-driven data ow analysis is given in

Chapter 3. Chapter 4 provides the technical details of the demand-driven analysis frame-

work and describes the individual framework components.

The experimental evaluation of the demand-driven approach is presented in Chapters 5

through 7. Chapters 5 and 6 consider speci�c analysis problems and show that the general

framework can be e�ciently implemented for these problems. Chapter 5 presents and exper-

imentally evaluates demand-driven analyzers for the class of Gen-Kill problems. Chapter

6 presents a demand-driven analyzer for copy constant propagation and its experimental

evaluation. Chapter 7 examines the demand-driven approach in a software engineering ap-

plication, namely data ow integration testing. A new and e�cient demand-driven approach

to data ow integration testing is developed and experimentally evaluated.

The second approach for improving data ow analysis developed in this dissertation

is presented in Chapter 8. Chapter 8 presents the formal framework for congruence par-

titioning and includes a discussion of how congruence partitioning can be coupled with

the demand-driven analyzers from the previous sections. The dissertation is concluded in

Chapter 9 with a summary and a discussion of future directions.

Chapter 2

Background

Since their introduction in the 70s, data ow analyses have formally been modeled in al-

gebraic frameworks called data ow frameworks. The study of data ow frameworks was

motivated by the need for a uniform model for the design and development of program anal-

ysis techniques. This chapter surveys the pertinent background in global data ow analysis.

First, the program representation commonly used in data ow analysis is presented in Sec-

tion 2.1. Section 2.2 presents the algebraic frameworks for intra- and interprocedural data

ow analysis. The algorithms that are commonly used to solve problems formulated in

these frameworks are presented in Section 2.3.

2.1 Program Representation

A program consisting of a set of possibly recursive procedures is represented by an interpro-

cedural control ow graph (ICFG). An ICFG is a collection of control ow graphs G1; : : : ; Gk,

such that Gi = (Ni; Ei) is a control ow graph representing procedure pi. The nodes in

Ni represent the statements in procedure pi and the edges in Ei represent the transfer of

control among the statements in pi. Two distinguished nodes entryi and exiti represent

the unique entry and exit nodes of pi. The set E = [fEi j 1 � i � kg denotes the set of all

edges in the ICFG and N = [fNi j 1 � i � kg denotes the set of all nodes. It is assumed

that jEj = O(jN j). The sets pred(n) = fmj(m;n) 2 Eig and succ(n) = fmj(n;m) 2 Eig

denote the sets of immediate predecessors and successors of node n, respectively. For a call

site node s, call(s) denotes the procedure called from s. A program and its ICFG are shown

in Figure 2.1.

During the analysis only valid execution paths should be considered. An execution path

is a sequence of nodes � = n1 : : :nk , such that for 1 � i < k either (i) (ni; ni+1) 2 E (in-

traprocedural control), (ii) call(ni) = p for some procedure p and ni+1 = entryp (procedure

invocation), or (iii) ni = exitp for some procedure p and there exists m 2 pred(ni+1) such

that call(m) = p (procedure return). Furthermore to be valid, each procedure exit node

exitp in � must be followed by a successor node of the matching call site n with call(n) = p

13

14

entry

exit
exit

entry

1

2

3

4

5

8

9

10

a:=1

read(b)
b:=1 a:=b

procedure main

declare a,b;

a:=1;

read(b);

call p;
end

procedure p

else b:=1;

call p;
endif;

end

begin

begin

6

7

11

procedure p

main

if (cond) then a:=b

if (cond)

call p
call p

Figure 2.1: A program and its ICFG.

that most recently occurred in � prior to exitp. A path is not valid if it enters a procedure

p from one call site but upon reaching p's exit node returns to a di�erent call site.

Consider the example in Figure 2.1. The path 1; 2; 3; 4; 6; 7; 10; 11; 5 is a valid execution

path but the path 1; 2; 3; 4; 6; 7; 10; 11; 11; 5 is not valid. Invalid paths violate the calling

context of procedures and may lead to imprecise information if considered during the analy-

sis. The set of interprocedurally valid execution paths from a node n to a node m is denoted

by IVP(n;m).

Another structure commonly used in interprocedural analysis is the call graph of a

program. A call graph is a directed graph G = (N;E), where the nodes in N represent

the procedures in the program and there exists an edge (p; q) 2 E for each call site in a

procedure p that calls a procedure q. Since there may be multiple call sites in p calling q,

the call graph G is a multi graph. A path in a call graph is called a call chain.

2.2 Data Flow Frameworks

An algebraic framework for data ow analysis was introduced by Kildall [Kil73]. Re�ne-

ments and extensions of the original framework were suggested by others, including Kam

and Ullman [KU77, KU76] and Graham and Wegman [GW76]. Data ow frameworks are

also called monotone frameworks based on the monotonicity of the information ow func-

tions in the framework. A function f is monotone if x � y implies f(x) � f(y).

A comprehensive overview of data ow frameworks is presented in [MR90].

15

x ∈L

n f n

f n (x)∈L

Figure 2.2: Data ow at a node n

A data ow framework is a pair D = (L; F), where:

� (L;u;v;?;>) is a complete lattice representing the universe of program facts with a

partial order v, a least element ? (bottom), a greatest element > (top), and a meet

operator u, such that for all x; y; z 2 L:

x u x = x (idempotence)

x u y = y u x (commutativity)

x u (y u z) = (xu y)u z (associativity)

� F � ff : L 7! Lg is a set of monotone ow functions over L that contains the identity

function id and that is closed under composition and pointwise meet:

8f; g 2 F : f � g 2 F and if h(x) = g(x)u f(x) then h 2 F:

A function f 2 F is called u-distributive (i.e., distributive with respect to the meet u) if

f(x u y) = f(x) u f(y). If the meet operator u is clear from the context, the function is

simply called distributive. If all functions in F are distributive, D is called a distributive

data ow framework.

An instance of a framework D = (L; F) is given by a pair I = (G;m), where:

� G = (N;E) is an ICFG,

� m : N 7! F is a mapping that maps each node in the ICFG to a function in F .

The function m(n) mapped to a node n (also denoted fn) models the data ow when

execution passes through node n. As illustrated in Figure 2.2, if x 2 L holds on entry of

a node n then fn(x) 2 L holds on exit from node n. For a given path p = n0; n1; : : : ; nk

function application along this path is denoted as: fp = fk � : : : � f1 � f0.

The problems that can be phrased in a data ow framework have been classi�ed along

various dimensions. According to their analysis direction, data ow problems are classi�ed

as either forward or backward problems. In a forward problem information is propagated

16

in the direction of control while in a backward problem information ows in the direction

opposite to control. Both forward and backward problems can be uniformly modeled in the

above framework by representing a backward problem as a forward problem on the reverse

control ow graph. Bidirectional problems require information propagated in both a forward

and a backward direction. The problem of partial redundancy elimination was originally

formulated as a bidirectional problem [MR79]. However, recently two new formulations

have been presented to solve partial redundancy elimination in a sequence of forward and

backward analyses [KS92, DRZ92]. A general method for breaking bidirectional problems

into a sequence of uni-directional problems was presented in [DRZ92].

Another common approach is to classify data ow problems as union or intersection

problems. Union and intersection problems are problems in which the lattice L has a

powerset structure. In a union problem the meet operator is conventional set union, whereas

the meet operator in an intersection problem is set intersection. The meet lattice structure

most naturally models intersection problems. However, by duality [Bir84] every union

problem can be phrased in a meet lattice.

Data ow problems are formulated as either intraprocedural or interprocedural problems.

An intraprocedural problem only considers the data ow within each procedure. Interproce-

dural problems analyze, in addition, the interactions among procedures at call sites. Usually,

intraprocedural data ow problems (e.g., live variables) also have an interprocedural ver-

sion. However, there are also problems, such as the alias problem for reference parameters

[Coo85] that only exist at the interprocedural level.

Finally, data ow problems are also classi�able in terms of their algebraic complexity.

The most general characterization is the class of monotone problems with the subclass of

distributive problems. An important subclass of the distributive problems is the class of bit

vector problems. In a bit vector problem, there exists a natural mapping from the lattice L

to the set f0; 1gn, such that each element in L can be represented by a bit vector of length n.

Bit vector problems have e�cient implementations since operations on lattice elements can

be implemented as boolean operations on bit vectors. Another particular simple subclass

of the distributive problems are the partitionable problems (also called locally separable in

[RHS95]). A problem is partitionable if it can be broken into a sequence of separate simple

analyses, one for each program object, such as variables or expressions. A partitionable

problem is characterized by a restricted form of ow functions. Each ow function f is of

the form: f(x) = c or f(x) = x u c, where c is a constant in L. The four classic data

ow problems: reaching de�nitions (REACH), available expressions (AVAIL), live variables

(LIVE) and very busy expressions (BUSY) are examples of partitionable problems. These

problems are also called Gen-Kill problems since their original ow functions (i.e., the

functions prior to partitioning) are of the form: f(x) = (x�Kill)[Gen, where Gen and Kill

are constant subsets in L. Note that the four classic problems are also bit vectors problems.

17

However, not every bit vector problem is partitionable. Faint variables1 is an example of a

problem that can be implemented using bit vectors but that is not partitionable.

2.2.1 The Intraprocedural Solution (Kam/Ullman)

The solution for an instance of a data ow framework is an assignment of lattice elements

to program nodes. The optimal solution is the meet-over-all-paths (mop) solution, which

precisely captures the ow of information along each valid execution path. The assignment

mop : N 7! L is de�ned as:

mop(entrymain) = ?

mop(n) = u
p2IVP (entrymain ;n)

fp(?)
(2:1)

The solution mop assigns to each node the set of data ow facts (i.e., lattice elements)

that hold on node entry for every valid execution path leading to the node. The bottom

value ? at node entrymain indicates that no information holds on program entry. Since the

mop solution is in general undecidable, data ow algorithms provide an approximation to

the mop solution. Kam and Ullman showed in their standard intraprocedural framework

[KU77] that a unique and decidable approximation to the mop solution is computed as the

greatest �xed point (gfp) of the following system of data ow equations:

X(entrymain) = ?

X(n) = fn(u
m2pred(n)

X(m)):
(2:2)

The equation X(n) describes the data ow facts that hold on entry of node n. The greatest

�xed point can be computed over the equation system by initialing all equations with the

top value > and then iteratively lowering the initial values by repeatedly evaluating the

equations until the system converges.

In a monotone data ow framework D, there always exists a unique gfp of the equation

system (2.2). The gfp solution is always lower in the lattice than the mop solution and is

therefore a safe approximation. If D is distributive, the gfp solution is equal to the mop

solution. If D is non-distributive then there exists an instance of D in which gfp is strictly

lower than mop [KU77].

2.2.2 The Interprocedural Solution (Sharir/Pnueli)

During intraprocedural analysis the propagation of information is restricted to the control

ow paths within each procedure. Interprocedural analysis considers in addition the propa-

gation of information across procedure boundaries at call and return points. Several formal

1A variable v is a faint variable if v is dead or if v is de�ned in terms of another variable that is faint.

18

frameworks for interprocedural analysis have been developed [CC77c, Ros81, JM73, SP81,

KS92]. This section presents Sharir and Pnueli's functional approach to interprocedural

analysis which also serves as the basis for the demand-driven analysis framework presented

in Chapter 3.

Sharir and Pnueli [SP81] presented a two-phase approach to interprocedural analysis

that ensures that only valid execution paths are considered and the calling context of each

procedure is preserved. During the �rst phase the data ow e�ect of each procedure is

analyzed independent of its calling context. The results of this phase are procedure summary

functions as de�ned in equation system (2.3). The summary function �(entryp;exitp) : L 7! L

for procedure p maps data ow facts from the entry node entryp to the corresponding set

of facts that hold upon procedure exit. The summary functions are de�ned inductively by

computing for each node n in p the function �(entryp;n) that maps an element x 2 L to the

corresponding element �(entryp;n)(x) 2 L that holds on entry to node n assuming that x

holds upon procedure entry.

�(entryp;entryp)(x) = x

�(entryp;n)(x) = u
m2pred(n)

8>><
>>:

fm � �(entryp;m)(x) if m is not a call site

�(entryq ;exitq) � �(entryp;m)(x) if call(m)=q

(2:3)

The actual calling context of a called procedure is propagated during the second phase

based on the summary functions. The data ow solution X(n) at a node n in a procedure p

is determined by mapping the solution X(entryp) that holds on entry of p to node n using

the summary function �(entryp;n). The equation system (2.4) de�nes the data ow solution

X(n) that holds on entry of node n.

X(entrymain) = ?

For each procedure p:

X(entryp) = u
call(m)=p

X(m)

For non-entry nodes n:

X(n) = u
m2pred(n)

8>><
>>:

fm(X(m)) if m is not a call site

�(entryq ;exitq)(X(m)) if call(m)=q

(2:4)

For �nite lattices Sharir and Pnueli propose an e�cient algorithm to solve the equation

systems 2.3 and 2.4. If the lattice is �nite the equation system 2.3 is �nite so that the

solution can be computed using a standard iterative �xed point algorithm based on the

19

Gen and Kill sets

node n Genn Killn

1 - -

2 a2 a10

3 b3 b8

4 - -

5 - -

6 - -

7 - -

8 b8 b3

9 - -

10 a10 a2

11 - -

Summary function for p

node n �(6;n)(X)

6 X

7 X

8 X

9 (X � fb3g) [fb8g

10 X

11 X [fb3; a10g

Reaching de�nitions

node n X(n)

1 -

2 -

3 a2

4 a2; b3

5 a2; a10; b3; b8

6 a2; b3; b8

7 a2; b3; b8

8 a2; b3; b8

9 a2; b3; b8

10 a2; b3; b8

11 a2; a10; b3; b8

Figure 2.3: Relevant data ow sets for REACH analysis of Figure 2.1.

initial value > for equations �(entryp;n)(x) for each node n in procedure p and each lattice

element x. Once the summary function equation system has been solved, the actual solution

equations in system 2.4. are computed during a second phase using the computed summary

function values.

To illustrate the de�nition of the interprocedural analysis framework consider the prob-

lem of determining the sets of interprocedural reaching de�nitions (REACH) in a program.

The de�nition of a variable v is a reaching de�nition at a node n if there exists a valid

execution path from the de�nition to node n that does not re-de�ne v. REACH is the

problem of computing at each node the set of de�nitions that reach that node.

REACH is a union problem for which the lattice is the powerset lattice of the set of

de�nitions (DEF) in the program. The meet is set union ("[") and > = ; and ? = DEF.

The partial order in this lattice is reverse set inclusion ("�"). The framework for REACH

is distributive and an instance is given by an ICFG for a particular program and a mapping

of ow functions fn to each node n such that:

fn(X) = (X �Killn) [Genn:

Killn is the set of de�nitions that are killed at n, that is, the de�nitions that cannot reach

the end of node n because of a re-de�nition contained in n. Genn is the set of generated

de�nitions, that is, the de�nitions that occur in node n without a subsequent re-de�nition

at n. The Gen and Kill sets for the example in Figure 2.1 are shown in Figure 2.3. To

distinguish multiple occurrences of the same variable, de�nitions of variables are subscripted

with the number of the node that contains the de�nition.

For a set of de�nitions X , the summary function value �(entryp;exitp)(X) denotes the set

20

of de�nitions that reach the exit of procedure p assuming that the de�nitions in X reach

the entry of p. Figure 2.3 shows the solutions to the equation systems for the summary

function �(6;11) for procedure p from Figure 2.1.

2.2.3 Abstract Interpretation

Data ow frameworks provide a uniform way to model and specify program analyzers.

However, they do not include explicit mechanisms to facilitate formal correctness proofs

of the modeled program analyses. To formally prove correctness it is necessary to relate

the program invariants derived by an analyzer to the program's formal semantics that are

assumed to correctly describe the actual program behavior. Cousot and Cousot [CC77a,

CC79] developed a variant of the classical data ow framework called abstract interpretation

that explicitly incorporates formal semantics. An abstract interpretation models data ow

analysis as an approximation of the program's formal semantics, which are in general not

computable. The formal semantics are expressed by a lattice of sets of possible program

states. The simpler lattice actually used in a particular data ow analysis is viewed as

an abstraction (i.e., an approximation) of the precise semantics. Transfer between the

two lattices is achieved through abstraction and concretization functions. Based on this

connection between an abstraction and a concretization function, program facts derived

during data ow analysis are proven to be correct approximations of the program's formal

semantics.

2.3 Data Flow Analysis Algorithms

Algorithms for global data ow analysis fall into two major classes: iterative algorithms

and elimination algorithms. The algorithms in either class deliver the greatest �xed point

solution of the respective data ow equation system. In iterative algorithms, the equations

are repeatedly evaluated until the evaluation converges to a �xed point. Elimination algo-

rithms compute the �xed point by decomposition and reduction of the control ow graph

to obtain subsequently smaller systems of equations. If not stated otherwise, all asymptotic

complexities of data ow algorithms presented in this sections are based on intraprocedural

analysis.

2.3.1 Iterative Algorithms

Iterative algorithms for global data ow analysis originate with Kildall's worklist iteration

[Kil73]. In worklist iteration, nodes are successively removed from a worklist and the asso-

ciated equations are evaluated. If, as a result, the lattice value changes at the currently in-

spected node, all successors of that node are added to the list. Worklist iteration terminates

when the list is empty, resulting in a worst-case running time for intraprocedural analysis

21

of O(jN j � height(L)) node visits, where height(L) denotes the height 2 of semi-lattice L.

Sharir and Pnueli proposed a worklist algorithm for their interprocedural two-phase equa-

tion systems. For �nite lattices, the algorithm requires O(MaxCall�height(L)�jLj� jN j)

time, where MaxCall is the maximal number of call sites calling a single procedure.

Reverse postorder iteration [KU76, HU73] is an iterative algorithm that proceeds in

multiple passes over the control ow graph. Kam and Ullman have shown that for rapid3

data ow frameworks, reverse postorder iteration requires d + 3 passes, where d is the

maximum number of back edges in a cycle-free path (the maximal loop nesting depth in

structured programs). In practice, values for d are usually less than or equal to three

[Knu71]. Kam and Ullman's notion of rapidity [KU76] is a property of the function space.

Intuitively, rapidity implies that all information can be propagated along acyclic paths. A

classical problem that is not rapid is constant propagation.

Other iterative algorithms include node listings [Ken75], which are speci�cations of the

order in which the nodes in the graph are visited and several variants of iterative algorithms

presented by Horwitz, Demers and Teitelbaum [HDT87].

2.3.2 Elimination Algorithms

The key idea in elimination algorithms is to reduce the original system of equations to

subsequently smaller systems by structure-driven graph transformations and corresponding

substitutions in the equation system. If no further reductions are possible, the resulting

equation system is evaluated, and the solution to the original system is obtained through

propagation by reversing the reduction process. A comprehensive survey of elimination

algorithms for data ow analysis appears in [RP86].

In interval analysis [AC77, Coc70] the control ow graph is subsequently partitioned

into subgraphs called intervals. An interval is replaced by a single node that contains the

information local to the interval. The partitioning continues until the graph is reduced to

a single node for which the data ow solution can easily be obtained. An improvement

over Allen and Cocke's original interval analysis is presented by Hecht and Ullman called

T1 � T2 analysis [HU73], based on two graph transformations T1 and T2. T1 � T2 analysis

proceeds in O((d+ 2) � jEj) time, where d refers to the depths of the graph as described

in the previous section. Both Allen and Cocke's interval analysis and T1 � T2 analysis are

restricted to reducible control ow graphs. An extension that can handle irreducible ow

graphs was presented by Graham and Wegman [GW76]. Graham and Wegman's analysis

proceeds in O(jEj log jEj) time for fast 4 problems.

2The height of a lattice L denotes the length of the longest chain in L.
3A data ow problem is called rapid if 8g; f 2 F;8x 2 L : f � g (?)w g(?) u f(x) u x.
4A data ow problem is fast if 8f 2 F;8x 2 L : f(x) u x v f(f(x)).

22

2.3.3 Other Methods

Some approaches to data ow analysis do not assume an algebraic lattice framework. Sym-

bolic evaluation techniques derive program invariants by associating symbolic values with

program variables and by computing algebraic closed form expressions over these sym-

bolic values. Using a specialized program representation called the global value graph

[RL77, RT82] e�cient techniques for symbolic evaluation have been developed for a re-

stricted class of data ow problems.

Another approach that does not assume a lattice framework is Tarjan's path algebra

[Tar81b, Tar81a]. The ow of information is computed by parsing a path expression, i.e.,

a regular expression representation of program paths, where each expression operator is

associated with an information transfer function.

Recently, Reps, Horwitz and Sagiv presented a new graph oriented approach to interpro-

cedural data ow analysis [RHS95]. In this approach, a data ow problem is transformed

into a specialized graph-reachability problem. The graph for the reachability problem, the

exploded supergraph, is obtained as an expansion of a program's control ow graph by includ-

ing an explicit graphical representation of each node's ow function. The graph-reachability

approach is applicable to distributive data ow problems with a lattice that is the powerset

of a �nite set.

Chapter 3

Overview

The core of this research is the development of a formal framework for demand-driven

interprocedural data ow analysis. This chapter provides an overview of the demand-

driven approach and is organized as follows. Section 3.1 motivates the demand-driven

approach using the example of copy constant propagation. An outline of the demand-

driven framework and its components is presented in Section 3.2. The chapter concludes

with a discussion of the bene�ts of the demand-driven approach for the parallel execution

of data ow analysis.

3.1 Example: Copy Constant Propagation

As an illustration of the demand-driven approach consider the problem of copy constant

propagation (CCP). CCP is a distributive version of the general (non-distributive) constant

propagation analysis [Kil73]. Unlike general constant propagation, CCP does not evaluate

arithmetic expressions. A variable v is a copy constant if v is assigned a constant value or

if v is assigned a copy of another variable that is a copy constant.

The CCP lattice for a program with k variables is the product lattice Lk, where the

component lattice L is de�ned as shown in Figure 3.1 (i). Note that the component lattice

in CCP is �nite, since the only possible constant values for a copy constant are the constant

literals that occur in the program text. Each lattice element is a k-tuple x = (x1; : : :xk)

with a component xi 2 L for variable vi. The meet operator u and the dual join operator

t are de�ned pointwise according to the partial order depicted in Figure 3.1 (ii).

A base element in Lk is a tuple (x1; : : : ; xk) with a single non-bottom component xi:

xi = c and xj = ? for j 6= i. Such a base element is also written as:

[vi=c] = (?; : : : ;?; xi = c;?; : : : ;?)

Similarly, any element x 2 Lk that results as a �nite join of base elements is written as:

x = [v1 = c1] t : : :t [vl = cl] = [vi = ci; : : : ; vl = cl]

23

24

−−|

. . .

−−|

any integer

undefined

c1 ci constant literal

(i)

u ? ci >

? ? ? ?
cj ? ci if ci = cj cj

? otherwise

> ? ci >

(i)

Figure 3.1: The CCP lattice L (i) and the de�nition of the meet operator (ii).

The distributive ow functions in CCP are de�ned pointwise for each component:

f(x1; : : : ; xk) = (f(x1; : : : ; xk)1; : : : ; f(x1; : : : ; xk)k):

The component function f(x1; : : : ; xk)j with respect to variable vj is de�ned in Table 3.1 for

various types of assignments. For example, for a constant assignment vi := c the component

function is de�ned as f(x1; : : : ; xk)i = c indicating that variable vi has constant value c

after the execution of the assignment. The assignment has no e�ect on the values of other

variables vj . Thus, their component functions are identity functions, i.e., f(x1; : : : ; xk)j =

xj . For the same reason, the component functions for a conditional expression are also

identity functions.

The ow functions for CCP are illustrated for the control ow graph shown in Figure

3.2, where each ow function for a non-call node is shown next to the node. Each lattice

element is a triple (xa; xb; xc), such that the components xa; xb and xc denote the lattice

values for variables a,b and c, respectively.

25

statement at node n function fn(x)j, where x = (x1; : : : ; xk)

const. assignment: vi := c fn(x)j =

8<
: c if i = j

xj otherwise

copy: vi := vl fn(x)j =

8<
: xl if i = j

xj otherwise

expr. assignment: vi := expr. fn(x)j =

8<
: ? if i = j

xj otherwise

read(vi) fn(x)j =

8<
: ? if i = j

xj otherwise

Table 3.1: Flow functions for CCP.

3.1.1 Exhaustive Analysis

Consider Figure 3.2 and the question as to whether variable b is a copy constant at the

write statement at node 7. Standard analysis provides an answer by an exhaustive forward

propagation that provides copy constant information for all variables at all nodes in the

graph. At each node n the complete solution vector X(n) = (xa; xb; xc) is computed, where

xa; xb and xc are the lattice values that have been determined for variables a, b, and c at node

n. The solution vectors are computed by propagating a program entry value throughout the

program. This propagation involves the repeated application of the ow functions to the

current values at each node. The program entry value is simply X(entrymain) = (?;?:?)

denoting that no variable has a value upon program entry.

Each time a node is visited during the propagation the complete solution vector is

evaluated. Note that when propagating in a forward direction, all available information

must be collected since prior to reaching node 7 it cannot be determined that information

at a predecessor node is not relevant. In particular, when encountering the call to procedure

q in node 1 and the call to procedure p in node 5, the two procedures must be fully analyzed

in order to ensure that the complete information that may reach node 7 has been collected.

26

exit

call p

...

...

call q1

2

3

4

5

6

7

10

f2(xa,xb,xc)=(0,xb,xc)

f6(xa,xb,xc)=(−−| ,xb,xc)

f3(xa,xb,xc)=(xa,xa,xc)

f4(xa,xb,xc)=(xa,xb,xb)

a:=0

b:=a

c:=b a:=b+c

write(b)

read(b)

procedure main

9
write(a,b,c)

11

f10(xa,xb,xc)=(xa,−−| ,xc)

f9(xa,xb,xc)=(xa,xb,xc)

procedure p
8

entry

Figure 3.2: The ICFG for a sample program.

3.1.2 Demand-Driven Analysis

Now consider how a demand-driven analysis determines whether variable b is a copy constant

at node 7. Unlike exhaustive analysis, demand-driven analysis is goal-directed. A solution

to the problem is determined by a partial backward search that is started at node 7 and

that proceeds in the reverse direction of the exhaustive analysis backwards along each path

that leads to node 7. During this backward search only information that is actually relevant

for the current problem is collected. The search terminates as soon as a solution has been

found. Assume the backward search for the constant value of variable b in Figure 3.2 �rst

proceeds along the left branch in procedure main and visits node 4. The computation at

node 4 cannot a�ect the data ow value for variable b. Hence, no information is collected,

and the search continues at predecessor node 3. An inspection of node 3 reveals that for

variable b to be a copy constant, variable a must be a copy constant at node 3. Hence,

the search continues at node 2 with the new problem of determining whether a is a copy

constant. Since node 2 contains a constant assignment to variable a, the search terminates

successfully with the information that b is a copy constant with the value 0 along the

traversed path. Next the remaining path along the right branch in procedure main is

traversed, starting at node 6. Again, the computation at node 6 cannot a�ect the value

of b, and the search continues at node 5. Since node 5 contains a call to procedure p, the

27

search in main is interrupted to collect information about the called procedure p. Next,

procedure p is analyzed starting at the exit node 11 and proceeding backwards towards p's

entry node. When reaching node 10, it is determined that b cannot be a copy constant at

the exit of procedure p. This information is passed back to the call node 5 in main. At this

point, the overall search terminates with the result that b is not a copy constant at node 7

since a path was encountered along which b is not constant.

The illustration of the demand-driven search procedure shows that there are three ways

in which demand-driven analysis avoids unnecessary computations that must be performed

in the exhaustive analysis. First, when visiting a node, the information that is not relevant

to the current demand does not have to be collected in a demand-driven analysis. Second,

nodes that cannot contribute to the demanded solution do not even have to be visited.

Third, procedures are analyzed only if needed, that is, only if it has been determined that

information from the procedure does a�ect the demanded solution. For example in Figure

3.2, the demand-driven analysis does not analyze procedure q since the backward search

revealed that information from q cannot possibly a�ect the solution to the problem at node

7.

3.2 The Demand-Driven Analysis Framework

The demand-driven analysis framework developed in this dissertation generalizes and for-

mally de�nes the backward search from the previous section. The generalized framework is

obtained by providing the answers to the following questions:

� What kind of information can be collected in a demand-driven way?

� What are the search operations performed at each node and when does the search

terminate?

� Are there e�cient algorithms to implement the backward search?

The demand-driven analysis framework contains one component to answer each of these

questions:

Component 1: De�nition of a data ow query.

Component 2: Set of query propagation rules.

Component 3: Generic iterative query propagation algorithm.

3.2.1 Component 1: Data Flow Queries

Demands for data ow information are modeled by data ow queries. Thus, a data ow

query describes the kind of information that can be determined in a demand-driven fashion

28

at a given program node n. The general format of a query is:

< y; n >;

where y is a lattice element and n is a program node. Query q =< y; n > raises the

question as to whether lattice element y is part of the exhaustive solution X(n) at node n,

i.e., whether y v X(n).

Example: Consider again the question as to whether variable b in Figure 3.2 is a copy

constant with the constant value 0 at node 7. This question is modeled by the data ow

query: < [b = 0]; 7 >.

3.2.2 Component 2: Query Propagation Rules

The demand-driven analysis describes the search for the solution for a data ow demand

that is expressed by a query q =< y; n >. This search is fully characterized by a set of

query propagation rules. Consider again the query < [b = 0]; 7 > for the CCP example from

Figure 3.2. The query propagation rules describe how the initial query < [b = 0]; 7 > is

propagated backwards in the program and �nally resolved. To specify the query propagation

rules in general terms, the second framework component is responsible for the following two

functions:

� reversal of the function space and

� procedure summary computation.

The reversal of the function space is needed to generalize and formally de�ne the query

propagation through a node. Consider the query < [b = 0]; 3 > in the CCP example from

Figure 3.2. When propagating the query past node 3, the query changes and the new query

raised at the predecessor node 2 is: < [a = 0]; 2 >. The transformation from the initial

query < [b = 0]; 3 > to the new query < [a = 0]; 2 > simply expresses that for variable b

to be a copy constant with value 0 at node 3, variable a has to be a copy constant with

value 0 at node 2. To provide a general description of the transformation of a query as it is

propagated through the program requires the reversal of the ow functions.

The reversal of the function space provides the means to establish the complete prop-

agation rules for the intraprocedural case. To handle programs with multiple procedures

requires additional mechanisms to process procedure calls. Exhaustive analysis, as modeled

by the Sharir/Pnueli framework [SP81], analyzes a program with procedure calls through

procedure summary computations. The demand-driven framework follows the same ap-

proach. However, unlike exhaustive summary computation, the summary computation for

the demand-driven analysis is a partial and reverse summary computation. The reverse pro-

cedure summaries express the side e�ects of procedure calls on the queries that are raised

at call sites and are computed only if needed to propagate a query across a call.

29

Together, the ow function reversal and reverse summary computations enable the spec-

i�cation of a set of query propagation rules that model the complete demand-driven analysis

of a program.

3.2.3 Component 3: Generic Analysis Algorithm

The framework contains, as a third component, a generic demand-driven algorithm. A top-

level procedure Query takes as input a query and returns the answer true or false to the

query. Procedure Query implements the query propagation rules based on the reversal of

the ow functions at each node. When a procedure call is encountered during the propa-

gation another procedure Compute�r is invoked to provide the reverse procedure summary

information for the called procedure. The overall demand-driven algorithm, implemented by

the two procedures Query and Compute�r, is presented in two versions: a caching version,

which includes a cache memory for storing intermediate query results to enable fast re-use

in future query evaluations, and a non-caching version that does not store intermediate

results.

In the worst case, in which the amount of information demanded is equal to the exhaus-

tive solution, the asymptotic time and space complexities of the demand-driven algorithm

are no worse than for the corresponding iterative exhaustive algorithm in the Sharir/Pnueli

interprocedural analysis framework.

3.2.4 Generality

The demand-driven analysis framework is applicable to monotone interprocedural data

ow problems with �nite lattices. If the program under analysis consists of only a single

procedure, the analysis algorithm naturally reduces to an intraprocedural algorithm. For

intraprocedural problems, the �niteness of the lattice is not required and the framework is

applicable to all monotone problems. The derived demand-driven algorithms are as precise

as their exhaustive counterparts if the data ow problem is distributive. If the problem is

monotone but not distributive, precision of the demand-driven algorithms may be lost. The

loss of information that is caused by non-distributive ow functions will be examined in

detail and it will be shown that the demand-driven algorithms can still be used to provide

approximate but safe query responses for non-distributive problems. In addition, a two-

phase variation of the framework is presented that is capable of handling non-distributive

data ow problems precisely.

The class of distributive and �nite data ow problems that can be handled precisely

includes, among others, the interprocedural versions of the four classical partitionable bit

vector problems: REACH (reaching de�nitions), AVAIL (available expressions), LIVE (live

variables) and BUSY (very busy expressions), as well as to non-partitionable problems, such

30

as copy constant propagation, linear constant propagation 1 or faint variables and to other

common interprocedural problems, such as procedure side-e�ect analysis [CK88].

3.3 Applications

Conceptually demand-driven analysis can be employed to replace traditional exhaustive

analysis in any application. However, the e�ciency of using demand-driven analysis may

vary depending on the nature of the application. Generally, the bene�ts of using a demand-

driven analysis in place of an exhaustive analysis are higher when the demanded fraction

of the complete data ow solution is small. While demand-driven analysis algorithms have

the same asymptotic worst-case complexities as the corresponding exhaustive analysis al-

gorithms, they may not always be faster in practice. In fact, if an application demands

the complete exhaustive solution, demand-driven analysis is likely to perform slower than

exhaustive analysis by some constant factor.

The following sections review several applications in compiler optimization and software

tools and examine their suitability for using a demand-driven analysis approach.

3.3.1 Compiler Optimizations

The program optimizations that bene�t the most from demand-driven analysis are op-

timizations that utilize data ow information only selectively in a program. There are

several situations that give rise to selective data ow utilization in optimization.

Region optimization

Some optimizations are only applicable to certain portions of the program. A common and

important example are loop optimizations. Loop optimizations include classical transfor-

mations, such as loop-invariant code motion [ASU86], as well as parallelizing loop transfor-

mations, such as scalar expansion2. Safely applying a loop optimization requires both the

data ow solution that results inside the loop and the data ow from outside that a�ects

the solution at the entry and exit points of the loop. For example, scalar expansion requires

information about the liveness of variables at the exit of the loop. Classical algorithms

for loop-invariant code motion[ASU86] require information about the liveness of variables

referenced by the statements that are to be moved as well as information about variable

de�nitions that reach statements inside the loop from outside.

Even if an optimization is applicable everywhere in a program, one may want to reduce

the overall optimization costs by restricting the optimization to the most frequently executed

1Linear constant propagation is an extension of copy constant propagation that, in addition to copies,
also considers assignments of the form x := y + c, where c is a constant.

2The purpose of scalar expansion is to create a private copy of a scalar variable accessed in a loop for
each loop iteration, thereby removing a dependency among the loop iterations.

31

portions of the program. For example, common subexpression elimination or code hoisting

may only be applied to the loops in the program, or only to the most frequently called

procedures. It is generally possible to optimize a selected code region by performing analysis

only over the selected region. However, the worst case assumptions that would have to be

made concerning the data ow information that enters the code region from outside could

prevent the discovery of otherwise safe optimization opportunities. Demand-driven analysis

provides an e�cient way for retrieving all relevant information that is external to the selected

code region without having to analyze the complete program.

Sparse optimization opportunities

Another source of selective data ow utilization are global optimizations that are likely to

be enabled at only a few points in the program. An example of such a global optimization

is copy propagation. A program is not likely to initially contain a large number of copies;

however copy instructions are often created as a result of other transformations, for example,

as the result of common subexpression elimination. Instead of performing copy propagation

exhaustively and thereby possibly analyzing large portions of the program that do not even

contain copies, copies may be propagated on demand directly after their creation. Each

time a copy is created as the result of a transformation, demand-driven analysis can be

used to retrieve the available copy [ASU86] information that is needed to directly propagate

the copy.

Sparse data ow usage

Finally, demand-driven analysis is useful in global optimizations that require only a small

fraction of the exhaustive solution at each program point. An example is the construction

of def-use chains. Determining the def-use chains in a program requires the computation

of reaching de�nitions. Among other uses, def-use chains are needed to construct program

dependence graphs [FOW87]. The exhaustive reaching de�nition solution determines all

de�nitions of all variables that reach each program point. However, the construction of def-

use chains requires at each point only the reaching de�nitions of the variables that are used at

that point. Reaching de�nition information of variables that are not even live at a program

point is irrelevant and does neither directly nor indirectly contribute to the construction of

def-use chains. The experimental results presented in Chapter 6 demonstrate that demand-

driven analysis is more e�cient than exhaustive analysis for constructing def-use chains in

a program.

With respect to any optimization, demand-driven analysis has the advantage that it

bypasses the incremental solution update problem. An exhaustively computed solution be-

comes invalid after code transformations are applied to the program. Thus, in order to

continuously apply optimizations, the exhaustive solution must be updated after each code

32

transformation using incremental data ow techniques3. After complex code transforma-

tions, the update of the data ow solution may be costly and may even result, in the worst

case, in a complete re-computation of the solution.

Although demand-driven analysis appears to be a promising and e�cient approach in

a large number of optimizations, there are also optimizations that do not favor a demand-

driven approach. Whether demand-driven analysis is suitable for an optimization depends

primarily upon the way data ow information is required at a node. Recall that data ow

queries formulate information requests with true/false answers. This true/false type query

format provides a natural formulation for questions asking for membership of a selected

candidate in the exhaustive solutions. For example, a query such as: "Is variable v live

at this point?". There are optimizations whose information requests are not naturally

satis�able with true/false type queries. Using true/false type queries in these optimizations

may be ine�cient and may result in querying the complete exhaustive solution at a node.

For example consider the question: "What are the aliases of variable v at node n?". If no

additional information is available every variable may be a potential alias of v. True/false

type queries retrieve alias information for requests of the form "Are v and w aliases at node

n?". Thus, using true/false type queries may require one query for each potential alias

of v to �nd all of v's actual aliases. Another example is the data ow problem of partial

redundancy elimination (PRE) [MR79, KRS92]. A part of PRE is the optimal placement

of each expression. The optimal placement of an expression is determined as the earliest

placement that is safe for the expression [KRS92]. Prior to solving the data ow problem

any program point may be a candidate for optimal placement. Thus, the points at which

data ow information is actually needed is not �xed prior to the analysis. The use of

demand-driven analysis would require the issuing of queries exhaustively at every point in

order to �nd the optimal placement.

In general, if an application, like the alias problem or PRE, requires an exhaustive

number of queries to be raised, an exhaustive algorithm is likely to be more e�cient in

practice.

3.3.2 Software Tools

Data ow analysis is often used to improve the capabilities and performance of software

tools. Examples of data ow based software tools are editors [RTD83], debuggers [Wei84]

and tools for software testing [FW88, DGS92b]. Furthermore, data ow analysis has

been proven especially useful in tools for the software maintenance stage [GS92, GHS92].

Demand-driven analysis is a suitable approach to improve the performance of software tools

for several reasons:

3See also the discussion on incremental data ow analysis in Chapter 1.

33

Service user requests on-line

Software tools are often interactive. In an interactive tool, the user issues speci�c infor-

mation requests with respect to one or more selected program points rather than inquiring

information at all points. For example, when debugging, a user may want to know what

data values reach a use of a variable at a certain program point or what statements impact

the value of a variable at a certain point. The extent of data ow information requested by

the user is not �xed before the debugging tool executes but may vary depending on the user

and the program. Unlike an exhaustive analysis approach, a demand-driven approach en-

ables control over the analysis e�ort through the amount of information actually requested

by the user.

Avoiding incremental updates

As in compiler optimizations, using demand-driven analysis in software tools bypasses the

incremental update problem. Many tools are used while the program is under development

and thus changes in the program are expected and must be e�ciently handled. Using an ex-

haustive analysis approach either requires costly re-computations of the exhaustive solution

each time a change is made to the program or it requires the storage and maintenance of

the exhaustive solution throughout the program development. Maintaining the exhaustive

solution throughout the program development may be costly in that the solution must be

updated in response to each program change using incremental data ow analysis techniques

[Ros81, Ryd83, RC87, Bur87, PS89]. In contrast, using a demand-driven analysis requires

neither storage of exhaustive information nor does it require solution updates. Instead,

each time data ow information is needed in the tool, the information is computed in a

demand-driven mode based on the latest version of the program.

3.4 Parallelizing Demand-Driven Data Flow Analyses

In order to reduce the overhead of performing data ow analysis, research has been directed

towards the parallelization of the data ow analysis algorithms. Several parallel versions

of exhaustive analysis algorithms have been developed. Typically, the parallelization of

exhaustive analysis algorithms requires a separate preparatory phase in order to discover

and exploit the parallelism available in the data ow computation [GZZ89, GPS90, LMR91,

KGS94]. Based on the discovered parallelism, parallel versions of data ow algorithms are

obtained by decomposing the data ow problem into a series of subproblems which can be

solved in parallel.

In contrast to previous work, the query propagation algorithm for demand-driven anal-

ysis is naturally parallelizable and does not require a separate phase to reveal the available

parallelism. The individual queries in a program can be analyzed independently and in par-

allel. The parallelization simply uses a dispatcher process to distribute the queries among

34

the participating processors. The processors then analyze their assigned queries in parallel.

Unlike previous work in analysis parallelization, the degree of parallelism in demand-driven

analysis does not depend on the program structure but solely on the size of the program

and the number of queries.

Chapter 4

A Framework for Demand-Driven

Data Flow

This chapter presents a general lattice based framework for demand-driven interprocedu-

ral data ow analysis and is organized as follows. The demand-driven framework and its

components that model the query propagation through analysis reversal are presented in

Section 4.1. The framework components are �rst described for programs with parameter-

less procedures. Framework extensions to handle procedures with parameters including

the handling of aliasing introduced by reference parameters are discussed in Section 4.2.

Section 4.3 presents several strategies to parallelize the demand-driven analysis. The frame-

work provides a precise interprocedural analysis algorithm for data ow problems that are

distributive. Section 4.4 discusses how to e�ectively handle non-distributive data ow prob-

lems. This chapter concludes with a discussion of related work in Section 4.5.

4.1 Framework Components

A general framework for demand-driven data ow analysis is obtained by formulating the

analysis problem as a problem of resolving data ow queries with respect to the exhaustive

solution. The solution equation system according to the Sharir-Pnueli exhaustive analysis

framework1 is restated in Figure 4.1.

A data ow query q raises the question as to whether a speci�c set of data ow facts

y 2 L is a safe approximation of the exhaustive solution at a selected program node n. A

lattice element y is a safe approximation of the solution X(n) if y is lower in the lattice

than X(n).

De�nition 4.1 (Data ow query) Let y 2 L and n 2 N . A data ow query q is

speci�ed by a pair q =< y; n > and denotes the truth value of the term: y v X(n).

1See also Section 2.2.2.

35

36

Summary function equations:

�(entryp;entryp)(x) = x

�(entryp;n)(x) = u
m2pred(n)

8>><
>>:

fm � �(entryp;m)(x) if m is not a call site

�(entryq ;exitq) � �(entryp;m)(x) if call(m)=q

(4:1)

Solution equations:

X(entrymain) = ?

For each procedure p:

X(entryp) = u
call(m)=p

X(m) (4.2)

For non-entry nodes n:

X(n) = u
m2pred(n)

8>><
>>:

fm(X(m)) if m is not a call site

�(entryq;exitq)(X(m)) if call(m)=q

Figure 4.1: Equation systems in the exhaustive Sharir-Pnueli framework.

37

Example: Recall the informal discussion of data ow queries in Chapter 3 that considered

the question as to whether a variable b is a copy constant at a particular node n. The least

lattice element that expresses that b has some arbitrary but �xed constant value c is the

element [b=c] = (xa=?, xb = c, xc=?) (i.e., variables a and c may assume any value).

Thus, the question corresponds to the query q =<[b=c]; n >.

Consider now the problem of determining the answer (true or false) for a query q without

having to exhaustively evaluate the equation systems 4.1 and 4.2 from Figure 4.1. Infor-

mally, the answer to q=<y; n> is obtained by propagating q from node n in the reverse

direction of the original analysis until all nodes have been encountered that contribute to

the answer for q. This propagation process is modeled as a partial reversal of the original

data ow analysis. To de�ne the analysis reversal, the following cases are examined in the

propagation of a query q =< y; n >:

� q =< y; entrymain > (program entry node): No further propagation of query q is

possible. Since X(entrymain) = ? by de�nition, it follows that q evaluates to true if

y = ? and to false otherwise.

� q =< y; entryp > for some procedure p (procedure entry node): Query q raises the

question as to whether y holds on entry of every invocation of procedure p. It follows

that q can be translated into the boolean conjunction of queries < y;m > for every

call site m calling procedure p.

� q =< y; n >, where node n is some arbitrary non-entry node: For simplicity, assume

�rst that n has a single predecessor m. Equation system 4.2 shows that y v X(n)

if and only if y v h(X(m)), where h is either a node ow function or a summary

function if m represents a call site. In either case h is monotone, so that h(?) v

h(X(m))v h(>) and the following two special cases result for query q:

y v h(?) =) q evaluates to true

y 6v h(>) =) q evaluates to false

If none of these two special cases apply, the query q translates into a new query

q0 =< z;m > for node m. The lattice element z to be queried on entry of node

m should be the least element z (i.e., smallest set of facts), such that z v X(m)

implies y v h(X(m)). The appropriate query element z for the new query q0 can be

determined using the function hr which is the reverse of function h [HL92].

De�nition 4.2 (Reverse function) Given a complete lattice L and a monotone function

h : L 7! L. The reverse function hr : L 7! L is de�ned as:

hr(y) = u fx 2 L : y v h(x)g

38

n

f n

x

f n (x) y

f n
r(y)

f n
rb :=0

Figure 4.2: A node ow function and its reverse function at a node n

The reverse function hr maps an element y to the least element x, such that y v h(x). Note

that if no such element exists hr(y) = > (unde�ned).

Example: The mappings of a ow function and its reverse function are illustrated in

Figure 4.2. Consider the example of CCP and assume that y in Figure 4.2 denotes the

lattice element [a = 0; b = 0] expressing that variables a and b have value 0. The reverse

function value f rn([a = 0; b = 0]) describes the least lattice element that has to hold on entry

of node n for a and b to have value 0 on exit of node n. There are several entry lattice

elements that are su�cient to establish the element [a = 0; b = 0] on node exit. For example,

the two values [a = 0] and [a = 0; b = 0; c = 0; d = 0] since [a = 0; b = 0] v f([a = 0])

and [a = 0; b = 0] v f([a = 0; b = 0; c = 0; d = 0]). The reverse function maps element

[a = 0; b = 0] to the least su�cient entry element. Thus, f rn([a = 0; b = 0]) = [a = 0].

If the function h is u-distributive then the following relationship holds between the function

h and its reverse hr [Cou81, HL92]:

y v h(x) () hr(y) v x (GC1)

The relationship (GC1) uniquely determines the reverse function and de�nes a semi-dual

Galois connection [Bir84] between h and its reverse hr . The relationship GC1 can equiva-

lently be expressed by the following two inequalities:

h r � h(x) v x and h � h r(x) w x (GC2)

Note that the u-distributivity is necessary for establishing this relationship. Thus, unless

otherwise stated, it is assumed that ow functions are u-distributive. Next, the relationship

between a ow function and its reverse function will be examined to determine how it can

be exploited during the query propagation.

First, consider the following properties of the function reversal. It can be easily shown

39

that the u-distributivity of h implies the t-distributivity of the reverse function hr:

hr(x t y) = hr(x) t hr(y)

Furthermore, the reverse functions are strict:

hr(?) = ?

The following lemma states the relevant properties with respect to the composition, the

meet and the join of functions.

Lemma 4.1 ([HL92]) Let g and h be two u-distributive functions.

(i) (g � h)r = hr � gr

(ii) (g u h)r = gr t hr

Proof: (i) By (GC1) the following two equivalences hold:

g(x) w y () g r(y) v x and h(x) w y () h r(y) v x:

Substituting h(x) for x in the �rst equivalence and substituting g r(y) for y in the second

equivalence yields:

g(h(x)) w y () g r(y) v h(x) and h(x) w g r(y)() h r(g r(y)) v x:

Combining the two equivalences yields therefore:

g(h(x)) w y () h r(g r(y)) v x;

which shows by (GC1) that (h r � g r) is the reverse function of (g � h).

Consider now property (ii) and assume (guh)(x) w y. By the distributivity of the meet

u we obtain: g(x) w y and h(x) w y:

Hence, applying (GC1) yields: g r(y) v x and h r(y) v x:

Therefore also: (g r t h r)(y) = g r(y)t h r(y) v x

which shows that (g r t h r) is the reverse function of (g u h). 2

Example: Table 4.1 shows the de�nition of the reverse ow functions for CCP. By the t-

distributivity of the reverse functions, it is su�cient to de�ne f r
n for only the base elements

in the lattice Lk. For each element [v1 = c1; : : : ; vl = cl] that is obtained as a �nite join

over base elements the reverse function value results as f r([v1 = c1; : : : ; vl = cl]) = f r([v1 =

c1]) t : : : t f r([vl = cl]). The reverse function value f r
n ([vi=c]) denotes the least lattice

element, if one exists, that must hold on entry of node n in order for variable vi to have

the constant value c on exit of n. If f r
n ([vi=c]) = ?, the trivial value ? is su�cient on

entry of node n (i.e., variable vi always has value c on exit). For example, f r
n ([vi=c]) = ?

if node n contains the assignment vi := c. The value f r
n ([vi=c]) = > indicates that there

exists no entry value which would cause variable vi to have the value c on exit. The value

f r
n ([vi=c]) = > results, for example, if node n contains a constant assignment to variable

vi but the assigned constant value di�ers from c.

40

statement at node n reverse ow function f r
n ([vi = c1])

constant assignment vj :=c2 f r
n ([vi=c1]) =

8>><
>>:

? if i=j and c1=c2

> if i=j and c1 6=c2

[vi=c1] otherwise

copy: vj :=vl f r
n ([vi=c1]) =

8<
: [vl=c1] if i=j

[vi=c1] otherwise

expr. assignment vj := expr. f r
n ([vi=c1]) =

8<
: > if i=j

[vi=c1] otherwise

read(vj) f r
n ([vi=c1]) =

8<
: > if i=j

[vi=c1] otherwise

Table 4.1: Reverse ow function for CCP.

The following theorem states the rules that are used to translate and propagate queries

by reversing the data ow at each node. The operator ^ denotes boolean conjunction.

Theorem 4.1 (Query Propagation) LetD = (L; F) be a u-distributive data ow frame-

work and let q =< y; n > be a data ow query in D. The following equivalences hold for

the propagation of query q:

(i)

< ?; n > () true

< >; n > () false

(ii) For each procedure p

< y; entryp > ()

8>>><
>>>:

false if p has no call sites^
call(m)=p

< y;m > otherwise

(iii) For a non-entry node n:

41

< y; n > ()
^

m2pred(n)

8><
>:

< f rm(y); m > if m is not a call site

< �r(entryp;exitp)(y); m > if call(m) = p

Proof: By de�nition the query can be rewritten based on the solution de�nition X(n)

from equation system 4.2 as: < y; n >() y v X(n). Thus, rule (i) follows immediately.

Consider the remaining two rules:

(ii) If n = entryp and p has no call sites then rule (ii) follows immediately. Otherwise,

< y; entryp > () y v X(entryp)

() y v u
call(m)=p

X(m)

() y v X(m) for all m with call(m) = p

()
^

call(m)=p

< y;m >;

which implies rule (ii).

(3) If n is a non-entry node we obtain:

< y; n > () y v u
m2pred(n)

8><
>:

fm(X(m)) if m is not call site

�(entryq ;exitq)(X(m)) if call(m) = q

()

(
y v fm(X(m)) for all m 2 pred(n) that are not call sites and

y v �(entryq ;exitq)(X(m)) for all m 2 pred(n) with call(m) = q.

By applying condition (GC1) we obtain:

()

(
f r
m(y) v X(m) for all m 2 pred(n) that are not call sites and

�r(entryq ;exitq)(y) v X(m) for all m 2 pred(n) with call(m) = q.

()

8>>><
>>>:

^
m2pred(n)

< f r
m(y); m > if m is not a call site and

^
m2pred(n)

< �r(entryq ;exitq)(y); m > if call(m) = q.

Clearly, it is impossible that y v X(n) if there exists a predecessor m 2 pred(n), such that

f r
m(y) = > or �r(entryq ;exitq)(y) = >. Furthermore, the monotonicity of the functions f r

m and

�r(entryq ;exitq) implies that y v X(n) if for all m 2 pred(n): f r
m(y) = ? or �r(entryq ;exitq)(y) =

?. Thus, rule (iii) follows. 2.

The query propagation as described by Theorem 4.1 requires the application of reverse

functions. If node m is not a call site, the reverse function f r
m can be determined by

42

locally inspecting the ow function fm. Otherwise, if node m calls a procedure p the

reverse summary function �r(entryp;exitp) is determined. The next section presents the query

propagation algorithm assuming that all necessary reverse summary functions are available.

The determination of reverse summary functions is discussed in Section 4.1.2.

4.1.1 A Query Propagation Algorithm

The demand-driven algorithm that implements the query propagation is shown in Figure

4.3. Procedure Query takes as input a query q and returns the answer for q after a �nite

number of applications of the propagation rules. Procedure Query uses a worklist that is

initialized with the node n from the input query q =< y; n >. A variable query[n] is used

at each node n to store the queries raised at n. At any step during the computation, the

answer to q is equivalent to the boolean conjunction of the answers to the queries currently

in the worklist. During each step a node n is removed from the worklist and the query

< query[n]; n > is translated according to the propagation rule that applies to node n.

The new queries resulting from this translation are merged with the previous queries at

the respective nodes. A node n from a newly generated query is added to the worklist

unless the newly generated query was already previously raised at node n (lines 9-10 and

17-18). Note that procedure Query terminates immediately after a query evaluates to false.

If a query evaluates to false, it is not necessary to evaluate all remaining queries in the

worklist since the overall answer to the input query must also be false. Thus, procedure

Query can terminate early and the remaining contents of the worklist are simply discarded.

Otherwise, if no query evaluates to false, procedure Query terminates with the answer true

if the worklist is exhausted and all queries have evaluated to true.

To determine the complexity of the query algorithm, the number of join operations and

reverse function applications is counted. A join/reverse function application is performed

at a node n in lines 9, 14 and 17 only if the query at a successor of n has changed (or at

the entry node of a procedure p if n is a call site of p), which can happen O(height(L))

times. Hence, procedure Query requires in the worst case O(height(L)�jN j) join operations

and/or reverse function applications.

If the program under analysis consists of only a single procedure (the intraprocedural

case), procedure Query provides a complete implementation of the demand-driven data

ow analysis. The interprocedural case requires an e�cient method to compute the reverse

summary functions.

4.1.2 Reverse Summary Functions

This section discusses an algorithm to compute individual reverse summary function val-

ues in order to extend procedure Query to the interprocedural case. A straightforward

but ine�cient way to compute reverse summary functions is to �rst determine all original

summary functions by evaluating the summary function equation system 4.1 from Figure

43

Procedure Query(y; n)

input: a lattice element y 2 L and a node n

output: the answer true or false to the query < y; n >

begin:

1. for each m 2 N do query[m] ?

2. query[n] y; worklist fng;

3. while worklist 6= ; do

4. remove a node m from worklist;

5. case m = entrymain:

6. if query[m] = ? return(false);

7. case m = entryq for some procedure q:

8. for each call site m0 such that call(m0) = q do

9. query[m0] query[m0]t query[m];

10. if query[m0] changed then add m0 to worklist;

11. endfor;

12. otherwise:

13. for each m0 2 pred(m) do

14. new

8><
>:

f r
m0 (query[m]) if m0 is not a call site

�r(entryq;exitq)(query[m]) if call(m0)=q

15. if (new = >) then return(false)

16. else if (new = ?) then

17. query[m0] query[m0] t new;

18. if query[m0] changed then add m0 to worklist;

19. endif;

20. endfor;

21. endwhile;

22. return(true);

end

Figure 4.3: Generic demand-driven analysis procedure.

44

Procedure Compute�r(y; p)

input: a lattice element y 2 L and a procedure p

output: the reverse summary function value �r(entryp;exitp)(y)

begin

1. if M [exitp; y] = y then /* result previously computed */

2. return(M [entryp; y]);

3 worklist f(exitp; y)g; M [exitp; y] = y;

4. while worklist 6= ; do

5. remove a pair (n; x) from worklist and let z M [n; x];

6. case n is a call site and call(n) = q:

7. if M [exitq; z] = z then

8. for each m 2 pred(n) do

9. Propagate(m;x;M [entryq; z]);

10. else /* trigger computation of �r(entryq;exitq)(z) */

11. M [exitq; z] z and add (exitq ; z) to worklist;

12. case n = entryq for some procedure q:

/* Propagate z to call sites if needed */

13. for each call site m such that call(m) = q and M [m;x0] = x for some x0 do

14. for each m0 2 pred(m) do Propagate(m0; x0; z);

15. otherwise:

/* n is not a call site and not an entry node */

16. for each m 2 pred(n) do Propagate(m;x; f r
n (z));

17. endwhile;

18. return(M [entryp; y]);

end

/* propagate new to M [n; y] */

Procedure Propagate(n; y; new)

input: a node n, lattice elements y and new

begin

1. M [n; y] M [n; y]t new;

2. if M [n; y] changed then add (n; y) to worklist;

end

Figure 4.4: Procedure Compute�r to compute reverse summary functions.

45

4.1 and then reverse each function. This section describes a more e�cient algorithm that

directly computes the reverse functions. This algorithm mirrors the operations performed

in Sharir and Pnueli's worklist algorithm for evaluating equation system 4.1 [SP81], except

that summary functions are computed in reverse direction. Assuming that (i) the cost of a

meet and a join are same and that (ii) the cost of ow function application and of reverse

ow function application are the same, the algorithm presented in this section has the same

worst case complexity as Sharir and Pnueli's algorithm for the original summary functions.

As in Sharir and Pnueli's algorithm the tabulation strategy requires the lattice to be �nite.

First, an inductive de�nition of the reverse summary functions is derived from equation

system 4.1. Reversing the order in which summary functions are constructed and applying

Lemma 4.1 yields the following de�nition of the reverse summary function �r(entryp;exitp) for

each procedure p:

Reverse summary function equations:

�r(exitp;exitp)(y) = y

�r(n;exitp)(y)= t
m2succ(n)

8><
>:

f r
m � �r(m;exitp)

(y) if m is not call site

�r(entryq ;exitq) � �
r
(m;exitp)

(y) if call(m) = q

(4:3)

Figure 4.4 shows an iterative worklist algorithm Compute�r that, if invoked with a pair

(p; y), returns the value �r(entryp;exitp)(y) after a partial evaluation of the reverse equation

system 4.3. Individual function values are stored in a table M : N � L 7! L such that

M [n; y] = �r(n;exitp)(y). The table is initialized with the value ? and its contents are

assumed to be preserved between subsequent calls to procedure Compute�r. Thus, results

of previous calls are re-used and the table is incrementally computed during a sequence

of calls. After calling Compute�r with a pair (p; y) a worklist is initialized with the pair

(exitp; y). The contents of the worklist indicate the table entries whose values have changed

but the new values have not yet been propagated. During each step a pair is removed from

the worklist, its new value is determined and all other entries whose values might have

changed as a result are added to the worklist.

Consider the cost of k calls to Compute�r. Storing the table M requires space for

jN j � jLj lattice elements. To determine the time complexity consider the number of join

operations (in procedure Propagate) and of reverse ow function applications (at the call

to Propagate in line 16). The loop in lines 4-17 is executed O(height(L)� jLj � jN j) times,

which is the maximal number of times the lattice value of a table entry can be raised,

i.e., the maximal number of additions to the worklist. In the worst case, the currently

inspected node n is a procedure entry node. Processing a procedure entry node results in

calls to Propagate for each predecessor of a call site for that procedure. Thus, the k calls

to Compute�r require in the worst case O(max(k; (MaxCall� height(L)� jLj � jN j)) join

and/or reverse function applications, where MaxCall is the maximal number of call sites

46

Procedure EnterCache(cache; q; val)

input: cache, query q =< y; n >, query result val 2 ftrue; falseg,

and the set of nodes S at which the propagation terminated.

output: updated cache

begin

1. if val = false `bf then

2. eliminte all nodes from S at which the propagation terminated with true;

3. endif

4. for each node m reachable from some node in S do

5. if query[m] w ? /* query[m] v ? serves as visited ag */

6. enter cache[m; query[m]] = false;

7. endif

8y. endfor

end

Figure 4.5: Procedure EnterCache for updating the cache.

calling a single procedure.

Assuming that each access to a reverse summary function in procedure Query is replaced

by an appropriate call to Compute�r, the total cost of procedure Query is O(MaxCall �

height(L) � jLj � jN j) join and reverse node ow function applications and O(jN j � jLj)

space to store lattice elements.

4.1.3 Caching

This section discusses a variant of procedure Query that uses a cache memory to improve

the performance of the query evaluation over a sequence of queries. Processing a sequence

of k queries requires k separate invocations of procedure Query, which may result in the

repeated evaluation of the same intermediate queries. Repeated query evaluation can be

avoided by maintaining a cache. Enhancing procedure Query to include caching requires

only minor extensions. The cache consists of entries cache[n; y] for each node n and lattice

element y. The entry cache[n; y] contains the previous result, if any, of evaluating the query

< y; n >. Otherwise, if query < y; n > has not yet been evaluated, the entry cache[n; y] is

marked empty.

The query propagation is modi�ed such that each time before a newly generated query

q is added to the worklist, the cache is consulted. The query q is added to the worklist

only if the answer for q is not found in the cache. Entries are added to the cache after each

terminated query evaluation as described in procedure EnterCache shown in Figure 4.5.

47

First, consider the case that the query evaluation terminates early with a false answer.

Let n be the node at which the propagation terminates with false. Recall, that during the

propagation a query is translated into an equivalent conjunction of queries at predecessor

nodes. Hence, a false evaluation for the query at node n implies a false value for the

queries that were generated at nodes that are reachable from n, Thus, the cache entry

cache[m; query[m]] = false is added (line 4) at all reachable nodes m. Note that at this

point the entries cache[m; z] for all elements z such that z w query[m], could also be set to

false. The query propagation may have traversed additional paths that ended in a node with

a true answer. However, since the query propagation terminated early with a false answer

it cannot be safely assumed that true is indeed the �nal answer along the true terminating

paths. Thus, no cache entries other than the false entries are added to the cache.

Now consider the case that the query evaluation completes with an exhausted worklist

and a true answer along each traversed path. The fact that all traversed paths lead to a

true evaluation implies that the query value at each visited node must be true. Thus, the

cache is updated at every visited node m such that: cache[m; query[m]] = true (line 6). In

addition, all entries cache[n; z] for z v query[n] can also be set to true.

The inclusion of caching has the e�ect of incrementally building the data ow solution

during a sequence of calls to Query. Caching does not increase the time or space complexity

of procedure Query. Storing the cache requires O(jN j � jLj) space and updating the cache

can at most double the amount of work performed during the query evaluation. Moreover,

the worst case complexity of k invocations of Query with result caching is the same for any

number k, where 1 � k � jLj � jN j and jLj � jN j is the number of distinct queries.

4.2 Procedures with Parameters

The demand-driven analysis concepts developed in the previous sections have not consid-

ered parameter binding mechanisms at call sites. When executing a procedure call, the

value of each actual parameter in the address space of the calling procedure is bound to a

corresponding formal parameter in the address space of the called procedure. To handle

procedures with parameters, these bindings among variable values must also be reected

during data ow analysis. In the same way as values of actual parameters are bound to

formal procedure parameters during execution, the lattice elements that refer to actual

parameters are bound to the corresponding lattice elements for formal parameters during

data ow analysis. This section shows how to re�ne Theorem 4.1 and the equation system

4.3 for computing reverse summary functions to correctly account for parameter bindings

at procedure calls.

48

4.2.1 Binding Functions

As programs with global and local scoping are considered, the address space Addr(p) of a

procedure p is de�ned as:

Addr(p) = Global [Formal(p)[Local(p);

where Global is the set of global variables, Formal(p) is the set of formal parameters of

procedure p and Local(p) is the set of variables local to p. The set Formal(p) of formal

parameters is further divided into a set Formalinout(p) of reference parameters and a set

Formalin(p) of value parameters, i.e.:

Formal(p) = Formalinout(p)[Formalin(p)

Binding functions are de�ned to model how the values of variables in the address space

of a calling procedure are bound to variables in the address space of a called procedure. A

binding function bs is de�ned for each call site s to map the value of a variable v from the

calling procedure to the set of variables bs(v) in the called procedure to which the value of

v is bound at s. To analyze the data ow when control returns to a calling procedure, it

will also be necessary to consider the reverse binding b�1
s that binds a value from the called

procedure to the corresponding variable in the calling procedure.

De�nition 4.3 (Binding functions) Let s 2 call(q) be a call site in a procedure p that

passes the actual parameters (ap1; : : :apj) to the formal parameters (fp1; : : :fpj) in proce-

dure q. Let v 2 Addr(p) and let w 2 Addr(q). The binding function bs for call site s is

de�ned as:

bs(fvg) = (fvg \Global)[

8><
>:
ffpig if v = api

; otherwise

The reverse binding function b�1
s for s is de�ned as:

b�1
s (fwg) = (fwg \ Global) [

8><
>:
fapig if w = fpi and fpi 2 Formalinout(q)

; otherwise

The bindings for a set of variables is computed as bs(V) =
S
v2V bs(fvg) and analogously

b�1
s (V) =

S
v2V b

�1
s (fvg). Note that the reverse binding function b�1

s only binds the values of

global variables and reference parameters to variables in the calling procedures. The values

of local variables or value parameters are no longer accessible after control has returned to

the calling procedure.

Example: Consider the program in Figure 4.6. Variables a and b are global, and procedure

p has one reference parameter f and one value parameter g. The bindings of variables at

49

entry

exit

1

2

3

4

5

a:=1

procedure main

a:=1;

end
end

begin begin entry

exit

7

6

8

9

call p(a,b);

call p(a,b)

b:=2; write(f);
a:=g;

b:=2 write(f)

a:=g

procedure p(inout: f,in: g) main p(inout:f,in:g)

Figure 4.6: Program with reference and value parameter passing and its ICFG.

the call site at node 4 in procedure main are: b4(fag) = fa; fg and b4(fbg) = fb; gg. The

reverse bindings are: b�1
4 (ffg) = b�1

4 (fag) = fag, b�1
s (fbg) = fbg and b�1

4 (fgg) = ;.

Binding functions are de�ned over sets of variables. However, data ow analysis requires

the binding of lattice elements at call sites. Thus, for each data ow problem it is assumed

that two functions ~bs and ~b�1
s are de�ned to be the natural counterparts of bs and b�1

s

that apply to the lattice elements in the data ow problem. Hence, function ~bs maps a

lattice element from the calling procedure to a corresponding lattice element in the called

procedure according to the value binding described by function bs. Analogously, function
~b�1
s maps lattice elements from the called procedure to the corresponding lattice element in

the calling procedure. For a node n that is not a call site the binding functions bn; b
�1
n ;~bn

and ~b�1
n are simply the identity function.

Example: Consider the binding functions in CCP. For each lattice base element of the

form [vi = c] the two functions are de�ned as:

~bs([vi=c]) = t
vj2bs(fvig)

[vj=c]

~b�1
s ([vi = c]) =

8><
>:

[vj = c] if fvjg = b�1
s (fvig)

? otherwise

Based on the binding functions ~bs and ~b�1
s , the demand-driven analysis framework can be

re�ned to handle programs with reference and value parameters. Re�ning the framework

50

Re�ned reverse summary equations using binding funcions:

�r(exitp;exitp)(y) = y

�r(n;exitp)(y)= t
m2succ(n)

8>><
>>:

f r
m � �r(m;exitp)

(y) if m is not a call site

(~b�1
m � �r(entryq ;exitq) �

~bm) � �r(m;exitp)
(y) if call(m) = q

(i)

Re�ned propagation rules:

(i) < ?; n > () true

< >; n > () false

(ii) < y; entryp > ()

8>>><
>>>:

false if p has no call sites or ~b�1
m (y) = ;^

call(m)=p

< ~b�1
m (y); m > otherwise

(iii) < y; n > ()
^

m2pred(n)

8>><
>>:

< f r
m(y); m > if m is not a call site n

< (~b�1
m � �r(entryp;exitp) �

~bm)(y); m > if call(m) = q

(ii)

Figure 4.7: Analysis re�nements for reference and value parameter passing.

51

requires re�nement of the query propagation rules from Theorem 4.1 and re�nement of

the equation system 4.3 for the reverse summary functions by appropriately incorporating

ow binding functions when propagating data ow information between procedures. The

resulting re�ned equations are shown in Figure 4.7.

4.2.2 Aliasing

The previous section discussed the necessity for reecting the bindings among variables that

result from parameter passing during the analysis. The presence of reference parameters

causes an additional complication for data ow analysis by introducing the potential of

aliasing.

Two variables x and y are aliases in a procedure p if x and y may refer to the same

location during some invocation of p. Reference parameters may introduce aliases through

the binding mechanisms between actual and formal parameters. There are two ways in

which an alias pair may be created by reference parameters. First, if a global variable x is

passed to a formal parameter f then the alias pair (x; f) is created in the called procedure.

Second, passing the same variable to two distinct formal parameters f1 and f2 creates the

alias pair (f1; f2) in the called procedure.

Example: In Figure 4.6, the call at node 4 in procedure main passes the global variable a

to the reference parameter f creating the alias pair (a; f) in procedure p.

Ignoring the potential of aliasing may lead to unsafe query responses. Consider again Figure

4.6 and the example of CCP. If it is not known that (f; a) is an alias pair in procedure p

then the re-de�nition of the value of f at node 7 through the alias a will be missed. As a

consequence, variable f would be incorrectly reported to still have the value 1 at the write

statement in node 8 although the value of f at node 8 is actually 2 through the assignment

of the alias a at node 7.

This section discusses how separately computed information about the potential aliases

in a program is used to re�ne the query propagation and ensure safe query responses. Alias

information is typically computed in form of the two summary relations MayAlias(p) and

MustAlias(p) for each procedure p [Coo85]. A pair (x; y) is contained in MayAlias(p) if

x is aliased to y in some invocation of p. A pair (x; y) is in MustAlias(p) if x is aliased

to y in all invocations of p. The sets MayAlias(x; p) = fy j (x; y) 2 MayAlias(p)g and

MustAlias(x; p) = fy j (x; y) 2 MustAlias(p)g denote the sets of may aliases and must

aliases of variable x, respectively. Furthermore, for a node n contained in a procedure p:

MayAlias(x; n) =MayAlias(x; p) and MustAlias(x; n) = MustAlias(x; p).

The precise determination of alias sets is an NP-complete problem [Mye81]. There-

fore, alias sets are necessarily approximative in practice. The most conservative but safe

52

approximation of the two alias sets are as follows.

MayAlias(x; p) = fxg [Global [Formal(p)

MustAlias(x; p) = fxg

More precise estimates of the actual alias relations in a program are determined through

additional analysis. The computation of alias relations induced by reference parameters can

be modeled as a data ow problem over a program's call graph [Coo85]. Moreover, the data

ow problem to compute MayAlias(p) and MustAlias(p) is a distributive problem with a

�nite lattice. Thus, the demand-driven analysis concepts from the previous sections can

be employed to compute the alias pairs as needed during the query propagation. Alterna-

tively, an exhaustive algorithm for computing the alias sets that iterates over the program's

call graph may be used to compute the potential alias pairs for all procedures prior to

the analysis [Coo85]. The analysis re�nements presented in this section assume that the

sets MayAlias(p) and MustAlias(p) are available without making any assumptions on their

accuracy or on the method used to compute them.

Consider now how the alias information is used to re�ne CCP analysis. A variable x is

considered a constant at a node n if either x or one of x's must aliases is assigned a constant

value. A potential constant value of variable x is assumed to be killed at a node n if x

or any of x's may aliases is assigned a non-constant expression. Table 4.2 and Table 4.3

display the re�ned ow functions and the re�ned reverse ow functions for CCP.

Example: Consider again Figure 4.6 and the ow function for node 7 in procedure p. The

re�ned function results as: f7(x)a = f7(x)f = xg = 2 since f is a must alias of a. The

reverse function at node 7 is de�ned as: f r
7 ([f = c]) = f r

7 ([a = c]) = [g = c].

The analysis re�nements described in this section are also applicable and safe if aliasing

results from sources other than reference parameters. Other sources of aliasing in a program

include pointer variables and array references. For example, the execution of the statement

a := &b in a C program creates the alias pair (�a; b). Several techniques have been developed

to approximate alias information in programs with pointer variables [LH88, CWZ90, LR92,

CBC93, Deu94, EGH94, WL95]. The results of these alias analyses can be used to establish

the two relations MayAlias and MustAlias and enable the re�nements described in this

section.

4.3 Parallelizing Demand-Driven Data Flow Analyses

As an additional bene�t, the demand-driven analysis concepts developed in this thesis

provide a novel approach to the parallelization of data ow analysis. Unlike standard

exhaustive data ow analysis algorithms, the query propagation algorithm for demand-

driven analysis is naturally parallelizable. Since individual queries are propagated through

53

statement at node n re�ned ow function fn(x)j, where x = (x1; : : : ; xk)

vi := c fn(x)j =

8>>><
>>>:

c if vj 2MustAlias(vi; n)

xj u c if vj2(MayAlias(vi; n)�MustAlias(vi; n))

xj otherwise

vi := vl fn(x)j =

8>>><
>>>:

xl if vj 2 MustAlias(vi; n)

xj u xl if vj2(MayAlias(vi; n)�MustAlias(vi; n))

xj otherwise

read(vi) or
vi := expr:

fn(x)j =

8<
: ? if vj 2MayAlias(vi; n)

xj otherwise

Table 4.2: Re�ned ow functions for CCP.

statement at node n re�ned reverse ow function f r
n

vj := c2 f r
n ([vi=c1]) =

8>>><
>>>:

? if vi 2 MustAlias(vj ; n) and c1 = c2

> if vi2MayAlias(vj ; n) and c1 6= c2

[vi=c1] otherwise

vj := vl f r
n ([vi=c1]) =

8>>><
>>>:

[vl=c1] if vi 2MustAlias(vj; n)

[vi=c1, vl=c1] if vi2(MayAlias(vj; n)�MustAlias(vj ; n))

[vi=c1] otherwise

read(vj) or
vj := expr:

f r
n ([vi=c1]) =

8<
: > if vi2MayAlias(vj; n)

[vi=c1] otherwise

Table 4.3: Re�ned reverse ow functions for CCP.

54

the program independently, the propagation of several queries can be performed in parallel.

Thus, a parallelization of the demand-driven analysis algorithm results naturally by simply

distributing the set of generated queries among the available processors.

Several parallel versions of the demand-driven algorithm can be implemented based on

di�erent degrees of information sharing among the participating processors. This section

considers three di�erent parallelization strategies.

� No Cache/Private Cache Model

In the �rst strategy the participating processors operate in isolation either using a private

cache or using no cache. This parallelization strategy is straightforward and requires no

communication among the processors. However, since the participating processors operate

in isolation no information can be shared. Hence, the same intermediate query results may

be computed by several processors.

Consider the estimated parallel analysis time if no cache is used based on p processors

and a program with q queries assuming that each processor is assigned d qpe queries. Let

av(T 1
d) be the average demand-driven single-query analysis time over all queries in a program

using no cache. The average parallel analysis time Pav(p; q) without caching for q queries

using p processes results as:

Pav(p; q) =
q � av(T 1

d)

p
:

Note, that Pav is an optimistic estimate that assumes perfect load balancing among the

processors. To determine a pessimistic worst case estimate of the parallel analysis time, let

max(T 1
d) be the maximal demand-driven single-query analysis time over all queries in the

program. The maximal parallel analysis time Pmax(p; q) without caching for q queries and

p processes results as:

Pmax(p; q) =
q �max(T 1

d)

p
:

Pmax is a worst case estimate that can only result if a single processor is assigned only

queries that require the maximum single-query analysis time.

Let Tseq be the analysis time for the program if a sequential algorithm is used. The

average speedup Sav(p; q) of the parallel execution over the sequential analysis is given by:

Sav(p; q) =
Tseq

Pav(p; q)
:

The corresponding guaranteed least speedup Smin(p; q) that results is given by:

Smin(p; q) =
Tseq

Pmax(p; q)
:

Note that for a �xed number of queries the speedup grows continuously with the number

of processors and the number of queries.

55

� Shared Cache Model

The second parallelization strategy avoids duplication of computed results through the use

of a shared cache. The participating processors communicate through the shared cache and

cooperatively process the complete query sequence. The use of a shared cache is transparent

in each processor (except for possible access delays). Importantly, the cache management

is particularly simple. The analysis results determined by di�erent processors for the same

cache entry must be identical since all processors analyze the same program. Thus, there

cannot be contention for read and/or write accesses to the cache.

The average parallel execution time that results if a shared cache is used can be estimated

as:

Pav(p; q) =
q � av(T 1

d=c)

p

where T 1
d=c is the single-query analysis time based on using a cache. Note that the average

single-query analysis time over a sequence of queries, if caching is used, may vary with the

length of the sequence. A preliminary experimental examination of the average single-query

analysis time for query sequences of di�erent lengths revealed no clear correlation between

sequence length and average single-query analysis time.

� Hybrid Cache Model

Finally, there is also the possibility of a hybrid cache model, where in addition to a shared

cache, also a private cache is maintained in each processor. Access to the shared cache is

only necessary as a result of a cache miss in the private cache. Again, the cache management

is simple since the values in each private cache and the shared cache must be identical if

they are present in both caches.

4.4 Non-Distributive Frameworks

The demand-driven framework assumes that data ow problems are distributive. The

distributivity of the ow functions in the problem is necessary to ensure that the query

propagation rules from Theorem 4.1 yield as precise information as the original exhaustive

analysis does. This section considers demand-driven analysis for data ow problems with

non-distributive ow functions. First, the developed framework is shown to be applicable

to non-distributive data ow problems but at the cost of reduced precision. Section 4.3.2

discusses a two-phase framework variation that provides precise query responses for non-

distributive problems.

4.4.1 Approximate Demand-Driven Analysis

If applied to distributive data ow problems, the query propagation rules from Theorem

4.1 are precise and decidable. Given a data ow query q =< y; n >, query q evaluates

56

(−−| , −−| , −−|)

(−−| , 1, 4)(−−| , 2, 3)

a := b +c

Figure 4.8: Expression node in constant propagation.

to true or false after a �nite number of applications and q evaluates to true if and only if

element y is part of the solution at node n, i.e., if and only if y v X(n). If the original

analysis framework is monotone but not distributive, information may be lost during the

query propagation. Speci�cally, the information loss occurs during the reversal of non-

distributive ow functions. Recall the relationship (GC1) between a distributive function

f and its reverse function f r:

y v f(x) () f r(y) v x: (GC1)

If the function f is monotone but not distributive, then the relation between f and its

reverse f r is weaker than in the distributive case; only the following implication holds:

y v f(x) =) f r(y) v x:

As a result of this weaker relationship the query propagation rules no longer provide equiv-

alent translations. Based on the weaker set of propagation rules that results in the presence

of non-distributive functions h, queries are only semi-decidable. If a query q =< y; n >

evaluates to false then y 6v X(n). However, nothing can be said if q evaluates to true.

If appropriate worst case assumptions are made for true responses, the query algorithm

can still be used to provide approximate information in the presence of non-distributive

ow functions.

Example: To illustrate the loss of precision that results from non-distributive ow functions

consider the example of constant propagation. Unlike copy constant propagation, regular

constant propagation includes the evaluation of arithmetic expressions. Consider the ow

function for the assignment statement shown in Figure 4.8. Assume there are only three

variables in the program, such that each lattice element is a triple (xa; xb; xc) with one

component for each of the three variables a, b, and c. The ow function fcp for constant

57

propagation associated with the assignment is of the form:

fcp(xa; xb; xc)a =

8><
>:

xb + xc if both xb and xc denote constant values

? otherwise

fcp(xa; xb; xc)b = xb

fcp(xa; xb; xc)c = xc

Note that fcp is not distributive. To illustrate the non-distributivity consider the situation

depicted in Figure 4.8, where the element (?; 2; 3) is propagated to the node along the left

incoming branch and the element (?; 1; 4) is propagated along the right incoming branch.

Applying the ow function fcp to each incoming value in isolation yields fcp(?; 2; 3;) =

(5; 2; 3) and fcp(?; 1; 4;) = (5; 1; 4). Thus, with respect to each branch the lattice value on

exit of the node indicates correctly that variable a has the constant value 5: fcp(?; 2; 3;)u

fcp(?; 1; 4;) = (5;?;?). However, if the information that reaches the node along the two

incoming paths is merged prior to applying the ow function, it will not be discovered that

variable a has value 5: fcp((?; 2; 3;)u (?; 1; 4;)) = fcp(?;?;?) = (?;?;?). Hence, fcp is

not distributive.

Now consider the reverse function f r
cp if applied to the lattice element [a = 5] denoting

that a has the constant value 5. By de�nition f r
cp([a = 5]) is the meet over all elements

(xa; xb; xc) such that f r
cp(xa; xb; xc) v [a = 5]. There are in�nitely many values for variables

b and c such that the execution of the assignment a := b + c yields the constant value 5.

Since the meet over an in�nite set is by de�nition ?, it follows that f r
cp([a = 5]) = (?;?;?).

4.4.2 Framework Variation

This section presents a framework variation that enables precise query evaluation even in

the presence of non-distributive functions. Theoretically, non-distributivity in the function

space could be handled by making the analysis distributive as described in [CC79]. At

additional analysis cost, a non-distributive framework can be transformed into a distributive

one by operating on sets of lattice elements as opposed to operating on individual lattice

elements. In this formulation the meet operator corresponds to a union of lattice elements

rather than some form of merge operation. The union operation ensures that no information

is lost and that the ow functions are distributive. In the example from Figure 4.8 the meet

of the two lattice elements (?; 2; 3) and (?; 1; 4) would be the collection f(?; 2; 3); (?; 1; 4)g.

If the ow function fcp for the assignment statement is applied to this collection, the fact

that a is a constant after the assignment will be recognized: fcp(f(?; 2; 3); (?; 1; 4)g) =

f(5; 2; 3); (5; 1; 4)g. However, the expansion of the original lattice into a powerset structure

can quickly result in an exponential explosion during the analysis, rendering this approach

too costly to be of practical use.

58

An alternative more practical strategy to deal with non-distributivity results by slightly

departing from concepts of precise analysis reversal. The loss of information as a result of

function reversal can always be recognized. The �rst time information is lost during the

propagation of a query q =< y; n > through a node n happens only if the relationship

(GC2) that de�nes a semi-dual Galois connection between fn and its reverse f r
n is violated

such that:

fn � f
r
n (y) 6v y (4:4)

Consider for example the constant propagation function fcp for the assignment statement

from Figure 4.8. For the element y = [a = c]: fcp(f r
cp([a = c])) = fcp((?;?;?)) = (?;?;?),

which violates (GC2).

If (GC2) is violated at a node n, information has been lost and the query q =< y; n >

cannot safely be propagated across the node. Speci�cally, it is no longer possible to translate

q into an equivalent set of new queries at preceding nodes. However, it may be possible to

guess the new queries at preceding nodes that would be su�cient to provide an answer for

q. Guessing su�cient queries di�ers from translating a query into equivalent queries. The

guessed queries are su�cient if, assuming an answer for the guessed queries was available,

an answer for q could be found. However, the relationship between the answers for the

guessed queries and the answer for q is left unspeci�ed. To illustrate this strategy consider

again the assignment statement in constant propagation:

a := b+ c

Assume that the query q =< [a = 0]; n > is raised on exit of this statement. Since the

ow function for the statement is not distributive, the query cannot be translated into an

equivalent new query for the entry of the statement. However, it is possible to guess a

su�cient query. The answer for q results directly once it has been determined whether the

two operands b are c are constants. Thus, the new query generated at the predecessors m

of n is q0 =< [b =?; c =?]; m >. Note that the new query is merely approximate since no

speci�c constant values for variables b and c can be established. Thus, the lattice element

[b =?; c =?] expresses that variables b and c have unknown constant values. After all guessed

queries have been identi�ed during the backward propagation, an additional analysis phase

is performed in a forward direction to determine the actual constant values for the identi�ed

queries. Thus, if b and c are indeed constants, the second phase provides their values and

the original query q can be resolved.

The complete two-phase algorithm is shown in procedure IsConstant shown in Figure 4.9.

The �rst phase is a backward analysis during which all queries that are guessed as su�cient

are marked. The marked queries describe the set of data ow queries whose answers provide

an answer for the original input query. Procedure Mark CP implements the �rst marking

phase in an iterative worklist algorithm that terminates when no more queries can be

marked as su�cient. If during the marking phase a procedure call is encountered, marking

59

Procedure IsConstant (v; n)

input: a variable v and a node n

output: if v is constant at n then constant value c, otherwise false

begin

Mark CP (v; n); /* Phase 1 */

Perform constant propagation over only the marked portion of the program; /* Phase 2: */

end

Procedure Mark CP (v; n)

input: a variable v and a node n

begin

1. for each m 2 N do mark[m] ;;

2. mark[n] fvg; worklist fng;

3. while worklist 6= ; do

4. remove a node m from worklist;

5. case m = entrymain:

6. if mark[m] not empty then return(false);

7. case m = entryq for some procedure q:

8. for each call site m0 such that call(m0) = q do

9. add mark[m] to mark[m0];

10. if mark[m0] changed then add m0 to worklist;

11. endfor;

12. otherwise:

13. for each m0 2 pred(m) do

14. if m is a call site and call(m) = q then

15. New SummaryMark CP(w; q);

16. else if a variable in mark[m] is de�ned at m then

17. add variables used at m to mark[m0];

18. else

19. add mark[m] to mark[m0];

20. if mark[m0] changed then add m0 to worklist;

21. endfor;

22. endwhile;

end

Figure 4.9: Demand-driven analysis algorithm variation for CP.

60

Procedure SummaryMark CP(v; p)

input: a variable v and a procedure p

begin

1. if v 2M [exitp; v] then return(M [entryp; v]); /* previously marked already */

2. worklist f(exitp; v)g; M [exitp; v] = fvg;

3. while worklist 6= ; do

4. remove a pair (n;w) from worklist and let X M [n;w];

5. case call(n) = q: /* n is a call site */

6. for each variable u 2 X do

7. if u 2 mark[exitq; u] then for each m 2 pred(n) do

8. PropagateMark(m;w;M [entryq; u]);

9. else /* trigger marking called procedure */

10. M [exitq; u] fug and add (exitq; u) to worklist;

11. case n = entryq for some procedure q: /* n is entry node; propagate X to call sites if needed */

12. for each call site m such that call(m) = q and w 2M [m;u] for some variable u do

13. for each m0 2 pred(m) do PropagateMark(m0; u;X);

14. otherwise: /* n is not a call site and not an entry node */

15. if w is de�ned at n then New set of variables used at n;

16. else New fwg ;

17. for each m 2 pred(n) do PropagateMark(m;w;New);

18. endwhile;

19. return(M [entryp; v]);

end

Procedure PropagateMark(n; v;New) /* propagate new to mark[n; v] */

input: a node n, a variable v and a set of variables New

begin

1. M [n; v] M [n; v][New;

2. if M [n; v] changed then add (n; v) to worklist;

end

Figure 4.10: Procedure SummaryMark called by Mark CP.

61

within the called procedure is performed as well by invoking procedure SummaryMark CP

shown in Figure 4.10. The second phase consists of subsequently resolving all marked

queries by accordingly combining the identi�ed constant values. Note that this second

phase corresponds to a regular forward constant propagation analysis. However, unlike

exhaustive constant propagation analysis that starts at program entry and propagates all

constant information throughout the entire program, the second phase only propagates the

constants to resolve previously guessed queries by considering only the marked portion of

the program.

This two-phase approach is not limited to constant propagation. The strategy of using a

preparatory backward analysis in order to reduce the analysis e�ort of the original forward

analysis provides a general variation of the demand-driven approach to handle any monotone

data ow problem. However, the two-phase approach is less e�cient than the direct analysis

reversal. In the worst case, the entire program is marked su�cient during the �rst phase, in

which case the complete exhaustive original analysis would be performed during the second

phase. Thus, if the data ow problem is distributive the demand-driven approach of choice

is the reversal based analysis framework developed in the previous sections.

4.5 Related Work on Demand-Driven Analysis

A number of variations on the notion of demand-driven analysis and the notion of a par-

tial backward propagation of information have appeared in the literature. The concepts

of deriving data ow information by backward propagation of assertions was described us-

ing operational semantics by Cousot [Cou81] and later developed and implemented in a

debugging system for higher-order functions [Bou93]. The analysis for discovering linked

conditions in programs described in [SMHY93] is also based on backward propagation of

assertions starting from test sites in conditionals.

One component of the developed demand-driven approach is the tabulation procedure

Compute�r from Figure 4.4 for computing reverse summary function values. Procedure

Compute�r implements the demand-driven evaluation of the relevant equation values of

the summary function equation system. The algorithm is essentially a reversed version of

Sharir and Pnueli's tabulation algorithm [SP81] to compute the original forward summary

functions. A similar partial �xed point computation of only relevant equations was also

described in the chaotic iteration algorithms [CC77c] and the minimal function graphs for

applicative programs [JM73].

Reverse ow functions, which are used in the query propagation rules in Theorem 4.1,

have previously been discussed in [HL92] to demonstrate that an abstract interpretation

may be performed in either a forward or a backward direction. The relationship between

forward and backward directions of an analysis was also discussed by Cousot [Cou81].

The previous work most closely related to the demand-driven framework developed in

62

this thesis are the three approaches to demand-driven interprocedural analysis presented by

Reps [Rep94] and Reps, Horwitz and Sagiv [RSH94, RHS95, SRH95a]. In the �rst approach

by Reps [Rep94], a limited class of data ow problems, the locally separable problems, are

encoded as logic programs. Demand algorithms are then obtained by utilizing fast logic

program evaluation techniques developed in the logic-programming and deductive-database

communities. In a more recent work by Reps et al. [RHS95], the �rst approach is generalized

to a larger class of problems. In this second approach, a data ow problem is transformed

into a special kind of graph-reachability problem. The graph for the reachability problem,

the exploded supergraph, is obtained as an expansion of a program's control ow graph

by including an explicit graphical representation of each node's ow function. While the

second approach by Reps, Horwitz and Sagiv [RHS95] is closely related to the demand-

driven framework developed in this thesis, there are a number of important di�erences.

Unlike the demand-driven approach by Reps, Horwitz and Sagiv, which is a graph based

approach, this thesis presents a framework that models demand-driven analysis based on

�xed point computations. Fixed point computations are well understood and many e�cient

algorithms for computing �xed points are available. A drawback of the graph-reachability

approach is the need to construct an exploded supergraph for each data ow problem to be

solved. The size of the exploded supergraph, and therefore also its construction time, can

be substantial. The authors report that during experimentation with the graph-reachability

analyzer for CCP, the analyzer ran out of virtual memory for some C programs of about

1,300 lines [SRH95b]. In comparison, the representation of the CCP ow functions using

the algorithm developed in this chapter requires only a constant number of pointers to the

symbol table entries of the variables de�ned and used at each (intermediate code) statement.

A further di�erence from the framework developed in this thesis concerns the applica-

bility of the approaches. The graph-reachability approach imposes more restrictions on the

class of problems that can be handled than the approach developed in this thesis. Specif-

ically, the graph-reachability approach is limited to the class of distributive problems with

a lattice that is a powerset over a �nite domain set. Although distributive functions are

also necessary in the approach developed in this thesis to ensure precise data ow solu-

tions, the developed algorithms still provide approximate information in the presence of

non-distributive functions. Furthermore, the framework presented in this chapter is less

restrictive with respect to the lattice structure in that it is applicable to any �nite lattice.

Moreover, the restriction to a �nite lattice does not even apply for intraprocedural analyses.

Recently, Sagiv, Reps and Horwitz presented a new variation of the graph-reachability

approach that uses a two phase algorithm [SRH95a]. This new approach can handle a

larger class of distributive data ow problems than the framework developed in this chapter

in that it also permits in�nite lattices if the distributive function space does not contain

in�nite decreasing chains. This new variation also results in a more compact version of the

exploded supergraph for CCP. However for the classical Gen-Kill problems, the size of the

63

exploded supergraph is the same as in their previous approach.

The utility of demand-driven analysis has also been demonstrated in a number of algo-

rithms that have been developed for speci�c analysis problems. Babich and Jazayeri [BJ78]

presented a demand-driven algorithm for intraprocedural live variable analysis based on

attribute grammars. Strom and Yellin [SY93] presented a demand based analysis for type-

state checking. The authors experimentally demonstrate that a goal-directed backward

analysis is more e�cient than a forward analysis for typestate checking that eagerly col-

lects all available information that may or may not be of relevance. Question propagation,

a phase in the algorithm for global value numbering [RWZ88], performs a demand-based

backward search in order to locate redundant expressions. This backward search, like our

query algorithm, performs the analysis from the points of interest (i.e., the points where

an expression is suspected to be redundant) and it also uses early termination to end the

search. Blume and Eigenmann presented a demand-driven algorithm for range propagation

[BE95]. Range propagation is performed over only the portion of the program that is of rel-

evance for the current information request. This relevant portion is extracted in a separate

initial phase in a demand-driven fashion. In procedure cloning [CHK92], procedure clones

are created during the analysis on demand whenever it is found that an additional clone will

lead to more accurate information. Cytron and Gershbein [CG93] described an algorithm

for the incremental incorporation of alias information into SSA form. The actual optimiza-

tion problem to be performed on the SSA form triggers the expansion of the SSA form to

include only the necessary alias-information. Similar ideas have also been implemented in

the demand-based expansion algorithm of factored def-def chains [CCF92].

Chapter 5

A Demand-Driven Analyzer for

Gen-Kill Problems

In the previous chapter a framework for demand-driven data ow analysis was presented

based upon which a generic demand-driven analysis algorithm was developed. It remains to

show that the demand-driven analysis algorithm has e�cient implementations in practice.

Since the generic demand-driven algorithm is expressed in very general terms, a straight-

forward implementation may not be the most e�cient one for a given data ow problem. It

may be possible to improve the algorithm's e�ciency by exploiting the speci�c properties

of the data ow problem under consideration.

This chapter presents an e�cient specialization of the generic demand-driven algorithm

for Gen-Kill problems. The class of Gen-Kill problems includes the four classical prob-

lems REACH (reaching de�nitions), AVAIL (available expressions), LIVE (live variables),

and BUSY (very busy expressions). A Gen-Kill problem is characterized by algebraically

simple ow functions that allow for e�cient implementations of exhaustive analyses based

on bit vectors. This chapter demonstrates that characteristics of Gen-Kill problems also

enable particularly e�cient implementations of demand-driven analysis framework. It will

be shown that specializing the demand-driven framework to the class of Gen-Kill problems

results in a signi�cant reduction of the asymptotic cost of the demand-driven algorithm.

To demonstrate the practicality of the specialized Gen-Kill framework, an experimental

evaluation of a demand-driven REACH analyzer is presented. The demand-driven REACH

analyzer is evaluated in the context of computing du-chains in a program. The computa-

tion of du-chains is required for most data ow applications in optimizations and software

engineering tools. A du-chain connects a program point that de�nes a variable with a point

that uses the de�ned value.

The demand-driven REACH analyzer was implemented along with a standard exhaus-

tive analyzer as part of an experimental system. Experimental results are presented for

two versions of the demand-driven analyzer: a caching version that uses a cache memory to

64

65

store intermediate results for fast reuse, and a non-caching version that does not store inter-

mediate results. Experimentation was performed to compare the performance of computing

du-chains for a program using the caching and non-caching versions of the demand-driven

analyzer and the exhaustive analyzer.

This chapter is organized as follows. The class of Gen-Kill problems is de�ned in Section

5.1. Section 5.2 presents the specialization of the demand-driven framework for Gen-Kill

problems and discusses its asymptotic cost. Section 5.3 presents an instance of Gen-Kill

framework for REACH analysis and shows how the resulting demand-driven REACH an-

alyzer is used to construct the du-chains in a program. An optional optimization of the

demand-driven analysis that can further reduce the analysis e�ort is described in Section

5.4. Section 5.5 presents the experimental study.

5.1 Gen-Kill Problems

A Gen-Kill problem describes data ow facts that are subsets of a �nite set D of program

objects. Consider the four classical Gen-Kill problems. In problem REACH the set D of

program objects is the set of de�nitions in the program, in LIVE the set D is the set of

variables in the program, and in AVAIL and BUSY the set D is the set of expressions that

occur in the program.

Gen-Kill problems are characterized by a simple de�nition of their ow functions. Given

a node n, the ow function fn in a Gen-Kill problem is of the form:

fn(X) = (X �Killn) [Genn;

where Killn and Genn are constant subsets of D that depend entirely on the node n. Given

a program object d 2 D, the bit valued components of the sets Genn and Killn with respect

to d can be de�ned for each node n as follows:

Gendn =

8><
>:

true if d 2 Genn

false otherwise

Killdn =

8><
>:

true if d 2 Killn

false otherwise

Gen-Kill problems are either intersection or union problems. In an intersection problem

(e.g., AVAIL, BUSY) the meet operator u corresponds to set intersection and the dual join

operator t corresponds to set union. In a union problem (e.g., REACH, LIVE) the roles of

the meet and the join operators are interchanged.

Example: REACH is a union problem, where D is the set of de�nitions in the program.

The set Genn is the set of de�nitions that are generated at node n and Killn is the set of

66

de�nitions of variables that are rede�ned at n (i.e., killed at n). Hence, the ow function

fn(X) = (X �Killn) [Genn expresses that a de�nition d 2 D reaches the exit of node n

if d is generated at n (i.e., d 2 Genn) or if d reaches the entry of node n and is not killed

at n (i.e., d 62 Killn).

If the program objects in D relate to program variables, as in the four classical Gen-Kill

problems, the setD is structured according to the structure of the variable space. According

to the usual scoping rules, the set of variables addressable in a procedure p is given by:

Addr(p) = Global [Formal(p)[Local(p):

Thus, if a program object d 2 D relates to a variable v 2 Addr(p), then d is a global, a

formal or a local program object. The set D(p) of program objects in a procedure p can be

analogously structured:

D(p) = Dglobal [Dformal(p)[Dlocal(p):

Example: Consider the problem REACH, where the set D is the set of de�nitions in the

program. Given a procedure p, the set D(p) of objects visible in procedure p is given by

the sets:

Dglobal = fd 2 D j d is a de�nition of a variable v 2 Globalg

Dformal(p) = fd 2 D j d is a de�nition of a variable v 2 Formal(p)g

Dlocal(p) = fd 2 D j d is a de�nition of a variable v 2 Local(p)g

5.2 A Framework Instance for Gen-Kill Problems

Exploiting the algebraically simple de�nition of Gen-Kill problems leads to an e�cient spe-

cialization of the general analysis framework from Chapter 4. A specialized instance of

the general framework is obtained by specializing the individual components of the frame-

work: (1) the query de�nition, (2) the query propagation rules, and (3) the generic analysis

algorithm. The specialization presented here assumes C-style programs with local and

global scoping and procedures with value parameters. Extensions for handling reference

parameters are straightforward and are based upon the handling of procedure parameters

as described in Chapter 4.

5.2.1 Specialized Queries and Propagation Rules

Consider �rst the specialized de�nition of a query. A query q in a Gen-Kill problem is of

the form q =< d; n >, where d 2 D is a program object and n is a program node. Note

that the general query de�nition from Chapter 4 allows the �rst component of a query to

be any element of the powerset lattice over D.

67

(i) For each procedure p:

< d; entryp > ()

8>><
>>:

false if p has no call sites or d 2 Dlocal(p)^
call(m)=p

< ~b�1
m (d); m > otherwise

(iii) For a non-entry node n that is not a call site:

< d; n > ()
^

m2pred(n)

8>>><
>>>:

true if Gendm = true

false if Killdm = true and Gendm = false

< d;m > otherwise

Figure 5.1: Specialized propagation rules for Gen-Kill problems.

Specializing the query propagation rules results in a number of simpli�cations. Unlike

the general case, the reverse ow function in a Gen-Kill problem can be determined statically

based on the local Kill dn and Gen d
n sets. The specialized query propagation rules for a query

involving a program object d 2 D are shown in Figure 5.1. Note that rule (iii) in Figure

5.1 does not include the case that node n represents a procedure call. An extension of

rule (iii) to include procedure calls is obtained by extending the de�nition of the variables

Killdn and Gen d
n . If node n represents a call site then variables Killdn and Gen d

n express

summary information about the execution of the called procedure. Speci�cally, Killdn and

Gen d
n express whether d is killed or generated as a result of executing the procedure called

at node n.

The summary information for a procedure q is determined by computing vectors K d
q [n]

and G d
q [n] for nodes n in q. Hence, the vectorsK d

q [n] and G
d
q [n] are the specialized instances

of the reverse procedure summary functions �r from Chapter 4. In an intersection problem,

these vectors are de�ned as follows:

K d
q [n] = true if, for some successor m of n, data ow fact d is killed along some path

leading to m (i.e., K d
q [m] = true) or d is directly killed at the successor m (i.e.,

Killdm = true).

G d
q [n] = true if, for each successorm of n, data ow fact d is generated and not subsequently

killed along each path leading to m (i.e., G d
q [m] = true) or d is directly generated and

not killed at the successor m (i.e., Gendm = true).

The analogous de�nitions for a union problem are:

68

Kd
q [exitp] = false

Kd
q [n] = Meetm2succ(n)

8>>><
>>>:

Kd
q [m]_ Killdm if m is not a call

Kd
q [m]_K d

r [entryr] if m 2 call(r) and d 2 Dglobal

Kd
q [m] otherwise

Gd
q [exitp] = false

Gd
q [n] = Joinm2succ(n)

8>>>>><
>>>>>:

Gd
q [m]_ (Gen d

m ^ :(Kd
q [m])) if m is not a call

Gd
q [m]_ (G d

r [entryr]^ :(K
d
q [m])) if m 2 call(r) and

d 2 Dglobal

Gd
q [m] otherwise

Figure 5.2: Specialized procedure summary computation for Gen-Kill problems.

K d
q [n] = true if, for each successor m of n, data ow fact d is killed along each path leading

to m or d is directly killed at the successor m.

G d
q [n] = true if, for some successor m of n, data ow fact d is generated and not subse-

quently killed along some path leading to m or d is directly generated and not killed

at the successor m.

The formal de�nition of the vectors is shown in Figure 5.2, where the de�nition of the oper-

atorsMeet and Join depends upon whether the current data ow problem is an intersection

problem or a union problem. In an intersection problem, Meet is de�ned as the boolean

conjunction (^) and Join is de�ned as the boolean disjunction (_). In a union problem,

the roles of Meet and Join are interchanged, such that Meet = _ and Join = ^. In an

intersection problem the initial values for the equations in Figure 5.2 are: Gd
p[n] = true and

Kd
p [n] = false, and in a union problem: Gd

p[n] = false and Kd
p [n] = true.

The summary information at a call site s 2 call(p) for a program object d 2 D is fully

described by the vector of values on procedure entry: K d
p [entryp] and Gd

p[entryp]. Based

on this summary information, the query propagation rules are complete and include the

propagation across a call site s 2 call(p) by setting the variables Killds and Gends such that

Killds = K d
p [entryp] and Gen d

s = Gd
p[entryp].

5.2.2 Demand-Driven Algorithm for Gen-Kill Problems

The specialized framework components lead to a simpli�ed version of the demand-driven

algorithm. Procedure Query GenKill shown in Figure 5.3 is derived from the generic pro-

69

cedure Query and evaluates the propagation rules from Figure 5.1. The generic summary

computation procedure Compute�r specializes to procedure GenKill�r for computing the

vectorsKd
q and G

d
q , as shown in Figure 5.4. Both procedures, Query GenKill and GenKill�r

assume an intersection problem. The corresponding versions of the procedures for union

problems can be similarly developed.

To create the instances of the two demand-driven analysis procedures Query GenKill

and GenKill�r for a particular Gen-Kill problem, such as REACH, it is su�cient to specify

the following parameters:

� The set of program objects D.

� The meet and join operators t and u (either set union or set intersection).

� The local variables Genn and Killn at every node n that is not a call site.

5.2.3 Asymptotic Cost

Consider the asymptotic cost of the two procedures Query GenKill and GenKill�r. GenKill�r

determines the summary values for the vectors Kd
q and Gd

q as the �xed point of the equa-

tion system in Figure 5.2. A worklist is initialized with the triple (d; exitq; q) to trigger the

computation of Kd
q [entryq] and Gd

q [entryq]. During each step a triple (d; n; q) is removed

from the worklist, the corresponding equations Kd
q [n] and Gd

q [n] are evaluated and if their

values have changed, the triple for each dependent equation that may be a�ected by the

change is added to the worklist. In programs with value parameters, each initial request

for summary information refers to a global variable and can only trigger further summary

variable requests for the same global variable. Thus, at most O(jN j) equations are evalu-

ated and the evaluation of each equation can result in the inspection of at most MaxCall

other equations, where MaxCall is the maximal number of call sites calling a procedure. It

follows that a single request for summary information requires O(MaxCall�jN j) time. The

cost of k requests is O(min(k; jDglobalj) �MaxCall � jN j) and O(jDglobalj � jN j) space is

needed to store the summary vectors.1

Next, consider the maximal number of queries generated in procedure Query GenKill

based on the input query q =< d; n >. If d relates to a local variable, at mostMaxN queries

are generated, where MaxN is the maximal number of nodes in any procedure. If d relates

to a global variable, the maximal number of generated queries is jN j since one query for the

global may be generated at every node. Finally, if d relates to a formal parameter, the initial

query may change when propagating it through a procedure entry node to the call sites.

In the worst case, the initial query generates additional queries with respect to all other

1In programs that contain reference parameters, summary information is needed for both, global variables
and formal reference parameters. The asymptotic complexity for k requests changes to O((jDglobalj +
MaxDformal)�MaxCall� jN j) time and O((jDglobalj+MaxDformal)� jN j) space, where MaxDformal is
the maximal number of program objects in any procedure that relate to formal parameters.

70

Procedure Query GenKill(d; n)

input: a program object d 2 D and a node n

output: the answer true or false to the query < d; n >

begin

1. for each m 2 N do query[m] ;

2. query[n] fdg; worklist f(d; n)g;

3. while worklist 6= ; do

4. remove a pair (y;m) from worklist;

5. case m = entrymain:

6. if query[m] is not empty then then return(false);

7. case m = entryp for some procedure p:

8. for each call site m0 such that call(m0) = p do

9. if ~b�1
m0 (fyg) 6= ; then /* if y does not relate to a variable local to p */

10. if ~b�1
m0 (fyg) 62 query[m0] then

11. add ~b�1(fyg) to query[m0];

12. add (~b�1(fyg);m0) to worklist;

13. endif;

14. endfor;

15. otherwise:

16. for each m0 2 pred(m) do

17. if m0 is a call site then

18. compute summaries Genym0 and Kill
y
m0 ;

19. if Kill
y
m0 = 1 then return(false);

20. if Genym0 = 0 then /* continue */

21. if y 62 query[m0] then

22. add y to query[m0] and add (y;m0) to worklist;

23. endfor;

24. endwhile;

25. return(true);

end

Figure 5.3: Specialized demand-driven analysis algorithm for Gen-Kill problems.

71

Procedure GenKill�r(d; p)

input: a program object d and a procedure p

output: the summary variables Gd
p[entryp] and Kd

p [entryp]

begin

1. if visited[entryp ; d] 1 then return; /* result previously computed */

2. worklist f(d; exitp; p)g;

3. Gd
p[exitp] 0 and Kd

p [exitp] 0;

4. while worklist 6= ; do

5. remove a triple (y; n; q) from worklist;

6. visited[n; y] 1;

7. case n is a call site with call(n) = r:

8. if visited[entryr ; y] = 1 then

9. for each m 2 pred(n) do

10. Propagate(m; d; (Ky
q [n] _K

y
r [entryr]); (G

y
q [n]_ (G

y
r [entryr] ^ :(K

y
q [n])));

11. else /* trigger computation of summaries for r */

12. Gy
r [exitr] 0 and Ky

r [exitr] 0;

13. add (y; exitr ; r) to worklist;

14. case n = entryq :

/* Propagate to call sites if needed */

15. for each call site m in a procedure r, such that call(m) = q and visited[m; y] = 1 do

16. for each m0 2 pred(m) do

17. Propagate(m0; y; (Ky
q [m] _Ky

p [entryp]); (G
y
q [m] _ (Gy

p[entryp]^ :(K
y
q [m])));

18. otherwise:

/* n is not a call site and not an entry node */

19. for each m 2 pred(n) do

20. Propagate(m; y; (Ky
p [n]_Killyn); (G

y
p[n]_ (Gen

y
n ^ :(K

y
p [n])));

21. endwhile;

22. return;

end

Procedure Propagate(p; n; y; kill; gen) /* propagate kill and gen to Ky
p [n] and Gy

p[n] */

input: a procedure p, a node n, a variable y, and bit values kill and gen

begin

1. Ky
p [n] Ky

p [m] _ kill;

2. Gy
p[n] Gy

p[n]^ gen;

3. if Ky
p [n] of G

y
p[n] changed then add (y; n; p) to worklist;

end

Figure 5.4: Procedure GenKill�r to compute Gen-Kill procedure summaries.

72

variables. Hence, up to MaxD�jN j queries may be generated, where MaxD is the maximal

size of the program object set D in any procedure. Each generation of a query results in

the inspection of at most MaxCall other queries. Thus, the total cost of generating queries

in procedure Query GenKill, including the cost of GenKill�r, is O(MaxD�MaxCall� jN j)

time and O(MaxD� jN j) space to store the generated queries and summary vectors.

In comparison, the asymptotic complexities of the general framework from Chapter

4 are O(height(L) � jLj � MaxCall � jN j) time and O(jLj � jN j) space. In a Gen-Kill

problem the lattice L corresponds to the powerset of the program object set D. Hence,

a straightforward implementation of the general framework for a Gen-Kill problem would

have resulted in exponential cost in the size of object set D: O(jDj� 2jDj�MaxCall� jN j)

time and O(2jDj � jN j) space.

5.3 Application: Demand-Driven DU-Chain Analyzer

This section illustrates an instance of the demand-driven Gen-Kill framework for REACH

analysis. The resulting demand-driven REACH analyzer is considered in the context of

du-chain computation. Informally, a du-chain is a pair (d; u) that connects a de�nition d of

a variables with a use u of the de�ned value.

The program in Figure 5.5 is used to illustrate the du-chain computation. To distinguish

multiple de�nitions and uses of the same variable, the node number is used as a subscript,

i.e., xn denotes the reference of variable x at node n.

5.3.1 Interprocedural REACH Analysis

The computation of interprocedural du-chains and interprocedural reaching de�nitions is

complicated since de�nitions may reach uses across procedure boundaries. Moreover, in

programs with parameter passing, de�nitions and uses of the same value may refer to

the value using di�erent variable names. To correctly establish reaching de�nitions across

procedure boundaries, the variable bindings that result from parameter passing must be

considered. To formally describe the bindings that occur along an execution path, the

sequence of active procedures whose execution has not yet terminated along the path is

considered.

De�nition 5.1 (Active Call Sequence) Let � be a valid execution path. The active

call sequence for � is obtained from � by eliminating all nodes except the call sites of

procedures that have not terminated when execution reaches the end of �.

The value of a variable may be bound to variables in a calling or a called procedure as

de�ned below.

De�nition 5.2 (Binding) Let p be a procedure and let s be a call site in p calling a

procedure q, i.e., s 2 call(q). Furthermore, let v and w be variables in the address spaces of

73

declare x; /* global */
procedure proc1 procedure proc2(in: f) procedure proc3(in: g)
declare y; /* local */ begin begin
begin if f=0 then call proc3(f); if g=10 then x:=g+1;

read(x,y); end end
if x=1 then call proc3(x);
y:=x+y;
call proc2(y);
write(x,y);

end

y:=x+y

write(x,y)

read(x,y)

11

16

15

g=10

exit

13

12

10

7

6

4

3

2

1

f=0

x=1

exit

entryentryentry

x:=g+1

exit

9

5

8

14

proc1

call proc2(y)

call proc3(x)

call proc3(f)

proc2(in: f) proc3(in: g)

Data ow sets for REACH analysis

procedure p = proc1 procedure p = proc2

n Genn Killn RD(n) n Genn Killn RD(n) Gx2
p Gx15

p Kx2
p Kx15

p

1 - - - 9 - - x2; x15; y2; y5 false true false false

2 x2; y2 x15; y5 - 10 - - x2; x15; y2; y5 false true false false

3 - - x2; y2 11 x15 - x2; x15; y2; y5 false true false false

4 x15 - x2; y2 12 x15 - x2; x15; y2; y5 false true false false

5 y5 y2 x2; x15; y2 procedure p = proc3

6 x15 - x2; x15; y5 n Genn Killn RD(n) Gx2
p Gx15

p Kx2
p Kx15

p

7 - - x2; x15; y5 13 - - x2; x15; y2; y5 true true false false

8 - - x2; x15; y5 14 - - x2; x15; y2; y5 false true false false

15 x15 x2 x2; x15; y2; y5 false true false false

16 x15 x2 x2; x15; y2; y5 false true false false

Figure 5.5: Program with data ow sets for REACH analysis.

74

p and q, respectively.

(i) The value of v in p is bound to w in q via s if w 2 bs(v).

(ii) The value of w in q is bound to v in p via s if v 2 b�1
s (w).

Let S = s1; : : : ; sk be an active call sequence of a valid execution path �, such that s1 is

contained in a procedure p1 and si calls a procedure pi+1 for 1 � i < k. Furthermore, let v

and w be variables in the address spaces of p1 and pk+1, respectively.

(iii) The value of v in p1 is bound to w in pk+1 via S if there exists a sequence of

variables v1; : : : ; vk+1 with v1 = v and vk+1 = w, such that the value of vi is bound to vi+1

via si for 1 � i < k.

(iv) The value of w in pk+1 is bound to v in p1 via S if there exists a sequence of

variables v1; : : : ; vk+1 with v1 = v and vk+1 = w such that the value of vi+1 is bound to vi

via si for 1 � i < k.

The value of a variable is always bound to the variable itself via the empty call sequence.

Example: Consider the program in Figure 5.5, where all parameters are passed by value.

The value of variable x is bound to parameter g in proc3 via the call at node 4. The value

of variable y is not bound to any variable in proc3 since y is local and not passed as a

parameter. However, the value of y is bound to the parameter f in proc2 via the call at

node 6.

Note that the notion of binding di�ers from that of aliasing, which was previously discussed

in Chapter 4. Binding refers to the binding of values to new variables upon procedure

invocation. Aliasing refers to the binding of variables references, such that two variables

may be bound to the same memory location. For example, if a global variable x is passed

to a parameter f by reference, then x and f are aliases and the value of x is bound to f .

However, if x is passed to f by value then the value of x is also bound to f but x and f are

not aliases of one another.

A formal de�nition of reaching de�nitions is based on the notion of killing, or alterna-

tively, kill-free nodes as de�ned below.

De�nition 5.3 (Kill-free) A node n is called kill-free for variable v if node n does not

contain a de�nition of a variable that is a must-alias of v at node n. A path � is called

kill-free for variable v if every node in � is kill-free for v.

Interprocedural reaching de�nitions and the symmetric problem of interprocedural reachable

uses can now be de�ned as follows.

De�nition 5.4 (Interprocedural reaching de�nition) A de�nition d of a variable v is

a reaching de�nition of a variable w at node n if:

(i) there exists a valid execution path � from d to node n with an active call sequence

S = s1; : : : ; sk such that variable v is bound to a sequence of variables v1; : : : ; vk = w via S

and

75

entry

exit

entry

call proc2(x)

1

2

3

4

7

8

proc1

exit
5

write(x)

x:=0 f:=1

y:=f+x

6

9

proc2(in: f)

Figure 5.6: Interprocedural du-chains with global variables x and y.

(ii) the following subpaths in � are kill-free: the subpath from d to s1 is kill-free for v,

the subpaths si : : : si+1 are kill-free for vi for 1 � i < k, and the subpath sk : : :n is kill-free

for w.

De�nition 5.5 (Interprocedural reachable use) A use u of a variable v is a reach-

able use of a variable w at node n if:

(i) there exists a valid execution path � from n to the use u with an active call sequence

S = s1; : : : ; sk such that variable w is bound to a sequence of variables v1; : : : ; vk = v via S

and

(ii) the following subpaths in � are kill-free: the subpath n : : : s1 is kill-free for w, the

subpaths si : : : si+1 are kill-free for vi for 1 � i < k, and the subpath from sk to the use u is

kill-free for v.

The sets of reaching de�nitions and reachable uses of a variable v at a node n are denoted

RD(v; n) and RU(v; n). Furthermore, the sets of reaching de�nitions and reachable uses of

any variable at a node n, where n is contained in a procedure p, are de�ned as:

RD(n) =
[

v2Addr(p)

RD(v; n)

RU(n) =
[

v2Addr(p)

RU(v; n)

Example: Consider the example in Figure 5.6 and the question as to whether the de�nition

f7 of formal value parameter f at node 7 reaches node 4 in procedure proc1 after the call

to proc2. Since f is a parameter, its scope ends with the end of procedure proc2. Moreover,

since f is not a reference parameter, its value is not bound to any variable in procedure

76

proc1. Thus, de�nition f7 does not reach a node along any path outside procedure proc2.

Now, consider de�nition y8 at node 8. Since y is a global variable, its scope extends beyond

procedure proc2 and the value assigned to y in procedure proc2 is still bound to y at nodes

outside proc2. Thus, the de�nition y8 reaches nodes 4 and 5 in procedure proc1.

The de�nition of interprocedural reaching de�nitions and reachable uses also provide a

formal characterization of the du-chains in a program.

De�nition 5.6 (Du-chain) Let d be a de�nition of variable v at a node n and let u be a

use of variable w at nodem. The pair (d; u) is a du-chain if d 2 RD(w;m) (or equivalently,

if u 2 RU(v; n)).

Example: Consider Figure 5.6 and the questions as to whether (x2; f8) establish a du-

chain. The value of the global x is bound to the formal f but node 7 is not kill-free for

f . Hence, x2 is not a reaching de�nition of f at node 8 and (x2; f8) is not a du-chain.

However, every node in the path from node 2 to node 8 is kill-free for variable x. Thus, x2

is a reaching de�nition for variable x at node 8 and the pair (x2; x8) is a du-chain.

In a program that consists of multiple procedures, du-chains may cross procedure bound-

aries. To determine whether a du-chain crosses procedure boundaries, the kill-free paths

associated with the du-chain are examined. For a du-chain (d; u) there may be several

distinct kill-free paths from d to u. Some of these paths may cross procedure boundaries

while others may remain intraprocedural paths. For a du-chain to be an interprocedural

chain it should have at least one kill-free path that crosses procedure boundaries. However,

the existence of a kill-free path that crosses procedure boundaries is not su�cient to make

a du-chain interprocedural. Consider for example the du-chain (y2; y5) for the local variable

y in Figure 5.5. There are two kill-free paths for the chain, one path in proc1: 2,3,5 and

one path across procedure proc3. Despite the existence of a kill-free path across proc3, the

du-chain (y2; y5) does not qualify as an interprocedural chain since variable y is local to

proc1 and not passed as a parameter. Intuitively, a du-chain is interprocedural if the chain

extends across a procedure invocation that potentially a�ects the value of the pair. To

formalize this notion potential kill nodes of a variable are introduced.

De�nition 5.7 (Potential kill) A node n is called a potential kill node for variable v

if variable v has at least one must-alias in the procedure that contains node n.

Clearly, for a global variable any node is a potential kill node. However, for a local

variable of a procedure p that is not passed as reference parameter no node outside p can

be a potential kill node. To qualify as an interprocedural du-chain, the chain must pass

through at least one potential kill node that lies in a di�erent procedure.

De�nition 5.8 (Interprocedural du-chain) Let (d; u) be a du-chain, where d is a de�-

nition of a variable v contained in a procedure p. The chain (d; u) is an interprocedural

77

de�nition du-chains

intraprocedural interprocedural

x2 (x2; x3); (x2; x4); (x2; x5) (x2; x5); (x2; x7); (x2; g14); (x2; g15)

x15 (x15; x5); (x15; x7)

y2 (y2; y5)

y5 (y5; y6); (y5; y7) (y5; f10); (y5; f11); (y5; g14); (y5; g15)

Table 5.1: Du-chains for the example from Figure 5.1.

du-chain if the de�nition d reaches the use u along a kill-free path that contains at least

one node outside p that is a potential kill node for v.

De�nition 5.9 (Intraprocedural du-chain) Let (d; u) be a du-chain, where d is a de�-

nition of a variable v contained in a procedure p. The chain (d; u) is an intraprocedural

du-chain if the de�nition d reaches the use u along a kill-free path that contains no nodes

outside p that are potential kill nodes for v.

Example: Table 5.1. shows the complete sets of intra- and interprocedural du-chains for

the program in Figure 5.5. The pair (x15; x5) is an interprocedural pair since node 5 is a

potential kill node for the pair that is contained in a di�erent procedure than the de�nition

x15. The pair (x2; x5) is also interprocedural since every node in proc3 is a potential kill

node for the pair. In contrast, the pair (y2; y5) is not interprocedural. Since y is local, no

node outside proc1 can be a potential kill node.

Note that a du-chain with multiple kill-free paths may be both intra- and interprocedural.

For example, the pair (x2; x5) in Figure 5.5 is an intraprocedural du-chain due to the kill-

free path 2,3,5. The pair (x2; x5) is also an interprocedural du-chain due to the kill-free

path 2,3,4,13,14,15,16,5 with the potential kill nodes 13, 14, 15 and 16.

5.3.2 DU-Chains on Demand

The standard approach for computing du-chains is to �rst compute exhaustive sets of

reaching de�nitions at each program point. The actual du-chains are then established in a

second phase by selecting the appropriate de�nitions from the computed sets at every use

of a variable. At each point, the de�nitions of variables that are not live at that point are

useless and need not be computed. The computation of these useless reaching de�nitions can

be avoided if a demand-driven approach is used. In a demand-driven approach, reaching

de�nitions are computed only at the program points, where they are needed, that is, at

78

Procedure DU-Chains(P)

input: a program P

output: the set of du-chains for P

begin

1. for each node n in P do

2. if n contains the use u of a variable v then

3. compute RD(v; n);

4. collect the du-chains: f(d; u) j d 2 RD(v; n)g

5. endif

6. endfor

end

Figure 5.7: Demand-driven du-chain computation.

every use of a variable. The algorithm to compute du-chains on demand is outlined in

Figure 5.7. To collect the required sets of reaching de�nitions in line 3 the instance of the

demand-driven GEN-KILL framework for REACH is used.

The Gen-Kill framework instance for REACH is created by specifying the framework

parameters as follows:

� D = set of de�nitions in the program

� u = \ (set intersection) and t = [(set union)

� Genn = set of de�nitions generated at node n

� Killn = set of de�nition killed at node n

Using this framework instance for REACH, the set RD(v; n) of reaching de�nitions can

be computed by issuing a corresponding query for algorithm Query GenKill.

Example: Consider the demand-driven REACH analysis of the program example in Figure

5.5. The variables Genn and Killn at each node n are shown in the table in Figure 5.5. The

results of the summary vectors Gd
p and K

d
p for the two procedures proc2 and proc3 are also

shown in the table. For example, the entry Kx15
proc3[13] = false expresses that de�nition x15

is not killed during the execution of proc3 and Gx15
proc3[13] = true expresses that de�nition

x15 reaches the exit of procedure proc3. Note that proc1 is not called by another procedure

and, therefore, requires no summary information.

Using the summary vector, the values for Genn and Killn at the call sites at nodes 4,

79

6 and 11 result as:

Gen4 = fx15g; Kill4 = ;;

Gen6 = fx15g; Kill6 = ;;

Gen11 = fx15g; Kill11 = ;:

Consider now a request for the set RD(x; 5) of reaching de�nitions of variable x at the en-

try of node 5. This request is expressed by the two queries ?(x2; 5) and ?(x15; 5). Since these

two queries request de�nitions of the same variable, they can be resolved simultaneously

during a single query propagation. Thus, the combined query ?(x; 5) for any de�nitions of

variable x is considered. Since x 2 Global, propagation across the call proc3(x) at node

4 requires computation of the summary variables Kx2
proc3[13] = false and Kx15

proc[13] = false,

which indicate that the query is not killed. The summary variable Gx15
proc3[13] = true denotes

that de�nition x15 is generated during the execution of procedure proc3. Hence, de�nition

x15 can be collected as a reaching de�nition and the search for the remaining reaching def-

initions continues with the new query ?(x; 4). Note that, at this point, there is only one

further potential reaching de�nition for variable x left (i.e., de�nition x2). Next, the new

query is propagated through node 3, where Killx23 = false and Killx153 = false. Since node 2

contains de�nition x2, the search terminates with the set of reaching de�nitions fx2; x15g.

5.4 Query Advancing

This section describes a simple but e�ective optimization of the query propagation. The

optimization is applicable to Gen-Kill problems in which the Gen and/or Kill points are

based on de�nitions or uses of variables, i.e., REACH and LIVE. Based on some additional

information about procedure execution, the duration of the query propagation is shortened

by skipping program portions through query advancing. For simplicity, this section assumes

that parameters are passed by value only.

Example (Advancing across call): Consider the example in Figure 5.8 and a query

for the reaching de�nitions of the global variable x at node 7, i.e., < x; 7 >. Propagating

query < x; 7 > across the call site at node 6 would require the computation of summary

information about the called procedure proc3. However, if it is known that procedure proc3,

and any procedure subsequently called by proc3, does not contain a node with a de�nition

of variable x, the summary information can be determined without analysis: no de�nitions

of x can be killed or generated. Thus, the summary computation can be skipped and the

query < x; 7 > can be directly forwarded across the procedure call as shown by the dashed

arrow.

Example (Advancing to entry): Next, consider the propagation of the new query <

x; 5 > to the call site in procedure proc1. Based on the propagation rules from Chapter 4,

80

entry

exit

entry
1

2

3

4

7

8
exit

5

6
b:=a−c

proc1

call proc2

proc2

entry

proc3

c:=a+b

exitwrite(x)

call proc3
10

11

9

Figure 5.8: Query advancing in REACH analysis.

the query < x; 5 > would be translated into a new query at node 3. However, if it known

that procedure proc1 (and any procedure subsequently called by proc1) does not contain a

node with a de�nition of variable x, it is not necessary to propagate the new query through

procedure proc1. Instead the query can be directly forwarded to the entry node of proc1 as

shown by the dashed arrow in Figure 5.8.

The additional information needed for these two advancing optimizations are the ow-

insensitive procedure summary sets Mod(p) for procedures p [CK88]. The set Mod(p) con-

tains the variables that may be modi�ed by the execution of procedure p because either p

directly modi�es the variable or the variable is modi�ed by a procedure subsequently called

by p. Let DMmod(p) be set of variables that are directly modi�ed in procedure p. The set

Mod(p) is then de�ned by the following equation:

Mod(p) = DMod(p)[(
[

p calls q

Mod(q))

The set DMod(p) is locally determined by a simple inspection of the de�nitions that are

contained in procedure p (e.g., during parsing). The local sets DMod(p) are then propagated

by iterating over the program's call graph using a simple iterative worklist algorithm. In

the absence of recursion, an iterative algorithm computes the sets Mod(p) in time linear in

the number of edges in the call graph (i.e., number of procedure calls). Recursion creates

cycles in the call graph which increases the worst case cost of the iterative algorithm to be

quadratic in the size of the call graph.

The summary information Mod(p) is called ow-insensitive since determining the in-

formation does not require ow analysis and the control ow within each procedure can be

ignored. In contrast, summary information, such as the vectors Gd
q and K

d
q in the Gen-Kill

framework, is called ow-sensitive. Flow-sensitive summary information requires the con-

trol ow within a procedure to be analyzed. Consider for example the information in the

81

vector Gd
q in REACH. The value Gd

q [n] expresses that there exists a control ow path from

node n to the exit of procedure q along which de�nition d is generated and not subsequently

killed.

Using the Mod(p) sets the two jump optimizations are de�ned as follows:

� Advancing across calls

Propagating a query q =< d; n > for the de�nition d of a variable x across a call site

m 2 call(p) requires summary information only if x 2 Mod(p). Otherwise, q can be

directly forwarded across the call:

< d; n >()
^

m 2 pred(n);

m 2 call(p)

8>>>>><
>>>>>:

false if x2Mod(p)^ Gendm = true

true if x2Mod(p)^Killdm=true ^ Gen
d
m=false

< d;m > otherwise

^
m 2 pred(n);

m not a call

8>>>>><
>>>>>:

false Gendm = true

true Killdm = true and Gendm = false

< d;m > otherwise

� Advancing to entry

When propagating a query q =< d; entryp > for the de�nition d of a variable x into

a procedure r that calls p then q can be directly forwarded to entryr if x 62 Mod(r).

< d; entryp > ()

8>>>>>><
>>>>>>:

false if x 2 Local(p)

^
call(m) = p, where

m is in procedure r

8><
>:

< ~b�1
m (d); entryr > if x 62 Mod(r)

< ~b�1
m (d); m > otherwise

The two query advancing optimizations are not limited to REACH analysis but are appli-

cable to any Gen-Kill problem in which the generation and killing of a program object are

based on de�nitions and uses of variables. To apply query advancing in problems in which

generation and/or killing is based on variable uses simply requires a di�erent kind of ow-

insensitive summary information. Instead of the sets Mod(p), the similar ow-insensitive

sets Ref (p) are used. Ref (p) contains the variables that are referenced as a use in procedure

p or in any procedure subsequently called by p:

Ref (p) = DRef (p)[(
[

p calls q

Ref (q));

82

where DRef (p) is the set of variables that are directly used in procedure p.

Note that exhaustive analysis cannot be optimized by in a similar way. Query advancing

is enabled through the goal-directed search of demand-driven analysis. Exhaustive analysis

is not goal-directed and collects all data ow facts that are generated. Unless a procedure

generates no data ow facts (i.e., contains neither de�nitions nor uses of variables), its

analysis cannot be skipped.

5.5 Experiments

An experimental study was conducted to evaluate the practical bene�ts of computing du-

chains based on the demand-driven REACH analyzer. The study's primary objective was to

compare the performance of the demand-driven du-chain algorithm with that of a standard

exhaustive algorithm. Additional experiments were carried out to evaluate the trade-o�

between the bene�ts and overhead of (i) the caching capability and (ii) query advancing in

the demand-driven algorithm.

The experiments are based on implementations of the following three algorithms:

(CACHE) Caching demand-driven du-chain algorithm as described in the previous section

based on a caching version of the demand-driven REACH analyzer.

(DD) A non-caching version of the demand-driven du-chain algorithm (CACHE).

(EX) An exhaustive du-chain algorithm. The exhaustive algorithm computes du-chains

by standard exhaustive reaching de�nition analysis based on the interprocedural

Sharir/Pnueli framework [SP81]. Since the Sharir/Pnueli framework also serves as

the basis for the demand-driven analysis framework, it provides a natural exhaustive

counterpart to the demand-driven algorithms (CACHE) and (DD).

The exhaustive analysis is implemented using e�cient bit vector representations of data

ow sets. Note that bit vector operations cannot be used to implement the demand-driven

analyzers since analysis is performed with respect to individual queries, i.e., individual bit

vector positions. The demand-driven algorithms (CACHE) and (DD) optionally include

query advancing.

The three algorithms were implemented in C as part of the PDGCC compiler project at

the University of Pittsburgh. The PDGCC system contains a C front end that provides a

statement level control ow graph of each procedure based on a three-address intermediate

representation of the program. The current versions of the three algorithms perform anal-

ysis over scalar variables only. The inclusion of structured variables is the subject of future

extensions. The implemented algorithms assume programs that are free of pointer induced

aliasing. Pointer references in C programs are handled by assuming that the address opera-

tor \&" destroys the value of the variables to which it is applied. This treatment of pointer

references may not be safe in the presence of aliasing. To guarantee safety, a write via a

83

pointer should consider every variable that may be pointed to as overwritten. To avoid

overly conservative worst case estimates of the set of variables that may be pointed to by

a pointer, additional alias information must be collected and incorporated into the analysis

as described in Chapter 4.

An aspect of a compiler front end with implications on analysis performance is the

treatment of temporary variables. The PDGCC front end was designed to generate single-

assignment temporary variables. Thus, temporaries are not recycled for future re-use. The

use of single-assignment temporaries avoids the creation of arti�cial data dependencies

among statements which may be bene�cial for tasks such as register allocation. However,

the generation of single-assignment temporaries may also increase the size of the address

space. Large address spaces impact on the performance of data ow algorithms whose com-

plexity depends on the number of addressable variables. Furthermore, single-assignment

temporaries are typically used in a fairly controlled way. The uses and de�nitions of tem-

poraries are likely to be in nearby statements. Thus, temporaries may not actually require

global analysis and could instead be analyzed locally. For example, it may be possible to

determine the du-chains for a temporary variable immediately after the temporary has been

created. However, if the program changes and re-analysis is to be expected, the locality

property of references to temporaries may be destroyed and a subsequent re-analysis of the

program may have to consider temporary variables.

In order to avoid a bias in the experimental results towards a particular strategy for han-

dling temporary variables, the experiments are conducted in two versions. One version that

considers the complete address space in each procedure, including all compiler generated

temporaries, and one version that only includes source-level variables into the analysis.

The experiments were run on a SUN SPARCstation 5 with 32 MB of RAM. Table 5.2

shows the 17 C programs that were used during the study. Programs 7-17 are core routines

of Unix utility sources. Table 5.2. shows for each program the number of source code lines,

the number of nodes in the control ow graph, the number of procedures, the number of calls,

and parameters concerning the size of the variable space. The column indicated as MaxVar

shows the maximal number of variables in any one procedure including temporaries. The

maximal number of source-level variables (excluding temporaries) is shown in parentheses.

The last column shows the number of global variables.

All reported analysis times are user cpu times in seconds. The cpu times were determined

using the Unix library routine getrusage. The reported analysis times reect the mean value

over �ve test runs. If query advancing was enabled in the demand-driven analyzer, the

measured analysis times include the time to compute the GMod vectors. Analysis times do

not include the time for the preparatory pass over the program to set up analysis speci�c

parameters that are required in both the exhaustive and the demand-driven analyses. These

parameters, that include the collection of local Gen and Kill sets, could also be determined

during parsing.

84

Benchmarks

No. program #code lines #nodes #procedures #calls MaxVar #globals

1 bubble 64 105 5 4 29 (9) 6

2 quicksort 65 141 6 7 32 (12) 5

3 hanoi 69 117 3 5 28 (11) 3

4 queens 84 150 4 4 38 (8) 3

5 heapsort 99 173 2 1 72 (24) 0

6 nsieve 115 192 2 2 40 (18) 6

7 cat 240 377 5 4 61 (15) 7

8 calendar 352 731 10 14 53 (10) 4

9 getopt 395 739 5 6 80 (12) 4

10 linpack 564 686 12 30 140 (17) 0

11 di� 818 899 12 33 211 (41) 27

12 patch 753 1316 14 13 141 (38) 27

13 tar 1214 1451 27 68 182 (49) 45

14 gzip 1245 2495 37 97 173 (48) 45

15 grep 1488 2906 32 72 127 (29) 16

16 sort 1528 3554 35 145 151 (19) 10

17 dc 1576 3298 67 230 91 (19) 10

Table 5.2: Benchmark programs. Parentheses indicate measurements that exclude tempo-
raries.

All reported space measurements include only the amount of memory that is allocated

for data ow vectors, cache memory and other auxiliary structures that are needed for

analysis purposes, such as the storage of the Gmod sets if query advancing was used.

5.5.1 Experiment 1: Caching Demand-Driven versus Exhaustive

The �rst experiment compares the performance of the exhaustive du-chain analyzer with the

performance of the caching demand-driven analyzer when used to compute all du-chains.

The exhaustive du-chain algorithm was performed over all test programs. The resulting

exhaustive analysis time Tex and space consumption Sex for each program are listed in

Table 5.3.

The caching demand-driven analyzer with query advancing was executed for a set of

queries that enables the construction of all du-chains in a program. This set contains one

query for the reaching de�nitions at each use of a variable, that is, at most two queries at

each node which corresponds to O(jN j) queries. These queries were generated in random

order over the program. Table 5.3 shows the number of generated queries and the total

number of du-chains in each program.

The demand-driven analysis time T opt
cache accumulated over all queries is shown in Table

85

Exhaustive Analysis (Du-chain)

program time (secs) space (Kbytes)

Tex Sex

bubble 0.03 (0.02) 10.500 (9.240)

quicksort 0.03 (0.03) 14.572 (12.880)

hanoi 0.02 (0.02) 12.216 (10.812)

queens 0.04 (0.02) 15.348 (13.548)

heapsort 0.09 (0.06) 22.756 (18.604)

nsieve 0.03 (0.04) 20.196 (20.196)

cat 0.20 (0.08) 43.424 (34.376)

calendar 0.17 (0.08) 82.164 (64.620)

getopt 0.98 (0.39) 105.372 (78.768)

linpack 0.53 (0.30) 227.312 (171.872)

di� 6.85 (2.26) 311.135 (180.012)

patch 2.05 (0.75) 230.424 (167.256)

tar 4.28 (2.12) 326.072 (220.712)

gzip 1.64 (0.91) 525.136 (405.376)

grep 4.56 (1.36) 437.704 (333.088)

sort 5.91 (1.85) 531.744 (361.720)

dc 1.11 (0.66) 416.508 (337.356)

Queries (Du-chain)

program queries du-chains

bubble 69 (31) 91 (55)

quicksort 94 (49) 160 (119)

hanoi 60 (36) 72 (41)

queens 105 (56) 119 (60)

heapsort 118 (77) 190 (147)

nsieve 105 (72) 145 (112)

cat 165 (64) 215 (104)

calendar 236 (51) 275 (70)

getopt 268 (159) 1059 (929)

linpack 1160 (668) 1543 (1002)

di� 555 (185) 685 (268)

patch 599 (307) 1075 (740)

tar 578 (260) 847 (500)

gzip 1161 (543) 2068 (1350)

grep 805 (331) 1048 (508)

sort 1065 (421) 1570 (815)

dc 1271 (553) 1958 (1011)

Table 5.3: Exhaustive analysis time (Tex) and space (Sex) and the number of queries and du-
chains for each benchmark. Parentheses indicate measurements that exclude temporaries.

5.4. The analysis T opt
cache is based on the caching version of the demand-driven algorithms

with query advancing. Table 5.4 also shows the accumulated space consumption and the

cache �ll. The cache �ll is the percentage of the exhaustive reaching de�nition solution that

has been accumulated in the cache at the end of the demand-driven analysis. Thus, the

cache �ll indicates the portion of the exhaustive solution that is actually needed to construct

all du-chains. The cache �ll values in Table 5.4 show that actually only a small portion of

the exhaustive solution is relevant. The remaining portion of the solution consists of useless

reaching de�nitions that are propagated beyond the points where the de�ned variable is live

in the current procedure. Demand-driven analysis naturally suppresses the computation of

these useless reaching de�nitions.2

2Note that the same redundancies in the exhaustive solution would result if, instead of reaching de�nition
analysis, the directional dual live-use analysis were used to compute the du-chains. In exhaustive live-use
analysis, the use of a variable may be propagated past the points where the variable is live. Avoiding the
propagation of useless live-use information would require dynamically changing the bit vector sizes during
the analysis each time a variable becomes dead. The overhead of changing bit vector sizes is likely to quickly
outweigh the savings that may result from avoiding useless propagation.

86

Caching Demand-Driven Analysis (Du-chain) Savings

program time (secs) space (Kbytes) cache �ll speedup space : % of Sex

T
opt

cache S
opt

cache
Tex

T
opt

cache

S
opt

cache
�100

Sex

bubble 0.02 (0.01) 10.548 22% (35%) 1.5 (2.0) 100.5%

quicksort 0.05 (0.02) 15.072 19% (30%) 0.6 (1.5) 103.4%

hanoi 0.03 (0.02) 12.380 20% (36%) 0.7 (1.0) 101.3%

queens 0.05 (0.04) 15.492 17% (41%) 0.8 (0.5) 100.9%

heapsort 0.12 (0.10) 22.436 25% (49%) 0.75 (0.6) 98.6%

nsieve 0.05 (0.04) 21.152 17% (28%) 0.6 (1.0) 104.7%

cat 0.09 (0.07) 41.924 16% (35%) 2.2 (1.1) 96.5%

calendar 0.08 (0.03) 69.900 7% (19%) 2.1 (2.6) 85.1%

getopt 0.32 (0.28) 99.988 16% (44%) 3.1 (1.3) 94.9%

linpack 0.49 (0.33) 222.716 13% (51%) 1.1 (0.9) 97.9%

di� 0.60 (0.48) 249.712 7% (18%) 11.4 (4.7) 80.3%

patch 1.01 (0.93) 201.884 19% (31%) 2.0 (0.8) 87.6%

tar 1.29 (1.20) 266.684 17% (23%) 3.3 (1.7) 81.8%

gzip 1.82 (1.62) 419.292 15% (20%) 0.9 (0.5) 79.8%

grep 0.84 (0.67) 365.152 12% (21%) 5.4 (1.7) 83.4%

sort 1.03 (0.94) 443.880 13% (35%) 5.7 (1.9) 83.5%

dc 0.71 (0.61) 373.460 9% (14%) 1.6 (1.1) 89.7%

Table 5.4: Accumulated demand-driven analysis time and space with caching (T opt
cache and

S
opt
cache), the cache �ll, the speedup of the demand-driven analyzer with caching over the

exhaustive analyzer and the demand-driven analyzer space utilization as a percentage of
the exhaustive analysis space. Parentheses indicate measurements that exclude temporaries.

When considering the complete variable space (i.e., including temporaries), the relevant

portion ranges from 7% to only 25%. As expected, when temporaries are excluded, the

relevant portion is higher, ranging from 14% to 51%. Temporary variables are likely to gen-

erate large portions of unneeded information since temporary variables are usually de�ned

and used at nearby points but their de�nitions may be propagated far beyond their use

points. However, Table 5.4 shows that even after excluding temporaries from the analysis,

on average more than half of the solution is not needed.

Figure 5.9 (i) displays the speedups Tex
T opt
cache

of the demand-driven analyzer with caching

over the exhaustive analyzer. The demand-driven analyzer computes du-chains faster than

the exhaustive analyzer in 11 out of 17 test programs. Importantly, except for one program

(gzip), the slowdown of the demand-driven analyzer occurs only for short programs. The

demand-driven analysis achieves speedups for the larger programs by factors ranging from

1.1 up to 11.4. Very short programs (less than 100 lines) are less likely to bene�t from a

demand-driven analysis since the savings of information collection in demand-driven analysis

87

Non-Caching Demand-Driven Analysis (Du-chain) Savings

program time (secs) T opt space (Kbytes) S opt speedup Tex
T opt space: S opt

�100
Sex

bubble 0.03 (0.02) 9.996 1.0 (1.0) 95.2%

quicksort 0.07 (0.03) 14.256 0.4 (1.0) 97.8%

hanoi 0.03 (0.02) 11.516 0.7 (1.0) 94.2%

queens 0.06 (0.02) 14.612 0.7 (1.0) 95.2%

heapsort 0.17 (0.15) 20.196 0.5 (0.4) 88.7%

nsieve 0.10 (0.05) 19.304 0.3 (0.8) 95.6%

cat 0.11 (0.10) 37.060 1.8 (0.8) 85.3%

calendar 0.07 (0.05) 64.684 2.4 (1.6) 78.7%

getopt 0.64 (0.60) 82.468 1.5 (0.6) 78.3%

linpack 0.86 (0.73) 203.756 0.6 (0.4) 89.7%

di� 1.09 (0.90) 184.856 6.3 (2.5) 59.4%

patch 1.58 (1.43) 159.548 1.3 (0.5) 69.2%

tar 1.87 (1.75) 200.204 2.3 (1.2) 61.3%

gzip 2.84 (2.52) 336.348 0.5 (0.3) 64.0%

grep 1.16 (1.05) 289.552 3.9 (1.2) 66.2%

sort 1.27 (1.08) 352.600 4.6 (1.7) 66.3%

dc 1.04 (0.80) 326.940 1.1 (0.8) 78.5%

Table 5.5: Accumulated demand-driven analysis time and space without caching (T opt

and Sopt), the speedup of the demand-driven analyzer without caching over the exhaustive
analyzer and the demand-driven analyzer space utilization as a percentage of the exhaustive
analysis space. Parenthesis indicate measurements that exclude temporaries.

does not outweigh the overhead of starting up repeated query propagations. Moreover,

exhaustive analysis of very short programs is usually fast.

The speedup column in Table 5.4 shows in parentheses the speedups that result if

temporary variables are excluded and only source code level variables are analyzed. These

speedups are graphically displayed in Figure 5.9 (ii). The exclusion of temporaries causes

a larger portion of the exhaustive solution to be computed (i.e., a higher cache �ll) and,

therefore, results in lower speedups. However, demand-driven analysis is still faster than

exhaustive analysis in 12 out of the 17 programs.

Table 5.4 also shows the space savings of the demand-driven analyzer as a percentage

of the exhaustive space. The demand-driven analysis requires less space to store data ow

information in almost all programs. The lower space requirements are to be expected since

demand-driven analysis computes less information than exhaustive analysis. The space

savings are primarily due to the fact that demand-driven analysis permits the suppression

of unnecessary summary computations. Again the savings of demand-driven analysis are

not achieved for the very short programs. In these short programs the savings in sum-

mary computations did not outweigh the additional storage requirements for the generated

88

bubble 1.5

quicksort 0.6

hanoi 0.7

queens 0.8

heapsort 0.75

nsieve 0.6

cat 2.2

calendar 2.1

getopt 3.1

linpack 1.1

diff 11.4

patch 2.0

tar 3.3

gzip 0.9

grep 5.4

sort 5.7

dc 1.60.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

(i) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(full variable space)

bubble 2.0

quicksort 1.5

hanoi 1.0

queens 0.5

heapsort 0.6

nsieve 1.0

cat 1.1

calendar 2.6

getopt 1.3

linpack 0.9

diff 4.7

patch 0.8

tar 1.7

gzip 0.5

grep 1.7

sort 1.9

dc 1.10.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

(ii) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(temporaries excluded)

Figure 5.9: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

89

queries at each node. Table 5.4 does not show the space consumption and space savings of

the demand-driven analyzer if temporaries variables are not considered during the analysis.

Excluding temporary variables results in a reduction in the space utilization of both the ex-

haustive analysis and the demand-driven analyzer. Since the space consumption is reduced

in both the exhaustive and the demand-driven analyzer, the proportional space savings of

the demand-driven analyzer over the exhaustive analyzer vary only insigni�cantly from the

values shown in Table 5.4.

5.5.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive

A second experiment was conducted to determine the e�ect of caching on the performance of

the demand-driven analyzer. The non-caching demand-driven analysis (with query advanc-

ing) was executed with the same set of queries as in the �rst experiment. The accumulated

analysis times T opt are shown in Table 5.5. Table 5.5 also shows the accumulated space

consumption S opt. The speedups Tex
T opt of the demand-driven analyzer over the exhaustive

analyzer for both the full variable space and the source variable space are shown in Table

5.5 and are graphically displayed in Figures 5.10 (i) and (ii). As expected, disabling caching

resulted in a slight slowdown of the demand-driven analyzer and, at the same time, in a

slightly lower space utilization since no cache memory is allocated. A direct evaluation

of the caching overhead is shown in Table 5.6. Table 5.6 shows the speedup T opt

T opt
cache

of the

demand-driven analyzer with caching over the demand-driven analyzer without caching.

Except for one of the short programs (queens), adding the caching capability resulted in

moderate speedup factors of up to 2.6. The analysis of program queens resulted in too few

cache hits, causing the savings to be less than the overhead of the cache management.

5.5.3 Experiment 3: Query Advancing

The third experiment evaluates the e�ects of query advancing. Query advancing was con-

sidered for both the caching and the non-caching demand-driven analyzer. The results are

shown in Table 5.7 and Table 5.8.

Consider �rst the results for the caching demand-driven analyzer in Table 5.7. The �rst

two columns show the accumulated demand-driven analysis time and space that result if

query advancing is disabled. The analysis time and space measurements are accumulated

over the same set of queries that was used in the �rst two experiments. The third column

shows the speedup of the caching demand-driven analyzer with query advancing over the

caching demand-driven analyzer without query advancing. The speedup measurements

indicate that query advancing is worthwhile, resulting in speedups by factors of up to 1.9 in

14 out of 17 programs while essentially requiring no additional space. Since query advancing

primarily applies to global variables, the speedups for the source level variables analysis tend

to be higher than for the complete variables space analysis, where temporaries are included.

The evaluation of query advancing without caching yielded similar results as shown

90

bubble 1.0

quicksort 0.4

hanoi 0.7

queens 0.7

heapsort 0.5

nsieve 0.3

cat 1.8

calendar 2.4

getopt 1.5

linpack 0.6

diff 6.3

patch 1.3

tar 2.3

gzip 0.5

grep 3.9

sort 4.6

dc 1.10.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

(i) Speedup of non-caching demand-driven over exhaustive Tex
T opt
cache

(full variable space)

bubble 1.0

quicksort 1.0

hanoi 1.0

queens 1.0

heapsort 0.4

nsieve 0.8

cat 0.8

calendar 1.6

getopt 0.6

linpack 0.4

diff 2.5

patch 0.5

tar 1.2

gzip 0.3

grep 1.2

sort 1.7

dc 0.80.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

(ii) Speedup of non-caching demand-driven over exhaustive Tex
T opt
cache

(temporaries excluded)

Figure 5.10: Non-Caching (optimzied) demand-driven analysis vs exhaustive analysis.

91

Trade-o�: Caching vs. Non-Caching (Du-chain)

program speedup Topt

T
opt

cache

% space overhead
(Sopt

cache
�100)

Sopt

bubble 1.5 (2.0) 105.5%

quicksort 1.4 (1.5) 105.7%

hanoi 1.0 (1.0) 107.5%

queens 1.2 (0.5) 106.0%

heapsort 1.4 (1.5) 111.0%

nsieve 2.0 (1.2) 109.6%

cat 1.2 (1.4) 113.1%

calendar 0.9 (1.6) 108.1%

getopt 2.0 (2.1) 121.2%

linpack 1.8 (2.2) 109.3%

di� 1.8 (1.8) 135.1%

patch 1.6 (1.5) 126.5%

tar 1.5 (1.4) 133.2%

gzip 1.5 (1.5) 124.6%

grep 1.4 (1.3) 126.1%

sort 1.2 (1.1) 125.9%

dc 1.5 (1.3) 114.2%

Table 5.6: The accumulated speedup of the demand-driven analyzer with caching over the
demand-driven analyzer without caching and the space overhead of the caching demand-
driven analysis as a percentage of the space used by the non-caching demand-driven ana-
lyzer.

Table 5.8. Query advancing resulted in speedups by factors of up to 2 in 13 out of 17

programs. As for the caching analyzer, the speedups were higher in most programs when

the analysis excluded temporary variables.

Overall, including query advancing in the demand-driven analysis is shown to be worth-

while, resulting in speedups in almost all programs for both the caching and the non-caching

analyzer versions.

5.5.4 Summary

The experimental results demonstrate that demand-driven analysis performs well in prac-

tice. The �rst experiment showed that demand-driven analysis computes du-chains faster

than exhaustive analysis in the majority of cases (in 11 out of 17 programs). In 12 out of

17 programs demand-driven analysis also uses less space for storing data ow information

than exhaustive analysis. Importantly, the speedups and space savings of the demand-

driven analysis over the exhaustive analysis result even when du-chains are computed over

the entire program. Naturally, the bene�ts of using a demand-driven approach would be

92

Query Advancing (Du-chain) - Caching

program time T space S speedup T
T opt space: (S opt

�100)
S

bubble 0.02 (0.02) 10.564 1.0 (2.0) 100.1%

quicksort 0.03 (0.03) 15.524 0.6 (1.5) 102.9%

hanoi 0.03 (0.02) 12.700 1.0 (1.0) 102.5%

queens 0.06 (0.03) 16.456 1.2 (0.7) 106.2%

heapsort 0.14 (0.12) 22.396 1.2 (1.2) 99.8%

nsieve 0.04 (0.05) 21.608 0.8 (1.2) 102.1%

cat 0.17 (0.13) 42.980 1.9 (1.8) 102.5%

calendar 0.14 (0.14) 79.692 1.7 (4.6) 114.0%

getopt 0.33 (0.27) 100.580 1.1 (0.96) 100.5%

linpack 0.46 (0.33) 222.432 0.9 (1.0) 99.8%

di� 0.84 (0.73) 256.004 1.4 (1.5) 102.5%

patch 1.17 (1.13) 203.480 1.2 (1.2) 100.7%

tar 1.70 (1.62) 268.280 1.3 (1.35) 100.5%

gzip 2.92 (2.81) 424.380 1.6 (1.7) 98.8%

grep 1.39 (1.25) 387.872 1.7 (1.8) 106.2%

sort 1.35 (1.17) 463.280 1.3 (1.2) 104.3%

dc 1.13 (0.62) 390.800 1.6 (1.1) 104.6%

Table 5.7: The accumulated caching demand-driven analysis time and space without query
advancing (T and S), the speedup of the caching demand-driven analyzer with query ad-
vancing over the caching demand-driven analyzer without query advancing and the space
utilization of the caching demand-driven analyzer with query advancing as a percentage of
the space used by the caching demand-driven analyzer without query advancing. Parenthe-
ses indicate measurements that exclude temporaries.

even higher if only a fraction of the complete set of du-chains were needed.

The second experiment showed that, except for very short programs, demand-driven

analysis bene�ts from caching. Again, the reported bene�ts result if demand-driven analysis

is used to compute all du-chains. If only a fraction of the du-chains in a program is needed,

caching is likely to be less bene�cial since there may not be su�ciently many cache hits to

compensate for the cache management overhead.

The third experiment evaluated the bene�ts of query advancing and showed that query

advancing is worthwhile in that it enabled speedups in 14 our of 17 programs despite the

additional overhead of computing the summary information. However, the speedups that

resulted from query advancing were moderate (less than a factor of 2 in all cases). Thus,

query advancing does not provide a signi�cant improvement in the demand-driven du-chain

analysis.

An additional inspection of the benchmark programs with the highest and lowest speedups

was carried out in order to identify the program characteristics that mostly a�ected the an-

93

Query Advancing (Du-chain) - Non-Caching

program time T space S speedup T
T opt space: (S opt

�100)
S

bubble 0.03 (0.03) 9.964 1.0 (1.5) 99.6%

quicksort 0.06 (0.03) 14.660 0.9 (1.0) 102.8%

hanoi 0.04 (0.02) 11.836 1.3 (1.0) 102.7%

queens 0.08 (0.09) 15.640 1.3 (4.5) 107.0%

heapsort 0.14 (0.14) 20.156 0.8 (0.9) 99.8%

nsieve 0.06 (0.06) 19.760 0.6 (1.2) 102.3%

cat 0.17 (0.15) 38.148 1.5 (1.5) 102.9%

calendar 0.14 (0.13) 69.612 2.0 (2.6) 107.6%

getopt 0.69 (0.59) 83.060 1.1 (0.9) 100.7%

linpack 0.85 (0.66) 203.472 0.9 (0.9) 99.8%

di� 1.20 (1.08) 185.956 1.1 (1.2) 100.5%

patch 1.72 (1.70) 160.928 1.1 (1.1) 100.8%

tar 2.23 (2.12) 201.560 1.2 (1.2) 100.6%

gzip 4.23 (3.83) 340.476 1.4 (1.5) 98.7%

grep 1.73 (1.69) 303.536 1.5 (1.6) 104.8%

sort 2.06 (1.84) 371.048 1.6 (1.7) 105.2%

dc 1.45 (0.80) 344.160 1.4 (1.0) 102.2%

Table 5.8: The accumulated non-caching demand-driven analysis time and space without
query advancing (T and S), the speedup of the non-caching demand-driven analyzer with
query advancing over the demand-driven analyzer without query advancing and the space
utilization of the non-caching demand-driven analyzer with query advancing as a percentage
of the space used by the non-caching demand-driven analyzer without query advancing.
Parentheses indicate measurements that exclude temporaries.

alyzers' performance. In general, the speedups of the demand-driven analyzer over the

exhaustive analyzer are highest if the lengths of the propagation paths for the individual

queries are the shortest. The length of query propagation paths in REACH depends primar-

ily on reference locality properties. If variables are de�ned and used in nearby statements

the propagation paths are short. The following program characteristics could be identi�ed

as having a direct impact on the analyzers' performances.

� Program size. The speedup of demand-driven analysis over exhaustive analysis tends

to increase with the length of the program. Reference locality properties usually do

not depend on the program size, so that the average length of query propagation paths

does not grow at same rate as the program length. Thus, higher speedups are likely

for large programs, since the average query propagation time may not change much

with program size while the cost of exhaustive analysis does.

� Nesting depth of control structures: Programs with deeply nested control structures

may generate long query propagation paths and are generally more expensive to an-

94

alyze than straight-line code. However, the depth of control structures negatively

a�ects the performance of both demand-driven and exhaustive analysis.

� Number of global variables: The length of query propagation paths for local variables

and temporaries is bounded by the size of the procedure in which the respective queries

are raised. In contrast, the query propagation paths for global variables may extend

across several procedures. Thus, a large number of global variables may result in more

queries with long propagation paths. However, global variables also give opportunities

for query advancing across calls and, thus, also contribute to the speedup of demand-

driven analysis.

� Number of procedures: In contrast to exhaustive analysis, demand-driven analysis with

query advancing bene�ts from large numbers of procedures. Query advancing allows

the analysis to skip complete procedures which would not be possible if procedures

were, for example, in-lined.

� Structure of the call graph: The structure of the call graph determines the maximal

length of query propagation paths for global variables. In the best case, the call graph

structure is a two-level tree, i.e., every procedure is called only once from the main

procedure. In this case, the propagation paths for a global variable can not extend

beyond the length of two procedures resulting in fast query evaluations. Cycles in

the call graph, i.e., recursion, can create long query propagation paths. However,

recursion also negatively impacts on the performance of exhaustive analysis.

� Density of the call graph: The density of the call graph, that is, the average number

of calls per procedure has a negative e�ect on both demand-driven and exhaustive

analysis. A high number of calls may trigger additional procedure summary com-

putations. In demand-driven analysis, long call chains in very dense call graphs can

create long query propagation paths for global variables.

Exceptionally high speedups of demand-driven analysis over exhaustive analysis, as for

example in program di�, result in programs that combine several of the speedup supporting

program characteristics. However, the presence of these characteristics in a program are

not su�cient to guarantee a speedup. Some of the above program characteristics have both

negative and positive e�ects on the demand-driven analyzer's performance (e.g., number of

global variables, density of the call graph). Thus, the above listing identi�es trends and

further studies with larger program sets would be necessary to provide complete insights

into the impact of program characteristics on the analyzers' performance.

Chapter 6

A Demand-Driven Analyzer for

Copy Constant Propagation

This chapter continues the practical evaluation of the demand-driven approach by presenting

experimentation with a demand-driven analyzer for copy constant propagation (CCP). CCP

analysis is more complex than the analysis of Gen-Kill problems. Like Gen-Kill problems,

CCP is a distributive problem. However, CCP is not partitionable and is therefore more

costly to analyze exhaustively than a Gen-Kill problem. The experimentation presented in

this chapter shows that the speedups of demand-driven CCP analysis over exhaustive CCP

analysis are even higher than in the experiments with the REACH analyzers. These results

support the hypothesis that the more expensive an analysis is the higher are the bene�ts of

reducing the analysis e�ort with a demand-driven approach.

This chapter is organized as follows. Section 6.1 briey reviews the formal de�nition

of CCP, which was already introduced in Chapter 3. Section 6.2 describes the instance of

the demand-driven framework for CCP along with an analysis of its asymptotic cost. The

experiments with the CCP analysis are reported in Section 6.3.

6.1 Copy Constant Propagation

Recall that the lattice in CCP for a program with k variables is a product lattice Lk . Each

lattice element is a k-tuple x = (x1; : : :xk) with a component xi 2 L for variable vi. The

component value xi is either > (unde�ned), ? (any integer) or any of the constant literals

c that occur in the program text.1 A base element in Lk is of the form [vi = c] denoting a

lattice element (x1; : : : ; xk) with a single non-bottom component xi: xi = c and xj = ? for

j 6= i.

The ow functions in CCP and the reverse ow functions, �rst shown in Chapter 3 are

restated in Table 6.1 for various types of statements.

1See Figure 3.1 for a display of the lattice in CCP.

95

96

statement at n ow function reverse ow function

fn(x)j , where x = (x1; : : : ; xk) f r
n ([vi = c1]), where ci is some constant

vi := c fn(x)j =

8<
: c if i = j

xj otherwise
f r
n ([vi=c1]) =

8>><
>>:

? if i=j and c1=c2

> if i=j and c1 6=c2

[vi=c1] otherwise

vi := vl fn(x)j =

8<
: xl if i = j

xj otherwise
f r
n ([vi=c1]) =

8<
: [vl=c1] if i=j

[vi=c1] otherwise

vi := expr.
read(vi)

fn(x)j =

8<
: ? if i = j

xj otherwise
f r
n ([vi=c1]) =

8<
: > if i=j

[vi=c1] otherwise

Table 6.1: Flow functions and reverse ow functions for CCP.

Example: Consider the program example in Figure 6.1. The program consists of three pro-

cedures proc1, proc2 and proc3. The address spaces of the three procedures areAddr(proc1) =

fa; bg, Addr(proc2) = fa; fg and Addr(proc3) = fa; g; hg. The lattice elements for proce-

dure proc1 are tuples (xa; xb), where xa and xb denote the lattice values for the global a

and the local variable b. Similarly, the lattice elements for procedures proc2 and proc3 are

tuples of the form (xa; xf) and (xa; xg; xh), respectively. The CCP solution on entry of each

node is shown in Figure 6.1. Figure 6.1 also shows the reverse ow functions next to each

non-call site node in the control ow graph.

6.2 A Framework Instance for CCP

An instance of the demand-driven framework for CCP is obtained by specializing the three

framework components: (1) the query de�nition, (2) the query propagation rules, and (3)

the generic analysis algorithm. As in the previous chapter, the analysis for CCP assumes

C-style programs with global and local variables and procedures with value parameters.

According to the general framework, a query q in CCP asks for a speci�c lattice ele-

ment, i.e., a speci�c constant value c of a variable v at a node n. For example, the query

q =< [v = 0]; n > raises the question: \Is variable v a copy constant at node n with value

0?". Using this query format, queries with respect to each constant literal may be nec-

97

declare a; /* global */
procedure proc1 procedure proc2(in: f)) procedure proc3(in: g,in: h)
declare b; /* local */ begin begin
begin call proc3(f,f); h:=g;

b:=0; end end
a:=1;
call proc2(a);
call proc3(b,a);

end

entry entry entry

exit

exit

h:=g

exit

1

2

3

4

5

6

7

8

9

10

11

12
f9

r([f=c])=[f=c]

f10
r ([g=c])=[g=c]

f10
r ([h=c])=[h=c]

f12
r ([g=c])=[g=c]

f12
r ([h=c])=[h=c]

f11
r ([g=c])=[g=c]

f11
r ([h=c])=[g=c]

f7
r([f=c])=[f=c]

proc1

call proc3(f,f)
b:=0

a:=1

call proc2(a)

call proc3(b,a)

f7
r([a=c])=[a=c]

f9
r([a=c])=[a=c]

f10
r ([a=c])=[a=c]

f11
r ([a=c])=[a=c]

f12
r ([a=c])=[a=c]

f1
r([a=c])=[a=c]

f1
r([b=c])=[b=c]

f3
r([b=c])=[b=c]

f6
r([b=c])=[b=c]

f6
r([a=c])=[a=c]

f2
r([a=c])=[a=c]

f2
r([b=0])=−−|

f2
r([b=c])=−−| (b≠0)

f3
r([a=1])=−−|

f3
r([a=c])=−−| (a≠1)

proc2(in: f) proc3(in: g,in: h)

CCP solution (on entry)

proc1 proc2

n (xa; xb) n (xa; xf)

1 (?;?) 7 (1; 1)

2 (?;?) 8 (1; 1)

3 (?; 0) 9 (1; 1)

4 (1; 0) proc3

5 (1; 0) n (xa; xg; xh)

6 (1; 0) 10 (1;?; 1)

11 (1;?; 1)

12 (1;?;?)

Reverse summary functions

proc2

n �r(n;9)([a = c]) �r(n;9)([f = c])

7 [a = c] [f=c]

8 [a = c] [f=c]

9 [a = c] [f=c]

proc3

n �r(n;12)([a = c]) �r(n;12)([g = c]) �r(n;12)([h = c])

10 [a = c] [g=c] [g=c]

11 [a = c] [g=c] [g=c]

12 [a = c] [g=c] [h=c]

Figure 6.1: Example for CCP

98

essary to determine whether a variable has constant value. Generating such a potentially

high number of queries is not only costly, it is actually unnecessary. The propagation of

multiple queries < [v = 0]; n >;< [v = 1]; n >; : : : that only di�er in their constant value

is identical except for the response upon termination. Thus, these queries can be combined

into a single query of the form:\Is variable v a copy constant at node n?". The combined

query is written as:

q =< [v = c]; n >;

where c represents an unknown but �xed constant value.

The specialized query propagation rules are shown in Figure 6.2 (i). The de�nition of

the reverse summary function is shown in Figure 6.2 (ii). Reverse summary functions are

computed for global variables only since in programs with value parameters side e�ects of

procedure execution can only a�ect global variables.2 Since the execution of a procedure

p has no e�ect on variables that are local to the calling procedure, the reverse summary

function for local variables is simply the identity function.

6.2.1 Demand-Driven Algorithm for CCP

The specialization of the generic query algorithm Query for CCP is shown in Figure 6.3.

Procedure Query CCP takes as input a query of the form \Is variable v a copy constant

at node n?". Query < [v = c]; n > evaluates to true at node n if n assigns any constant

to variable v, in which case the constant value is remembered. If all generated queries

evaluate to true the join over the remembered constant values is examined. If this join

yields a constant, the constant value is returned. Otherwise, the returned response is false.

The corresponding instance of the generic procedure CCP�r, shown in Figure 6.4, par-

tially evaluates the reverse summary function equation system from Figure 6.2 (ii).

Example: Procedure Query CCP is illustrated using the program example in Figure 6.1 for

the query q =< [h = c]; 10 > raising the question as to whether the formal h of procedure

proc3 is a copy constant on entry of each invocation of proc3. Initially, worklist = f10g

and query[10] = [h = c]. Query[10] is propagated to queries for the corresponding actual

parameters at call sites resulting in: query[5] = [a = c] and query[8] = [f = c]. Processing

query[8] causes the propagation of [f = c] to node 7 and in turn to actual parameters at

the call site at node 4, i.e., query[4] = [a = c]. Assume query[5] is propagated next across

the call to procedure proc2 at node 4. Since a is global, the reverse summary function value

�r(7;9)([a = c]) is determined. Since �r(7;9)([a = c]) = [a = c], the query < [a = c]; 5 >

propagates to node 4: query[4] = [a = c]. Applying the reverse function at node 3 yields

f r
3 ([a = c]) = ?. Thus, when propagating the query through node 4, it evaluates to true

and 1 is remembered as the actual constant assigned. Since the worklist is exhausted, the

2In programs with reference parameters, reverse summary functions are also computed for formal
parameters.

99

(i) < ?; n > () true

< >; n > () false

(ii) For each procedure p:

< [v = c]; entryp >()

8>><
>>:

false if p has no call sites or v 2 Local(p)^
call(m)=p

< [b�1
m (v) = c]; m > otherwise

(iii) For each non-entry node n:

< [v = c]; n >()
^

m2pred(n)

8>>><
>>>:

< f rm([v = c]; m > if m is not a call site

< �r(entryq ;exitq)([v = c]); m > if call(m) = q and v is global

< [v = c]; m > otherwise

(i)

For each procedure p and global v:

�r(exitp;exitp)([v = c]) = [v = c]

For each node n 6= exitp in p and global v:

�r(n;exitp)([v = c]) = t
m2succ(n)

8<
: f r

m � �r(m;exitp)
([v=c]) if m is not a call site

�r(entryq ;exitq)([v=c]) � �
r
(m;exitp)

([v=c]) if call(m) = q

(ii)

Figure 6.2: Specialized propagation rules (i) and reverse summary functions (ii) for CCP.

100

Procedure Query CCP (v; n)

input: a variable v and a node n

output: the constant value c if v is a copy constant at n, otherwise false

begin

1. for each m 2 N do query[m] ;;

2. query[n] [v] ; worklist f(v; n)g; val = ?;

3. while worklist 6= ; do

4. remove a pair (w;m) from worklist and let p be the procedure containing m;

5. case m = entrymain:

6. return(false);

7. case m = entryq for some procedure q:

8. for each call site m0 such that call(m0) = q do

9. if b�1
m0 (w) 6= ; then /* if w is not local to q */

10. query[m0] query[m0] [~b�1
m (query[m]);

11. if query[m0] changed then add (b�1
m0 (w);m0) to worklist;

12. endfor;

13. otherwise:

14. for each m0 2 pred(m) do

15. new

8>>>>><
>>>>>:

f r
m0 (query[m]) if m0 is not a call site

b�1
m0 (CCP�r(q; bm0(w); val) if call(m0) = q and w 2 Global

query[m] if m0 is a call site and w 62 Global

16. let newvar be the variable named in new;

17. if new = ? and m0 is not a call site then /* m0 must assign a sonstant value c tro w */

18. val val t c, where c is the const. assigned at m0;

19. if(new = >) or (val = >)then return(false)

20. else if new = ? then /* query still unresolved */

21. query[m0] query[m0]t new;

22. if query[m0] changed then add (newvar;m0) to worklist ;

23. endif;

24. endfor;

25. endwhile;

26. if val < > then return(val) else return(false);

end

Figure 6.3: Demand-driven algorithm for CCP.

101

Procedure CCP�r(p; y; val)
input: procedure p, variable y and variable val to hold const. value
output: summary value �r(rp;ep)(y).

begin
1. worklist ;; res ?;
2. let y = [v1; : : : ; vk], where vi 2 Addr(p);
3. for each vi, where 1 � i � k do
4. ifM [ep; vi] = ? then add (ep; vi) to worklist;
5. M [ep; vi] = [vi]; endif;
6. while worklist 6= ; do
7. remove a pair (n;w) from worklistand let p0 be the proc. containing n;
9. let [w1; : : : ; wj] = M [n;w];
10. case n 2 Ncall and call(n) = q:
11. for each wi, where 1 � i � j do
12. if wi 2 Global or wi is an actual param. at n then
13. for each z 2 bn([wi]) do
14. if M [eq; z] = [z] then
15. for each m 2 pred(n) do Propagate(m;w; b�1

n (M [rq; z]));
17. if M [rq; z] = ? thenM [p0; w]:val M [p0; w]:val tM [q; z]:val;
19. else M [eq; z] [z]; add (eq ; z) to wor klist; endif;
20. endfor;
21. else /* skip call site if u not passed */
22. for each m 2 pred(n) do Propagate (m;w; [wi]);
23. endfor;
24. case n = rq for some procedure q:
25. for each m 2 Ncall such that call(m) = q and b�1

m ([w]) 2M [m; z] for some z do
27. let p00 be the proc. containing m;
28. for each m0 2 pred(m) do Propagate(m0; z; b�1

m (M [n;w]);
30. if M [rq; w] = ? then M [p00; z]:val M [p00; z]:val tM [q; w]:val;
32. otherwise:
33. for each m 2 pred(n) do
34. Propagate(m;w; f r

m(M [n;w]);
35. if f r

n (M [n;w]) = ? then
36. M [p0; w]:val M [p0; w]:val t c, where c is the const. assigned at m;
38. endwhile;
39. for each vi, where 1 � i � k do
40. res res tM [rp; vi]; val val tM [p; vi]:val; endfor;
41. return(res);
end

Procedure Propagate(n; v; new) /* propagate new to M [n; v] */
input: node n, variable v and set of variables new
begin
1. M [n; v] M [n; v]t new;
2. if M [n; v] changed then add (n; v) to worklist; endif
end ;

Figure 6.4: Procedure CCP�r(p; y; val) for CCP.

102

overall response is 1, indicating that the formal h of procedure q always has the value 1 on

entry of procedure q.

6.2.2 Asymptotic Cost

Consider the execution time of procedure Query CCP. At each node, at most MaxAddr

queries can be generated, where MaxAddr is the size of the maximal address space in any

procedure. Thus, during an invocation of Query CCP a total of O(MaxAddr� jN j) queries

can be generated resulting in O(MaxAddr � jN j) join and reverse function applications in

procedure Query CCP.

Now consider the execution time of procedure CCP�r. By the distributivity of the

reverse summary functions, it is su�cient to maintain table entries only for base elements

resulting in jGlobalj � jN j entries.3 Each entry may contain a set of base elements and is

therefore of sizeMaxAddr. To keep track of the actual constant values encountered, the table

M includes an extra �eld M [p; v]:val for each procedure p and each variable v. The �xed

point computation of table entries requires in the worst case O(jGlobalj�MaxAddr� jN j)

table updates. As in the general case, each table update may trigger up to MaxCall join

and/or reverse function applications, where MaxCall is the maximal number of call sites

calling a single procedure. Assuming join and reverse function applications are performed

pointwise, each join or function application requires O(jMaxAddrj) time resulting in the

total time of O(MaxCall� jGlobalj�MaxAddr2� jN j) for procedure GenKill�r. Thus, the

overall time requirements are O(MaxCall� jGlobalj �MaxAddr2 � jN j).4

As in the example of Gen-Kill analysis in Chapter 5, the specialization of the framework

instance to CCP yields a signi�cantly more e�cient algorithm than a straightforward adop-

tion of the generic algorithm. The asymptotic time complexity of the generic algorithm

Query depends on the size of lattice. The lattice in CCP has O((l+ 2)MaxAddr) elements,

where l is number of constant literals in the program text. Thus, a straightforward adoption

of the generic algorithm to CCP would result in an exponential time algorithm.

6.2.3 Query Advancing

The query propagation in procedure Query CCP can be optimized using the same type of

query advancing techniques as described for Gen-Kill problems in Chapter 5. Similar to the

REACH analyzer, the generation of data ow information in CCP is based on de�nitions of

variables. Thus, the ow-insensitive procedure summary sets DMOD(p) that were used to

enable query advancing in reaching de�nitions can also be used to enable query advancing

in CCP.

3In programs that contain reference parameters, summary information is needed for both, global variables
and formal reference parameters, resulting in O(jGlobal +MaxFormal � jN j) entries, where MaxFormal is
the maximal number of formal parameters in any procedure.

4For programs with reference parameters the overall time requirements are O(MaxCall�MaxAddr3�jN j).

103

� Advancing across calls

Propagating a query q =< [v = c]; n > for a global variable v across a call site

m 2 call(p) requires summary information only if v 2 Mod(p). Otherwise, q can be

directly forwarded across the call:

� Advancing to entry

Consider the propagation of a query q =< [v = c]; entryp > for a variable v into a

procedure r that calls p. If v 62 Mod(r) then q can be directly forwarded to entryr

6.3 Experiments

An experimental study was conducted to evaluate the practical bene�ts of computing copy

constant information using demand-driven analysis. The �rst experiment compares the

performance of demand-driven CCP analysis with that of a standard exhaustive algorithm.

The second experiment evaluates the bene�ts of caching and the third experiment examines

the bene�ts of query advancing.

The following three algorithms were implemented:

(CACHE) Caching demand-driven CCP algorithm as described in the previous section

with the option of query advancing.

(DD) A non-caching version of the demand-driven CCP algorithm with the option of query

advancing.

(EX) An exhaustive CCP algorithm that is based on interprocedural analysis framework

by Sharir and Pnueli [SP81].

The three algorithms were implemented as part of the PDGCC compiler project. The

experimental evaluation of the three CCP analysis algorithms was carried out under the

same conditions as the experimentation with du-chain analysis. For a detailed description

of the implementation and experimentation context, including a description of the 17 C

benchmarks that served as input to the analysis algorithms, see Section 5.5. As in Chapter 5,

the experiments were run in two versions: one version that considers the complete variables

space including compiler generated temporaries and one version that considers only source-

level variables.

6.3.1 Experiment 1: Caching Demand-Driven versus Exhaustive

The �rst experiment compares the performance of the caching demand-driven CCP analyzer

with that of the exhaustive analyzer. The experiment was carried out under the assumption

that copy constant information for a variable is required only at program points that contain

a reference of the variable. Thus, the demand-driven analyzer is applied to a set of queries

104

Exhaustive Analysis (CCP)

program time (secs) space (Kbytes)

Tex Sex

bubble 0.08 (0.04) 66.828 (28.508)

quicksort 0.17 (0.10) 190.656 (77.288)

hanoi 0.05 (0.03) 75.764 (34.060)

queens 0.10 (0.04) 145.324 (41.068)

heapsort 0.71 (0.10) 382.340 (69.220)

nsieve 0.33 (0.18) 282.756 (125.78)

cat 0.25 (0.10) 334.800 (110.400)

calendar 0.26 (0.09) 463.432 (119.144)

getopt 2.44 (0.71) 2,003.272 (338.648)

linpack 2.80 (0.61) 3,556.032 (469.520)

di� 3.88 (0.99) 5,344.124 (1,342.140)

patch 93.53 (51.96) 24,459.728 (7,691.752)

tar 13.44 (6.91) 9,518.464 (4,813.808)

gzip 62.16 (31.55) 49,777.040 (21,696.240)

grep 3.45 (1.52) 4,277.056 (1,679.680)

sort 19.93 (7.20) 12,541.632 (2,854.096)

dc 14.35 (9.69) 10,296.716 (3,673.300)

Queries (CCP)

program queries constant

bubble 127 (51) 11 (11)

quicksort 170 (76) 9 (9)

hanoi 120 (63) 7 (7)

queens 181 (82) 15 (15)

heapsort 230 (138) 29 (25)

nsieve 199 (138) 51 (47)

cat 324 (121) 16 (16)

calendar 507 (102) 20 (10)

getopt 459 (203) 18 (16)

linpack 2014 (909) 112 (109)

di� 1055 (283) 76 (68)

patch 1146 (446) 94 (83)

tar 1046 (335) 42 (32)

gzip 2101 (714) 135 (91)

grep 1481 (495) 157 (65)

sort 1930 (589) 92 (75)

dc 2325 (784) 49 (46)

Table 6.2: Exhaustive analysis time (Tex) and space (Sex) and the number of queries and
the number of constants found for each benchmark. Parentheses indicate measurements
that exclude temporaries.

that contains one query for each occurrence of a scalar variable in the program. The order

in which these queries were processed was chosen randomly.

Table 6.3 shows the number of queries generated for each program and the number

of constants that were discovered. The parentheses indicate the corresponding numbers

for the source-level analysis that excludes temporaries. Unlike the problem of du-chain

computation, excluding temporary variables from CCP analysis a�ects the solution since

temporaries with constant values may be used to de�ne other variables. As shown in Table

6.3, fewer constants may result. However, local analysis may be su�cient to reveal constant

temporaries. The study, therefore, reports analysis times for both the complete variable

space and the source-level variable space.

Table 6.2 shows for each program the analysis time Tex and the space consumption Sex

of the exhaustive CCP analyzer. The demand-driven analysis time T opt
cache accumulated over

all queries is shown in Table 6.3. The analysis T opt
cache is based on the caching version of the

demand-driven analyzer with query advancing. Table 6.3 also shows the accumulated space

105

Caching Demand-Driven Analysis (CCP) Savings

program time (secs) space (Kbytes) cache �ll speedup space: % of Sex

T
opt

cache S
opt

cache
Tex

T
opt

cache

S
opt

cache
�100

Sex

bubble 0.05 (0.02) 66.492 14 (33%) 1.6 (2.0) 99.4%

quicksort 0.05 (0.04) 85.512 15% (33%) 3.4 (2.5) 44.8%

hanoi 0.04 (0.03) 43.736 16% (35%) 1.2 (1.0) 57.7%

queens 0.07 (0.03) 92.904 12% (43%) 1.4 (1.3) 63.9%

heapsort 0.18 (0.13) 238.672 18% (54%) 3.9 (0.7) 62.4%

nsieve 0.08 (0.06) 101.672 15% (37%) 4.1 (3.0) 35.9%

cat 0.11 (0.09) 192.308 10% (28%) 2.2 (1.1) 57.4%

calendar 0.15 (0.04) 324.276 4% (16%) 1.7 (2.2) 69.9%

getopt 0.80 (0.29) 1,608.344 4% (25%) 3.0 (2.4) 80.2%

linpack 0.80 (0.47) 1,577.688 6% (50%) 3.5 (1.2) 44.3%

di� 1.03 (0.62) 3,108.972 4% (17%) 3.7 (1.5) 58.1%

patch 2.11 (1.16) 4,206.108 5% (12%) 44.3 (44.7) 17.1%

tar 1.89 (1.16) 4,180.120 8% (13%) 7.1 (5.9) 43.9%

gzip 4.97 (2.83) 9,333.080 4% (7%) 12.5 (11.1) 18.7%

grep 1.21 (0.78) 2,483.448 6% (16%) 2.8 (1.9) 58.0%

sort 1.45 (0.82) 3,252.552 5% (21%) 13.7 (8.7) 25.9%

dc 1.58 (0.74) 2,944.576 5% (12%) 9.0 (13.1) 128.5%

Parentheses indicate measurements that exclude temporaries.

Table 6.3: Accumulated demand-driven analysis time and space with caching (T opt
cache and

S
opt
cache), the cache �ll, the speedup of the demand-driven analyzer with caching over the

exhaustive analyzer and the demand-driven analyzer space utilization as a percentage of
the exhaustive analysis space. Parentheses indicate measurements that exclude temporaries.

consumption and the cache �ll. The cache �ll values in Table 6.3 show that the portion

of the exhaustive solution that is actually needed to compute copy constant information

is even smaller than in du-chain analysis. When considering the complete variable space

(i.e., including temporaries), the relevant portion ranges from 4% to only 18%. When

excluding temporaries the relevant portion is higher, ranging from 7% to 54%. As for du-

chain analysis, the remaining unneeded portion of the solution consists of irrelevant copy

constant information of variables that are no longer live in the containing procedure.

Fig. 6.5 (i) displays the speedups Tex
Td=c

of the demand-driven analyzer with caching over

the exhaustive analyzer. The demand-driven analyzer computes copy constant information

faster than the exhaustive analyzer in all programs with speedup factors ranging from 1.2

up to 44.3. The speedup for program patch is exceptionally high (44.3). A closer inspection

of program patch revealed that the speedup is primarily due to the suppression of a large

number of procedure summary computations that are performed in the exhaustive analysis.

106

bubble 1.6

quicksort 3.4

hanoi 1.2

queens 1.4

heapsort 3.9

nsieve 4.1

cat 2.2

calendar 1.7

getopt 3.0

linpack 3.5

diff 3.7

tar 7.1

gzip 12.5

grep 2.8

sort 13.7

dc 9.0

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

(i) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(full variable space)

bubble 2.0

quicksort 2.5

hanoi 1.0

queens 1.3

heapsort 0.7

nsieve 3.0

cat 1.1

calendar 2.2

getopt 3.0

linpack 1.2

diff 1.5

tar 5.9

gzip 11.1

grep 1.9

sort 8.7

dc 13.1

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

(i) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(temporaries excluded)

Figure 6.5: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

107

Summary computations can be suppressed in the demand-driven analysis either by means

of query advancing or because the query propagation paths are short and do not contain

procedure calls.

The speedups and cache �ll measurements that result when excluding temporary vari-

ables from the analysis are shown in parentheses in Table 6.3. Excluding temporaries

resulted in a higher cache �ll indicating that a larger fraction of exhaustive solution was

computed. Corresponding to the higher cache �ll, the speedups of the demand-driven

analysis over the exhaustive analysis tend to be lower. However, except for one program,

demand-driven analysis is still faster than exhaustive analysis with speedup factors ranging

from 1.1 up to 44.7.

As in the experimentation with du-chain analysis, demand-driven CCP analysis requires

less space to store data ow information in almost all programs. Table 6.3 shows the space

savings of the demand-driven analyzer as the percentage of the exhaustive space require-

ments. Demand-driven analysis of program patch, which achieved the highest speedup, also

resulted in the lowest space usage requiring only 17% of the exhaustive analysis space. The

low space usage indicates that demand-driven analysis required less procedure summary

computations which is also the primary reason for the observed speedup.

Full Solution on Demand

The performance of the demand-driven CCP analyzer was evaluated based on the assump-

tion that copy constant information about a variable is needed only at the nodes that

contain a use of that variable. This assumption is reasonable for applications in compiler

optimizations and software tools since copy constant information is primarily used to sim-

plify expressions (constant folding) or portions of code (i.e., procedure cloning).

Conceptually, the demand-driven analyzer may be used to retrieve copy constant infor-

mation about any variable at any node. Although demand-driven analysis is not a suitable

approach for retrieving exhaustive data ow solutions, an additional experiment was carried

out to determine the worst case performance of demand-driven analysis if used to compute

the complete exhaustive solution. The caching demand-driven analyzer with query advanc-

ing was executed on an exhaustive set of queries that contained one query for each variable

at each node. The accumulated demand-driven analysis time T opt
cache is shown in Table 6.4.

Table 6.4 also shows the slowdown of the demand-driven analysis with respect to the ex-

haustive analysis and the demand-driven analysis' space requirements as a percentage of the

exhaustive space requirements. Table 6.4 shows that, in the worst case (program calendar),

the slowdown was by a factor of 22.8. Surprisingly, there are two cases (programs patch

and gzip) where demand-driven analysis still performed better than exhaustive analysis

although the full exhaustive solution was demanded. As previously discussed the primary

cause for the high speedup for program patch is the suppression of summary computations

that are performed in the exhaustive analysis. The suppression of summary computations

108

Demand-Driven Analysis: Full Solution (CCP) Overhead

program time (secs) space (Kbytes) slowdown space: % of Sex

T
opt

cache S
opt

cache

T
opt

cache

Tex

(S opt

cache
�100)

Sex

bubble 0.53 (0.15) 119.380 6.6 (3.7) 178.6%

quicksort 0.59 (0.19) 108.496 3.4 (1.9) 56.9%

hanoi 0.60 (0.12) 44.896 12.0 (4.0) 59.2%

queens 0.80 (0.16) 95.976 8.0 (4.0) 66.0%

heapsort 2.12 (0.61) 239.312 2.9 (6.1) 62.5%

nsieve 1.39 (0.37) 156.320 4.2 (2.1) 55.2%

cat 3.10 (0.59) 203.508 12.4 (5.9) 60.7%

calendar 5.93 (0.73) 391.688 22.8 (8.1) 84.5%

getopt 11.68 (1.59) 2,052.656 4.7 (2.2) 102.4%

linpack 23.16 (2.52) 1,609.024 8.2 (4.1) 42.2%

di� 51.97 (10.26) 3,559.236 13.3 (10.3) 66.6%

patch 32.00 (16.80) 4,832.412 0.3 (0.3) 19.7%

tar 43.61 (19.89) 27,280.584 3.2 (2.8) 286.6%

gzip 60.82 (27.80) 14,971.952 0.9 (0.8) 30.0%

grep 33.95 (10.28) 3,142.128 9.8 (6.7) 73.0%

sort 50.51 (8.99) 3,677.584 2.5 (1.2) 29.3%

dc 51.97 (7.75) 3,559.236 3.6 (0.7) 34.5%

Table 6.4: Accumulated demand-driven analysis time and space with caching (T opt
cache and

S
opt
cache) when computing the full solution, the cache �ll, the slowdown of the demand-

driven analyzer with caching with respect to the exhaustive analyzer and the demand-driven
analyzer space utilization as a percentage of the exhaustive analysis space. Parentheses
indicate measurements that exclude temporaries.

in patch, as well as in gzip, is indicated by the lower space requirements that result although

the complete exhaustive solution is collected.

6.3.2 Experiment 2: Non-Caching Demand-Driven versus Exhaustive

The second experiment was carried out to determine the e�ect of caching on the perfor-

mance of the demand-driven analyzer. The non-caching demand-driven analyzer with query

advancing was executed with the same set of queries as in the �rst experiment. The accu-

mulated analysis times T opt are shown in Table 6.5. Table 6.5 also shows the accumulated

space consumption S opt. The speedups of the demand-driven analyzer over the exhaustive

analyzer for both the full variable space and the source variable space are shown in Table

6.5 and are graphically displayed in Figures 6.6 (i) and (ii). Analogous to the experiments

with du-chain analysis, disabling caching resulted in a slight slowdown of the demand-driven

analyzer and at the same time in slightly lower space utilization since no cache memory

109

bubble 2.0

quicksort 1.8

hanoi 1.6

queens 1.1

heapsort 3.5

nsieve 2.7

cat 1.4

calendar 1.8

getopt 2.2

linpack 2.5

diff 2.7

tar 4.9

gzip 12.0

grep 2.2

sort 10.0

dc 8.3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

(i) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(full variable space)

bubble 2.0

quicksort 2.5

hanoi 1.5

queens 1.3

heapsort 0.7

nsieve 2.0

cat 1.1

calendar 1.1

getopt 1.2

linpack 0.8

diff 1.1

tar 4.4

gzip 10.3

grep 1.4

sort 7.5

dc 10.7

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

(ii) Speedup of caching demand-driven over exhaustive Tex
T opt
cache

(temporaries excluded)

Figure 6.6: Caching (optimzied) demand-driven analysis vs exhaustive analysis.

110

Non-Caching Demand-Driven Analysis (CCP) Savings

program time (secs) T opt space (Kbytes) S opt speedup Tex
T opt % space: S opt

�100
Sex

bubble 0.04 (0.02) 39.240 2.0 (2.0) 58.7%

quicksort 0.09 (0.04) 82.808 1.8 (2.5) 43.3%

hanoi 0.03 (0.02) 39.240 1.6 (1.5) 51.7%

queens 0.09 (0.03) 87.448 1.1 (1.3) 60.1%

heapsort 0.20 (0.14) 232.336 3.5 (0.7) 60.7%

nsieve 0.12 (0.09) 88.680 2.7 (2.0) 31.3%

cat 0.17 (0.09) 161.396 1.4 (1.1) 48.2%

calendar 0.14 (0.08) 289.360 1.8 (1.1) 62.4%

getopt 1.10 (0.55) 1,438.120 2.2 (1.2) 71.7%

linpack 1.09 (0.69) 1,418.448 2.5 (0.8) 39.8%

di� 1.39 (0.94) 2,360.244 2.7 (1.1) 44.1%

patch 2.55 (1.55) 3,887.372 36.6 (33.5) 15.8%

tar 2.70 (1.57) 3,734.432 4.9 (4.4) 39.2%

gzip 5.14 (3.04) 8,815.544 12.0 (10.3) 17.7%

grep 1.52 (1.08) 1,899.440 2.2 (1.4) 44.4%

sort 1.99 (0.96) 2,378.416 10.0 (7.5) 18.9%

dc 1.71 (0.90) 2,606.608 8.3 (10.7) 25.3%

Table 6.5: Accumulated demand-driven analysis time and space without caching (T opt

and Sopt), the speedup of the demand-driven analyzer without caching over the exhaustive
analyzer and the demand-driven analyzer space utilization as a percentage of the exhaustive
analysis space. Parenthesis indicate measurements that exclude temporaries.

is allocated. A direct evaluation of the caching overhead is shown in Table 6.6. Table 6.6

shows that the speedups of the demand-driven analyzer with caching over the demand-

driven analyzer without caching. Except for one of the short programs (hanoi), adding the

caching capability resulted in moderate speedup factors of up to 2. The analysis of program

hanoi caused too few cache hits to pay o� the overhead of the cache management.

6.3.3 Experiment 3: Query Advancing

The third experiment evaluates the e�ect of query advancing in CCP analysis. The results

are shown in Table 6.7 for the caching CCP demand-driven analyzer and in Table 6.8 for

the the non-caching version. Consider �rst the results for query advancing in the caching

demand-driven CCP analyzer in Table 6.7. The �rst two columns show the accumulated

demand-driven analysis time and space requirements that result if query advancing is dis-

abled. The third column shows the speedup of the caching demand-driven analyzer with

query advancing over the caching demand-driven analyzer without query advancing. The

speedup measurements indicate that query advancing is worthwhile resulting in speedup in

111

Trade-o�: Caching vs. Non-Caching (CCP)

program speedup Topt

T
opt

cache

% space overhead
(Sopt

cache
�100)

Sopt

bubble 0.8 (1.0) 169.4%

quicksort 1.8 (1.0) 103.2%

hanoi 0.7 (0.6) 111.4%

queens 1.2 (1.0) 106.2%

heapsort 1.1 (1.1) 102.7%

nsieve 1.5 (1.5) 114.6%

cat 1.5 (1.0) 119.1%

calendar 0.9 (2.0) 112.0%

getopt 1.3 (1.8) 111.8%

linpack 1.3 (1.4) 111.2%

di� 1.3 (1.5) 131.7%

patch 1.2 (1.3) 108.1%

tar 1.4 (1.3) 111.9%

gzip 1.0 (1.1) 105.8%

grep 1.2 (1.3) 130.7%

sort 1.3 (1.1) 136.7%

dc 1.1 (1.2) 112.9%

Table 6.6: The accumulated speedup of the demand-driven analyzer with caching over the
demand-driven analyzer without caching and the space overhead of the caching demand-
driven analysis as a percentage of the space used by the non-caching demand-driven ana-
lyzer.

all programs by factors of up to 6.3 while essentially requiring no additional space. The

parentheses indicate the speedups that result if temporaries are excluded from the analysis.

Excluding temporaries resulted in slightly lower speedups.

The evaluation of query advancing if caching is not used led to similar results as shown

in Table 6.8. Query advancing resulted in speedups by factors of up to 5.9 in 15 out of

17 programs. Again, excluding temporaries a�ected the speedups only. In the source-level

analysis, speedups by factors of up to 7.9 could be achieved in 14 out of 17 programs.

Overall, including query advancing in demand-driven CCP analysis was shown to be

worthwhile as it resulted in speedups in all programs for the caching analyzer and in

speedups in almost all programs for the non-caching analyzer. In comparison to the exper-

imental results for du-chain analysis, the bene�ts of query advancing are higher in CCP.

Higher speedups are expected because the query propagation paths in CCP are usually

longer than in du-chain analysis. Longer propagation paths are more likely to contain

procedure calls which represent the opportunities for query advancing.

112

Query Advancing (CCP) - Caching

program time T space S speedup T
T opt space: (S opt

�100)
S

bubble 0.05 (0.02) 76.012 1.0 (1.0) 87.4%

quicksort 0.10 (0.05) 140.652 2.0 (1.2) 60.7%

hanoi 0.05 (0.05) 63.648 1.2 (1.6) 68.7%

queens 0.11 (0.04) 155.900 1.5 (1.3) 59.5%

heapsort 0.18 (0.13) 238.632 1.0 (1.0) 100.0%

nsieve 0.12 (0.09) 181.336 1.5 (1.5) 56.0%

cat 0.41 (0.20) 695.788 3.7 (2.2) 27.6%

calendar 0.47 (0.17) 981.432 3.1 (4.2) 33.0%

getopt 0.86 (0.31) 1,635.616 1.1 (1.1) 98.3%

linpack 0.80 (0.49) 1,577.404 1.0 (1.0) 100.0%

di� 1.47 (1.08) 3,818.512 1.4 (1.7) 81.4%

patch 5.79 (2.69) 11,917.592 2.7 (2.3) 35.2%

tar 6.54 (3.89) 13,594.516 3.4 (3.3) 30.7%

gzip 29.91 (15.82) 54,745.756 6.0 (5.5) 17.0%

grep 7.96 (4.12) 15,493.968 6.3 (5.2) 13.6%

sort 6.21 (2.79) 12,060.096 4.2 (3.4) 26.9%

dc 5.56 (2.89) 10,111.556 3.5 (3.9) 29.1%

Table 6.7: The accumulated caching demand-driven analysis time and space without query
advancing (T and S), the speedup of the caching demand-driven analyzer with query ad-
vancing over the caching demand-driven analyzer without query advancing and the space
utilization of the caching demand-driven analyzer with query advancing as a percentage of
the space used by the caching demand-driven analyzer without query advancing. Parenthe-
ses indicate measurements that exclude temporaries.

6.3.4 Summary

The experimental results demonstrated that the demand-driven CCP analyzer performs

well in practice. The �rst experiment showed that demand-driven CCP analysis is faster

than exhaustive analysis even if copy constant information is demanded at all uses in the

program. Except for one program, demand-driven analysis also used less space for storing

data ow information than exhaustive analysis. Based on these results, applications of

constant propagation information, in particular if utilized only selectively, clearly bene�t

from a demand-driven analysis approach. Even if the demand-driven analyzer is used to

compute copy constant information exhaustively over the program, the resulting slowdown

is moderate, on average by a factor of 6.

The second experiment showed that, except for three shorter programs, demand-driven

analysis bene�ts from caching. However, if only very few queries are raised caching is less

likely to be bene�cial since there may not be su�ciently many cache hits to compensate for

the cache management overhead.

113

Query Advancing (CCP) - Non-Caching

program time T space S speedup T
T opt space: (S opt

�100)
S

bubble 0.07 (0.02) 73.940 1.7 (1.0) 53.0%

quicksort 0.13 (0.06) 137.764 1.4 (1.5) 60.1%

hanoi 0.06 (0.03) 58.992 2.0 (1.5) 66.5%

queens 0.14 (0.09) 151.580 1.5 (3.0) 57.6%

heapsort 0.20 (0.13) 232.296 1.0 (0.9) 100.0%

nsieve 0.16 (0.11) 168.344 1.3 (1.2) 52.6%

cat 0.42 (0.21) 669.508 2.4 (2.3) 24.1%

calendar 0.51 (0.18) 935.064 3.6 (2.2) 30.9%

getopt 1.02 (0.51) 1,464.816 0.9 (0.9) 98.1%

linpack 0.97 (0.64) 1,418.164 0.8 (0.9) 100.0%

di� 1.96 (1.32) 3,068.096 1.4 (1.4) 76.9%

patch 6.02 (2.96) 11,599.008 2.3 (1.9) 33.5%

tar 7.32 (4.21) 13,139.940 2.7 (2.6) 28.4%

gzip 30.81 (16.14) 54,247.364 5.9 (5.3) 16.2%

grep 8.54 (4.62) 14,938.288 5.6 (7.9) 12.7%

sort 7.32 (3.69) 11,225.008 3.6 (3.8) 21.1%

dc 5.73 (3.08) 9,781.204 3.3 (3.4) 26.6%

Table 6.8: The accumulated non-caching demand-driven analysis time and space without
query advancing (T and S), the speedup of the non-caching demand-driven analyzer with
query advancing over the demand-driven analyzer without query advancing and the space
utilization of the non-caching demand-driven analyzer with query advancing as a percentage
of the space used by the non-caching demand-driven analyzer without query advancing.
Parentheses indicate measurements that exclude temporaries.

The third experiment examined the bene�ts of query advancing and showed that query

advancing is worthwhile. In spite of the additional overhead of computing the ow-insensitive

summary information, query advancing lead to speedups by factors of up to 6.3.

The previous chapter identi�ed several program characteristics that either positively or

negatively a�ected the performance of demand-driven du-chain analysis.5 The identi�ed

characteristics a�ect demand-driven CCP in the same way.

In comparison with the experimental results for du-chain analysis, the speedups and

space savings of the demand-driven CCP analyzers were generally higher. The primary

cause for this e�ect is that exhaustive CCP analysis has a more costly implementation

than exhaustive REACH analysis. Unlike the exhaustive REACH analyzer, the exhaustive

analyzer for CCP does not use bit vector implementations and processes each variable at

each node separately. However, the implementation of the demand-driven analyzers for

both problems do not use bit vectors, making higher speedups for CCP more likely.

5See section 5.5.4.

Chapter 7

Application in Software Testing

This chapter demonstrates the utility of demand-driven analysis in a software development

application. The application considered is data ow testing at the integration level. Data

ow testing relies heavily on the support of data ow analysis for computing the du-chains

which serve as the test case requirements for a program. During intergration testing, data

ow analysis is performed repeatedly since new test requirements must be identi�ed at

each integration step. As a result, the accumulated cost of performing data ow analysis

can considerably contribute to the overhead of testing. Previous approaches to data ow

testing are either based on costly exhaustive computations or based on incremental updates.

This chapter presents a new approach to data ow integration testing that is based on the

demand-driven du-chain analyzer developed in Chapter 5. Results of a set of experiments

demonstrate the practical bene�ts of the new demand-driven approach by showing that

demand-driven analysis can outperform both exhaustive and incremental analysis if used

in the context of integration testing.

This chapter is organized as follows. Section 7.1 discusses the analysis problems in

integration testing and outlines how demand-driven analysis can be used to solve them.

The pertinent background in data ow testing is presented in Section 7.2. Section 7.3

describes the demand-driven analyzer for use in integration testing in detail. Experimental

results are reported in Section 7.4 and Section 7.5 summarizes the contributions of this

chapter.

7.1 Motivation

Data ow testing uses coverage criteria to select sets of du-chains in a program that serve

as the test case requirements [Nta84, CPRS85, FW88]. While short programs may be

tested all at once, the testing of larger programs usually takes place in several phases and

at di�erent levels of program abstraction. The individual program units are tested �rst in

isolation during unit testing. Then, their interfaces are tested separately during one or more

integration steps [HS89b].

114

115

The data ow analysis requirements that arise during testing vary with di�erent testing

phases. Unit testing requires the determination of the intraprocedural du-chains within

each unit. Since the complete set of intraprocedural du-chains is needed, using standard

exhaustive intraprocedural data ow analysis appears appropriate. The situation is di�erent

when considering the analysis needs during the procedure integration. Each integration step

requires the determination of only those du-chains that cross the most recently integrated

procedure interfaces to establish the new test requirements. Exhaustively re-computing

du-chains at the beginning of each integration step is ine�cient and may easily result in

overly high analysis times. This chapter shows that the analysis needs that arise during

integration testing can be handled in a far more e�cient way using demand-driven analysis.

The problem of avoiding costly re-computations of information in response to a program

change is not unique to integration testing. It arises in virtually all data ow applications

that deal with evolving software. Previously, incremental data ow algorithms have been

proposed to address this problem [Ros81, Zad84, RP88, PS89]. Incremental analysis avoids

exhaustive re-computations by performing the appropriate updates of a previously com-

puted exhaustive solution. Incremental analysis techniques can also be used in integration

testing to extend the solution after each integration step with the newly established reaching

de�nitions. However, incremental analysis still requires the exhaustive reaching de�nition

solution to be computed initially and to be maintained between integration steps in addi-

tion to the du-chains. Moreover, the incremental update of the solution at each integration

step may be costly since information is propagated from the new interfaces throughout the

program, including to portions that may have no relevance for the current integration step.

This chapter presents a new approach to integration testing that uses demand-driven

analysis to e�ciently provide the newly established data ow information during each inte-

gration step. A set of experiments was conducted to experimentally evaluate the bene�ts

of demand-driven analysis in the context of integration testing. The performance of the

demand-driven analyzer during the integration process is experimentally compared with

the performance of (i) an exhaustive analyzer, and (ii) an analyzer based on incremental

updates. The experiments show that demand-driven analysis is faster than exhaustive anal-

ysis by factors ranging from 2.6 up to 25. If caching is used the speedups increase even

further up to a factor of 30. The demand-driven analyzer also outperforms the incremental

analyzer in 8 out of 12 programs by factors up to 5. Again, if caching was used, the speedups

increase and the demand-driven analyzer outperforms the incremental analyzer in all but

one program.

7.2 Data Flow Testing

Data ow testing uses coverage criteria [RW85] to select subpaths in the program for testing

based on sets of du-chains. After the du-chains in a program have been computed, test cases

116

are generated, manually or automatically, to exercise du-chains according to a selected

coverage criterion. For example, the all-defs criterion requires that for each de�nition a

path to at least one reachable use is exercised in some test case. The all-uses criterion

requires that for each de�nition, paths to all reachable uses are exercised.

Recall that du-chains are determined based on the sets RD(v; n) and RU(v; n) of reach-

ing de�nitions and reachable uses. Given a de�nition d of a variable v at node n and a use

u of variable w at node m, the pair (d; u) is a du-chain if d 2 RD(w;m) or, equivalently if

u 2 RU(v; n).1

In integration testing, the program under analysis changes during each integration step

since more procedures are integrated at each step. To distinguish the sets of reaching

de�nitions and reachable uses that result at di�erent integration stages of a program, the

current version of the program P is added as a parameter:

RD(v; n; P) = RD(v; n) for program P , and

RU(v; n; P) = RU(v; n) for program P .

Figure 7.1 re-displays the program example from Chapter 5 that will be used to illustrate

the integration testing process. The table in Figure 7.1 shows again the complete set of

intra- and interprocedural du-chains for the program. Note that pair (x2; x5) is both an

inter- and an intraprocedural du-chain.

7.3 Integration Testing

The objective of data ow integration testing is to structure the overall testing process into

several phases by explicitly separating the testing of intra- and interprocedural du-chains.

During unit testing each procedure is tested in isolation based on only the intraprocedural

du-chains within the procedure. After the individual units have been processed the inter-

actions among procedures are tested separately during procedure integration. Integration

testing takes place in several integration steps. During each step, one or more procedures

are selected according to an integration strategy, such as bottom-up or top-down integration

[Mye76]. The testing at each integration step is only concerned with the interprocedural

du-chains that cross an interface of the procedures that are currently being integrated.

Prior to the integration of a procedure p, certain assumptions must be made about the

interfaces to both the procedures that call p and the procedures that are called from p.

Temporary de�nitions are inserted to provide initial values for each formal parameter and

each global variable that is used in procedure p. Furthermore, if p contains procedure calls,

worst case assumptions must be made about the possible side e�ects of procedures that are

called but that are not yet integrated. Thus, it is assumed that no def-clear paths exist

1See Section 5.3.1 for further details.

117

y:=x+y

write(x,y)

read(x,y)

11

16

15

g=10

exit

13

12

10

7

6

4

3

2

1

f=0

x=1

exit

entryentryentry

x:=g+1

exit

9

5

8

14

proc1

call proc2(y)

call proc3(x)

call proc3(f)

proc2(in: f) proc3(in: g)

de�nition du-chains

intraprocedural interprocedural

x2 (x2; x3); (x2; x4); (x2; x5) (x2; x5); (x2; x7); (x2; g14); (x2; g15)

x15 (x15; x5); (x15; x7)

y2 (y2; y5)

y5 (y5; y6); (y5; y7) (y5; f10); (y5; f11); (y5; g14); (y5; g15)

Figure 7.1: Example program with interprocedural du-chains.

through a non-integrated procedure. As the integration proceeds, temporary de�nitions are

removed and actual def-clear paths through called procedure are identi�ed and considered.

Example: Consider the example in Figure 7.1. During unit testing the two temporary

de�nitions fin and gin are added for the formal parameters f in procedure proc2 and for

the formal g in procedure proc3, respectively. Each call site is assumed to kill the value

of the global value x. Figure 7.1 shows the intraprocedural du-chains that result for each

procedure. In addition, the temporary du-chains (fin; f10),(fin; f11), (gin; g14) and (gin; g15)

are considered during unit testing.

Next consider the testing performed at each integration step. Assume for simplicity, that

118

procedure p procedure q
begin begin

... ...
v1 := 0; w1 := v2;

s: call q; ...
...:=w2; end
...

end

Figure 7.2: Cross-on-entry and cross-on-exit du-chains.

during each step a single procedure q is integrated with one of its calling procedures p.

To integrate procedure q with procedure p the temporary de�nitions for formal and global

variables in procedure q are removed and every call site in procedure p that calls q is

considered. The testing of the current integration step concerns only the interprocedural

du-chains that are established by the integration of q with p. These newly established

du-chains are captured in the set Cross (p; q) de�ned as follows:

De�nition 7.1 (Cross Chains) Let p be a procedure that calls a procedure q. The set of

cross chains Cross (p; q) that are established by integrating q with p is the set of inter-

procedural du-chains that have a def-clear path that contains the entry and/or exit node of

procedure q.

Example: Consider the integration of procedure proc2 with procedure proc1 in Figure 7.1

and assume that procedure proc3 has not yet been integrated. The du-chains that cross

the entry node or exit node of proc2 are Cross (q; p) = f(x2; x7); (y5; f10); (y5; f11)g. Note,

that du-chains that cross both, entry/exit nodes of procedure proc2 and entry/exit nodes

of procedure proc3 are not included since proc3 has not yet been integrated.

A du-chain in Cross (p; q) may cross several interfaces. However, a du-chain will not be

considered for testing unless there exists a def-clear path that only crosses interfaces of

procedures that have already been integrated. A du-chain with multiple def-clear paths

that cross di�erent procedure interfaces, is correspondingly also relevant for testing during

multiple integration steps and may, thus, be tested repeatedly.

To de�ne the set Cross (p; q) in terms of data ow sets requires a closer look at the

way a du-chain crosses a procedure interface. Consider Figure 7.2 and the integration of

procedure q with procedure p at the call site s in p. Let P and P 0 be the programs prior to

and after the integration. Thus, P 0 is obtained from P by removing temporary de�nitions

from q and by including the call site s in p that calls q. The du-chains (v1; v2) and (w1; w2)

119

Procedure ComputeCross (p; q)

input: p; q: procedures in a program P ;

output: the set Cross (p; q)

begin

1. Cross := ;;

2. let P and P 0 be the programs prior to and after integrating q, respectively

3. for each call site s in p where s 2 call(q) do

4. for each variable v such that bs(v) 6= ; do

5. compute Def = RD(v; s; P);

6. compute Use =
[

w2bs(v)

RU(w; entryq ; P
0);

7. add f(d; u) j d 2 Def; u 2 Useg to Cross;

8. endfor

9. for each variable v 2 Global do

10. compute Def = RD(v; exitq; P);

11. compute Use = RU(v; s; P 0);

12. add f(d; u) j d 2 Def; u 2 Useg to Cross;

13. endfor;

14. endfor;

end

Figure 7.3: Procedure ComputeCross.

in Figure 7.2 are both contained in Cross (p; q). However, the chain (v1; v2) is in Cross (p; q)

because it crosses the entry of q and (w1; w2) is in Cross (p; q) because it crosses the exit of

q.

Let (d; u) be a cross chain that crosses a call site s and assume for simplicity that d and

u are a de�nition and a use of a global variable v. The chain crosses the boundaries to the

procedure called at s in one of two ways:

Cross-on-entry: The de�nition d reaches the call site s in P and the use u is reachable

in P 0 from the entry of the called procedure:

d 2 RD(v; s; P) and u 2 RU(v; entryq; P
0).

Cross-on-exit: The de�nition d reaches the q's exit in P and u is a reachable use at the

call in P 0:

d 2 RD(v; exitq; P) and u 2 RU(v; s; P 0).

Cross(p; q) results as the set of cross-on-entry and cross-on-exit chains. Note that a du-

chain (d; u) that crosses both the entry and the exit of the currently integrated procedure

120

s p q

r

main

Figure 7.4: Call graph with non-integrated call sites shown in dashed lines.

classi�es only as a cross-on-entry chain since d 62 RD(v; exitq; P) prior to the integration.

Procedure ComputeCross in Figure 7.3 summarizes the computation of the cross-on-

entry and cross-on-exit chains for global and local variables taking possible parameter bind-

ings into account.

Example: Consider again the integration of procedure proc2 with procedure proc1 in Figure

7.1 assuming that procedure r has not yet been integrated. The set Cross (proc1; proc2) is

computed as: (cross-on-entry)RD(x; 6; P) = fx2g and RU(x; 9; P 0) = fx7g and RD(y; 6; P)

= fy5g andRU(f; 9; P
0) = ff10; f11g resulting in the set of chains f(x2; x7); (y5; f10); (y5; f11)g.

There are no cross-on-exit chains prior to the integration of procedure proc3.

7.3.1 Computing Cross Chains

The e�ciency of procedure ComputeCross from Figure 7.3 depends primarily on the al-

gorithm that is used to compute the data ow sets RD(v; n; P) and RU(v; n; P) at each

integration step. There are various analysis approaches that may be pursued.

Exhaustive Analysis

Previously, Harrold and So�a discussed data ow testing in the presence of procedures and

presented an exhaustive analysis approach to compute du-chains over the complete program

[HS90]. An exhaustive approach requires re-analysis of the program at the beginning of

each integration step to account for new procedure interfaces. However, the exhaustive

computation at each integration step can be slightly optimized by performing exhaustive

analysis only over the procedures that are a�ected by the current integration step. Assume

a procedure q is currently integrated with a procedure p. Let r be another procedure,

such that neither p nor q calls procedure r directly or indirectly through some call chain

of currently integrated procedure. Furthermore, assume procedure r calls neither p nor q

directly or indirectly. This situation is depicted in the call graph in Figure 7.4. There

are no interprocedural execution paths that connect procedure r and an interface between

121

p and q. Consequently, no data ow information can be propagated from procedure r to

procedures p and q or vice versa. Hence, procedure r is not a�ected by the integration of p

and q, and the data ow of r remains unchanged. It follows that the exhaustive re-analysis

after integrating procedure q with procedure p can be limited to the procedures that are

connected to q or p through a call chain of currently integrated procedures. For example

in Figure 7.4, exhaustive re-analysis only has to consider procedures p and q. While this

optimization strategy may result in the exclusion of some procedures from the analysis at

each integration step, the set of a�ected procedures is still analyzed exhaustively.

Incremental Analysis

Exhaustive re-computations at the beginning of each integration step can be avoided by

using an incremental analysis approach [Ros81, Zad84, RP88, PS89]. If incremental analysis

is used, the complete exhaustive reaching de�nition solution must be maintained between

subsequent integration steps. The number of established reaching de�nitions and resulting

du-chains can only increase as the integration proceeds. Thus, the reaching de�nition

solution that was valid at a previous integration step may be incomplete for the current step

but does not contain any false reaching de�nitions. Hence, the incremental update problem

is particularly simple and requires only additions to the solution and no deletions. Assuming

the exhaustive solution computation is based on �xed point iteration (e.g., [SP81]), an

incremental version of the exhaustive solution computation is obtained in a straightforward

way. The solution from the previous integration step is incrementally updated by simply

using it as the initial value to re-start the �xed point iteration for the current integration

step.

Demand-Driven Analysis

The �nal approach uses demand-driven analysis. Two demand-driven analyzers are required

to implement procedure ComputeCross: a demand-driven analyzer for reaching de�nitions

and a demand-driven analyzer for reachable uses. Chapter 5 described the demand-driven

analyzer for computing reaching de�nition sets RD(v; n; P). The analogous demand-driven

analyzer for computing the symmetric sets RU(v; n; P) of reachable uses can be similarly

developed. Based on the demand-driven analyzers, each access of a data ow setRD(v; n; P)

or RU(v; n; P) in procedure ComputeCross is simply replaced by a call to the appropriate

demand-driven analysis routine.

7.4 Experiments

A set of experiments was conducted to evaluate the performance of the various analysis

approaches if used to provide the relevant data ow information during integration testing.

The analyzers were evaluated in the context of bottom-up integration testing. Bottom-up

122

Benchmarks

No. program #code lines #nodes #procedures #calls #du-chains #integr. steps

1 queens 89 150 4 4 119 4

2 cat 240 377 5 4 165 4

3 calendar 352 731 10 14 236 9

4 getopt 395 739 5 6 268 4

5 linpack 564 686 12 30 1160 14

6 di� 899 1561 12 33 685 11

7 patch 753 1316 14 13 599 12

8 gzip 1387 3024 38 123 1461 68

9 tar 1451 1756 27 68 847 37

10 grep 1488 2906 32 72 1048 47

11 sort 1528 3554 35 145 1570 80

12 dc 1576 3298 67 230 1958 153

Table 7.1: Benchmark programs.

integration testing processes the procedures in a program in depth-�rst (bottom-up) order

of the program's call graph. During each integration step one edge (q; p) in the call graph is

processed and the new du-chains are determined as described by procedure ComputeCross

from Figure 7.3.

The following four analysis algorithms were implemented:

(CACHE) Demand-driven du-chain analyzer based on the caching versions of demand-

driven analyzers for reaching de�nitions and reachable uses.

(DD) A non-caching version of the demand-driven du-chain algorithm (CACHE).

(EX) The exhaustive du-chain algorithm from Chapter 5 based on bit vector implementa-

tions.

(INCR) An incremental version of the exhaustive algorithm as outlined in the previous

section. As the exhaustive analysis, the incremental version uses bit vector implemen-

tations.

The four analysis algorithms were also implemented as part of the PDGCC compiler

project. For details of the implementation and experimentation context see Section 5.5. The

experimentation in this chapter uses twelve of the larger programs form the C benchmarks

used in Chapters 4 and 5. Table 7.1 lists the twelve benchmarks along with size parameters

and the number of bottom-up integration steps for each program.

123

y

Accumulated Analysis Times

program demand-driven analysis exhaustive analysis incremental analysis

cache n/cache

Tcache Tdd Tex Tincr

queens 0.09 0.06 0.17 0.08

cat 0.22 0.20 0.52 0.29

calendar 0.21 0.20 0.78 0.32

getopt 0.99 0.98 3.80 1.43

linpack 0.57 0.49 3.95 1.25

di� 15.74 16.26 67.99 8.60

patch 5.27 5.76 17.01 3.51

gzip 23.88 15.53 96.87 14.85

tar 10.34 11.45 37.59 6.91

grep 4.69 5.50 57.86 6.44

sort 7.58 9.22 193.76 15.00

dc 2.17 2.58 66.48 13.38

Table 7.2: The accumulated analysis times for the demand-driven analyzer with and without
caching (Tcache and Tdd), for the exhaustive analyzer (Tex), and for the incremental analyzer
(Tincr).

7.4.1 Experiment 1: Demand-Driven versus Exhaustive Analysis

The �rst set of experiments compares the performance of the demand-driven analyzer with

the performance of the exhaustive analyzer. The analysis times during the integration were

measured to determine for each test program the accumulated analysis times shown in Table

7.2, where:

Tex = accumulated analysis time of exhaustive analysis,

Tcache = accumulated analysis time of demand-driven analysis with caching,

Tdd = accumulated analysis time of demand-driven analysis without caching.

Based on the measured analysis times, the accumulated speedup of the demand-driven

analyzer with caching over the exhaustive analyzer is given by Tex
Tcache

. Analogously, the

accumulated speedup of the demand-driven analyzer without caching over the exhaustive

analyzer is given by Tex
Tdd

. These speedups are shown in Table 7.3 and graphically displayed

in Figures 7.5 (i) and (ii). The measurements show that the demand-driven analyzer with

caching is signi�cantly faster than the exhaustive analyzer by factors ranging from 2.3 up

124

Speedups

program Experiment 1 Experiment 2

demand-driven vs. exhaustive demand-driven vs. incremental

cache n/cache cache n/cache

speedup Tex
Tcache

speedup Tex
Tdd

speedup Tincr
Tcache

speedup Tincr
Tdd

queens 2.42 2.83 1.14 1.33

cat 2.36 2.6 1.31 1.45

calendar 3.9 3.9 1.52 1.6

getopt 3.83 3.87 1.44 1.45

linpack 6.92 8.06 2.19 2.55

di� 4.31 4.18 4.31 0.52

patch 3.22 2.95 0.66 0.61

gzip 6.52 4.05 1.04 0.65

tar 3.63 3.28 3.63 0.66

grep 11.66 10.52 1.37 1.17

sort 25.56 21.01 1.97 1.62

dc 30.63 25.76 6.16 5.18

Table 7.3: The accumulated speedups of the demand-driven analyzer with and without
caching over the exhaustive analyzer (Tex

Tcache
and Tex

Tdd
) and the accumulated speedups of the

demand-driven analyzer with and without caching over the incremental analyzer (Tincr
Tcache

and
Tincr
Tdd

).

to 30.0. As shown in Figure 7.5 (ii), disabling caching resulted in similar speedups ranging

from 2.6 up to 25.7. Compared to the non-caching version, caching increased the speedups

for the seven larger programs but did not pay o� for the �ve shorter programs. For the

shorter programs the number of cache hits was too small to compensate for the overhead

of allocating and maintaining the cache. In larger programs that generate a higher number

of queries, the savings from cache hits quickly outweigh the cache overhead. Figures 7.5 (i)

and 7.5 (ii) indicate that the speedups of the demand-driven analyzer tend to grow with

increasing program size (in terms of code lines).

To illustrate how the speedups evolve throughout the integration, Figure 7.6 shows the

individual speedup curves as a function of the integration degree. The range of integration

steps is normalized for all programs to the range [0..1]. Figure 7.6 (i) shows the speedup

curves for the demand-driven analyzer with caching and Figure 7.6 (ii) shows the same

speedup curves for the demand-driven analysis without caching. The curves indicate that

the speedup evolves gradually in most programs. Thus, the accumulated speedup is already

noticeable after the �rst integration steps and continuously grows as the integration pro-

ceeds. Note, however, that the speedup curves for the �ve larger programs (i.e., tar, gzip,

125

queens 2.42

cat 2.36

calendar 3.9

getopt 3.83

linpack 6.92

diff 4.31

patch 3.22

tar 3.63

gzip 6.52

grep 11.66

sort 25.56

dc 30.63

0.0

5.0

10.0

15.0

20.0

25.0

30.0

(i) Speedup of caching demand-driven over exhaustive: Tex
Tcache

queens 2.83

cat 2.6

calendar 3.9

getopt 3.87

linpack 8.06

diff 4.18

patch 2.95

tar 3.28

gzip 4.05

grep 10.52

sort 21.01

dc 25.76

0.0

5.0

10.0

15.0

20.0

25.0

30.0

(ii) Speedup of non-caching demand-driven over exhaustive: Tex
Tdd

Figure 7.5: Measured speedups of demand-driven over exhaustive analysis.

126

queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.5 1.0

(i) Speedup curve caching demand-driven analyzer over exhaustive.

queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

10.0

20.0

30.0

40.0

50.0

0.0 0.5 1.0

(ii) Speedup curve of non-caching demand-driven analyzer over exhaustive.

Figure 7.6: Measured speedup curves of demand-driven over exhaustive analysis.

127

grep, sort and dc) reach their peak shortly before the integration is complete. This e�ect

is primarily due to the bottom-up integration strategy. Shortly before the integration is

complete, the top-level calls in the main program are integrated. The top-level integration

steps are the most expensive ones for both exhaustive and demand-driven analysis. Since

nearly all procedures are a�ected by integration at the top level, the exhaustive analysis

is performed over all procedures during the late integration steps. Thus, the exhaustive

analysis times are almost constantly at their peak during the late integration steps. The

performance of the demand-driven analyzer evolves di�erently during the late integration

steps. The integration of top-level calls creates the longest propagation paths of data ow

information in the program. Moreover, the length of propagation paths is likely to keep

growing even during the late integration steps. Thus, while the cost of exhaustive analysis is

nearly constant during the late integration steps, the cost of demand-driven analysis tends

to still increase. Consequently, the peak of the accumulated speedup is reached just before

the top-level calls are integrated. This phenomenon does not occur in smaller programs

since even after the integration of top-level calls the propagation paths are not su�ciently

long.

7.4.2 Experiment 2: Demand-Driven versus Incremental Analysis

The second set of experiments compares the performance of the demand-driven analyzer

with the performance of the incremental analyzer. The integration system using the incre-

mental analyzer was run to measure the accumulated analysis time Tincr, where:

Tincr = accumulated analysis time of incremental analysis.

The results are shown in Table 7.2. Figure 7.7 (i) displays the accumulated speedup Tincr
Tcache

of

the demand-driven analyzer with caching over the incremental analysis. The corresponding

accumulated speedups Tincr
Tdd

for the demand-driven analyzer without caching are shown in

Figure 7.7 (ii).

As shown in Figure 7.7 (ii), the caching demand-driven analyzer achieves speedups

over the incremental analyzer in all but one program (patch) by factors of up to 7.16.

As in the �rst experiment, disabling caching a�ects the speedups only slightly. Except

for two programs (patch and gzip) the demand-driven analyzer without caching is faster

than the incremental analyzer by factors of up to 5.18. Disabling the cache results in a

slight slowdown for the �ve larger programs but improves the speedups for the �ve shorter

programs. The demand-driven analyzer without caching has an important advantage over

the incremental analyzer in that no storage of information other than the du-chains is

required between integration steps. In contrast, the incremental analyzer maintains the

complete reaching de�nition solution in addition to the du-chains throughout the integration

process.

An examination of the programs patch and gzip revealed that they have a high percent-

128

age of global variables. Queries for global variables may require much longer propagation

paths than queries for locals, which explains why demand-driven analysis does not perform

as well.

Figure 7.8 shows the individual speedup curves for both the demand-driven analyzer with

caching (i) and the demand-driven analyzer without caching (ii). As in the �rst experiment,

the curves indicate that the speedup evolves gradually in most programs. Furthermore the

speedup curves for larger programs reach their peak again shortly before the integration

is complete. However, the degradation of the speedup after the peak has been reached

is less severe than in the �rst experiment. A comparison of analysis times during the

individual integration steps of the demand-driven and the incremental analysis reveals that

the speedups of the demand-driven analyzer over the incremental analyzer are far higher

during the early integration steps. During the late integration steps that are more expensive

for the demand-driven analyzer, the bene�ts of using bit vectors in the incremental analyzer

show a higher pay-o�. This e�ect is not noticeable in smaller programs, since the information

propagation paths are not su�ciently long even in the late stages of the program integration.

7.5 Summary

In summary, demand-driven analysis has been shown to provide an e�cient analysis ap-

proach for integration testing in practice. The experiments demonstrate that using demand-

driven analysis in integration testing is signi�cantly faster than using exhaustive analysis.

Even compared to an incremental analysis approach, demand-driven analysis has shown to

be the more e�cient approach. An important advantage of demand-driven analysis over

incremental analysis is that, no storage and maintenance of data ow solutions in addition

to the du-chains themselves is necessary between integration steps.

The encouraging results of the experimental comparison of demand-driven analysis with

incremental analysis suggest further potential bene�ts of demand-driven analysis in another

related �eld of data ow testing, namely regression testing. The analysis task in regression

testing is to determine the test requirements for a modi�ed program to ensure that no

new errors are introduced into previously tested code. Selective regression testing [OW88,

TTL89, GHS92, AHKL93, BH93, RM93, RM94] attempts to re-test only those du-chains

that are a�ected by the modi�cation. To identify the a�ected du-chains that require re-

testing, techniques based on incremental data ow analysis have been used. It may be

possible to avoid the use of incremental analysis technique and instead compute the a�ected

du-chains from scratch after each program change using a demand-driven analysis approach.

Exploring the bene�ts and drawbacks of using demand-driven analysis in regression testing

presents an interesting future extension of the current work on demand-driven analysis in

data ow testing.

129

queens 1.14

cat 1.31

calendar 1.52

getopt 1.44

linpack 2.19

diff 0.54

patch 0.66

tar 0.66

gzip 1.04

grep 1.37

sort 1.97

dc 6.16

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(i) Speedup of caching demand-driven over incremental: Tincr
Tcache

queens 1.33

cat 1.45

calendar 1.6

getopt 1.45

linpack 2.55

diff 0.52

patch 0.61

tar 0.66

gzip 0.65

grep 1.17

sort 1.62

dc 5.18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(ii) Speedup of non-caching demand-driven over incremental: Tincr
Tdd

Figure 7.7: Measured speedups of demand-driven over incremental analysis.

130

queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0

(i) Speedup curve of caching demand-driven analyzer over incremental.

queens

cat

cal

getopt

linpack

diff

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0

patch

tar

gzip

grep

sort

dc

Speedup

Integr.
0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0

(ii) Speedup curve of non-caching demand-driven analyzer over incremental.

Figure 7.8: Measured speedup curves of demand-driven over incremental analysis.

Chapter 8

Congruence Partitioning

The previous chapters developed a demand-driven analysis approach to reduce the anal-

ysis cost by avoiding the computation of information that is not needed in the current

application. While experimentation demonstrates that demand-driven analysis is an ef-

fective approach to reduce the exhaustive analysis overhead, the analysis may still not be

computationally minimal. Demand-driven analysis may still perform redundant computa-

tions that occur on the lower application-independent level of intermediate computations.

Application-independent optimization of intermediate data ow computations is the subject

of forwarding techniques 1. In comparison to demand-driven analysis, forwarding techniques

follow an orthogonal and complimentary approach to the problem of reducing the analysis

cost. The application-dependent improvements of demand-driven analysis are not achiev-

able by the application-independent forwarding techniques and vice versa. Thus, in order to

achieve maximal cost reductions both approaches, demand-driven analysis and forwarding

techniques should be considered.

This chapter presents congruence partitioning as a new forwarding technique that can be

used in combination with demand-driven analysis or as a stand-alone optimization technique

of exhaustive analyses. The organization of this chapter is as follows. Section 8.1 provides

an overview of congruence partitioning. The formal framework for modeling congruence

partitioning is presented in Section 8.2. Section 8.3 shows that for a particular class of

data ow problems, congruence partitioning is su�ciently powerful to completely replace

the traditional �xed point computation and directly solve the data ow problem. Section

8.4 compares congruence partitioning with sparse evaluation graphs and other related work

is discussed in Section 8.5. This chapter concludes in Section 8.6 with a discussion of

combining congruence partitioning and demand-driven data ow.

1See discussion in Chapter 1, Section 1.2.

131

132

8.1 Overview

Previous forwarding techniques suppress unnecessary data ow computations by using a spe-

cialized graphical representation of the program [WZ85, AWZ88, RWZ88, CLZ86, CCF90,

JP93]. The need to construct a specialized graph makes it di�cult to combine these for-

warding techniques with the demand-driven analysis concepts that are based on a standard

control ow graph representation of the program. Furthermore, except for the sparse eval-

uation graphs [CCF90], previous forwarding techniques are not general and only applicable

to certain data ow problems.

Congruence partitioning is a new forwarding technique that avoids the limitations of

previous approaches. Unlike previous forwarding techniques, congruence partitioning is an

algebraic approach that directly manipulates the data ow equation system. It will be

shown that viewing the problem as an algebraic problem of congruence relations, leads

to conceptually simple algorithms that are both more general and powerful than previous

graph-oriented methods. Congruence partitioning applies to all monotone data ow prob-

lems and can be used to optimize both traditional exhaustive analysis or demand-driven

analysis.

Congruence partitioning is applied in order to restructure and optimize data ow equa-

tion systems prior to the actual solution computation. Recall that the solution of a data

ow problem is the greatest �xed point of a system of monotone equations. Each equation

expresses the solution at one program point in terms of the solutions at immediately pre-

ceding (or succeeding) points. A closer inspection of these equation systems reveals that

their sizes are unnecessarily enlarged due to the inherent inclusion of redundant equations.

The structure of data ow equation systems requires the propagation of intermediate results

throughout the program, including the propagation to program points where these results

are of no relevance. As a consequence, multiple equations in the system carry identical in-

formation. Equations that duplicate information already expressed by other equations are

redundant and their repeated evaluation during the �xed point iteration is clearly undesir-

able. If equivalent but smaller equation systems without redundancies were constructed,

the �xed point computation would be faster, independently of the evaluation algorithm

used.

Congruence partitioning presents a systematic approach to minimize the size of data ow

equation systems by discovering congruence relationships among equations. Two equations

are congruent if their greatest �xed points are equal. Thus, at least one of two congruent

equations is redundant and can therefore be eliminated. By repeatedly applying this elimi-

nation process an equivalent but reduced equation system can be constructed that includes

only a single equation from each class of congruent equations.

A systematic framework for congruence partitioning is developed to model congruence

relations by exploiting known algebraic properties of the equation system. The framework is

used to establish a congruence relation based on the idempotence property of the meet oper-

133

ator in the system. A fast partitioning algorithm is presented to compute the idempotence

congruence relation in O(n logn) time and O(n) space, where n is the size of the program.

Using the computed congruence relation, a reduced equation system is constructed that

only contains a single equation from each congruence class. By the de�nition of congru-

ence, it is su�cient to compute the �xed point over only the reduced system using any of

the standard evaluation strategies.

The approach of reducing equation systems by computing congruence relations can easily

be extended to include other notions of congruence. The congruence relations discussed in

[DST80, NO80] are based on common subexpressions. Alpern et al. [AWZ88] used a

fast O(n logn) algorithm due to Hopcroft for minimizing �nite automata to compute CSE

congruences for program optimization. Section 6.3.2 shows that Hopcroft's algorithm can

equally well be applied to discover common subexpressions in data ow equation systems

in order to enable further reductions.

The asymptotic performance of congruence partitioning depends only on the size of

the equation system. The complexity of the data ow problem, i.e., the cost of actually

evaluating the equations, does not impact the performance of the partitioning algorithm.

The complexity of data ow problems varies dramatically, ranging from simple problems,

such as live variable analysis, that can be implemented e�ciently using bit vectors, to

sophisticated time- and space-intensive analyses, such as alias analysis. Naturally, the

bene�ts of congruence partitioning increase with the complexity of the data ow problem.

8.2 A Framework for Congruence Partitioning

A congruence partitioning is de�ned over the equation system of a data ow problem. Recall

that a data ow equation X(n) is de�ned at each node n in an ICFG of a program such

that:

X(n) = fn(u
m2dep(n)

X(m));

where dep(n) is a set of dependent nodes of n, usually the set of predecessors pred(n) or a

set of call sites if n is the entry node of a procedure.

An equation system can be viewed as a labeled directed graph G = (V;E). The vertices

in V represent equation variables and the operations on the right hand side of the equations.

An edge (v; w) in E expresses that the expression represented by vertex v depends on the

input represented by vertex w. A labeling function assigns a label label(v) to each vertex

v 2 V . This graph is called an equation graph.

The equation graph represents an equation X(n) = fn(u
m2dep(n)

X(m)) by the subgraph

shown in Figure 8.1 (i). Corresponding to the function symbol fn is a vertex v(X(n)) with

label (v(X(n)) = fn that has a single successor vertex with label u. The vertex labeled u

has successors v(X(m)) for each predecessor m of node n. If the function fn is the identity

134

.

(ii)(i)

f n |−−| |−−|
v (X (n))

v (X (m 1))

v (X (mk))

v (X (n))
v (X (m 1))

v (X (mk))

Figure 8.1: The translation of equations into graphs.

function, the equation reduces to X(n) = u
m2dep(n)

X(m). In this case no vertex for the

function symbol is created, and the vertex v(X(n)) is the vertex labeled u as shown in

Figure 8.1 (ii). The vertex set V is partitioned into a set Vu of vertices labeled u (meet

vertices) and a set Vf of vertices with a label denoting any other function symbol (function

vertices).

When discussing equation systems it is assumed that their graphs are transformed into

graphs whose vertices have an indegree and outdegree of at most 2. This transformation

is analogous to transforming the textual representation of the equation system into some

form of three-address-code. The associativity of the meet operator ensures that a graph

can always be transformed into this form by adding some additional vertices for each vertex

whose indegree or outdegree is greater than 2. At most a constant number of vertices is

added per edge in this process and the number of vertices remains O(n) [DST80], where

n = jN j is the number of nodes in the control ow graph.

8.2.1 Example

As a running example, consider alias analysis performed over the procedure Insert shown

in Figure 8.2, where the operator � denotes pointer dereferencing. Alias analysis computes

pairs of aliased variables. To simplify the representation, a simple alias analysis is considered

based on the assumption that whenever a variable q is aliased to a variable p, any variable

that q points to is aliased to any variable that p points to. The lattice elements are collections

of alias relations. A collection could simply be a set of alias pairs or, alternatively, a partition

of the variables into sets of aliased variables. The entry and exit points of the nodes at

which data ow information is computed are marked by numbers.

The equation system that expresses the analysis over procedure Insert is shown in Figure

8.3 along with its equation graph. Each equation X(n) refers to the alias information that

holds at the program point n marked in the control ow graph in Figure 8.2. The meet

operator u represents the union of two collections of alias relations into a single collection.

135

/* insert a value val in a binary tree x */

procedure Insert(in: x,in: val)

begin

val:=h(val);

repeat

p:=x;

if (val � (�x.key))

then x:= (�x.left);

else x:=xright;

until (x = NULL);

new(x);

(�x.key):=val;

(�x.left):=NULL;

(�x.right):=NULL;

if (val � (�p.key))

then (�p.left):=x

else (�p.right):=x;

end

val:=h(val)

p:=x

x=nil

new(x)

end

1

2

3

4 5

6

7

8

9 10

11

val<(*.x.key)

x:=(*x.left) x:=(*x.right)

(*x.key):=val
(*x.left):=nil

(*x.right):=nil
v<(*p.key)

(*p.left):=x (*p.right):=x

Figure 8.2: A sample program and its control ow graph.

136

X(1) = init

X(2) = X(1) uX(7)

X(3) = kill [p](X(2)) u (p; x)

X(4) = X(3)

X(5) = X(3)

X(6) = X(4) uX(5)

X(7) = X(6)

X(8) = kill [x](X(7))

X(9) = (p; x) uX(8)

X(10) = X(8) u (p; x)

X(11) = X(9) uX(10)

init

(p ,x)kill [p]

(p ,x)(p ,x)
kill [x]

v 1
v 2

v 3 v 4

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−| |−−|

|−−|

v (X (1))

v (X (2))

v (X (3))
v (X (4))

v (X (5))

v (X (6))

v (X (7))

v (X (8))

v (X (9)) v (X (10))

v (X (11))

Figure 8.3: Data ow equations and their graphical representation.

137

The data ow equations refer to a function kill[y] that takes as an argument a collection of

alias relations C and eliminates all alias relations for variable y from C. For more details

of the analysis, the reader is referred to [CC77b]. With respect to congruence partitioning,

the meet u and other functions like kill[y] are merely uninterpreted symbols.

8.2.2 Congruence Relations

Given an equation system, the goal is to minimize the size of the system without actu-

ally evaluating the equation. Unfortunately, even the following restricted version of this

minimization problem is NP-complete [GJ79]:

Given a set of expressions constructed from uninterpreted constants and a single commutative

and associative operator, determine the minimal number of operations needed to evaluate all

expressions.

Thus, one cannot expect to �nd an e�cient algorithm for eliminating all redundancies.

However, as will be shown, it is possible to minimize an equation system with respect to

certain well-de�ned classes of redundancies using fast algorithms.

Redundancies are eliminated by discovering congruence relationships among equations.

Congruence relationships are established among the �nal �xed point values of equations as

de�ned below.

De�nition 8.1 (Congruence) Let gfp(n) denote the greatest �xed point value of equation

X(n). Two equations X(n) and X(m) in a system X are called congruent only if

gfp (n) = gfp (m)

Note that no assumptions are made on the sequence of intermediate values an equation may

take during the �xed point iteration. These sequences of values are highly dependent on

the particular iteration strategy that is used to compute the �xed point, but the notion of

congruence is a valid relation for any such strategy.

Congruence is an equivalence relation, that is, a symmetric, reexive and transitive

relation. Hence, a congruence relation induces a partition � of the equations into congruence

classes. All equations that are contained in the same congruence class in � have an identical

�xed point. Given � we can reduce the original equation system by eliminating all but

one equation from each congruence class. By the de�nition of congruence, the resulting

reduced system is guaranteed to provide the same �xed point solution as the original system,

independent of the particular evaluation strategy used. If needed, the solution of the reduced

system can be later expanded to the solution of all original equations using the computed

partition �.

By de�nition 8.1 there is no unique congruence relation. The most aggressive reductions

of an equation system are achieved by a congruence relation that induces a minimal number

138

X(1) = f(X(0)) X(1) = f(X(0)) X(1) = f(X(0))

X(2) = X(1) uX(3) X(2) = X(1) uX(2)

X(3) = X(2)

(i) (ii) (iii)

Figure 8.4: Idempotence congruences in equation systems

of congruence classes. Such an ideal congruence relation is called a coarsest congruence

relation.

De�nition 8.2 (Coarsest Congruence Relation) Let C be a congruence relation on a

vertex set V and let � be partition of V into congruence classes according to C. C is a

coarsest congruence relation on V if any other congruence relation C0 on V induces a

partition with at least as many congruence classes as �.

If C is a coarsest congruence relation then the induced congruence class partition �

is called a coarsest partition. Note that the �nest congruence partition results if every

congruence class contains only a single vertex.

8.2.3 Congruence by Idempotence

This section describes the detection of congruences among data ow equations that result

from the idempotence of the meet operator u. Consider a data ow equation of the form:

X(n) = fn(u
m2pred(n)

X(m)):

Trivial congruences result from a special case, where the function fn is the identity function

and node n has only a single predecessor m. In this case the equation reduces to a simple

copy equation X(n) = X(m). Clearly, the �xed points of X(n) and X(m) are identical and

X(n) and X(m) are congruent.

The congruence relation based on copies can be easily computed in a single pass over the

equation system. Initially, each equation X(n) is in a separate congruence class. For each

copy equation X(n) = X(m) that is encountered, the congruence class of X(m) is merged

with the class of X(n) creating a single class. A reduced equation system without copies is

constructed by including from each congruence class only a single representative equation.

Each operand that occurs in an included equation is replaced by the representative of its

congruence class.

139

Idempotence congruence extends this trivial notion of copy congruences by also covering

hidden copies. A hidden copy is an equation of the form x = y u z with y and z being

congruent. By the idempotence of the meet operator, the congruence of y and z implies

that gfp (y)u gfp (z) reduces to gfp (y) and equation x is essentially a copy. Thus, it can be

determined that all three variables x, y, and z are congruent.

De�nition 8.3 (Congruence by idempotence (IP)) Let G = (V;E) be an equation

graph. A relation C on V is called an idempotence congruence (IP) relation, if

(v; w) 2 C implies one of the following conditions:

(1) v = w (the vertices v and w are identical); or

(2) one of the vertices, say v, is labeled u and (v; u) 2 E implies (u; w) 2 C:

To verify that C is indeed a congruence relation we have to ensure that the base case of

the recursive rule (2), as well as the application of rule (2), can only yield congruent pairs

of vertices. The base case of rule (2) declares (v; w) 2 C if w is the sole destination of

edges leaving v. In this case v represents a copy equation and thus v and w are congruent.

If all destinations of edges leaving v are congruent to a vertex w then v reduces to w by

idempotence and v and w are congruent (application of rule 2).

By its recursive de�nition, the IP relation is not unique if G contains cycles. Consider

the equations in Figure 8.4 (i). The partition �1 = fc1 = fX(1)g; c2 = fX(2); X(3)gg with

the corresponding system shown in Figure 8.4 (ii) describes an IP relation. However, the

partition �2 = fc1 = fX(1); X(2);X(3)gg also describes an IP relation that provides the

reduced system shown in Figure 8.4 (iii). Note that the congruence between X(1) and X(2)

only holds with respect to the greatest �xed point de�ned with the initial value > at each

equation.

The goal is to �nd the maximal IP relation (fewest number of congruence classes) for

an equation graph. The symbol C? is used to refer to the maximal IP relation according

to De�nition 8.3. The relation C? provides the coarsest partition �? of the vertices in an

equation graph such that two vertices are in the same partition only if they are congruent

according to De�nition 8.3.

Figure 8.5 illustrates equation system reductions that can be achieved through congru-

ence partitioning. Figure 8.5 (i) restates the original equation system from the example

of Figure 8.3. The reduced equation system that results from IP partitioning is shown in

Figure 8.5 (ii).

The next section presents a fast partitioning algorithm to compute �? from an initial

partition � that places all possibly congruent pairs of equations in the same class. The

partition � is iteratively re�ned until a stable partition �? is reached that is consistent

with the de�nition of C?. Given partition �?, the equation system that is minimized with

respect to IP is constructed in the same way as previously described. That is, from each

140

X(1) = init X(1) = init X(1) = init

X(2) = X(1) uX(7) X(2) = X(1) uX(3) X(2) = X(1) uX(3)

X(3) = kill [p](X(2) u (p; x) X(3) = kill [p](X(2)) u (p; x) X(3) = kill [p](X(2)) u (p; x)

X(4) = X(3) X(8) = kill [x](X(3)) X(8) = kill [x](X(3))

X(5) = X(3) X(9) = X(8) u (p; x) X(9) = X(8) u (p; x)

X(6) = X(4) uX(5) X(10) = X(8) u (p; x)

X(7) = X(6) X(11) = X(9) uX(10)

X(8) = kill [x](X(7))

X(9) = X(8) u (p; x)

X(10) = X(8) u (p; x)

X(11) = X(9) uX(10)

(i) (ii) (iii)

Figure 8.5: Original equation system (i), reduced system by IP (ii), and the reduced system
after combined partitioning by CSE and IP (iii).

congruence class in �? only one representative equation is included. The resulting equation

system contains no copy equations and no hidden copies due to idempotence.

8.2.4 Partitioning Algorithm

Computing the partition �? by iterative re�nement requires �rst determining an appropriate

initial partition. If two vertices are initially placed in di�erent congruence classes they can

never be discovered to be congruent. Thus, the initial partition must overestimate the

congruence relation C?. A partition � overestimates C? if (v; w) 2 C? implies that the

vertices v and w are in the same congruence class in �. In order to enable the partitioning

algorithm to converge quickly to �?, the initial partition should be the �nest partition that

overestimates C?.

Standard graph partitioning algorithms [AHU74] are based on an initial partition of the

vertices by their label. Unfortunately, the same approach cannot be pursued for computing

C?. Although function vertices with a di�erent label cannot be IP congruent, meet vertices

may be congruent to any function vertex. Therefore, a new partitioning algorithm is pre-

sented that is based on an overestimate of the initial partition of the vertices that can be

constructed in a canonical way.

Congruence classes in a partition are represented as reverse trees of vertices in an equa-

tion graph G. A reverse tree is a tree in which edges are directed from children to parent

141

v 1

v 4

v 3

v 2
kill [x]kill [p]init

T 6

T 5

T 4T 3T 2T 1

|−−| |−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|

|−−|
(p , x)

(p , x)

(p , x)

v (X (2))

v (X (1))

v (X (3))

v (X (4))
v (X (5))

v (X (6))

v (X (7))

v (X (9))

v (X (8))

v (X (10))

v (X (11))

Figure 8.6: Reverse DFST partition of the equation graph from Figure 8.3.

vertices. Thus, � = T1; :::; Tk is a collection of disjoint reverse trees and each tree Ti is a

subgraph of the equation graph G. The trees in a partition will be simply referred to as

trees and the following notation is used for a given partition forest �. The root vertex of

a tree T in � is denoted root(T). For a given vertex v in a tree T , parent (v) is the unique

predecessor of v in G that is contained in T .

An initial partition of the vertices in an equation graph G is constructed during a single

reverse depth-�rst traversal of G, i.e., a depth-�rst traversal of the transposed graph of

G. The resulting partition contains one tree (congruence class) for each function vertex in

G. The tree Tv for a function vertex v is constructed by traversing each reachable edge in

reverse direction, such that Tv is a reverse depth-�rst spanning tree (DFST) that is rooted

at v and that does not include any other function vertex. The resulting forest of reverse

DFSTs is called a reverse DFST partition. A reverse DFST partition for the equation

graph from Figure 8.3 is shown in Figure 8.6. Figure 8.7 shows the procedure to construct

an initial reverse DFST partition.

A reverse DFST partition for an equation graph is not unique since selections among

multiple candidates to visit next are made arbitrarily. The following lemma shows that any

reverse DFST partition � safely overestimates C?.

Lemma 8.1 Let � be a reverse DFST partition for a graph G and let v and w be vertices

in G. If (v; w) 2 C? then v and w are in the same tree in �.

Proof: For a vertex v in a tree T in � the notation level (v) is used to denote the length

of the path from v to root (T). Given two distinct trees T1 and T2 in �, it is �rst shown

142

Procedure Reverse DFST Partitioning

input: equation graph G = (Vf [Vu; E)

output: partition � = T1; : : : ; Tk, where k = jVf j and each Ti is a reverse tree contained in G

begin

1. for each vi 2 Vf do

2. create a new tree Ti in �;

3. dfst(Ti; vi);

4. endfor

end

Procedure dfst(t,v) /* construct a depth-�rst spanning tree */

input: a tree t and a vertex v

begin

for each unvisited meet predecessor w of v do

add the edge (w; v) to t;

dfst(t,w);

endfor;

end;

Figure 8.7: Algorithm to construct a reverse DFST partition.

that if v is a vertex in T1 then (v; root (T2)) 62 C? by induction on l = level (v). (Basis

l = 0) Clearly, (root (T1); root (T2)) 62 C? since two distinct function vertices cannot be

congruent by idempotence. (Ind. l > 0) By hypothesis (w; root (T2)) 62 C? if level (w) <

l. Assume (v; root (T2)) 2 C? and level (v) = l. Then by rule (2) of De�nition 8.3 also

(parent (v); root (T1)) 2 C? which contradicts the hypothesis since level (parent (v)) < l.

Consider now two vertices v and w that are in distinct trees T1 and T2 and neither v nor

w are the root vertex in their tree. If (v; w) 2 C? then it follows by rule (2) of De�nition 8.3

that for the parent of at least one of the vertices, say v, (parent (v); w) 2 C?. Repeatedly

applying this argument will eventually show that the root vertex of one of the trees must

be congruent under C? to a vertex in the other tree, which was however shown not to be

possible. Hence, (v; w) 62 C?. 2

Figure 8.8 displays procedure Partition that operates on an initial reverse DFST partition

� by subsequently re�ning � until the current partition is consistent with the de�nition

of C?. In the resulting partition �? two vertices v and w are left in the same tree only if

(v; w) 2 C?.

143

Procedure Partition /* Partitioning by idempotence */

input: Equation graph G = (V = Vf [Vu; E)

output: Partition �? = T1; : : : ; Tk of V according to C?

begin

1. create an initial reverse DFST partition � = T1; : : : ; Tl of the vertices in V ;

2. worklist fT1; : : : ; Tlg;

3. while worklist 6= ; do

4. select and remove a tree T from worklist;

5. splitlist fv 2 Vu j v has one successor in T and one successor not in Tg ;

6. for each u 2 splitlist such that u is not a root vertex in � do

7. let T1 be the tree containing vertex u;

8. add T2 split (u) as a new tree to �;

9. if T1 2 worklist then add T2 to worklist

10. else add the smaller of T1 and T2 to worklist;

11. endfor;

12. endwhile;

end

Figure 8.8: Idempotence partitioning algorithm.

The operation split (v) disconnects and returns the subtree rooted at v. Procedure

Partition maintains two lists of vertices, worklist and splitlist. Worklist is a list of current

partition trees to be examined. Each tree T in worklist is examined in line (5) to determine

whether it contains an interior vertex v that has a successor not in T . In this case, the

vertices v and parent(v) in T cannot be IP congruent. To ensure that the two vertices do

not remain in the same tree, vertex v is placed in splitlist. During the inner loop the tree of

each vertex u in splitlist is split by disconnecting the subtree rooted at u. After the split one

of the two resulting subtrees is placed in worklist to ensure that vertices that may trigger

a subsequent split will be examined. Partition terminates when worklist is exhausted with

the �nal partition �?.

Example: Consider the application of procedure Partition to the initial reverse DFST

partition from Figure 8.6. The initial reverse DFST partition � and the �nal partition �?,

after procedure Partition terminates, are shown in Figure 8.9. In Figure 8.9 the congruence

classes of each partition are displayed in columns. The �nal partition �? describes the

congruences in that system that result from the copy equations X(4); X(5);X(7) and from

the hidden copy equation X(6). Speci�cally, all equations in the column for X(3) in �?

are found to have the same �xed point as equation X(3). The reduced equation systems in

which the four redundant (hidden) copy equations are eliminated was shown in Figure 8.5

144

� �?

X(1) X(3) X(8) X(1) X(2) X(3) X(8) X(9) X(10)X(11)

X(2) X(4) X(9) X(4)

X(5) X(10) X(5)

X(6) X(11) X(6)

X(7) X(7)

(i) (ii)

Figure 8.9: Initial (i) and �nal (ii) partition of the equation system from Figure 8.3.

(ii) next to original equation system in (i).

Analysis

It will be shown that procedure Partition computes the congruence relation C?, that is, the

output partition �? is the coarsest partition, such two vertices v and w are contained in

the same tree in �? only if (v; w) 2 C?. The proof proceeds by �rst showing in Lemma 2

that �? is consistent with the de�nition of C?, that is, �? is not too coarse. Then Lemma

3 shows that procedure Partition is optimal in that �? is the coarsest consistent partition.

Lemma 8.2 (Consistency) Partition �? is consistent with the de�nition of C?, for if v

is a vertex in a tree T in �? and v is not the root vertex of T then all successors of v are

also in T .

Proof: Assume v is a vertex in a tree T in �? that is not the root vertex of T . Then v has

one successor parent (v) in T . Assume that contrary to the claim v has another successor

w not in T . In the initial partition �, vertex v is in some tree T1 � T and all trees are

initially placed in worklist. The construction of splitlist in line (5) implies that w must also

be in T1 since otherwise a split during the �rst iteration would have separated vertex v from

parent (v) contradicting the assumption. Now, consider the point during the algorithm at

which vertex w is separated from the vertices v and parent(v) and the vertices are placed

in two di�erent trees T2 � T1 containing w and T 0
2 � T1 containing v and parent (v). After

this separation at least one of T2 and T
0
2 will be in worklist, which implies that vertex v will

be separated from parent (v) after the new contents of worklist are exhausted, which again

contradicts the assumptions. Hence, all successors of v must be in T . 2

Lemma 8.3 (Optimality) Partition �? is as coarse as possible; that is, if (v; w) 2 C?

then v and w are in the same tree in partition �?.

145

Proof: It will be shown by induction on the number i of split operations performed in

procedure Partition that two vertices v and w are in two distinct trees only if (v; w) 62 C?.

(Basis i = 0) The claims holds for the initial partition by Lemma 1. (Ind. i > 0) Let �

be the partition resulting after i � 1 split operations. The i-th split operation splits an

edge (v; w) in some tree T only if v has another successor u in a di�erent tree and by

induction hypothesis: (u; w) 62 C? and (u; root (T)) 62 C?. Hence, by rule (2) of De�nition

8.3: (v; w) 62 C? and also (v; root (T)) 62 C?. Let T1 be the subtree of T rooted at v and let

T2 be the remaining portion of T after disconnecting T1. Since the root vertices of the two

trees, v and root (T), are not congruent under C?, an analogous induction argument to the

one in the proof of Lemma 1 shows that no vertex in T1 can be congruent to a vertex in T2

under C?. Thus, two vertices are in di�erent trees in the new partition only if they are not

congruent under C?. 2

Corollary 8.1 Procedure Partition correctly computes the IP relation C? (by Lemma 7.2

and Lemma 7.3). 2

Consider the complexity of procedure Partition and show that procedure Partition can be

implemented in O(n logn) time and O(n) space, where n is the number of vertices in the

equation graph G. Constructing the initial partition takes O(n) time. To calculate the

total time spent in the while loop, consider the number of times the tree of each vertex

can be placed in worklist. Each time the current tree of a vertex w is added to worklist

the tree's size is at most half the size of the previous tree containing w. Hence, a vertex'

tree can be added at most logn + 1 times to worklist. Splitlist is constructed by a scan of

the vertices whose tree was removed from worklist and the total number of vertices scanned

is O(n logn). Operation split is executed at most n times, since there can be at most n

partitions. Each call to split is implemented in O(1) time by maintaining for each vertex a

pointer to its position in the partition forest. To �nd the smaller of the two subtrees after a

split in time proportional to the smaller tree (i.e., in total time O(n logn)), the vertices in

the two trees are counted by alternating between the trees after each vertex. The algorithm

also requires a pointer for each vertex to its current partition tree, which is updated after

each split only for the vertices of the smaller resulting tree. In summary, the total time

spent in executing procedure Partition is O(n logn). The size of no auxiliary data structure

is more than O(n) and O(n) space is used to store the partition.

If the equation graph is constructed as described in Section 8.2, the size n of the graph

is linear in the size of the program. In data ow problems that are based on a product

lattice LV , such as constant propagation, the equation at each program point is a vector

x = (x1; : : : ; xV). In constant propagation there is a component xi for each of the V

program variables. In general, it will be bene�cial to break the vector equation x into a set

of V components equations x1; : : : ; xV in order to expose additional congruences. In this

146

granularity, the size of the equation graph increases to V � n.

8.2.5 Congruence by Common Subexpression

Additional reductions in an equation system can be achieved by extending the de�nition

of congruence to capture redundancies that result from sources other than idempotence.

In [DST80, NO80] congruence relations are de�ned based on common subexpressions. For

example, consider the equation system after IP partitioning in Figure 8.5 (ii). The term

X(8) u (p; x) is a common subexpression in equations X(9) and X(10). The congruence

relation by common subexpressions is de�ned below by observing the commutativity of the

meet operator.

De�nition 8.4 (Congruence by common subexpression (CSE)) Let G = (V;E) be

an equation graph. A relation S on V is called common subexpression congruence

(CSE) relation if for vertices v and w with successors v1; : : : ; vk and w1; : : : ; wk, (v; w) 2 S

implies label(v)= label(w) and 8 1 � i � k:8><
>:

(vi; wp(i)) 2 S for some permutation p on f1; : : :kg if label (v) = u

(vi; wi) 2 S otherwise

Partitioning a graph by CSE is a well known problem and a fast O(n logn) algorithm

follows from Hopcroft's algorithm for minimizing �nite automata [Hop71]. Among other

applications, Hopcroft's algorithm was used to eliminate common subexpression in program

optimization [AWZ88]. This chapter presents a di�erent application by employing the

algorithm to reduce data ow equation systems.

Hopcroft's algorithm starts with an initial partition � in which all vertices with an

identical label are placed in the same congruence class in �. The algorithm iterates over

the congruence classes to subsequently re�ne the current partition until it is consistent

with De�nition 8.4. The algorithm terminates with the coarsest partition in which two

equations are in the same class only if they are congruent under S. An adaptation of

Hopcroft's partitioning algorithm to partition equation graphs is shown in Figure 8.10.

Consider the application of Hopcroft's algorithm over the equation graph for the alias

analysis of procedure Insert shown in Figure 8.3. The two equations X(9) = (p; x) u

X(8) and X(10) = X(8) u (p; x) are discovered to be CSE congruent. The discovery of

CSE congruences may enable the detection of additional congruences by idempotence. For

example, once it is known that the two equations X(9) and X(10) are congruent, it can

in turn be determined that equation X(11) = X(9)uX(10) is actually a hidden copy and

in fact all three equations X(9), X(10) and X(11) are congruent. To enable these second

order e�ects, the results of CSE partitioning can be incorporated into the initial partition

for IP partitioning. This is achieved by applying procedure Partition to the equation graph

that results if all vertices that were already found to be congruent are merged into a single

147

Procedure An adaptation of Hopcroft's partitioning algorithm

input: Equation graph G = (V = Vf [Vu; E)

output: Partition �? = C1; : : : ; Ck, where Ci is a collection of vertices in G

begin

1. create an initial partition � = C1; : : : ; Cl of the vertices in V by their label;

2. worklist fC1; : : : ; Clg;

3. while worklist 6= ; do

4. select and remove Ci from worklist;

5. for n 1 to 2 do

6. splitlist fv 2 Vf j the n-th succ. of v is in Cig

7. [fv 2 Vu j v has exactly n succ. in Cig; /* commut. of u */

8. for each Cj such that (splitlist\ Cj) 6= ; and (Cj 6� splitlist) do

9. create a new tree collection C in �;

10. move each u 2 (splitlist\Cj) to C;

12. if Cj 2 worklist then add C to worklist

13. else add the smaller of Cj and C to worklist;

14. endfor; endfor;

15. endwhile

end

Figure 8.10: An adaption of Hopcroft's algorithm for minimizing �nite automata.

vertex.

Example: Consider again the equation system in Figure 8.5 (i). The reduced equation

system that results if CSE partitioning is applied prior to IP partitioning is shown in

Figure 8.5 (iii). The additional improvements over the equation system that result from IP

partitioning (Figure 8.5 (ii)) are due to the discovery of the congruence among equations

X(9); X(10) and X(11).

Unfortunately, applying each partitioning algorithm once may not provide optimal results.

In general, congruences that are found based on IP may enable the discovery of additional

common subexpressions and vice versa. Thus, to �nd the maximal number of congruences

requires computing the transitive closure of the union of the two congruence relations. This

closure can be computed by iterating over the two partitioning algorithms until no more

congruence can be discovered. Each time a new iteration is started the size of the equation

graph is reduced resulting in a worst case bound of O(n2 log n).

148

8.2.6 Minimality

The previous sections presented algorithms to discover congruences by exploiting the idem-

potence property of the meet operator and commutativity of the meet in common subex-

pressions. By computing the transitive closure of congruence partitionings based on idem-

potence and based on common subexpressions, reduced equation systems are constructed

that contain no redundancies by idempotence and no common subexpressions. A still unre-

solved question concerns the optimality of the approach, that is, the question as to whether

the resulting equation systems are minimized in terms of the number of equations. Un-

fortunately, the problem of minimizing data ow equation systems, without evaluating any

equations in the system, is NP-complete [GJ79]. The NP-completeness of this minimization

problem is due to the existence of associative operations in the systems, such as the meet

operation. The di�culty of discovering congruences by associativity results from the fact

that an exponential number of di�erent sequences of meet operations can yield congruent

values by associativity. By associativity of the meet two equations may be congruent even if

they are based on di�erent sequences of operations. For example, two equations x = x1ux2

and y = y1 u y2 are congruent by associativity of the meet if x1 is congruent to y1 u z and

y2 is congruent to x2 u z. That is, by substitution it follows that: x � (y1 u z) u x2) and

y � y1 u (x2 u z).

The problem with associative operators also arises in program optimizations that are

based on discovering common subexpressions. Program optimizations distinguish equiva-

lence among expressions that are based on identical sequences of operations up to commu-

tativity. The equivalences are termed transparent equivalences [RWZ88]. Non-transparent

equivalences include, in addition, equivalences that result from associativity. Program opti-

mization techniques are usually limited to the discovery of transparent equivalence. Heuris-

tics have been used to discover some of the equivalences that result from associativity by

using reassociation techniques [CM80].

8.3 Data Flow Solutions by Congruence Partitioning

This section returns to a closer inspection of the properties of reverse DFST partitions

as constructed by the algorithm from Figure 8.7. It was shown in Lemma 8.1 that every

reverse DFST partition is a safe overestimate of the IP partition of an equation system.

This result is obtained without interpreting any function symbol in the equation system

other than the meet operator. This section shows that stronger properties of reverse DFST

partitions can be proven if the partial order v among lattice elements is taken into account

when partitioning the equations. If the data ow equation system meets certain conditions,

the reverse DFST partition is su�ciently powerful to completely replace the �xed point

iteration and directly solve the data ow problem.

Consider the data ow problem of live variables (LIVE). With respect to a single variable

149

the lattice L for LIVE consists of two values:

L = f? = live;> = deadg:

Thus, the ow functions f for the analysis of a single variable are of the form:

f(x) = x or f(x) = c; where c 2 L,

and the set of labels in any equation graph G is limited to:

Label (G) � f?;>;ug:

Consider now a reverse DFST partition � constructed for an equation graph with such a

limited label set and assume that the partition trees are constructed in increasing order

of their labels. Thus, �rst the set of function vertices is ordered in increasing order of the

function label according to the partial lattice orderv. During each step, a tree is constructed

for the currently lowest function vertex that was not already previously included in a tree.

For the above example, where function vertices are either labeled ? or >, �rst the partition

trees with label ? are constructed and then the remaining trees with label > are constructed.

The modi�ed algorithm to construct such an ordered reverse DFST partition is shown in

Figure 8.11.

By constructing partition trees in increasing order of their root vertex label it is guaran-

teed that whenever a meet vertex v is included in a tree with a root label l, then l must be

the lowest lattice value that reaches the meet at v. Otherwise, v would have been included

in a previous tree. Thus, the value of the equation represented by v can be at most l since l

contributes to the meet represented by v and the value cannot be lower than l since no lower

lattice reaches the meet at v. It follows that the �xed point of the equation represented by

vertex v can be already determined during the partition construction, since it must be that

gfp (v) = l. Thus, the following property of a reverse DFST partition results:

8 T 2 � : v 2 T =) (gfp (v) = label (root (T))):

The following theorem generalizes this property for a certain class of data ow problems.

Theorem 8.1 Let G = (V;E) be an equation graph over a chain lattice L such that

Label (G) � L [fug and let � be an ordered reverse DFST partition of V :

(8 T 2 �) : v 2 T =) gfp (v) = label (root (T)):

Proof: The proof proceeds by induction on the number k of vertex inclusions during the

construction of �. (k = 1) Let l be the root vertex label of the tree T that includes the �rst

vertex v1. Then v1 is an immediate predecessor of the root of T and therefore gfp (v1) � l.

Moreover, l must be the lowest element that enters the meet at vertex v1. If there would be

a vertex w with a label lower than l and w would be reachable from v1 then v1 would have

150

Procedure Ordered Reverse DFST Partitioning

input: equation graph G = (Vf [Vu; E)

output: partition � = T1; : : : ; Tk, where k = jVf j such that if v 2 Ti then gfp (v) = label (root (Ti))

begin

1. let S be the sorted sequence of vertices in Vf in increasing order of their labels in L;

2. for each v 2 S in increasing order do

2. create a new tree T in �;

3. dfst(T; v);

4. endfor

end

Figure 8.11: Algorithm to construct an ordered reverse DFST partition.

been included in the tree rooted at w, contradicting the assumption. Hence, gfp (v1) � l.

(k > 1) Let vk be the kth-vertex included and let l be the label of the root vertex of the

tree T that includes vk. Let w be the predecessor of vk in T . By induction hypothesis

gfp (w) = l and therefore gfp (vk) � l. As in the case for k = 1, l must be the lowest value

entering the meet at vertex vk since otherwise vertex vk would have been included earlier

in a tree whose root label is lower than l. Hence also gfp (vk) � l. 2

A data ow problem with a chain lattice satis�es the label set requirement Label (G) �

L [fug if all ow functions f are meet linear functions [Zad84], that is:

f(x) = c or f(x) = x u c , where c is a constant in L:

For example, the class of partitionable problems can be decomposed (i.e, partitioned) into

k disjoint problems, one for each variable or program expression, respectively, such that

each disjoint problem has only meet linear functions. Examples of partitionable problems

are the four classical bit vectors problems REACH, LIVE, AVAIL and BUSY.

Constructing ordered reverse DFST partitions provides an e�cient way of solving simple

data ow problems, namely the partitionable problems. The classical bit vectors problems

have a lattice of height two. Thus, the worst case partitioning time per variable is lin-

ear, resulting in O(k � n) total time to solve the problem for all k variables (or program

expressions, respectively). The solution is computed simply by a series of reverse DFST

partitions, requiring no bit vector operations or equation evaluations at any point.

151

8.4 Comparison with Sparse Evaluation Graphs

This section compares congruence partitioning with the related approach of sparse evalua-

tion graphs (SEG) [CCF90]. Instead of directly reducing a data ow equation system, the

SEG approach specializes a program's control ow graph G with respect to each analysis

problem such that an equation system will be generated that is smaller than it would be

using G. A SEG is obtained from a control ow graph G by eliminating some of the nodes

in G that have an identity ow function. The equation system that results from a SEG

consists of (1) the equations that are based on non-identity functions and (2) meet equations

that are needed to combine new information. The construction of a SEG requires O(e+n2)

time using dominance frontiers [CCF90] and O(e��(e)) time using a more recent algorithm

[CF93], where e is the number of edges in a program's control ow graph G and n is the

number of nodes in G. If possible, a data ow problem that is based on a product lattice

LV is broken into V separate problems in order to increase the likehood of nodes with an

identity ow functions. In this case, a series of V separate SEGs are constructed requiring

O(e� V + n2) time or O(V � e � �(e)) time using the fast algorithm.

SEGs target the elimination of the same kind of redundancies as IP congruence parti-

tioning, namely (1) identity ow functions that result in copy equations and (2) redundant

meet equations that combine identical information. However, there are important data ow

problems for which IP congruence partitioning results in strictly smaller equation systems

than the SEG approach. The SEG approach is not capable of eliminating congruent copy

operations if the congruence is not a result of an identity ow function at the respective

node. Consider a data ow problem with a product lattice LV that cannot be divided into

V disjoint problems. Constant propagation is an example of such a problem. Figure 8.12

shows the constant propagation equation system for a control ow graph fragment. The

equation system in Figure 8.12 (ii) shows each solution vector expanded into a set of equa-

tions X(n)v for each variable v. Thus, each equation Xv(n) expresses whether variable v

has constant value on exit of ow graph node n. Since each node in the graph modi�es the

value of at least one variable, there are no nodes with a complete identity ow function in

this example. It follows that the equation system cannot be improved by the SEG approach

since no node can be eliminated. Thus, the SEG for this example would be identical to the

original graph. However, the equation system can be reduced using congruence partition-

ing. After applying the IP partitioning algorithm from Figure 8.8, the partition �? of the

equation system shown in Figure 8.13 (i) is obtained. The corresponding reduced equation

system based on partition �? is shown in Figure 8.13 (ii).

Furthermore, congruence partitioning is extensible to additional types of congruence

relations, such as congruence by common subexpressions. In contrast, redundancies that

result from common subexpressions cannot be eliminated using SEGs.

152

a:=1

b:=a

c:=b+2 c:=a+1

a:=b

1

2

3 4

5

0

(i)

Xa(1) = f1g

Xb(1) = init

Xc(1) = init

Xa(2) = Xa(1) ^Xa(5)

Xb(2) = Xa(1) ^Xa(5)

Xc(2) = Xc(1) ^Xc(5)

Xa(3) = Xa(2)

Xb(3) = Xb(2)

Xc(3) = Xb(2) � f2g

Xa(4) = Xa(2)

Xb(4) = Xb(2)

Xc(4) = Xa(2)� f1g

Xa(5) = Xb(3) ^Xb(4)

Xb(5) = Xb(3) ^Xb(4)

Xc(5) = Xc(3) ^Xc(4)

(ii)

Figure 8.12: A ow graph fragment (i) and the induced equation system for constant
propagation (ii).

153

�? = f T1 = fXb(1)g; T2 = fXc(1)g; T3 = fXc(2)g; T4 = fXc(3)g , T5 = fXc(4)g ,

T6 = fXc(5)g; T7 = fXa(1); Xa(2); Xb(2); Xa(3); Xb(3); Xa(4); Xb(4); Xa(5); Xb(5)gg

(i)

Xa(1) = f1g

Xb(1) = init

Xc(1) = init

Xc(2) = Xc(1) ^Xc(5)

Xc(3) = Xa(1)� f2g

Xc(4) = Xa(1)� f1g

Xc(5) = Xc(3) ^Xc(4)

(ii)

Figure 8.13: Idempotence congruence partiton �? (i) and the reduced equation system (ii).

8.5 Related Work

Several forwarding techniques use a derived graph representation that embodies some form

of du-chain information. The global value graph [RT82, RL77], the program dependence

graph (PDG) [FOW87] and static single assignment form (SSA) [CFR+91] are examples

of these derived graphs. The primary aim of the PDG is to facilitate the application of

optimizing and parallelizing code transformations. In data ow analysis, the PDG has

been used for program slicing [OO84]. Using SSA form, e�cient data ow algorithms have

been developed for constant propagation [WZ85], redundancy detection [RWZ88], global

value numbering [AWZ88], code motion [CLZ86] and induction variable detection [Wol92].

However, these approaches are not general in that the derived graphs can only facilitate

the analysis of problems that take advantage of de�nitions-use connections. A common

problem that does not bene�t from de�nition-use connections is the computation of available

expressions.

Another approach to exploit direct forwarding opportunities is based on constructing a

specialized graph for each data ow problem to be solved. The partitioned variable technique

(PVT) [Zad84] is an approach, applicable to only partitionable problems, that allows the

partitioning of the original problem into a series of independent and simpler problems, one

for each variable (see also discussion in Section 2.2). PVT requires the construction of

154

a derived graph for each program variable. Once the graph is available, the �xed point

solution is found during a topological graph traversal. An approach, similar to PVT, that

is also limited to partitionable problems is the slotwise analysis described in [DRZ92]. Like

PVT, slotwise analysis breaks a data ow problem into a series of single-bit problems.

However, slotwise analysis does not require the explicit construction of a derived graph and

uses a worklist algorithm to enable the information forwarding on the control ow graph.

The most general of the previous approaches to forwarding are the sparse evaluation

graphs (SEG) [CCF90]. The previous section provided a detailed comparison of the SEG

approach with congruence partitioning.

Computing congruence relations based on common subexpressions is a well known prob-

lem and e�cient algorithms have been developed [NO80, DST80, Hop71]. Hopcroft's par-

titioning algorithm for minimizing �nite automata was used in program optimization to

detect equalities among variables based on common subexpressions over an extended SSA

form of the program [AWZ88]. The authors describe a strategy to manipulate the SSA

representation in order to combine congruent (i.e., equal) variable values from di�erent

branches of a structured if-statement. This treatment can be viewed as handling a special

case of detecting IP congruences. Other methods to eliminate redundant program computa-

tions include value numbering [CS70], global value numbering based on SSA form [RWZ88]

and methods based on the global value graph [RT82].

8.6 Summary

This chapter presented a new and e�cient approach to improve the performance of data

ow analysis by reducing the size of data ow equation systems through congruence par-

titioning. The partitioning algorithms discover congruences among data ow equations by

exploiting the algebraic properties of idempotence and commutativity of the meet operator.

Congruence partitioning is a general approach that is applicable to any monotone data ow

problem. Moreover, congruence partitioning can be applied to optimize the performance of

either standard exhaustive analysis or of the demand-driven analysis as it is developed in

this thesis. The combination of congruence partitioning with exhaustive or demand-driven

analysis is discussed further in the following two sections.

8.6.1 Congruence Partitioning and Exhaustive Analysis

When combining congruence partitioning with an exhaustive analysis approach, congruence

partitioning serves as a preparatory phase to the actual exhaustive analysis. Prior to starting

the exhaustive �xed point computation, the congruence partitioning algorithm is applied to

the exhaustive data ow equation system in order to construct a new and reduced system.

The optimized data ow equation system is then passed to the exhaustive �xed point

computation routine. To compute the �xed point over the reduced equation system does

155

not require any modi�cations in the �xed point �nding strategy. Algorithms for computing

the �xed point of an exhaustive equation system can equally well be applied to a reduced

equation system by simple traversing the new forwarding edges in the reduced system

instead of the regular control ow edges that connect equations in the original exhaustive

system.

8.6.2 Congruence Partitioning and Demand-Driven Analysis

As in the combination with exhaustive analysis, congruence partitioning serves as a prepara-

tory phase to demand-driven analysis. Note that congruence partitioning only has to be

computed once for each analysis problem. The resulting reduced system is then used for

a faster query propagation for all queries that are issued for the respective analysis prob-

lem. Thus, the bene�ts of computing a congruence partitioning increase with the number

of queries that are generated for the problem. The query propagation rules are applied

after congruence partitioning by simply traversing the new forwarding edges instead of the

regular control ow edges.

Note that congruence partitioning represents an additional phase in the analysis process.

Although reductions in the equation system are expected, they cannot be guaranteed in

general. The actual reductions that can be achieved depend highly on the program text

and the speci�c data ow problem under consideration. Thus, as with any forwarding

technique, a determination of the e�ective bene�ts of congruence partitioning requires an

experimental evaluation.

Chapter 9

Concluding Remarks

9.1 Summary

This dissertation has explored new approaches for improving the e�ciency of interprocedural

data ow analysis with respect to both the space and time requirements of the traditional

exhaustive approach. The major contribution of this work is the development of a new

demand-driven approach to interprocedural data ow analysis whose practical bene�ts have

been demonstrated through experimentation.

The demand-driven approach has been developed through a general framework. The

framework is used to derive demand-driven interprocedural analysis algorithms from stan-

dard algebraic descriptions of the data ow problems. Conceptually, demand-driven algo-

rithms result through the functional reversal of a standard exhaustive analysis. The frame-

work is applicable to the class of distributive and �nite interprocedural data ow problems.

In the case of intraprocedural analysis, the framework also applies to distributive problems

with in�nite lattices. To handle the non-distributive case, this work also includes a two-

phase framework variation. As a two-phase approach, the framework variation is generally

less e�cient than the single-phase analysis reversal. However, the framework extension is

more general in that it is applicable to any monotone data ow problem.

Numerous experiments were carried out to evaluate the performance of demand-driven

analysis in practice. Demand-driven analyzers have been implemented for two data ow

problems: reaching de�nitions and copy constant propagation. Experiments were con-

ducted to compare the performance of computing reaching de�nitions and copy constant

propagation information at each use/reference of a variable using either the demand-driven

analyzers or using their exhaustive counterparts. The experimental results show that the

demand-driven reaching de�nition analyzer is faster and uses less space than exhaustive

reaching de�nition analysis in 11 out of 17 programs. In copy constant propagation, the

demand-driven analyzer outperforms the exhaustive analyzer in all 17 programs. Additional

experimentation was conducted to evaluate the performance of demand-driven analysis in

a speci�c software engineering application. The example chosen was data ow integration

156

157

testing. An experimental study was performed to compare the performance of the demand-

driven analyzer if used during procedure integration with that of (i) an exhaustive analyzer

and (ii) an improved analyzer that is based on incremental updates. The experimental

results show that demand-driven analysis is signi�cantly faster than exhaustive analysis for

all programs and even outperforms the incremental analyzer in 11 out of 12 programs. As

an additional result, the experimental study has shown that the demand-driven algorithms

can be easily integrated into data ow applications.

The analysis improvements achievable by a demand-driven approach are orthogonal and

complimentary to the improvements of previous preparatory techniques that optimize data

ow analysis performance by direct information forwarding. As an additional contribution

and to further improve the analyzer's performance, this dissertation also developed a new

forwarding technique, congruence partitioning, that is more general and more powerful

than previous techniques for forwarding. Congruence partitioning provides a preparatory

optimization technique that may be used to improve the performance of either the demand-

driven algorithms developed in this work or of conventional exhaustive analysis algorithms.

9.2 Merit of the Work

A demand-driven approach has important advantages over other techniques to improve the

e�ciency of data ow analysis. Previous approaches to improve data ow analysis typi-

cally act as an additional preparatory phase that is performed prior to the actual data ow

analysis. For example, forwarding techniques are preparatory approaches that are applied

before the analysis in order to shorten the information propagation paths in the control ow

graph. In contrast, the demand-driven approach developed in this thesis constitutes the ac-

tual analysis phase itself. As a consequence, using a demand-driven approach to data ow

analysis in compilers and software tools signi�cantly changes their overall design. Unlike

preparatory techniques, demand-driven analysis does not obey the classical strict phased

design of a compiler. In this phased design, data ow analysis is performed in isolation and

independent of its context; and in particular, independent of the application phase that

follows the analysis. While such a strict separation into phases may simplify the overall

design and implementation of a compiler, it also limits the information available to each

individual phase and may thereby render the phases unnecessarily ine�cient. For example,

performing data ow analysis in a separate phase from the actual analysis application (e.g.,

optimization) is likely to result in an over-analysis of the program. Since nothing is known

about the actual information demands of the application, the analysis must consider all

possibly relevant data ow facts and is therefore necessarily exhaustive. In contrast, if a

demand-driven analysis is used, the actual information needs can be taken into account and

the over-analysis of a program can be avoided. Demand-driven analysis is directly inter-

leaved with the application such that analysis is performed only if triggered by a demand

158

for information from the application. Ideally, repeated invocations of the demand-driven

analyzer result in the subsequent accumulation of the data ow solution. Thus, if exhaus-

tively many demands are issued by the application, the demand-driven analyzer eventually

accumulates the complete exhaustive solution.

The major contributions of the developed demand-driven approach to interprocedural

data ow analysis are summarized as follows.

� Integration of analysis with applications that require data ow information.

As discussed above, using a demand-driven analysis approach leads to a new design

of compilers and data ow based software engineering tools that interleaves analysis

and application.

� General approaches for distributive and non-distributive data ow problems.

The demand-driven approach is developed as a framework and as such avoids the need

for redeveloping demand-driven algorithms for each analysis problems that must be

solved.

� Time and space e�cient demand-driven analysis algorithms.

Analytical analysis of the asymptotic worst case cost of the developed demand-driven

algorithms shows that demand-driven analysis is never more costly than standard

exhaustive analysis.

� Practical bene�ts experimentally demonstrated.

The practical performance bene�ts of demand-driven analysis has been demonstrated

through numerous experiments.

� Simple and easy to implement design of the demand-driven analysis algorithms.

The developed demand-driven analyzers have a simple design and are easy to imple-

ment, thus providing the compiler writer with an attractive alternative to standard

exhaustive algorithms,

9.3 Future Directions

The theoretical and practical results presented in this thesis encourage continuing research

with respect to both the conceptual and the experimental aspects of this work.

� Additional Experimental Evaluation

To provide further insights into the performance bene�ts of the demand-driven approach,

the experimental evaluation of demand-driven analysis can be continued. One direction of

future experimental work would include the consideration of additional cost measures. The

experimental results presented in this thesis are based on execution timings. Alternatively,

159

performance can be measured through operation counts. Unlike execution timings, counting

the number operations provides a performance measure that is implementation independent

and une�ected by implementation related optimizations (e.g., bit vector operations).

Future experimentation will also consider additional data ow problems. The experi-

mental results in Chapters 5 and 6 show that the bene�ts of demand-driven analysis are

higher in copy constant propagation, which is a more complex problem than the problem

of computing reaching de�nitions. This result suggests that the bene�ts of demand-driven

analysis grow, not only with certain program characteristics such as program size, but also

based on characteristics of the data ow problem such as its complexity. Future research

could investigate how characteristics of the data ow problem, such as the complexity of

the lattice and meet operator implementations, a�ect the performance of demand-driven

analysis.

Another important extension of the experimental work would be to evaluate the per-

formance of complete compiler optimizations based on demand-driven analysis. The ex-

perimental evaluation of demand-driven analysis in integration testing provided the �rst

encouraging results for using demand-driven analysis in a software engineering application.

Evaluating the performance of an optimizer that is based on demand-driven analysis would

complement the work on integration testing and establish further insights into the usabil-

ity of demand-driven analysis in an optimizing compiler. Such an experimental evaluation

would serve two purposes. First, it would provide a comparison of the optimizer's perfor-

mance if based on demand-driven analysis with that of a standard implementation of the

optimizer. In addition, the experimental study would also reveal the ease or di�culty of

designing and implementing an optimizer using a demand-driven analysis approach.

� Experimental Evaluation of Congruence Partitioning

Other future experimental work would include the practical evaluation of congruence par-

titioning. In particular, an evaluation of the bene�ts of combining congruence partitioning

with demand-driven analysis would be interesting. The existing demand-driven analyzer im-

plementations could be extended to include an additional preparatory phase for congruence

partitioning. The results of this preparatory phase would provide forwarding information

of the reduced equation system that can be used during the demand-driven query analysis

to shorten the query propagation paths. Congruence partitioning may also be applied prior

to standard exhaustive analysis. Thus, additional experimental evaluation would cover the

bene�ts of congruence partitioning in a standard exhaustive compiler or software tool.

� Parallelizing Demand-Driven Analysis

There are a number of potential bene�ts of demand-driven analysis that deserve further

investigation. One domain in which the demand-driven algorithms appear to be a promis-

ing approach is the parallelization of the data ow analysis. The discussion in Chapter

160

4 pointed out that the demand-driven algorithms are parallelizable in a straight-forward

way and several modes of parallel execution of the analysis were outlined. A future exper-

imental evaluation would determine the practical bene�ts of the parallel implementations

of the demand-driven analysis, in particular, in comparison with other data ow analysis

parallelization strategies.

� Analysis of Non-Distributive Problems

Other future directions target the theoretical aspects of this research. In particular, fur-

ther investigations of the handling of non-distributive problems would be of interest. The

concepts of precise analysis reversal that enabled the development of the demand-driven

framework are not applicable to non-distributive problems. Applying analysis reversal to

a non-distributive problem results in loss of precision. To precisely handle non-distributive

problems, this work includes a two-phase framework extension that, although less e�cient,

is applicable to any monotone data ow problem. An interesting problem is the question as

to whether it is possible to improve the e�ciency of the two-phase framework variation by

developing a hybrid approach for handling non-distributivity. A hybrid approach could be

based on the observation that it is always possible to detect the �rst time a loss of precision

occurs when analysis reversal is applied to a non-distributive problem. Thus, is may be

possible to start the demand-driven analysis for a non-distributive problem optimistically

using the more e�cient analysis reversal approach. Only if information loss actually occurs

would the analysis switch to the two-phase algorithm. Moreover, it may be possible to

isolate the portions of the program that result in information loss during the query propa-

gation. In this case, a hybrid approach would attempt to apply analysis reversal whenever

possible and only switch to the less e�cient two-phase approach to cover the portions of

the program than cannot be analyzed precisely using the reversal based query propagation

rules.

� Combining Demand-Driven Analysis with Incremental Analysis

Finally, the utility of using demand-driven analysis for bypassing the incremental update

problem should be investigated in the future. The experimental comparison of demand-

driven algorithms with incremental algorithms in integration testing has provided some

promising results showing that demand-driven analysis can outperform incremental analysis.

Another context where the demand-driven approach may be useful to eliminate the need

for incremental analysis are optimizing compilers that perform aggressive code re-ordering.

The incremental update problem of keeping the data ow solution consistent while the code

is being transformed can become considerably complex if the transformations involve more

than simple local code changes. If demand-driven analysis performs su�ciently well to allow

its use throughout the optimization phase, such an incremental update problem would not

even arise. Each time data ow information is requested, it is computed based on the latest

161

valid version of the program.

A hybrid approach that combines the advantages of both demand-driven and incremental

analysis results if the demand-driven analysis uses a cache. If the program changes while

the cache is in use, the cache can be updated using the same incremental techniques that are

used to update the exhaustive solution. Thus, for transformations that require only small

changes, incremental techniques could be used to update the cache. After the application

of more aggressive transformations that require complex updates, the cache can simply be

ushed. Unlike an exhaustive approach that completely re-computes the exhaustive solution

after a previous solution has been ushed, using demand-driven analysis guarantees that

after ushing, only the information actually needed will be re-computed. Experimental

evaluation will be necessary to determine the actual bene�ts of using demand-driven analysis

in combination with an incremental approach.

Bibliography

[AC77] F.E. Allen and J. Cocke. A program data ow analysis procedure. Communi-
cations of the ACM, 19(3):137{147, March 1977.

[AHKL93] H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental regression
testing. In Conf. on Software Maintenance, pages 348{357, Sept. `93.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, `74.

[AK87] F.E. Allen and K. Kennedy. Automatic translation of fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491{
542, October 1987.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques, and
tools. Addison-Wesley Publishing Company, Massachusetts, `86.

[AWZ88] B. Alpern, M. Wegman, and F.K. Zadeck. Detecting equality of values in pro-
grams. In 15th ACM Symp. on Principles of Programming Languages, pages
1{11, San Diego, CA, Jan. `88.

[BE95] W. Blume and R. Eigenmann. Demand-driven symbolic range propagation. In
Workshop on Languages and Compilers for Parallelism, Columbus, OH, Aug.
`95.

[BH93] S. Bates and S. Horwitz. Incremental program testing. In 20th Annual ACM
Symp. on Principles on Programming Languages, Jan. 1993.

[Bir84] G. Birkho�. Lattice theory, volume 25. American Mathematical Society, Collo-
quium Publication, Washington, DC, 3rd edition, `84.

[BJ78] W.A. Babich and M. Jazayeri. The method of attributes for data ow analysis:
Part II . Demand analysis. Acta Informatica, 10(3), Oct. `78.

[BMO90] R. Ballance, A.B. Maccabe, and K.J. Ottenstein. The program dependence web:
a representation supporting control-,data-, and demand-driven interpretation of
imperative languages. In SIGPLAN `90 Conf. on Programming Language Design
and Implementation, pages 257{271, Jun. `90.

[Bou93] F. Bourdoncle. Abstract debugging of high-order imperative languages. In
SIGPLAN '93 Conf. on Programming Language Design and Implementation,
pages 36{45, Albuquerque, NM, Jun. '93.

162

163

[Bur87] M. Burke. An interval analysis approach toward exhaustive and incremental data
ow analysis. Technical Report RC 12702, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, `87.

[CBC93] J.-D. Choi, M. Burke, and P. Carini. E�cient ow-sensitive interprocedu-
ral computation of pointer-induced aliases and side e�ects. In Proc. of the
20th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 232{245, Jan. `93.

[CC77a] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In
6th ACM Symp. on Principles of Programming Languages, pages 238{252, Los
Angeles, CA, Jan. `77.

[CC77b] P. Cousot and R. Cousot. Static determination of dynamic properties of gener-
alized type unions. In ACM Conf. on Language Design for Reliable Software,
pages 77{93, Raleigh, NC, Mar. `77.

[CC77c] P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E.J. Neuhold, editor, IFIP Conf. on Formal Description of
Programming Concepts, pages 237{277. North-Hollan Pub. Co., `77.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In 6th ACM Symp. on Principles of Programming Languages, pages 269{282,
San Antonio, TX, Jan. `79.

[CCF90] J.D. Choi, R.K. Cytron, and J. Ferrante. Automatic construction of sparse
data ow evaluation graphs. In 18th ACM Symp. on Principles of Programming
Languages, pages 55{66, Orlando, FL, Jan. `90.

[CCF92] J.D. Choi, R. Cytron, and J. Ferrante. On the e�cient engineering of ambitious
program analysis. IEEE Trans. on Software Engineering, 20(2):105{114, Feb.
'92.

[CF93] R.K. Cytron and J. Ferrante. E�ciently computing �-nodes on-the-y. `93
Workshop on Languages and Compilers for Parallelism, 1993.

[CFR+91] R.K. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F.K. Zadeck. E�ciently
computing static single assignment form and the control dependence graph.
ACM Trans. on Programming Languages and Systems, 13(4):451{490, Oct. `91.

[CG93] R. Cytron and R. Gershbein. E�cient accommodation of may-alias information
in SSA form. In SIGPLAN '93 Conf. on Programming Language Design and
Implementation, pages 36{45, Albuquerque, NM, Jun. '93.

[CHK92] K. Cooper, M. Hall, and K. Kennedy. Procedure cloning. In IEEE 1992 Int.
Conf. on Computer Languages, pages 96{105, San Francisco, CA, April 1992.

[CK88] K. Cooper and K. Kennedy. Interprocedural side-e�ect analysis in linear time.
SIGPLAN '88 Symp. on Compiler Construction, published in SIGPLAN No-
tices, 23(7):57{66, Jun. `88.

164

[CLZ86] R.K. Cytron, A. Lowry, and F.K. Zadeck. Code motion of control structures
in high-level languages. In 13th ACM Symp. on Principles of Programming
Languages, pages 70{85, St. Petersburg Beach, FL, Jan. `86.

[CM80] J. Cocke and P.W. Markstein. Measurement of program improvement algo-
rithms. In Information Processing 80. North Holland Publishing Company, `80.

[Coc70] J. Cocke. Global common subexpression elimination. SIGPLAN Notices,
5(7):20{24, July 1970.

[Coo85] K. Cooper. Analyzing aliases of reference formal parameters. In 12th ACM
Symp. on Principles of Programming Languages, pages 281{290, `85.

[Cou81] P. Cousot. Semantic foundations of program analysis. In S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, pages
303{342. Prentice-Hall, `81.

[CPRS85] L.A. Clarke, A. Podgurski, D. Richardson, and S.Zeil. A comparison of data
ow path selection criteria. In 8th Int. Conf. on Software Engineering, pages
244{251, Aug. `85.

[CS70] J. Cocke and J.T. Schwartz. Programming languages and their compilers; pre-
liminary notes. Courant Institute of Mathematical Sciences, New York Univer-
sity, Apr. `70.

[CS89] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, 24(1):100{111, Jan. `89.

[CWZ90] D.R. Chase, M. Wegman, and F.K. Zadeck. Analysis of pointers and structures.
In Proc. of the SIGPLAN '90 Conf. on Programming Language Design and
Implementation, pages 296{310, White Plains, NY, Jun. `90.

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
In Proc. of the SIGPLAN `94 Conference on Programming Language Design and
Implementation, pages 230{241, Orlando, FL, Jun. `94.

[DGS92a] E. Duesterwald, R. Gupta, and M.L. So�a. Distributed slicing and partial
re-execution of distributed programs. In Fifth Workshop on Languages and
Compilers for Parallelism, pages 497{511, New Haven, Connecticut, Aug. `92.
Springer Verlag, LNCS 757.

[DGS92b] E. Duesterwald, R. Gupta, and M.L. So�a. Rigorous data ow testing through
output inuences. In 2nd Irvine Software Symposium, pages 131{145, Irvine,
CA, Mar. `92.

[DRZ92] D.M. Dhamdhere, B.K. Rosen, and F.K. Zadeck. How to analyze large programs
e�ciently and informatively. In SIGPLAN '92 Conf. on Programming Language
Design and Implementation, pages 212{223, San Francisco, CA, Jun. `92.

[DS91] E. Duesterwald and M.L. So�a. Static concurrency analysis in the presence of
procedures using a data-ow framework. In ACM Symp. on Testing, Analysis,
and Veri�cation, pages 36{48, Victoria, B.C., Oct. `91.

165

[DST80] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subexpres-
sion problem. Journal of the ACM, 27(4):758{771, Oct. `80.

[EGH94] M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural
points-to analysis on the presence of function pointers. In Proc. of the SIG-
PLAN `94 Conference on Programming Language Design and Implementation,
pages 242{256, Orlando, FL, Jun. `94.

[EP89] P. Emrath and D. Padua. Automatic detection of nondeterminancy in parallel
programs. SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debug-
ging, published in ACM SIGPLAN Notices, 24(1):89{99, Jan. `89.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence graph
and its use in optimization. ACM Trans. on Programming Languages, 9(3):319{
349, July `87.

[FW88] P.G. Frankl and E.J. Weyuker. An applicable family of data ow testing criteria.
IEEE Transactions on Software Engineering, SE-14(10):1483{1498, Oct. `88.

[GHS92] R. Gupta, M.J. Harrold, and M.L. So�a. An approach to regression testing
using slicing. In Conf. on Software Maintenance, pages 299{308, Nov. `92.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman and
Company, New York, `79.

[GN93] W.G. Griswold and D. Notkin. Automated assistance for program restructur-
ing. ACM Transactions on Software Engineering and Methodology, 2(3):228{
269, July `93.

[GPS90] R. Gupta, L.L. Pollock, and M.L. So�a. Parallelizing data ow analysis. In
Workshop on Parallel Compilation, Kingston, ON, Canada, `90.

[GS92] R. Gupta and M.L. So�a. Automatic generation of compact test suites. In 12th
IFIP World Computer Congress, Madrid, Spain, Sept. `92.

[GW76] S. Graham and M. Wegman. A fast and usually linear algorithm for global ow
analysis. Journal of the ACM, 23(1):172{202, Jan. `76.

[GZZ89] T. Gross, A. Zobel, and M. Zolg. Parallel compilation for a parallel machine.
In SIGPLAN `89 Conf. on Programming Language Design and Implementation,
pages 91{100, Jun. `89.

[HDT87] S. Horwitz, A. Demers, and T. Teitelbaum. An e�cient general iterative algo-
rithm for data-ow analysis. Acta Informatica, 24(6):679{694, Nov. `87.

[HL92] J. Hughes and J. Launchbury. Reversing abstract interpretations. In 4th Euro-
pean Symp. on Programming, pages 269{286, Rennes, France, Feb. `92. Springer
Verlag, LNCS 582.

[Hop71] J.E. Hopcroft. An n log n algorithm for minimizing states in �nite automata.
In Theory of Machines and Computations. Academic Press, New York, `71.

166

[HPR89] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of pro-
grams. ACM Transactions on Programming Languages and Systems, 11(3):345{
387, July `89.

[HS89a] M.J. Harrold and M.L. So�a. Interprocedural data ow testing. In ACM Symp.
on Software Testing, Analysis, and Veri�cation, pages 158{167, Key West, FL,
Dec. `89.

[HS89b] M.J. Harrold and M.L. So�a. Interprocedural data ow testing. In 3rd Testing,
Analysis and Veri�cation Symp., pages 158{167, Dec. `89.

[HS90] M.J. Harrold and M.L. So�a. Computation of interprocedural de�nition and
uses dependencies. In Int. Conf. on Computer Languages, pages 297{306, Los
Alamitos, CA, `90. CS Press.

[HU73] M.S. Hecht and J.D. Ulman. Analysis of a simple algorithm for global ow
problems. In First ACM Symposium on Principles of Programming Languages,
pages 207{217, Boston, MA, Oct. `73.

[JM73] N.D. Jones and A. Mycroft. Data ow analysis of applicative programs using
minimal function graphs. In 13th Symp. on Principles of Programming Lan-
guages, pages 194{206, Florida, 1973.

[JP93] R. Johnson and K. Pingali. Dependence-based program analysis. In SIGPLAN
'93 Conf. on Programming Language Design and Implementation, pages 78{89,
Albuquerque, NM, Jun. `93.

[Ken75] K. Kennedy. Node listing applied to data ow analysis. In 2nd ACM Symp. on
Principles of Programming Languages, pages 10{21, Jan. `75.

[KGS94] R. Kramer, R. Gupta, and M.L. So�a. The combining dag: a technique for par-
allel data ow analysis. IEEE Transactions on Parallel and Distributed Systems,
5(8), Aug. `94.

[Kil73] G. Kildall. A uni�ed approach to global program optimization. In 1st ACM
Symp. on Principles of Programming Languages, pages 194{206, Boston, Mas-
sachusetts, Jan. `73.

[Knu71] D.E. Knuth. An empirical study of fortran programs. Software Practice and
Experience, 1(2):105{13, Apr. `71.

[KRS92] J. Knoop, O. Ruething, and B. Ste�en. Lazy code motion. In SIGPLAN '92
Conf. on Programming Language Design and Implementation, pages 224{234,
Jun. '92.

[KS92] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In 4th Int.
Conf. on Compiler Construction, pages 125{140, Paderborn, Germany, Oct. '92.
Springer Verlag, LNCS 641.

[KU76] J.B. Kam and J.D. Ullman. Global data ow analysis and iterative algorithms.
Journal of the ACM, 23(1):158{171, Jan. `76.

167

[KU77] J.B. Kam and J.D. Ullman. Monotone data ow analysis frameworks. Acta
Informatica, 7(3):305{317, Jul. `77.

[Lan92] W.A. Landi. Interprocedural aliasing in the presence of pointers. PhD thesis,
Rutgers University, New Brunswick, NJ, `92.

[LH88] J.R. Larus and P.N. Hil�nger. Detecting conicts between structure accesses.
In Proc. of the SIGPLAN`88 Conference on Programming Language Design and
Implementation, pages 21{34, `88.

[LMR91] Y.F. Lee, T.J. Marlowe, and B.G. Ryder. Experiences with a parallel algorithm
for data ow analysis. Journal Supercomputing, 5:163{188, Oct. `91.

[LR92] W. Landi and B. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In Proc. of the SIGPLAN '92 Conf. on Programming Language
Design and Implementation, pages 56{67, San Francisco, CA, Jun. `92.

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial redun-
dancies. Communications of the ACM, 22(2):97{103, Feb. `79.

[MR90] T.J. Marlowe and B.G. Ryder. Properties of data ow frameworks, a uni�ed
model. Acta Informatica, 28(2):121{163, Dec. `90.

[Mye76] G.J. Myers. Software reliability: principles and practices. Wiley-Interscience,
New York, `76.

[Mye81] E.W. Myers. A precise inter-procedural data ow algorithm. In 8th ACM
Symp. on Principles of Programming Languages, pages 219{230, Williamsburg,
Virginia, Jan. `81.

[NO80] G. Nelson and D.C. Oppen. Fast decision procedures based on congruence
closures. Journal of the ACM, 27(2), Apr. `80.

[Nta84] S.C. Ntafos. An evaluation of required element testing strategies. In 7th Int.
Conf. on Software Engineering, pages 250{256, Mar. `84.

[OO84] K Ottenstein and L Ottenstein. The program dependence graph in a software de-
velopment environment. ACM SIGSOFT/SIGPLAN Symp. on practical SDEs,
SIGPLAN Notices, 19(5):177{184, May `84.

[OW88] T.J. Ostrand and E.J. Weyuker. Using dataow analysis for regression testing.
In 6th Annual Paci�c Northwest Software Quality Conf., pages 233{247, Sept.
`88.

[PS89] L. Pollock and M.L. So�a. An incremental version of iterative data ow analysis.
IEEE Trans. on Software Engineering, 15(12):1537{1549, Dec. `89.

[PW86] D. Padua and M.J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 22(12):1184{1201, Dec. `86.

[RC87] B.G. Ryder and M. Carroll. An incremental algorithm for software. ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, SIGPLAN Notices, 21(1):171{179, Jan. '87.

168

[Rep94] T. Reps. Solving demand versions of interprocedural analysis problems. In 5th
Int. Conf. on Compiler Construction, pages 389{403. Springer Verlag, LNCS
786, Apr. `94.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow analysis
via graph reachability. In 22nd ACM Symp. on Principles on Programming
Languages, pages 49{61, San Francisco, CA, Jan. `95.

[RL77] J. Reif and J. Lewis. Symbolic evaluation and the global value graph. In 4th
ACM Symp. on Principles of Programming Languages, pages 104{118, Jan. `77.

[RM93] G. Rothermel and M.J.Harrold. A safe, e�cient algorithm for regression test
selection. In Conf. on Software Maintenance, pages 358{367, Sept, `93.

[RM94] G. Rothermel and M.J.Harrold. Selecting tests and identifying test coverage
requirements for modi�ed software. In 1994 Int. Symp. on Software Testing and
Analysis, pages 169{184, Aug. `94.

[Ros81] B. Rosen. Linear cost is sometimes quadratic. In 8th ACM Symp. on Principles
of Programming Languages, pages 117{124, Jun. `81.

[RP86] B.G. Ryder and M.C. Paull. Elimination algorithms for data ow analysis. ACM
Computing Surveys, 18(3):277{316, `86.

[RP88] B.G. Ryder and M.C. Paull. Incremental data ow analysis algorithms. ACM
Trans. Programming Languages and Systems, 10(1):1{50, `88.

[RR91] G. Ramalingam and T. Reps. On the computational complexity of incremental
algorithms. Technical Report TR-1033, Computer Science Department, Univer-
sity of Wisconsin, Madison, WI, Aug. `91.

[RSH94] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataow analysis via graph
reachability. Technical Report 94-14, Datalogisk Institut, University of Copen-
hagen, Copenhagen, Denmark, `94.

[RT82] J. Reif and R.E. Tarjan. Symbolic program analysis in almost linear time. SIAM
Journal of Computing, 11(1):81{93, Feb. `82.

[RTD83] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent anal-
ysis for language-based editors. ACM Trans. on Programming Language and
Systems, 5(3):449{477, Jul. `83.

[RW85] S. Rapps and E. Weyuker. Selecting software test data using data ow informa-
tion. IEEE Trans. on Software Engineering, 11(4):367{375, Apr. `85.

[RWZ88] B. Rosen, M. Wegman, and F.K. Zadeck. Global value numbers and redundant
computations. In 15th ACM Symp. on Principles of Programming Languages,
pages 12{27, San Diego, CA, Jan. `88.

[Ryd83] B.G. Ryder. Incremental data ow analysis. In 9th ACM Symp. on Principles
of Programming Languages, pages 167{176, Jan. `83.

[Set76] R. Sethi. Algorithms for minimal-length schedules. Wiley Publishing Company,
New York, NY, `76.

169

[SH86] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel
programs. In Symp. on Compiler Construction, pages 17{26, `86.

[SMHY93] A.D. Stoyenko, T.J. Marlowe, W.A. Halang, and M. Younis. Enabling e�-
cient schedulability analysis through conditional linking and program transfor-
mations. Control Engineering Practice, 1(1):85{105, `93.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data ow analysis.
In S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 189{234. Prentice-Hall, `81.

[SRH95a] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataow analysis
with applications to constant propagation. In FASE 95: Colloquim on Formal
Approaches in Software Engineering, pages 651{665. Springer Verlag, LNCS 915,
May `95.

[SRH95b] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataow analysis
with applications to constant propagation. Technical Report TR-1284, Com-
puter Science Department, University of Wisconsin, Madison, WI, Aug. `95.

[SS88] D. Shasah and M. Snir. E�cient and correct execution of parallel programs that
share memory. ACM Transactions on Programming Languages and Systems,
10(2):282{312, Apr. `88.

[SY93] R.E. Strom and D.M. Yellin. Extending typestate checking using conditional
liveness analysis. IEEE Trans. on Software Engineering, 19(5):478{485, May
'93.

[Tar81a] R.E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,
28(3):594{614, Jul. `81.

[Tar81b] R.E. Tarjan. A uni�ed approach to path problems. Journal of the ACM,
28(3):576{593, Jul. `81.

[TTL89] A.M. Taha, S.M. Thebut, and S.S. Liu. An approach to software fault localiza-
tion and revalidation based on incremental data ow analysis. In COMPSAC`89,
pages 527{534, Sept. `89.

[Wei84] M. Weiser. Program slicing. IEEE Trans. on Software Engineering, SE-
10(4):352{357, Jul. `84.

[WL95] R.P. Wilson and M.S. Lam. E�cient context-sensitive pointer analysis for c
programs. In Proc. of the SIGPLAN `95 Conference on Programming Language
Design and Implementation, pages 1{12, Jun. `95.

[Wol92] M. Wolfe. Beyond induction variables. In SIGPLAN `92 Conf. on Programming
Design and Implementation, pages 162{174, San Francisco, CA, June `92.

[WZ85] M. Wegman and F.K. Zadeck. Constant propagation with conditional branches.
In 12th ACM Symp. on Principles of Programming Languages, pages 291{299,
New Orleans, Jan. `85.

[Zad84] F.K. Zadeck. Incremental data ow analysis in a structured program editor. In
SIGPLAN Symp. on Compiler Construction, pages 132{143, Jun. `84.

