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SOURCE LEVEL DEBUGGING OF DYNAMICALLY TRANSLATED 
PROGRAMS

Naveen Kumar, Ph.D.

University of Pittsburgh, 2008

The capability to debug a program at the source level is useful and often indispensible. Debuggers use

sophisticated techniques to provide a source view of a program, even though what is executing on the hard-

ware is often machine code. The techniques used by debuggers continuously evolve with changes in pro-

gramming language strategies and execution environments. Recently, a new execution mechanism has

emerged, called software dynamic translation, that inserts a layer of software between a program and a host

machine. The software layer has complete control of an executing application, which is then modified for a

specific purpose. A spectrum of diverse uses of software dynamic translation have emerged, including

dynamic optimization, dynamic instrumentation, software security checking, host machine virualization

and simulations, among others. With the growing number of uses of software dynamic translation in aca-

demia and industry, a lack of adequate source level debugging techniques is currently a stumbling block. 

This thesis is the first research that targets source level debugging of dynamically translated pro-

grams. The techniques developed in this research do not require or induce changes in the program when it

is being debugged. In other words, the program being debugged is the same as that outside of the debug

session. The debugging techniques are not catered to a specific SDT system or implementation; they can

be applied to a broad range of SDT systems. 

With software dynamic translation, a program’s code is modified at runtime, including when it is

being debugged. Therefore, the debugger’s view of the program must be kept consistent with the changing
vi



program for debugging accuracy. This thesis develops a framework, called Tdb, that generates and main-

tains consistent information about the constantly changing program and uses the information for debug-

ging. 

Tdb’s organization and its techniques offer several advantages. First, Tdb allows debug users to

choose their favorite debugger. Users do not have to learn new commands or be aware that the program

being debugged is being dynamically translated. Second, Tdb enables different dynamic translators to be

used with the same debugger, thereby providing portability to its techniques across dynamic translators. 

This thesis describes the Tdb framework and experimentally evaluates its techniques. Tdb’s tech-

niques are implemented for three dynamic translators on two different hardware platforms and experiments

are conducted. The experimental results demonstrate that source level debugging of dynamically translated

programs is possible. Further, the experiments show that Tdb’s techniques are practical as well as efficient. 
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Chapter 1.  Introduction

Programmatic errors, or bugs, are unavoidable during the development of all but the simplest of programs.

The importance of identifying and eliminating bugs cannot be stressed enough. A debugger is perhaps the

most important tool in a programmer’s repertoire for locating bugs. A debugger allows programs to be exe-

cuted in a controlled manner so that a programmer can inspect values computed and paths taken during

execution. With the aid of a debugger, a programmer can track bugs in the program (i.e., debug) by pin-

pointing the location where an incorrect program path is taken or incorrect value is computed.

Debuggers often provide a source view of the program being debugged. This means, even though

the program executable may be represented as binary code or intermediate code, such as bytecode [55], a

debugger still allows a programmer to control or inspect the program’s execution from the point of view of

source code constructs. For example, a programmer may specify a source line number at which the debug-

ger should pause the execution. The debugger finds the corresponding location in the binary code or byte-

code and pauses execution at that location. In this way, a debugger hides machine-specific details from

programmers. 

Relating source code with binary code becomes complicated when the binary code does not

directly correspond with the source code. Consider compiler optimizations for example. Optimizations

make code transformations, such as code movement, code deletion, code addition and register allocation.

With code transformations, values may be computed earlier or later in the executing program than

expected by the programmer and the order in which statements execute can change with respect to the orig-

inal source code. In addition to hiding machine-specific details, the debugger also has to now hide the
1



effect of optimizations from debug users. In particular, debuggers have to solve two problems: (1) locating

statements in transformed code, called the code location problem, and (2) extracting variable values which

are not available at expected locations due to code transformations, called the data value problem. To solve

these problems, techniques have been developed that use static as well as dynamic analyses to relate unop-

timized code with optimized code and extract “expected” variable values for inspection

[8,22,34,41,1,100,102].

A debugger’s task becomes yet more complicated with concurrent programs. Identifying race con-

ditions can be extremely difficult. Debugging typically involves pausing execution which can change tim-

ing dependencies. A debugger has to preserve these dependencies while allowing programmers to pause

and inspect the program. Debugging techniques such as timestamping and checkpointing have been devel-

oped to address the concurrency challenges and have proved invaluable [17,73,103]. 

Optimizations and concurrency are only two examples where debugging technology had to evolve

to address new challenges. In fact, with advances in code generation strategies and programming language

paradigms, debuggers have always had to address new challenges in relating a source program with the

executing program. Vector programming, object-oriented programming and just-in-time compilation are

some of the other paradigm changes in execution strategies and programming environments where new

debugging techniques were developed [39,53,67,69,43,70]. Recently, a new execution environment, soft-

ware dynamic translation (SDT), has become increasingly popular. SDT provides exciting new capabilities

for system programmers that were previously difficult or impossible to achieve. Currently, adequate source

level debugging techniques do not exist for SDT systems. This thesis provides significant advancement of

SDT technology and the debuggers by developing source level debugging techniques in this new execution

domain. This thesis is the first work that provides debugging techniques generally applicable to any SDT

system and that does not inhibit or change SDT system’s behavior when a program is being debugged. 
2



1.1    Software Dynamic Translation

A SDT system is a layer of software that mediates program execution by intercepting a program before it is

run on the underlying hardware. The placement of the SDT system with respect to an application program

and the underlying host machine is shown in Figure 1. SDT allows for monitoring the run-time behavior of

an executing program and modifying its execution in a controlled manner. 

The ability to monitor any executing program and modify the program’s code and data gives sys-

tem developers unprecedented power and flexibility. For example, SDT technology can be used to translate

an instruction stream to a different instruction set architecture, thereby allowing a program to be run on a

different processor than originally intended. This technique, called binary translation, is used by Rosetta

for running applications compiled for the PowerPC family of processors on Intel processors [2]. Similarly,

SDT technology is used by virtual machine monitors to intercept privileged instructions and replace them

by their emulated counterpart [28,77]. SDT systems have become commonplace in research circles

[3,5,9,11,14,18,20,47,64,80,85,95,96,107] and are gaining popularity in commercial circles

[2,6,10,15,25,28,77,97]. SDT technology has been used in diverse domains, including security checking

[20,47,80], dynamic code optimization [3,5,9,14,64,97], binary translation of one instruction set to another

[6,15,18,25,28,85,95,96], host machine virtualization [11,45,55,76,98,101], execution in a memory con-

strained system [83,106,107], and computer architecture simulation [19,76,82,101]. 

Despite the increasing popularity of SDT technology, adequate source level debugging techniques

do not exist for dynamically translated applications. Current SDT systems either do not provide any debug

Figure 1: A software dynamic translator
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Host Machine

Program

SDT 

Host Machine
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support or generate different code during a debug session than otherwise. SDT systems providing no debug

support include commercial systems such as Rosetta [2] as well as research prototypes such as Dynamo

[5]. Application developers must develop their applications and debug them without dynamic translation

and then deploy them with the SDT system. At the other end of spectrum are SDT systems that generate

different code when a breakpoint is inserted or a debugger is attached to a program. While such debug sup-

port is vastly more desirable than no debug support, it is less than ideal because the same code may be

translated differently in different invocations of the SDT system. For example, different code transforma-

tions may be applied to a code block during retranslation when the program is debugged. Code transforma-

tions can expose or hide latent bugs in programs [34]. Therefore, it is inadequate to debug and test different

code than what is actually deployed. To stress the importance of debugging in the deployment environ-

ment, Hennessy observed in a seminal paper on debugging optimized code: “The ability to debug opti-

mized code symbolically and reliably is an important asset that should not be relinquished” [34]. Today,

this observation is equally relevant in the context of dynamic translation. The lack of source level debug-

ging techniques for SDT systems are due to several challenges, as discussed next.

1.2    Challenges to Debugging

Traditionally, compilers generate debug information that relates source code of a program with its execut-

able. The debug information is stored with the executable program on disk. Debuggers use this information

in a debug session to relate the executing program with the source code. With SDT systems, this traditional

approach to debugging programs is no longer applicable because the executable program is modified at

runtime, thereby rendering the static debug information inconsistent with the executing code. Specifically,

there are three challenges that must be addressed in order to debug dynamically translated programs at the

source level.
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1.2.1    Code Transformation

The first challenge is solving the code location and data value problems that arise due to code transforma-

tions performed by SDT systems. SDT systems transform application code throughout a program’s execu-

tion. To avoid inconsistency between the debug information and executing code, the debug information

must be generated and modified simultaneously with the code. 

Code transformations include insertion of new code, removal or modification of existing code,

duplication of statement instances and a change in the order in which statements are executed. Addition-

ally, SDT systems often flush away existing code segments and regenerate them. Code that has been trans-

formed can be modified again and relocated to a different code segment. Code transformations may also

lead to a change in location of a data value, via register allocation, and a change in the live range of a data

value, via statement re-ordering. 

Figure 2 uses an example debug scenario in the presence of a SDT system to illustrate the challenges

posed by code transformation. In the example, a SDT system transforms a straightline code sequence over

the course of its execution. Figure 2(a) depicts an instruction trace, which is a straightline single-entry,

multiple-exit code sequence (statements s1 through s8). Control transfers out of the trace are via exit stubs

(e1, e2 and e3). Figure 2(b) through Figure 2(d) show the result of applying code transformations in sepa-

Figure 2: Challenges to debugging optimized instruction traces
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rate phases. In Figure 2(b), statement s3 is eliminated from its original location and inserted into two exit

stubs and marked as “compensation code”. Suppose a breakpoint is inserted at s3 and s4 and the value of

x is queried. If execution reaches s4, the associated breakpoint will pause execution. This behavior is not

expected to the programmer who expects the program to pause at s3 and subsequently at s4, when execu-

tion is continued. In addition, the value of x reported at s4 will not be the expected value. 

The problem illustrated in Figure 2(b), namely code movement, can be solved by techniques previ-

ously developed for debugging (statically) optimized code [8,22,34,41,1,100,102]. There are other code

transformations frequently applied by SDT systems (e.g., code flush) that have not been addressed by prior

work. But even if we assume that debug techniques are available to handle each code transformation per-

formed by a SDT system, the very nature of SDT systems render previous solutions insufficient, as illus-

trated in Figure 2(c). Suppose debug techniques are available such that if a breakpoint is inserted at s3 and

s4 in Figure 2(b) and value of x is queried, the debugger pauses execution twice and extracts the expected

value of x and presents it to the programmer. During further execution, assume that statement s4 is later

moved during a new transformation phase as shown in Figure 2(c). The debugging techniques for opti-

mized code will relate code in Figure 2(c) with that in Figure 2(b). If execution is paused at s4, then the

debugger will assume that x’s value is available (computed by s1) because the debug information was not

generated relative to the original code in Figure 2(a). In fact, the original code is deleted after the first

transformation phase. The challenge posed by multiple levels of transformation is to relate transformed

code with original code that is no longer available. 

Figure 2(d) depicts another problem with code transformation in SDT systems where two traces T1

and T2 are combined and a statement is moved from T1 to T2. Code transformations are typically applied

to a group of instructions at a time. For example, traditionally optimizations are applied at a method granu-

larity. With code granularities changing throughout the execution, each instruction must be tracked inde-

pendently even though modifications are applied to groups of instructions. 

1.2.2    Online Communication 

The second challenge to debugging dynamically translated programs is communicating debug information

to a debugger as code transformations are applied. In addition, since the execution of SDT system is inter-
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leaved with that of the translated application, online information about when the application starts and

stops executing should be made available to the debugger. With this information, the debugger can ensure

that execution is paused only when the program is executing ⎯ i.e., not when the SDT system is executing.

Consider Figure 3 in which a debug user is single-stepping through basic block A in the program.

The code for block B has not been generated. When execution reaches the last statement in block A and the

next block to be executed is B, then the SDT system translates code for block B. As code is generated for B,

corresponding debug information must be generated and immediately communicated to the debugger. If

the translated code for B is later modified, the debug information needs to be updated. In general, debug

information must be computed during translation as new code is generated, and updated when existing

translated code is modified or deleted. 

1.2.3    Efficiency of Debug Information Generation

The last challenge to debugging dynamically translated programs is providing the debug support with low

overhead. Traditionally, the overhead of computing debug information was never a concern because the

debug information was generated offline. With SDT systems, the overhead of computing debug informa-

tion increases the runtime of the program. Ideally, debug information should always be generated so that a

programmer has the flexibility to “attach” a debugger to a program that was originally started outside of a

debug session. Another benefit of always generating debug information is that a programmer can perform

Figure 3: Incremental generation of debug information. Block B has not been generated yet, so the 
debug information does not exist either.
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post-mortem debugging by analyzing core dumps containing debug information. The overheads of com-

puting debug information, therefore, must be minimal. 

1.3    Research Overview

This dissertation research explores the following open problems associated with source level debugging in

a SDT environment:

•  Code location and data value problems in the context of SDT systems. 

•  Online communication of debug information to the debugger. 

•  Efficient generation and maintenance of runtime debug information. 

This research develops solutions to the above problems and presents a new framework, called Tdb,

which allows a dynamically translated program to be debugged at the source level. The techniques used by

Tdb do not restrict code generation or transformation. At the same time, the code debugged in this frame-

work is the same code that is deployed. The techniques developed in this research fulfill several require-

ments, discussed below, so that they can be useful to a wide audience. 

•  Portability: The techniques should be portable across different SDT systems and hosts. 

•  Usability: The techniques should not impose a steep learning curve to debug users. That is, the

debugger should be friendly to use. 

•  Efficiency: The performance and memory overheads of the debugger should be comparable to that of

traditional debuggers of statically generated code.. 

To solve the debugging problems in SDT systems while fulfilling the above requirements, Tdb

provides the following solutions. Tdb proposes a new SDT component that tracks program transforma-

tions. A representation to describe program transformations is developed. Tdb also describes how the code
8



location and data value problems can be solved by generating debug information, based upon the program

transformations, for use by a debugger. 

Online communication between a SDT system and a debugger is facilitated by means of well-

defined Tdb interfaces. Operating system support, similar to those used by conventional debuggers, is used

to perform the actual communication between the SDT system and the debugger. 

Finally, for efficiency reasons, Tdb maintains fine-grained debug information that is easy to gener-

ate and modify. Also, the online communication mechanism used in Tdb does away with traditional file-

based communication that would be very slow for continuous update and use of debug information. Fur-

ther, SDT systems spend little overhead in code transformations because the time spent in transformation

adds to the overall runtime of the program. Tdb uses algorithms that are fine-tuned to SDT systems so that

tracking program transformations is extremely lightweight. 

The techniques developed in this dissertation research have been primarily implemented in the

Strata SDT infrastructure on SPARC platform [79]. Some of the techniques developed here have also been

implemented in the Pin SDT system on x86 platform [59]. The techniques developed in this research are

comprehensive and as such applicable to different SDT systems such as dynamic optimizers, security

checkers and simulators, among others. To illustrate the usefulness of Tdb in diverse SDT systems, this

thesis presents two source level debuggers based on Tdb: (1) a debugger for dynamically optimized pro-

grams, and (2) a debugger for dynamically instrumented programs. 

1.4    Scope of the Thesis

This thesis assumes that a SDT system preserves the original semantics of the programs that it translates. It

does not target SDT systems that modify the original semantics of a program. For example, a SDT system

can be used as a software updater [35] that dynamically replaces program modules with their new versions.
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This research does not target such SDT systems. Note that the above limitation does not rule out most SDT

systems in existence today [3,5,9,11,14,18,20,47,64,80,85,95,96,107]. 

This thesis targets sequential programs that are represented in a binary format. This thesis does not

solve debugging problems associated with programs in special domains, including concurrent programs,

just-in-time compiled programs, distributed programs and real time programs. 

Finally, this thesis focuses on source level debugging with of breakpoints. The debugging features

are limited to insertion/removal of breakpoints and inspection of data values. A number of other debugging

features can be built using these basic features, including single-stepping through code, tracing the stack

frame, and watchpoints, among others. In fact, most of the source level commands of a popular debugger,

Gdb [88], can be realized using the features targeted in this thesis. 

1.5    Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the background necessary to

understand this work and the previous work that is related to this research and work that is used as a foun-

dation in this dissertation. Chapter 3 provides an overview of the Tdb framework. Chapter 4 describes a

representation for specifying program transformations in the Tdb framework. Chapter 5 discusses how

information about program transformations can be used to facilitate source level debugging. This chapter

also describes the communication mechanism between the SDT system and the debugger. Chapter 6 gives

detailed descriptions of how the different components of Tdb can be realized in practice. This chapter dis-

cusses the choices that can be made during implementation. Chapter 8 and Chapter 7 provide the debug-

gers Tdb-1 and Tdb-3 to showcase how source level debugging is feasible using techniques developed in

this research. Experimental evaluation of the two debuggers illustrate the efficiency of the debugging tech-

niques. Conclusions and directions for future research are discussed in Chapter 9. 
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Chapter 2.  Background and Related Work

Source level debuggers have existed for decades. However, the technology used by debuggers has evolved

along with changes in programming paradigms. The techniques developed in this thesis build upon exist-

ing debugging research, which are discussed in this chapter. This chapter first describes, in Section 2.1, the

background for understanding the execution environment presented by SDT systems. It also describes

related work with SDT systems. In Section 2.2, the chapter gives background for source level debugging

and the prior work which relates to this research. 

2.1    Software Dynamic Translation: The Execution Environment

Software dynamic translation involves a virtual machine within which an application program executes.

The virtual machine intercepts the program’s instruction stream and potentially transforms it before the

instructions are executed on real hardware. The ability to modify a program’s instruction stream is an

unprecedented flexibility that software dynamic translation offers to system designers. This flexibility

allows system designers to accomplish a variety of objectives not easily achieved by other means. For

instance, SDT systems such as Rosetta [2], Transmeta’s CMS [25], Daisy [28] and FX!32 [15], can be used

to overcome cost barriers to new platform acceptance via binary translation. VMware’s virtual machine

monitor uses SDT to replace privileged instructions with their emulated counterparts to achieve host

machine virtualization [77]. Shade uses dynamic translation to implement high-performance instruction set

simulators [19]. Embra uses it to implement a high-performance operating system emulator [101]. Dynamo
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and Mojo [5,14] use software dynamic translation to improve the performance of native binaries, and

Daisy uses dynamic translation to evaluate the performance of novel VLIW architectures and accompany-

ing optimization techniques [28]. And recently software dynamic translation has been used to ensure safe

execution of untrusted binaries [47]. 

This section describes how SDT systems work and gives insight into how new SDT systems can

be realized. This section first describes, in Section 2.1.1, the structure and functionality of a basic SDT sys-

tem that provides a virtual machine for executing a program but does not modify the program’s instruction

stream. The next section, Section 2.1.2, describes several overhead reduction techniques that are typically

applied by SDT systems to reduce the runtime overheads associated with software virtualization. Finally,

Section 2.1.3 uses four diverse SDT systems to illustrate the similarity among SDT systems in how they

modify programs. 

2.1.1    Strata: A SDT Infrastructure

Strata is a reconfigurable and retargetable software dynamic translation infrastructure that is used as an

experimental test-bed in this dissertation [79]. Different SDT systems such as a dynamic optimizer, a

dynamic instrumenter and a software security checker, have been built using Strata [32,80,81]. Indeed, a

SDT system is essentially a client that uses services provided by Strata. Strata is easily reconfigured for

different purposes (clients). Its clients are representative of other SDT systems. For example, Strata’s

dynamic optimizer is similar to Dynamo [5], Mojo [14] and DynamoRIO [9]; Strata’s dynamic instru-

menter [49] is similar to Dyninst [62] and Pin [59]. 

Strata is organized as a virtual machine (see Figure 4). The Strata VM mediates application execu-

tion by examining and translating instructions before they execute on the host CPU. Translated instructions

are held in a Strata-managed code cache. The Strata VM is entered by capturing and saving the application

context (e.g., PC, condition codes, registers, etc.). Following context capture, the VM processes the next
12



application instruction. If a translation for this instruction has been cached, a context switch restores the

application context and begins executing cached instructions on the host CPU. 

If there is no cached translation for the next application instruction, the Strata VM allocates stor-

age for a new fragment of translated instructions. A fragment is a straightline sequence of instructions1.

The Strata VM builds the fragment by fetching, decoding, and translating application instructions one-by-

one until an end-of-fragment condition is met. An end-of-fragment condition could be a loop back-edge or

a branch instruction. When the end-of-fragment condition is met, a context switch restores the application

context and the newly translated fragment is executed. In this way, the application is executed solely from

the code cache. Specific details of what constitutes an end-of-fragment condition and how a context switch

is performed are detailed in Scott et al. [81]. 

Figure 4(b) shows the components of the Strata VM. The Strata virtual machine is implemented as

a set of target-independent common services, a set of target-specific functions, and a reconfigurable target

interface through which the machine-independent and machine dependent components communicate.

Implementing a new software dynamic translator often requires only a small amount of coding and a sim-

ple reconfiguration of the target interface. Even when the implementation is more involved (e.g., when

Figure 4: Strata Architecture

1. Recently, the definition of Strata’s fragment has been expanded to include more complex con-
trol-flow structures [37]. This thesis uses an earlier incarnation of Strata where fragments were
single-entry, single-exit entities [81].
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retargeting the VM to a new platform), the programmer is only obligated to implement the target-specific

functions required by the target interface; common services do not have to be re-implemented or modified. 

Figure 5(a) uses an example binary code snippet from a SPEC2000 benchmark to illustrate

dynamic translation with Strata. The code snippet contains a single branch instruction and constitutes a

fragment. Figure 5(b) shows the corresponding fragment generated by Strata. Note that the binary loca-

tions for each instruction have changed from 0x1b** in Figure 5(a) to 0x100** in Figure 5(b). The

addresses in Figure 5(a) are application binary locations in the text segment of the executable, and the

addresses in Figure 5(b) are locations in the code cache. Also note that the target of the branch instruction

has been modified during translation and that no other instructions were changed. The branch targets have

been modified to point to trampoline code (e.g., the new target of the branch instruction at 0x100e0 points

to the trampoline at 0x100f8). Trampolines are code sequences that save execution context and transfer

control to Strata when previously untranslated code is encountered. 

2.1.2    Overhead Reduction in SDT

The overhead of monitoring and modifying a running program’s instructions can be substantial in SDT

systems. This is unfortunate because SDT has numerous advantages in modern computing environments

Figure 5: SPARC code snippet that constitutes a Fragment and its translated counterpart
(a) (b)

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4
0x100cc clr  %o3
0x100d0 sll  %o3, 2, %g1
0x100d4 ld  [%o2+%g1],%o5
0x100d8 inc  %o3
0x100dc cmp  %o3, 0xff
0x100e0 ble  0x100f8
0x100e4 add  %o0,-16,%o0
... // Trampoline calling Strata
... // to translate code at 0x1be8

0x100f8
... // Trampoline calling Strata
... // to translate code at 0x1bd0

Untranslated Code Translated Code
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and interesting applications of SDT continue to emerge. There are a number of well-known techniques to

reduce dynamic translation overhead. This section describes three overhead reduction techniques. Most

SDT systems use some or all of these techniques [3,5,9,11,14,18,20,64,80,85,95,96].

(a) Fragment Linking
In a typical SDT system’s basic mode of operation, each control transfer instruction (branch instruction) is

replaced with a code trampoline that returns control back to the SDT system. The SDT system then trans-

lates instructions at the target of the branch. On a context switch from application code (in the code cache)

to the SDT system, a search is performed (e.g., using a hashtable) to determine if there is a cached frag-

ment corresponding to the current PC. If a cached fragment is found, the SDT system immediately

switches back to the application in the code cache; otherwise, the SDT system builds a corresponding frag-

ment before context switching back. The context switches comprise the majority of SDT overhead [48].

A large portion of the context switches due to non-indirect branches can be eliminated by “link-

ing” fragments together as they materialize into the code cache. For instance, when one or both of the des-

tinations of a PC-relative conditional branch materialize in the code cache, the corresponding trampoline

can be rewritten to transfer control directly to the appropriate code cache locations rather than performing

a context switch and control transfer to the SDT system. Fragment linking results in significant perfor-

mance improvements. For example, fragment linking in Strata improves the performance of SPEC2000

benchmarks by over a factor of 4 [48]. 

(b) Indirect Branch Translation Cache
After applying fragment linking, the remaining overhead is primarily due to indirect control transfers [48].

Because the target of an indirect branch is only known when the branch executes, the SDT system cannot

link fragments ending in indirect control transfers to their targets. As a consequence, such fragments must

save the application context and call the SDT system with the computed branch-target address. It is likely

that the requested branch target is already in the code cache, so the SDT system can simply restore the
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application context and execute the target fragment. However, for programs that execute large numbers of

indirect control transfer instructions, the overhead of handling the indirect branches can still be substantial

[79].

To overcome the overheads associated with handling indirect branches, a common technique is to

use an Indirect Branch Translation Cache (IBTC). An IBTC is a cache of targets of indirect branches. Dur-

ing translation of an indirect branch, the SDT system generates code that performs a lookup in the IBTC to

determine if the cached target is the designated target; if so, control is transferred to the cached target. If

the target is not already cached, a new entry is created in the IBTC. There are different policies for IBTC

maintenance: a cache for each indirect branch, a cache for all indirect branches, or a combination thereof,

are some of the possibilities. While IBTC is used by a number of SDT systems, other approaches to reduce

indirect branch overheads exist. A comprehensive analysis of different indirect branch handling policies is

presented in a recent work [36]. Indirect branch handling and fragment linking together to reduce the SDT

overhead in Strata to an average of 4 % [37]. 

(c) Instruction Traces
Another common technique for improving performance of SDT systems is instruction traces. An instruc-

tion trace is a sequence of instructions on a frequently executed program path. Consider the example CFG

in Figure 6(a) that contains basic blocks A, B, C, D and E. Assume that the path through blocks A, C, D

and E is frequently executed. An instruction trace can be formed as shown in Figure 6(b) along the fre-

quently executed path. 

Instruction traces provide instruction cache locality benefits because frequently executed code is

spatially close. In addition, instruction traces also aid in reducing the cost of indirect branch handling [48].

One technique to form instruction traces involves inserting counters at loop back edges in the code cache.

When a counter reaches a threshold, the loop is assumed to be frequently executed and an instruction trace

is constructed using the subsequent path through the loop body. This technique is used in Dynamo[5],

DynamoRIO [9] and Strata-DO[32]. In addition to helping reduce SDT overheads, the instruction traces
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are excellent candidates for dynamic optimization. Traces have simple control flow that leads to fast analy-

ses suitable in a dynamic setting. Indeed, several dynamic optimizers use instruction traces as the granular-

ity at which they apply optimization [5,9,14,32].

2.1.3    SDT Systems

A SDT system can be realized as a client of Strata by overloading its translate phase (see Section 4(a)) for

a specific purpose. For example, each instruction can be translated to a different instruction set architec-

ture. In this way, a binary translator can be realized. This section describes four diverse SDT systems,

including a dynamic optimizer, a dynamic instrumenter, a software security checker and a binary translator.

This section does not describe the specific code modifications made by different SDT systems, rather it

gives an overview of the functionalities of different SDT systems.

(a) Dynamic Optimizer
A dynamic optimizer applies optimizations based on runtime program behavior. Dynamic optimization is

useful because programming paradigms such as JIT compilation, object-oriented and aspect-oriented pro-

gramming limit the efficacy of traditional optimizations. Further, in a SDT system, dynamic optimization

Figure 6: A frequently executed path (e.g., A-C-D-E in (a) above) can form a trace shown in (b)
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can mitigate the overheads imposed by dynamic translation. Examples of dynamic optimizers include JIT-

based systems (e.g., Java HotSpot [90] and .Net CLR [45]) and SDT-based systems (e.g., Dynamo [5],

DynamoRIO [9], Mojo [14], ADORE [57] and Strata-DO [32]). 

A dynamic optimizer can be built as a SDT client in which a program is optimized during transla-

tion. As a program executes from the code cache, the SDT system tracks code regions where optimizations

may be beneficial. Optimizations are applied and code is generated in the code cache. To build a dynamic

optimizer using Strata, the translate phase in Figure 4(a) is overloaded to apply optimizations in addition to

regular translation. 

Figure 7 uses the SPARC code snippet from Figure 5 to illustrate dynamic optimization. Figure

7(a) shows the untranslated code snippet, and Figure 7(b) shows the dynamically optimized counterpart.

The instruction at location 0x1bcc in the untranslated code is eliminated by dynamic optimization. Also,

the allocation of registers is different in the dynamically optimized code than the untranslated code (see

instructions at locations 0x100cc and 0x100d0 in optimized code). Finally, the generated code is identical

to that in Figure 5(b) (including the trampolines), except optimizations have been applied. 

Figure 7: Optimizations can be applied during the translate phase of SDT

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4
0x100cc sll  %o3, 2, %o5
0x100d0 ld  [%o2+%o5],%o1
0x100d4 inc  %o3
0x100d8 cmp  %o3, 0xff
0x100dc ble  0x100f4
0x100e0 add  %o0,-16,%o0
... // Trampoline calling DynOpt
... // to translate code at 0x1be8

0x100f8
... // Trampoline calling DynOpt
... // to translate code at 0x1bd0

Untranslated Code Dynamically Optimized Code

(a) (b)
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(b) Dynamic Instrumenter
Dynamic instrumentation is a technique by which external code is inserted into an executing program.

External code is not part of the original application and is used for monitoring or controlling the behavior

of an application. For example, Dyninst allows external profiler code to be attached to programs [62]. In

addition to profilers, dynamic instrumenters (e.g., Dyninst [62], FIST[49] and Pin[59) can be used to build

software security tools [47], testing tools [63,93] and debuggers [99]. 

Dynamic instrumenters use SDT as the underlying technique. To build a dynamic instrumenter as

a client of Strata, the translate phase in Figure 4(a) is overloaded to “stitch” external code into the trans-

lated code in the code cache. In the translate phase, the translator looks for certain program properties to be

satisfied for external code to be inserted. For example, a basic block counter1 looks for the start of a basic

block and inserts code to increment a counter at that point. 

Figure 8 illustrates dynamic instrumentation using the SPARC code snippet from Figure 5. The

untranslated code is shown in Figure 8(a) and dynamically instrumented code in Figure 8(b). The first

seven instructions have been inserted for instrumentation in Figure 8(b). There is no counterpart to these

instructions in the untranslated code (compare Figure 8(a) and Figure 8(b)). The extra instructions are the

Figure 8: Instrumentation of a counter into a fragment via Dynamic Instrumentation

1. A basic block counter is an instrumentation application that counts the number of basic blocks
executed during a program run. 

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 save %sp, -96, %sp
0x100cc sethi %HI(ctr),%o1
0x100d0 ori %o1,%LO(ctr),%o1
0x100d4 ld  %o2, [o1]
0x100d8 add %o2, 1, %o2
0x100dc sd  %o2, [o1]
0x100e0 restore
0x100e4 ld  [%o2+408],%o4
0x100e8 clr  %o3
0x100ec sll  %o3, 2, %g1
0x100f0 ld  [%o2+%g1],%o5
...

Untranslated Code Dynamically Instrumented Code

(a) (b)
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external code that increment a counter every time the fragment is executed. The external code consists of a

prologue to save the context of execution (save instruction) and an epilogue to restore the context (restore

instruction). The prologue and epilogue provide a new context of execution for the external code. The

instructions between the prologue and epilogue increment a counter (ctr in Figure 8(b)). The instructions

following the epilogue are the usual translated code from Figure 5(b).

(c) Binary Translator
A binary translator translates a program binary from one instruction set architecture to another. Binary

translation helps overcome the barriers to entry associated with the introduction of a new OS or CPU archi-

tecture. For example, Rosetta uses binary translation to allow legacy PowerPC applications on Intel pro-

cessors available in newer generation of Apple hardware [2]. Similarly, Transmeta’s Code Morphing

technology was used to allow unmodified Intel IA-32 binaries to run on the low-power VLIW Crusoe pro-

cessor [25]. The FX!32 dynamically translates x86 binaries to run on Alpha processors [15]. 

A binary translator can be implemented using Strata by overloading the translate phase of Strata

VM in Figure 4(a) to perform binary translation. Although it may be easy to translate some sequence of

instructions from one machine target to another (e.g., ALU and logical instructions), serious differences

between machine targets can make other translations much more difficult. For instance, differences in call-

ing conventions, memory layouts and endianness, and exception behavior can make straightforward trans-

lation difficult or impossible. In such cases, binary translators generate sequences of instructions that

emulate the source machine behavior on the target machine. 

Figure 9 illustrates binary translation of SPARC code snippet into x86 (see Figure 9(a) and Figure

9(b)). The translated x86 code performs the same functions as the translated code in Figure 5(b). Note that

the dynamic translator still generates trampolines at the end of x86 fragment (see Figure 9(b)), so that con-

trol is transferred back to the SDT system for binary translation of the next fragment. 
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(d) Software Security Checker
A software security checker verifies whether malicious code, such as a virus or a worm, has infected a pro-

gram or whether the program has been maliciously modified otherwise [47,80]. There are numerous ways

to build software security checkers and often the term can be used to mean entirely different tools. In the

context of SDT, a software security checker refers to a system that monitors the execution of a program

and verifies that it has not been maliciously affected. 

Several software security systems have been proposed including those that perform sandboxing,

program shepherding and instruction set randomization [44,47]. Sandboxing is a technique to instrument

sensitive code regions in a program so that certain checks can be performed before executing those code

regions [13]. Program shepherding is a technique that enforces certain security policies on code during

dynamic translation and during execution [47]. Program shepherding makes use of sandboxing. Instruction

set randomization is a technique to encrypt a program using a key such that the encoding for each instruc-

tion appears to be completely random [44]. The program is decrypted during dynamic translation and then

executed from the code cache. If malicious code is injected into the encrypted program, it would be

decrypted by the dynamic translator and stored in code cache before execution. Since the malicious code

would not have been encrypted in the first place (the encryption key is secret), the program would likely

crash while executing the “decrypted” malicious code. Hence, the program is secured from malicious mod-

ifications. 

Figure 9: Binary Translation from SPARC to x86

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x848790 mov $0x804b4a0,%edx
0x848795 lea 0x0(%esi),%esi
0x848798 mov (%edx,%ebx,4),%eax
0x84879b inc %ebx
0x84879c add %eax,0x804b8a8
0x8487a2 cmp $0xff,%ebx
0x8487a8 jle 0x8048798
// Trampolines
...

Untranslated Code Binary Translated Code

(a) (b)
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2.2    Source Level Debugging

Source level debuggers present a source view of a program even though the binary format of the program

actually executes on hardware. To provide the source view, debuggers traditionally use static symbol infor-

mation associated with a program to relate source code to the binary code. The static symbol information,

also called debug information, is generated during compilation by the compiler that produced the binary

code. Debug information is saved as part of the executable program. When a debugger is invoked, it gains

control of the program via services provided by the operating system [33,60]. The operating system ser-

vices permit the debugger to control and inspect the state of the executing program. 

From a user’s point of view, source level debugging involves inserting a breakpoint at a source

location (e.g., a source line number or a method name) and inspecting variable values when execution

pauses at the breakpoint. Debuggers provide many other facilities, including printing the execution stack

trace, single-stepping through execution, displaying source code to the screen, displaying variable values

in user friendly manner (e.g., a tree of values), among others. These facilities can be built using the basic

functionality of breakpoints and value inspection1. Indeed, operating systems services, such as ptrace or

/proc, are limited to reading and writing of breakpoints and values [33,60]. 

A debugger’s task is difficult when dealing with dynamically translated programs due to three

challenges discussed in Section 1.2. This section discusses prior work on these challenges for debugging

statically generated code and a discussion of why they are insufficient for SDT systems. 

2.2.1    Code Transformation

Debuggers for optimized code have to deal with program transformations made by optimizers. When a

program is optimized, the code is transformed to perform the same computation more efficiently. Code

1. Certain debug facilities cannot be entirely built upon these basic facilities. Consider detecting
race conditions in concurrent programs, for example. This thesis does not target those facilities.
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transformation renders debug information inconsistent with the binary code. For example, a computation

can be eliminated or moved earlier or later than in the unoptimized code. This leads to both the code loca-

tion and data value problems. Therefore, techniques are needed to hide the effect of code transformations

from a debug user. A substantial amount of research work has been performed to permit source level

debugging of optimized code. Based upon how the approaches tackle the debugging challenges associated

with code transformation, they can be categorized as follows. 

(a) Avoidance
The first approach avoids debugging transformed code. For example, avoiding transformations that cause

problems to debugging. Fritzon’s debugging system limited optimizations to within a source statement

[29]. Pollock and Soffa permit all optimizations except those that affect debugging requests [72]. The

debugging requests must be provided before program execution begins so that necessary compiler optimi-

zations can be inhibited. Holzle, Chambers and Ungar provide another enhancement to Pollock and Soffa’s

techniques by dynamically “de-optimizing” selected parts of programs that affect debugging requests [38].

The Java HotSpot compiler uses the dynamic deoptimization approach [90]. The Common Language

Runtime from the .NET framework does not allow debugging when optimizations are enabled [70]. 

A completely different approach to avoiding debugging problems due to code transformation was

taken by Brooks, Hansen and Simmons by exposing the effects of optimization. They highlighted state-

ments to visually communicate program transformations [8]. Similarly, Tice and Graham’s Optview gener-

ates source code corresponding to optimized code and thus conveys the effects of optimization to a user

[91]. A debugger, Optdbx, uses the source code generated by Optview to perform debug queries based on

the optimized source program. 

(b) Inference
Program transformations can expose latent bugs in software applications [34]. Avoiding program transfor-

mations, therefore, also avoids these latent bugs. The avoidance approach, therefore, is insufficient for
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accurately debugging transformed programs. Perhaps more importantly, debugging and testing code that is

actually deployed is vital from a software engineering standpoint. 

Another approach to debugging transformed code involves automatically inferring the effect of

code transformations and then hiding these effects in a debug session. Copperman [22] and Wismuller

[100] use data-flow analysis to determine which variables are current. The code location problem is han-

dled by mapping source code to optimized code after all optimizations have been performed. Their

approaches are similar, but Wismuller’s approach is more general. These works are very interesting

because they do not require modification to the optimizer. The effects of optimization are automatically

determined through data flow analysis of optimized and unoptimized code. 

(c) Propagation
One disadvantage of the inference approach is that the data flow analyses involved is very complex and, as

a result, these techniques have not been implemented. The third approach to debugging optimized code is

to modify the optimizer and determine code transformations and propagate this information as code is fur-

ther modified through various optimization passes. The first work on debugging optimized code was done

by Hennessy, and it used the propagation approach [34]. Hennessy recognized that program transformation

can lead to values computed earlier or later in the optimized program than in the unoptimized program. A

technique to determine which values can be reported correctly to the user was proposed. For values that

could not be reported correctly (due to transformation), techniques to “recover” those values were also pro-

posed. Hennessy dealt with only local optimizations (within a basic block) and did not handle aliasing of

variable values. 

Zellweger’s work focused on accurately mapping a source statement to each of the corresponding

object code locations [105]. A limited number of code transformations are handled in this work. Zellweger

does not solve data value problems. 

Adl-Tabatabai’s work, using data-flow analysis to find current variables, is similar to Copperman’s

and Wismuller [1,2]. However, Adl-Tabatabai makes a simplifying assumption that optimizations cannot
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transform code arbitrarily, that is, a computation cannot be moved into a path where it did not exist before.

In contrast to using a summary effect of optimizations, as Copperman and Wismuller do, Adl-Tabatabai

propagates the effect of each optimization step through all the optimization phases. 

A limitation of Adl-Tabatabai’s work is that it cannot correctly determine variable values that are

dependent on runtime paths. For example, if a variable’s value at a program location depends on which

path was taken to reach that location, Adl-Tabatabai’s approach cannot yield the correct answer. Several

works on debugging optimized code make use of runtime information to overcome this limitation. Dhamd-

here et al. developed a dynamic currency determination technique in which a minimal unrolled graph of

the program is constructed and basic blocks are time-stamped during execution [27]. In this way, a partial

history of execution path is determined, and the history is used to precisely determine variables that have

data value problems. Dhamdhere et al. do not completely solve the data value problem and do not consider

the code location problem.

Wu et al. selectively emulate portions of program near breakpoint locations in the unoptimized

order of statements [102]. Debug queries are performed using values computed during emulation when the

values are otherwise not reportable due to data value problems. There are several limitations with this

approach. For example, selective emulation can be very time consuming when a statement is moved across

a function call due to code transformation. Further, path sensitive data values are not correctly reported. 

More recently, the Fulldoc debugger by Jaramillo et al. uses data flow analysis to compare unopti-

mized code with optimized code [41,42]. Variables with the data value problem are determined at each

potential breakpoint location. In a debug session, runtime values of variables that are computed earlier are

gathered using invisible breakpoints. Values that are computed later than in the unoptimized program are

gathered by the technique of record-replay [75]. The runtime values are saved in a value pool and the cor-

rect value is displayed for a given variable according to the static information collected via data flow anal-

ysis. Fulldoc is able to report every value that is computed in the optimized program. Since Fulldoc’s
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techniques report the most values, this thesis builds upon Fulldoc’s approach to handle some code transfor-

mations, in particular movement of instructions (see Section 5.2 for more details). 

Prior Work and this Dissertation. The first approach to debugging transformed (optimized) code

avoids code transformation. One problem using this approach is the potential of missing latent bugs that

are exposed due to code transformation. This problem is equally relevant in SDT systems. Additionally,

there may not be a way to execute a program without dynamic translation. For example, a software security

system may be embedded in the operating system such that it is impossible for developers to turn off the

security system. As a result, debugging transformed code may be unavoidable. 

The second approach to debugging optimized code treats optimizations as a black box and deter-

mines the effect of all the code transformations that took place. The problem with this approach is that its

computational complexity is high. Code transformations in SDT systems can be different than those per-

formed by static optimizers. For example, SDT systems can insert additional code into a program such that

the additional code is interspersed throughout the program. Using the black box approach would be diffi-

cult in this case because there is no way to determine which instructions in the transformed code should be

related with the original code. 

The third approach to debugging optimized code is to propagate information about code transfor-

mation as they are applied. Debug information is generated and composed as optimizations are performed.

One problem with each of the prior works using the propagation approach is that they all handle only code

transformations resulting from optimizations. SDT systems can perform new kinds of program transforma-

tions such as insertion of additional unrelated code. Further, SDT systems can transform code that was pre-

viously generated, transformed and executed. In the traditional optimizers, the debug information is

generated after all optimizations have been applied. In SDT systems, the debug information must be gener-

ated after one set of transformations is applied and before this transformed code is executed. The debug

information can then be composed with (or regenerated) after the next set of transformations. The diffi-
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culty in composing or regenerating debug information is that after transformations are applied, the untrans-

formed code is elided.

The solution is to preserve enough information about the untransformed code so that the trans-

formed code can be related with the original program at any time. SDT systems apply code transformations

at a granularity that is not statically fixed (e.g., an execution path as opposed to a method). At different lev-

els of optimization, the granularity can change and instructions can move across code regions. For static

optimizers, this is akin to inter-procedural optimization where each instruction must be related back to its

original procedure. Prior work does not handle inter-procedural optimizations. 

Finally, the approaches taken by the prior work would require building a debugger for each SDT

system. This thesis aims to provide a general solution that can be used by any SDT system. Code transfor-

mations handled by the proposed debugger should encompass those performed by diverse SDT systems,

yet be independent of an individual SDT system. Therefore, the construction of debug information should

be abstracted away from the SDT system. Prior work does not provide such techniques. 

2.2.2    Online Communication

Debuggers for just-in-time (JIT) compiled code need online communication with the JIT compiler. In a

typical JIT compiler, methods are compiled at load time [45,90]. The debug interface provided by Java

allows communication between the Java virtual machine (JVM) and a debugger using the Java Platform

Debug Architecture (JDPA) [43]. This interface permits the debugger to send commands and queries to the

JVM. The JVM acts as black box to the debugger and is responsible for not only computing the debug

information but also for dispatching debug actions on behalf of the debugger. The JDPA presents a mono-

lithic debugging architecture where debug information is generated and used by the JVM. In some sense,

the wire protocol provided to the outside debugger is similar to remote debugging capabilities of Gdb [88],

where the debugging actions are dispatched by another entity on behalf of the debugger. The debug archi-
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tecture for .NET is similar [70]. 

Conceivably, debug information that is generated for statically compiled programs can be gener-

ated at runtime for dynamically translated programs and stored along with the binary program on disk.

This approach is used by Pauw et al. for debugging object oriented programs [69]. 

Prior Work and this Dissertation. While online communication for debugging purposes is possible in

JIT compilers and remote debuggers, the debugging architecture in these systems is monolithic. The goal

of this thesis is to provide techniques that can be used by multiple SDT systems. With the approach of JIT

compilers and remote debuggers, each SDT system would have to develop their own debugging frame-

work. This thesis strives to develop lightweight mechanisms that can provide debugging support to a wide

array of SDT systems and efficient communication mechanisms between a SDT system and a debugger. 

2.2.3    Efficiency 

Efficiency of generating debug information is a bonus for systems that generate debug information stati-

cally: it is not a requirement. Efficiency is important, but not critical for JIT compiled programs either. JIT

compilers generate code at a coarse granularity (e.g., methods) and are invoked (for code generation)

rather infrequently [3,45,90]. Therefore, the overhead of generating debug information is not substantial.

Some debuggers for JIT compiled code use an interpretation mode where the overhead of interpretation is

substantial when compared to the overhead of generating debug information. Prior work on debugging has

not focused on efficiency as a prime concern. 

Prior Work and this Dissertation. The cost of generating debug information can be substantial in

SDT systems due to several reasons. First, SDT systems typically generate and transform code at a fine

granularity, such as basic blocks. Therefore, debug information needs to be generated and communicated

frequently, necessiating efficient representations and communication mechanisms. Second, SDT systems

often have extensive code duplication. The code cache sizes of SDT systems can be much larger than the
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text segments of the untranslated programs. DynamoRIO, for example, keeps the size of its code cache

unbounded for this reason [11]. Debug information must be generated whenever new code is generated.

Finally, some SDT systems periodically flush the code cache eliminating the entire code generated so far

[5,10,81]. Other systems can flush smaller portions of the code cache [26]. With flushes, the debug infor-

mation also needs to be removed. Consequently, when the same code is later generated, debug information

also needs to be generated. 

The problem with large amounts of debug information is that the cost of generating them adds to

the overall runtime of the translated program. To permit post-mortem debugging and to allow debugging of

programs whose execution has begun outside of the debug session, it is vital that debug information is gen-

erated even outside of debug sessions. Therefore, the overheads associated with generation of debug infor-

mation must be minimized. Efficiency was not as vital for any of the prior works as for this dissertation.

Indeed, slowdowns resulting from generation of debug information has not even been reported in most

prior works. In terms of complexity, the prior works on debugging optimized code have a non-linear com-

plexity for generation of debug information (most prior works use iterative data flow analyses). This thesis

aims to achieve debugging goals with a linear complexity. 

2.3    Summary

This chapter used the Strata infrastructure [79] to describe how a basic SDT system works. Strata provides

a client model of SDT systems, where new SDT systems can be realized as a client of a base infrastructure.

This chapter presented four example SDT systems based on this model to illustrate the capabilities of SDT

systems. This chapter also discussed prior works on source level debugging that are related to this research.

Finally, this chapter discussed why the prior research on source level debugging is insufficient in address-

ing the debugging challenges posed by SDT systems. 
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Chapter 3.  Tdb: A Debug Framework

This dissertation presents debugging techniques for SDT systems that allow: (1) program transformations

to be tracked throughout the lifetime of a program; (2) debug information to be generated simultaneously

with program transformations; and (3) the debug information to be immediately available to a debugger.

The debugging techniques are encapsulated in a new framework, called Tdb. 

Tdb can be used to implement a source level debugger for a given SDT system. This chapter gives

an overview of the Tdb framework. The next section, Section 3.1, describes the organization of Tdb and

shows a high-level view of how debugging is performed with it. Section 3.2 describes how program trans-

formations are tracked in Tdb. Section 3.3 shows how debug information is generated and used in Tdb.

Section 3.4 gives an example to illustrate debugging with Tdb. Finally, Section 3.5 summarizes the chap-

ter. 

3.1    Debugging with Tdb

The Tdb framework consists of three components: a SDT system, a debug engine, and an existing source

level debugger, called the native debugger. The organization of Tdb is shown in Figure 10. In Tdb, the

SDT system is modified by adding a component, called the Program Tracker, which determines program-

matic modifications made by the SDT system. The debug engine is a component that computes debug

information based upon the program tracker’s output. This debug information is used by the native debug-

ger to hide the effects of program transformations and the presence of the SDT system. The native debug-
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ger is an existing source level debugger (e.g., Gdb [88] or Dbx [56]) that is modified to communicate with

the debug engine. 

With Tdb, debugging is a three-step process, as illustrated in Figure 11. In the first step, the pro-

gram tracker generates information about the code modifications performed by the SDT system. The mod-

ification to each instruction and data value are tracked and represented as attributes that are associated with

those individual instructions/data values. The attributes, called Transformation Descriptors, represent the

effect of all transformations applied to a given instruction/data value. As a result, each instruction and data

value that is transformed by the SDT system has one transformation descriptor associated with it. Note that

the transformation descriptors only capture how a program is modified ⎯ they do not specify how a

debugger should hide the program modifications from a debug user. 

In the second step, the transformation descriptors are used by the debug engine to generate debug

information. Debug information can be used by the native debugger to hide the effect of program transfor-

mations. For example, if a transformation descriptor specifies that a certain data value has been eliminated

during dynamic translation, the corresponding debug information will specify how to determine the

deleted value in a debug session. 

The final step of Tdb is the use of debug information by a debugger. Tdb requires modifications to

an existing debugger1 so that its actions on a program are instead targeted to the debug engine. The debug

Figure 10:  The Tdb Framework
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engine in turn, performs the same actions on the translated program. As an example, instead of inserting a

breakpoint (e.g., writing a breakpoint trap instruction) into the program binary, the native debugger

invokes the debug engine. The debug engine finds out an appropriate code cache location for the break-

point using debug information and inserts the breakpoint in the code cache. Recall that a program is always

executed from the code cache in SDT systems, therefore breakpoints inserted in program binary will never

be hit. With Tdb, the breakpoints are inserted at appropriate locations in code cache and are hit in an

expected manner. 

In Tdb, the first two steps are performed continuously during a program’s execution as new code is

generated or existing code is modified by the SDT system. The third step is performed on-demand in

response to commands and queries of a debug user. 

3.2 Tracking Program Transformations 

When SDT systems translate code, they may do so in passes, similar to traditional optimization passes.

Once all passes have been applied, binary code is generated and emitted into the code cache. The program

tracker generates fine-grained information, represented as transformation descriptors, for each instruction

that was translated and each transformed data value. The transformation descriptors consist of information

to identify each instruction/data value and to capture the effect of transformations applied. For example,

the following triple represents a transformation descriptor representing code movement.

Transformation Descriptor(insn): <CMove, orig, new>

1. Section 6.3.1 describes a technique by which actions of existing debuggers can be intercepted,
thus avoiding any modification (and recompilation) of the debugger.

Figure 11: Three step debugging
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The triple indicates the type of descriptor, i.e., CMove for code movement, and specifies the origi-

nal and the new locations for the instruction. The information captured by this descriptor is enough to iden-

tify the instruction (via its original program binary location, orig) and describe the effect of code

transformations applied to it (i.e., code movement from orig to new). 

Importantly, the transformation descriptors do not capture what transformations were applied. For

example, if a dynamic optimizer applies a set of optimization passes that result in an instruction being

moved from its original neighbors, the transformation descriptor for that instruction will simply indicate

that code movement took place. 

While SDT systems may perform semantically different program transformations (e.g., optimiza-

tion vs. binary translation), each program transformation can be described as a set of basic code edits,

including insertion, deletion and movement of code and data values. The transformation descriptors cap-

ture these basic edits and, therefore, are applicable regardless of the purpose of dynamic translation. An

advantage of transformation descriptors is that, due to their fine-grained nature and lack of semantic infor-

mation (e.g., what set of optimizations resulted in an instruction eventually being deleted), they can be

quickly generated and consumed. Further, the transformation descriptors make the generation and use of

debug information independent from the SDT system. This property enables portability for the techniques

developed in this research.

The implementation of the program tracker is usually straight-forward. In one implementation of

the Tdb framework for Pin [59], the program tracker consisted of less than ten lines of code [52]. Two

other implementations of the Tdb framework are discussed in Chapters 7 and 8 respectively. In both imple-

mentations, the program tracker was straight-forward to implement. The next chapter, Chapter 4, provides

a detailed description of the different kinds of transformation descriptors available. 
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3.3 Generation and Use of Debug Information 

The debug engine is the central component in Tdb, which facilitates debugging of dynamically translated

programs. The debug engine performs two distinct functionalities. First, it consumes transformation

descriptors produced by the program tracker and generates debug information. Second, when invoked by

the native debugger, it uses the debug information to facilitate source level debugging. Overall, the debug

engine essentially extends the capabilities of existing source level debuggers to support SDT systems. In

the Tdb framework, the existing debuggers are still responsible for finding out the binary counterparts for

the source level constructs used by debug users. The debug engine provides the extra step of relating

untranslated code and data with the dynamically translated code and data values. The functionalities of the

debug engine are depicted in Figure 12 and discussed below. 

3.3.1    Generation of Debug information

The debug information generated by the debug engine consists of mappings and debug plans. A mapping

relates two code or data value locations. Mappings are useful in determining code cache location where

breakpoints should be inserted instead of the corresponding program binary locations. A debug plan guides

extraction of runtime values in the program. Debug plans are used when expected variable values are not

Figure 12: Functionalities of the Debug Engine
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readily available because code transformations moved the computation to earlier or later in the program. In

such cases, the debug engine uses the debug plans to determine variable values early enough for reporting

purposes. The mappings and debug plans are generated from transformation descriptors. 

3.3.2    Use of Debug Information

The debug engine is invoked when the native debugger takes an action on the binary program.

These actions include the insertion and removal of breakpoints and a read or write of variable values. The

debug engine uses debug information in its repository (see Figure 12) to take the same action on the trans-

lated code. Additionally, the debug engine saves runtime values and live breakpoint information in the

repository. Chapter 5 describes the debug engine in detail. 

3.4 Example Debugging Session with Tdb

To illustrate how debugging is done with Tdb, consider the example in Figure 13. Suppose a traditional

debugger inserts a breakpoint at untranslated location 0x1be0 in response to a user placing a breakpoint at

a corresponding source statement. In Tdb, the debug engine intercepts the action of the native debugger to

insert a breakpoint. Subsequently, another breakpoint is inserted at the corresponding translated location

Figure 13: A breakpoint at location 0x1be0 in untranslated code leads to insertion of a breakpoint 
at location 0x100dc in dynamically optimized (translated) code; register %o5 corresponds to %o1

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4
0x100cc sll  %o3, 2, %o5
0x100d0 ld  [%o2+%o5],%o1
0x100d4 inc  %o3
0x100d8 cmp  %o3, 0xff
0x100dc ble  0x100f4
0x100e0 add  %o0,-16,%o0
... // Trampoline calling DynOpt
... // to translate code at 0x1be8

0x100f8
... // Trampoline calling DynOpt
... // to translate code at 0x1bd0

Untranslated Code Dynamically Optimized Code

(a) (b)
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0x100dc. When execution is paused, assume that the value of a variable residing in register %o5 is que-

ried. The native debugger performs a read operation on register %o5. In Tdb, the debug engine intercepts

this action and instead reports the value stored in register %o1. Note that the value in register %o1 at

0x100dc corresponds to the value in %o5 at 0x1be0. In this way, the program is debugged at the source

level even though the underlying binary is transformed during execution. 

3.5 Summary

This chapter presents an overview of the Tdb framework. It outlines two components of the framework:

The program tracker and the debug engine. The program tracker generates information based upon trans-

formations that a SDT system applies to a program. The debug engine is responsible for generating and

using debug information for a dynamically translated program. Tdb requires minimal to no modifications

to existing debuggers. Details of each component of Tdb and implementations of the framework are

described in the following chapters.
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Chapter 4.  Transformation Descriptors

A transformation descriptor is an attribute of an instruction or a data value that represents the effect of all

transformations applied to that instruction (or data value). Transformation descriptors are computed by the

program tracker after all transformations have been applied to an instruction/data value in a pass. The

descriptors are then communicated to the debug engine for generation of debug information. 

Despite all the differences in the functionalities of SDT systems, the transformations performed by

each SDT system can be viewed as a set of modifications to instructions and data values. Transformation

descriptors capture these modifications. As a result, Tdb’s use of transformation descriptors eliminates the

differences between SDT systems (for expressing transformations) and provides portability across differ-

ent SDT systems. In addition, since the transformation descriptors capture modifications to each instruc-

tion and data value in a program, every program transformation can be expressed using descriptors.

Consequently, a debugger can hide the effect of each transformation from a user. Transformation descrip-

tors, therefore, are a powerful and sufficient technique to describe program transformations performed by

any SDT system. 

There are six transformation descriptors that are applicable to instructions and two for data values.

Table 1 summarizes the transformation descriptors. The descriptors for instructions describe insertion

(CInsert), deletion (CDelete) and movement (CMove) of an instruction. In addition, there are two special

descriptors: Identity and CFlush. The Identity descriptor is associated with each instruction that is trans-

lated but not modified by the SDT system. A CFlush descriptor signifies the elimination of an existing

instruction from the code cache. There are two descriptors applicable to data values: DMove and DDelete.
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DMove represents a change to the storage location of a data value. The DDelete descriptor signifies that a

data value is no longer live at a program location. This chapter describes each of the transformation

descriptors and illustrates the code transformations that generate them. 

The rest of this chapter is organized as follows. The next section, Section 4.1, describes transfor-

mation descriptors applicable to instructions. Section 4.2 describes transformation descriptors for data val-

ues. Section 4.3 gives an example of how transformation descriptors would be generated for a

transformation. Section 4.4 discusses how complex transformations can be described by means of the

transformation descriptors. Finally, Section 4.5 summarizes the chapter. 

4.1    Code Descriptors

Code descriptors are transformation descriptors that describe modifications to instructions by program

transformations. An individual instruction can be transformed in a limited number of ways. The transfor-

mations include basic transformations consisting of insertion, deletion and movement and complex trans-

formations consisting of a combination of the basic transformations. A code descriptor describes each of

the basic transformations. In addition, two other descriptors describe code relocation and code flush. Com-

plex transformations can be described as a combination of basic transformations. Therefore, more complex

Table 1: Summary of Transformation Descriptors

Transformation Descriptor Summary

Identity <ID, Binary Location, Code Cache Location> Indicates code relocation

CInsert <CI, NULL, Code Cache Location> Instruction was not present in unoptimized code

CDelete <CD, Binary Location, NULL> Instruction is deleted during optimization

CMove <CM, Binary Location, Code Cache Location> Instruction was moved from its original location

CFlush <CF, NULL, Code Cache Location> Instruction has been eliminated from code cache

DMove <DM, Code Cache Loc, OldLoc, NewLoc> Storage location of data value has changed

DDelete <DD, Code Cache Location, VarLocation> Data value is not available at program location
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code descriptors are not needed for complex transformations. Section 4.4 explains how complex instruc-

tions can be described in terms of the basic code descriptors. 

In Tdb, a code descriptor is associated with each instruction that undergoes a transformation,

including instructions that get eliminated during translation and instructions generated during translation.

Each code descriptor is a triple consisting of a type, the binary untranslated location of an instruction and

the code cache location of the instruction, as shown in Table 1. The discussion below illustrates code

descriptors using examples, where each descriptor is only identified by its type for brevity. 

Identity. An Identity descriptor denotes code relocation. While Identity does not indicate any transforma-

tion (except relocation), it distinguishes instructions that have been translated and are currently present in

the code cache from those that are not present in the code cache. An Identity descriptor is shown in Figure

14. Note that the untranslated and translated code are the same in Figure 14; hence all translated instruc-

tions are associated with Identity. Identity does not exist for code that has not been translated. 

CInsert. The CInsert descriptor is used to describe insertion of an additional instruction. Code transfor-

mations frequently generate additional code. For example, a dynamic optimizer may apply the partial

redundancy elimination optimization resulting in additional instructions. A dynamic instrumenter inserts

“external” code for monitoring the application. Figure 15 uses a part of the code snippet in the example

from Figure 8. A CInsert descriptor is used for each instrumented instruction. The original instructions

appear after the instrumented code in the second column, for which Identity descriptors are generated. 

Figure 14: Identity is used when code is NOT modified during dynamic translation

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1be4 ld  [%o2+%g1],%o5

Untranslated Code

0x100c8 ld  [%o2+408],%o4
0x100cc clr  %o3
0x100d0 sll  %o3, 2, %g1
0x100d4 ld  [%o2+%g1],%o5

Translated Code

   Identity
   Identity
   Identity
   Identity

Transformation Primitive
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CDelete. The CDelete descriptor describes the elimination of an instruction. CDelete is used when a code

transformation results in a fewer number of instructions than the untranslated code. Figure 16 shows the

use of CDelete when a binary translator eliminates an instruction, i.e., there is one fewer instruction than

the untranslated code. In fact, the binary translator combined the last two instructions in the untranslated

code into a single instruction. Section 4.4 explains how the program tracker generates CDelete when

instructions are combined. 

CFlush. The CFlush descriptor describes the removal of an instruction from the SDT system’s code

cache. Instructions are removed when the code cache is full and space is needed to hold newly translated

code. Instructions may also be removed for self-modifying code. CFlush is needed for consistency reasons:

debug information (and information about live breakpoints) must be updated when existing code is

removed from the code cache. 

CMove. The CMove descriptor describes the movement of an instruction from its original location to an

earlier or a later location. CMove is used when instructions are moved during dynamic translation. Figure

17 illustrates CMove. In the example, the bolded ld instruction is moved relative to its neighbors by means

of a code scheduling optimization. The bolded ld instruction in the translated code has CMove. 

Figure 15: CInsert is used for add, store and restore (dynamically instrumented instructions)

Figure 16: CDelete is used for the load instruction, which is considered deleted during optimiza-
tion

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1
ld  [%o2+%g1],%o5

Untranslated Code
...
add %o2, 1, %o2
sd  %o2, [o1]
restore
ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1

Translated Code
   ...
   Code Insert
   Code Insert
   Code Insert
   Identity
   Identity
   Identity

Transformation Primitive

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1
ld  [%o2+%g1],%o5

Untranslated Code

mov $0x804b4a0,%edx
lea 0x0(%esi),%esi
mov (%edx,%ebx,4),%eax

Translated Code

   Identity
   Identity
   Identity
   Code Delete

Transformation Primitive
40



4.2    Data Descriptors

Data descriptors are transformation descriptors that describe modifications to data values or their stor-

age locations. Similar to transformations affecting instructions, there are a limited number of ways in

which data values can be modified by program transformations. There modifications are insertion, deletion

and movement or a combination thereof. For debugging purposes, there are only two transformations of

concern: elimination of a data values and a change in the location of a data value. A data descriptor

describes each of these transformations, namely DDelete and DMove. 

There are no data descriptors corresponding to the code descriptors CInsert, Identity and CFlush. A

DInsert descriptor (corresponding to CInsert) would indicate computation of additional data values in the

translated program. A program transformed by a SDT system usually performs additional computations.

However, a debug user is not expected to know about these data values. In fact, the whole point of this the-

sis is to keep the debug user unaware of dynamic translation. Therefore DInsert is not needed. Identity is

not needed for data values because any relocation of data values is already captured by DMove. Finally,

DFlush (corresponding to CFlush) is not needed because SDT systems do not eliminate data values in a

manner similar to flushing of the code cache. The only data descriptors used in Tdb, DDelete and DMove,

are discussed below. 

DDelete. The DDelete descriptor describes the absence of a data value at a program location. When an

instruction that defines a variable is moved using CMove, a DDelete descriptor is associated with each

instruction where a variable does not have an expected value. Figure 18 uses the example from Figure 17

Figure 17: CMove is used when code scheduling optimization moves the load instruction 

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1

inc  %o3
cmp  %o3, 0xff
ld  [%o2+%g1],%o5

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1
ld  [%o2+%g1],%o5
inc  %o3
cmp  %o3, 0xff

Untranslated Code Translated Code
   Identity
   Identity
   Identity

   Identity
   Identity
   Code Movement

Transformation Primitive
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that described the CMove descriptor. In Figure 18, code movement leads to unexpected values in register

%o5 at the inc instruction and the cmp instruction in the translated code (second column). Therefore, a

DDelete descriptor is generated for these instructions in addition to the Identity descriptor. 

DDelete is used for the entire live range where one or more data values have been eliminated. Fig-

ure 19 shows a more general case. Figure 19(a) shows the movement of an instruction that defines the vari-

able x, which overwrites a previous value of x. DDelete is used for the part of the live range that is

overwritten due to the code movement, as shown by the curly brace in the figure. Similarly, if an instruc-

tion is moved later (shown in Figure 19(b)), the value of a variable can be computed later than in the origi-

nal code. A DDelete descriptor is associated for the part of live range where this change appears (see the

curly brace in Figure 19(b)). DDelete is also used when a code (or data) transformation eliminates a live

range. The example in Figure 19(c) involves elimination of a definition of variable x resulting in removal

of a live range of the variable. Clearly, there is no use of the variable in the live range (otherwise the trans-

formation would likely have been invalid).

Figure 18: DDelete is used when code scheduling optimization moves the load instruction 

Figure 19: DDelete is used when (a) an instruction is moved earlier overwriting the existing value 
of variable x, (b) when an instruction is moved later and (c) a definition is deleted

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1

inc  %o3
cmp  %o3, 0xff
ld  [%o2+%g1],%o5

ld  [%o2+408],%o4
clr  %o3
sll  %o3, 2, %g1
ld  [%o2+%g1],%o5
inc  %o3
cmp  %o3, 0xff
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DMove. The DMove descriptor describes the change in storage location of a data value. This descriptor is

used when a code (or data) transformation changes the storage location (memory or register) of a data

value. Register allocation, performed by a SDT client (e.g., a dynamic optimizer) can result in DMove. 

4.3    Example

Figure 20 uses a SPARC code snippet as an example to illustrate transformation descriptors for code that is

dynamically optimized. Figure 20(a) shows untranslated code, and Figure 20(b) shows the translated coun-

terpart. During dynamic optimization, several things happen: (1) the clr instruction at unoptimized loca-

tion 0x1bcc is eliminated; (2) the register %g1 is reassigned to %o5 at optimized location 0x100cc; the

register %o5 is also reassigned to %o1 (see the last operand of ld instruction that has been bolded in both

unoptimized and optimized code). and (3) the ld instruction is moved from its original location. In the

optimized code, the ld instruction at 0x100d0 is preceeded by the inc and cmp instructions where the

expected value in register %o1 (originally %o5) will be unavailable. Finally, trampoline code follows the

add instruction in the optimized code in locations 0x100e4 to 0x100f4. 

Figure 20: Transformation descriptors from dynamic optimization in a SPARC code snippet

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4

0x100cc sll  %o3, 2, %o5
0x100d0 inc  %o3
0x100d4 cmp  %o3, 0xff
0x100d8 ld  [%o2+%o5],%o1
0x100dc ble  0x100f4
0x100e0 add  %o0,-16,%o0
0x100e4 save %sp, 96, %sp
0x100e8 sethi %HI(SDT),%o1
0x100ec jmp %o1
0x100f0 or %o1,%LO(SDT),%o1
0x100f4 restore

Untranslated Code Dynamically Optimized Code

(a) (b)

Trans Prim
ID
CD

ID, DM (%g1)
ID, DD (%o5)
ID, DD (%o5)

CM
ID
ID
CI
CI
CI
CI
CI

(c)
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Transformation descriptors for the dynamically optimized code are shown in Figure 20(c). The

code descriptor Identity (ID) is generated for all original instructions except the clr instruction that was

deleted and the ld instruction that was moved. CDelete (CD) is generated for the clr instruction. DMove

(DM) is generated for register %g1 at location 0x100cc to indicate that the storage location %g1 has been

reassigned. DDelete (DD) is generated for register %o1 at locations 0x100d4 and 0x100d8 (inc and cmp

instructions) where the value of %o5 is unavailable due to code movement. CInsert (CI) is generated for

each instruction in the trampoline code. 

Transformation descriptors can be used to describe program transformations made by diverse SDT

systems. Table 2 shows the transformation descriptors that describe the actions of several SDT systems

including program security checkers (Dynamo RIO), a dynamic optimizer (Dynamo), a binary translator

(DAISY) and a dynamic instrumenter (Pin). 

4.4    Discussion

SDT systems may perform complex transformations that are not directly addressed by the basic transfor-

mation descriptors in this chapter. The goal of this section is to give insight into how program trackers

should handle new transformations that are not described in this thesis. It should be noted that the purpose

of transformation descriptors is not to accurately track program transformations, but rather to hide the

effects of transformation from debug users. For any code transformation, the following three guiding prin-

ciples should be used: 

SDT Client Reference System Transformation Descriptors

Software security Dynamo-RIO [47] CInsert, CDelete, CFlush

Dynamic optimization Dynamo [5] CInsert, CDelete, CFlush, CMove, DDelete, DMove

Binary translation Daisy [28] CInsert, CDelete, CFlush, DDelete, DMove

Dynamic instrumentation PIN [59] CInsert, CDelete, CFlush, DMove

Table 2: Transformation descriptors used by different SDT systems
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• If multiple computations are combined into one, all the intermediate computations should be

invisible to the debug user.

• If a computation is split into multiple computations, the values computed in all but the last com-

putation should be invisible to the debug user.

• If it is difficult to describe a code modification using transformation descriptors or efficient gen-

eration of transformation descriptors for a code modification is not possible, err on the side of

reportability rather than correctness. That is, if there is a choice between not reporting values ver-

sus reporting incorrect values, choose the former. 

To illustrate the first two guiding principles, this section describes two complex transformations:

splitting of an instruction into multiple instructions and combining of multiple instructions into one. Trans-

formation descriptors are not available to express such transformations. However, the program tracker can

generate descriptors as discussed below to describe these transformations. 

When two instructions are combined, one way to express this transformation would be to generate

two Identity descriptors for each of the original instructions that are associated with the combined instruc-

tion. However, expressing the transformation in this way indicates that the code location and data value

problems can be solved ⎯ breakpoints can be inserted at both the original instructions and all variable val-

ues can be reported. This expression (i.e., two Identity descriptors) is incorrect because combining two

instructions essentially eliminates the first computation. In other words, the values computed by the first

instruction are not computed in the translated code. Therefore, the correct set of descriptors for this trans-

formation is a CDelete for the first instruction and Identity for the second instruction. 

Similarly, two Identity descriptors should not be generated when an instruction is split into two.

Instead, a CInsert should be generated for the first instruction and an Identity for the second. If the splitted

instructions are moved apart (due to code movement), a CInsert should be generated for the first instruc-

tion, a CMove for the second instruction and associated DDeletes for the instructions between the first and

the second. 
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4.5    Summary

Program transformation is an inherent part of dynamic translation. Despite apparent functional differences

between SDT systems, program transformations made by each SDT system can be dissected into a set of

transformation descriptors. This chapter describes the transformation descriptors. This chapter also gives

insights into how new transformations should be expressed using transformation descriptors. The next

chapter describes how the transformation descriptors can be used to facilitate source level debugging in

SDT systems. 
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Chapter 5.  Debug Engine 

The debug engine consumes transformation descriptors produced by the program tracker and generates

debug information at runtime for use in debugging. Debug information is different from transformation

descriptors as the former aids in hiding the effects of program transformations, while the latter describes

the transformations. In Tdb, the debug information consists of debug mappings, debug plans and variable

values extracted by the debug engine. The debug engine’s functionalities include generating and using

debug information. Specifically, it has five main functionalities: generating debug mappings, generating

debug plans, intercepting native debugger, handling breakpoint and extracting values. Each of these func-

tions is performed by a different component in the debug engine, including the mapping generator, the

planner, the execution manager, the breakpoint manager and the runtime information generator. The debug

engine stores the debug information and live breakpoint information in a repository called the Debug Infor-

mation Repository (DIR).

Figure 21: TDB: The Debug Framework
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Figure 21 illustrates the organization of the debug engine and its components in the Tdb frame-

work. The mapping generator and the planner components of the debug engine consume the transforma-

tion descriptors provided by the SDT system and generate information for use during debugging. The

runtime information generator (the RIG), the execution manager and the breakpoint manager components

use this information during a debug session to facilitate debugging. The flow of information between the

components is facilitated by the debug information repository (DIR) where each component stores infor-

mation designated for use by another component. The debug engine provides well-defined interfaces for

communication with the SDT system and the native debugger 

This chapter first describes the interfaces that the debug engine provides to the SDT system and

the native debugger. The functionalities of the debug engine components are described next in Section 5.2

− Section 5.7. Section 5.8, shows by means of an example, how the debug engine facilitates source level

debugging. Finally, Section 5.9 summarizes the chapter. 

5.1    Debug Engine Interfaces

The debug engine provides interfaces that can be targeted by the SDT system to communicate program

transformations and accordingly generate debug information. The debug engine also provides interfaces

for communication with the native debugger. The debug engine interfaces are described below. 

5.1.1    SDT Interface

The SDT system’s program tracker communicates transformation descriptors to the debug engine. There

are two APIs exposed to the SDT system for communicating code descriptors and data descriptors. The

interfaces are shown below. 

code_descriptor <type, sourceLocation, targetLocation>
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data_descriptor <type, dataValueInfo, locationAfter>

For code descriptors Identity and CMove, the sourceLocation is the location of the instruction

being translated in the program binary (untranslated location), and targetLocation is the instruction’s

location in the code cache. For CInsert, the sourceLocation is set to NULL and the targetLocation is

the code cache location of the inserted instruction. For CDelete and CFlush, the sourceLocation is the

untranslated location of the instruction eliminated/flushed during translation, and the targetLocation is

set to NULL. 

For data descriptors, the dataValueInfo consists of a range in which the data value is trans-

formed and the original storage location (register or memory) of the data value. For DMove, the loca-

tionAfter contains the storage location of the data value after transformation. With DDelete, the data

value’s liveness is eliminated. Therefore, locationAfter is always set to NULL for DDelete.

5.1.2    Native Debugger Interface

The native debugger interface is used for communication of debug commands and queries from the native

debugger to the debug engine. In addition, the native debugger interface is used to communicate break-

points that are hit to the debug engine. In the absence of the debug engine, the native debugger would be

invoked when a breakpoint was hit. The APIs in the native debugger interface are shown below. These

APIs encompass sufficient detail to allow the debug engine to hide the artifacts of dynamic translation

from the native debugger and in turn a debug user. 

signal_handler <signo>

value := read_value <variable_location>

insert_breakpoint <instruction_location>

remove_breakpoint <instruction_location>

pc := read_pc

write_pc <pc>
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The debug engine must be informed about any breakpoints (or watchpoints) that are hit in a pro-

gram instead of the native debugger. The debug engine provides a signal_handler interface that is

invoked by the native debugger when a breakpoint is hit. 

The second interface, read_value, provided by the debug engine is used by the native debugger

to request a variable’s value from the debug engine. In native (untranslated) programs, a debugger would

read variable values directly from the program’s address space, but Tdb adds a level of indirection via the

debug engine. There is no corresponding write_value interface. Tdb does not support modification of

variable values from within a debug session.

The native debugger also provides interfaces to the debug engine for inserting and removing

breakpoints at program locations. The debug engine inserts and removes breakpoints on behalf of the

native debugger.

Finally, the debug engine provides interfaces for reading and writing the program counter, i.e., the

location at which the program is currently paused. The read_pc interface allows the debug engine to

report an expected binary location where execution is paused at, instead of a code cache location. The

write_pc interface enables the debug engine to continue execution in the code cache instead of the loca-

tion specified by the native debugger. Therefore, reading and writing of the program counter provides the

native debugger the complete control of a program’s execution. The next section describes how the infor-

mation communicated to the debug engine is used for facilitating source level debugging. 

5.2    Generation of Debug Mappings

Debug mappings are generated by the mapping generator from transformation descriptors. Debug map-

pings consist of code location mappings and data location mappings. A code location mapping relates an

untranslated or a translated location to another location and helps solve the code location problem. For
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instance, in response to a breakpoint inserted at an untranslated location, a translated location can be deter-

mined from an associated code location mapping. Code location mappings are generated from the code

descriptors affecting code locations, including Identity, CInsert, CMove and CDelete descriptors. The data

location mappings relate the location of data values in an untranslated application program to a location in

the dynamically optimized program. Data location mappings are used when DMove descriptors change the

storage location of variables. Mappings are not generated for CFlush and DDelete descriptors because

these descriptors lead to removal of code and data values. With CFlush, the mapping generator removes

corresponding mappings. The DDelete descriptors require runtime information to reconstruct the “deleted”

data values. It is handled by the planner component of the debug engine (see Section 5.3). 

A code location mapping is a triple shown in the first row of Table 3, consisting of type informa-

tion (type), a location (headLocation) and a set of locations (TailLocations). A code location map-

ping can be one of three types: REGULAR, DELETE and INSERT. These types correspond to Identity/

CMove, CDelete and CInsert. The mapping relates the second parameter (headLocation) with the third

parameter (TailLocations). The third parameter is a set to handle code duplication ⎯ an untranslated

instruction is associated with all duplicate copies of the instruction in the code cache. The code location

mappings for the example in Figure 20 on page 43 are shown in Table 6 below. The contents of the table

are discussed in conjunction with the mappings later in this section. 

A data location mapping associates one storage location with another storage location. Since stor-

age locations (e.g., registers) are often reused for different variable values in different parts of the program,

the data location mapping associates storage locations at each instruction location. A data location map-

ping is a triple, as shown in the second row of Table 4. The first parameter in the triple is the program loca-

tion where the second parameter (a storage location) is related to the third parameter (another storage

location). 

Code Location Mapping <type, headLocation, TailLocations>
Data Location Mapping <instructionLocation, locationBefore, locationAfter>

Table 3: Representation of code location mapping and data location mapping
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The overall functionality of the mapping generator is summarized by the algorithm shown in Table

5. When the mapping generator is invoked with a DMove, it simply invokes the planner for computing

debug plans (see Section 5.3). For all other descriptors (code descriptors and the DDelete), the mapping

generator computes code location and data location mappings. Table 6 gives the algorithms used by the

mapping generator for each of the code descriptors and DDelete. These algorithms are discussed next. 

5.2.1    REGULAR

For each instruction with Identity or CMove descriptors, a REGULAR code location mapping is generated

that associates the untranslated location of the instruction with its translated location. Examples of REGU-

LAR mappings can be seen in Table 4. These correspond to Identity and CMove descriptors. 

Untrans. Binary 
Location

Binary Location in 
Code Cache Trans descriptor Code Location Mapping: 

<type, source, Targets>

0x1bc8 0x100c8 Identity <REGULAR,0x1bc8,{0x100c8}>

0x1bcc CDelete <DELETE,0x1bcc,{0x100cc}>

0x1bd0 0x100cc Identity <REGULAR,0x1bd0,{0x100cc}>

0x1bd4 0x100d8 CMove <REGULAR,0x1bd4,{0x100d8}>

0x1bd8 0x100d0 Identity, DMove <REGULAR,0x1bd8,{0x100d0}>

0x1bdc 0x100d4 Identity, DMove <REGULAR,0x1bdc,{0x100d4}>

0x1be0 0x100dc Identity <REGULAR,0x1be0,{0x100dc}>

0x1be4 0x100e0 Identity <REGULAR,0x1be4,{0x100e0}>

0x100e4 CInsert <INSERT,0x100e4,{0x1bd0}>

0x100e8 CInsert <INSERT,0x100e8,{0x1bd0}>

Table 4: Code location mappings for transformation shown in Figure 20 on page 43

Algorithm
∀d // For each descriptor that the mapping generator is invoked with

if d.type = DMove then
Planner() // Invoke the Planner: see algorithm in Table 6

else if d.type = DDelete then 
GenerateMappings <d.type> // Generate mappings

Table 5: Summary of mapping generator’s actions
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The algorithm shown in Row 2 of Table 6 is used to generate REGULAR mappings. A REGULAR

mapping is generated for all instructions that have an associated Identity or CMove descriptor. If a map-

ping already exists such that the headLocation of the mapping is the same as the untranslated location

of instruction being processed, s, the TailLocations set is appended by adding the translated location

of s to it. Otherwise, a new mapping clm is generated with its type set to REGULAR, sourceLocation

as s’s untranslated location and the translated location of s added to the TailLocations set. 

5.2.2    INSERT

For each instruction with a CInsert descriptor, an INSERT code location mapping is generated that associ-

ates the instruction with the next instruction in the translated code. The algorithm in Row 3 of Table 6

describes how INSERT mappings are generated. Additionally, each instruction in a trampoline is related to

the target of the trampoline. Recall that a trampoline transfers control to the SDT system for translating

more code. The target of a trampoline is the untranslated location which is translated next by the SDT sys-

tem. INSERT mappings are used by the execution manager component of the debug engine to hide the

execution of instructions generated during translation and the execution of SDT system itself (see Section

5.4). 

The last 2 rows in Table 4 show INSERT mappings for trampoline code. The third parameter in

the INSERT mappings is the same address (i.e., 0x1bd0) which is the target of the trampoline. 

5.2.3    DELETE

For each instruction with a CDelete descriptor, a DELETE code location mapping is generated. The sec-

ond row in Table 4 shows a DELETE mapping corresponding to the CDelete descriptor. The algorithm

used to generate DELETE mappings is shown in Row 4 of Table 6. The algorithm finds the translated loca-

tion (loc) of the first “unmoved” instruction that appears later in the instruction stream to the instruction
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with CDelete. The untranslated location of the deleted instruction is then related with loc. It is possible

for the same instruction to be deleted multiple times (e.g., code duplication followed by deletions). There-

fore, the algorithm appends loc to TailLocations. Section 5.5 describes how DELETE is used. 

This algorithm for DELETE assumes that an “unmoved” instruction is found in the instruction

stream following the deleted instruction. If such an instruction is not found, a DELETE will not be gener-

Transformation 
descriptor Algorithm: GenerateMappings <descriptor_type>

Identity / CMove

∀s ∈ ID ∪ CM //instructions with Identity or CMove
if ∃clm ∈ CLMappings : (clm.headLocation = s.untransLoc) then 

if (clm.type = REGULAR) then // update existing mapping
clm.TailLocations ← clm.TailLocations ∪ {s.cCacheLocation}

else 
clm ← NEW(clmapping) // create new mapping
clm.type ← REGULAR
clm.headLocation ← s.untransLoc
clm.TailLocations ← {s.cCacheLocation}
CLMappings ← CLMappings ∪ {clm}

CInsert

clm ← NEW(clmapping) // create new mapping
clm.type ← INSERT
clm.headLocation ← s.cCacheLocation
∀s ∈ ID // instructions with CInsert descriptor

clm.TailLocations ← {s.next.cCacheLocation}
∀s ∈ exitStubs // instructions in exit stubs

clm.TailLocations ← {trampoline.target}
CLMappings ← CLMappings ∪ {clm}

CDelete

∀s ∈ CD //instructions with CDelete descriptor
if ∃s’ ∈ Trace : {s’.laterThan(s) ∧ s’ ∩ CM = ∅} then

loc ← s’.cCacheLocation // find next code cache instruction
if ∃clm ∈ CLMappings : (clm.headLocation = s.untransLoc) ∧

if (clm.type = DELETE) then // update existing mapping
clm.TailLocations ← clm.TailLocations ∪ {loc}

else 
clm ← NEW(clmapping) // create new mapping
clm.type ← DELETE
clm.headLocation ← s.untransLoc
clm.TailLocations ← {loc}
CLMappings ← CLMappings ∪ clm

CFLush

∀clm ∈ CLMappings : s.cCacheLocation ∈ clm.headLocation
CLMappings ← CLMappings − clm // update Code location mappings

∀clm ∈ CLMappings : s.cCacheLocation ∈ clm.TailLocations
clm.TailLocations ← clm.TailLocations − s.cCacheLocation

∀ dlm ∈ DLMappings : s.cCacheLocation ∈ dlm.instructionLoc
DLMappings DLMappings − dlm // update data location mappings

Planner(s.cCacheLocation) // invoke debug engine’s planner 

DMove DLMappings ← DM

Table 6: Algorithms to generate code location and data location mappings
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ated. This scenario will only occur when instructions at the end of a trace are deleted. Therefore, it is

expected that such inaccuracies will be minimal. 

5.2.4    Deletion of Mappings

When a CFlush descriptor is encountered, the mapping generator removes all the associated code location

mappings and data location mappings. In addition, the planner component of the debug engine is invoked

so that it can remove the associated debug plans. 

5.2.5    Data Location Mappings

Each DMove descriptor contains a triple consisting of the instruction location, location before register allo-

cation and location after register allocation (see Table 3 on page 51). These locations are updated with code

cache locations after code is generated in the code cache of the SDT system. A DMove descriptor is essen-

tially a data location mapping and can be used to relate the original storage location of a data value to a

new storage location. The original storage location is that in untranslated code and the new storage location

is in the dynamically translated code. Therefore, the algorithm in row 5 in Table 6 simply assigns the set of

descriptors, DM, to the set of data location mappings, DLMappings. Each of the descriptors constitute a

data location mapping. 

The code location and data location mappings can be used by Tdb’s debug engine to handle all the

transformation descriptors, except DDelete. The DDelete descriptor requires runtime information and is

handled by the planner component of the debug engine. The planner is described next. 
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5.3    Generation of Debug Plans

The planner component of the debug engine guides extraction of runtime data values. While the planner is

invoked during dynamic translation, data value extraction is performed during execution by the runtime

information generator. The planner’s job is to ascertain what values need to be extracted and when. To

understand the role of the planner and to appreciate why data value extraction is needed, consider the

example in Figure 22. In the figure, an instruction is moved during dynamic optimization. Suppose, the

debugger needs to report the value in register %o3 when execution is paused at location 0x100d4 in the

dynamically optimized code. Since the moved instruction at location 0x100d0 has overwritten the earlier

value of register %o3, the available value is not the expected one. To respond accurately with the expected

value of %o3, the runtime value in %o3 must be saved at 0x100d0 before it is overwritten. To guide the

extraction of value in %o3, the planner constructs a debug plan as shown below:

Debug Plan: <0x100d0, %o3, {0x100d8}>

A debug plan specifies the value that should be recorded at a specific program location; in this

case, value in %o3 is recorded just before the instruction at 0x100d0 is executed. The recorded informa-

Figure 22: Dynamic optimization moves an instruction to an earlier location

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4
0x100cc sll  %o3, 2, %o5
0x100d0 inc  %o3
0x100d4 ld  [%o2+%o5],%o1

0x100d8 cmp  %o3, 0xff
0x100dc ble  0x100f4
0x100e0 add  %o0,-16,%o0
... // Trampoline calling DynOpt
... // to translate code at 0x1be8

0x100f8
... // Trampoline calling DynOpt
... // to translate code at 0x1bd0

Untranslated Code Dynamically Optimized Code

(a) (b)
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tion constitutes a part of the debug information and can be reported until execution reaches 0x100d8,

when the recorded value is discarded. 

As illustrated in the example, a debug plan consists of the storage location of a non-reportable

variable and a set of instruction locations (0x100d0 and 0x100d8) between which the runtime value of

variable is not the expected one. Debug plans are generated when DDelete descriptors are encountered. A

DDelete implies that code movement has resulted in the actual value of a variable being different than what

the user expects. 

The instruction locations in a debug plan includes a late point and a set of stop points. A late point

is the same location as the original location of the corresponding moved instruction (e.g., 0x100d0 in Fig-

ure 22). Stop points are locations where variables defined by the moved instruction are reachable from the

late point (e.g., 0x100d8 in Figure 22). When execution reaches a late point, the debug engine rolls ahead

(continues) the execution until a stop point is reached. At the stop point, the expected value at the storage

location (of a variable) is known. This expected value is reported when queried. The roll ahead is per-

formed by the RIG component of the debug engine without notifying the native debugger. During roll

ahead, all values computed in the program and breakpoints encountered are recorded. When execution is

continued by the native debugger, the recorded instructions, values and breakpoints are replayed in the

order corresponding to the untranslated code. 

Figure 23: Instruction moved to a later position during dynamic translation

(a) (b)

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4
0x100cc clr  %o3
0x100d0 sll  %o3, 2, %g1

0x100d4 inc  %o3
0x100d8 cmp  %o3, 0xff
0x100dc ld  [%o2+%g1],%o5
0x100e0 ble  0x100f8
0x100e4 add  %o0,-16,%o0
... // Trampolines calling Strata

Untranslated Code Translated Code
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Consider the example in Figure 23 where an instruction is moved later than its original position.

The arrow in the figure shows this code movement. If a breakpoint is inserted at translated location

0x100d8, the RIG is invoked when execution reaches translated location 0x100d4 and execution is con-

tinued and all values computed are recorded until the instruction at 0x100d8 is executed. At this point, the

debug engine has enough information to reconstruct expected values and report them to the debug user. 

Table 7 gives the algorithm used by the planner. For each instruction with DDelete descriptor (s’),

a late point is generated as the original position of the corresponding moved instruction s. Stop points are

locations in the trace where the original definition of s is killed. Stop points are generated using the Reach-

able Definitions analysis developed by Jaramillo [42]. The variable that is defined by s, the late point and

the set of stop points constitute a debug plan and are added into the DebugPlans set of s’. The debug plan

is associated with an instruction s’ only if hasn’t already been associated (to avoid duplicates), denoted by

the union operation on DebugPlans set. There can be multiple debug plans at each instruction (for different

variables). A simplified algorithm is shown for brevity. 

The notion of late and stop points and the technique of rolling ahead execution when a late point is

encountered are borrowed from the Fulldoc debugger [42]. In Fulldoc, the technique of roll-ahead was

used in the context of static optimizations. 

Discussion. The debug plans are designed for a trace-based SDT system and work only if code movement

occurs along a straightline code. In a general control flow graph (CFG), code transformations can move

instructions from one path to another. For SDT systems performing transformations on a general CFG, the

Transformation 
descriptor Algorithm

DDelete

∀(s, s’) ∈ DD // instructions (s’) with DDelete descriptor
storageLoc ← s.variable
latePoint ← s.originalPosition
StopPoints ← {ReachableDefinitions (s, Trace)}
debugPlan ← (latePoint, storageLoc, StopPoints)
DIR.DebugPlans ← DIR.DebugPlans ∪ {debugPlan}

Table 7: Algorithm used by the Planner to generate debug plans
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debug plans will need to be generalized so that code movement across different paths are handled. In par-

ticular, data flow analysis can find the paths where code movement renders variable values to be inconsis-

tent and debug plans can be generated on each path. Indeed, such a solution is used in Jaramillo’s Fulldoc

debugger [42] and Wu’s debugger [102]. 

5.4    Intercepting the Native Debugger 

The Execution Manager is the component of Tdb’s debug engine that coordinates communication and

hides the effects of dynamic optimization from the native debugger. The execution manager is invoked

whenever the native debugger performs an action on the program. An action can either be a read/write into

program’s address space or insertion/removal of a breakpoint/watchpoint. When the native debugger

would otherwise write values into the program’s address space (or insert/remove breakpoints), the execu-

tion manager is invoked to perform the same operations at alternative locations in the code cache. Simi-

larly, when the native debugger reads values from a program’s address space, the execution manager is

invoked to return alternative values to the native debugger. 

The execution manager’s invocation mechanism is implementation dependent. As such, the native

debugger can be modified to explicitly call the execution manager instead of performing actions on a pro-

gram. Alternatively, the execution manager can intercept library calls or system calls made by the native

debugger. Section 6.1 describes these two implementation strategies in detail. Irrespective of the invoca-

tion mechanism, the execution manager is essentially an event-driven system. The execution manager han-

dles three types of events, as summarized in Table 8. 

The events handled by the execution manager include (1) a breakpoint hit in the executing pro-

gram; (2) a request to insert/remove a breakpoint; and (3) a request to read the value of a variable. Each

event is accompanied with additional information about the event. For example, when a breakpoint is hit in
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the program, a signal is raised. The event (signal) is accompanied with the current state of the system (e.g.,

current program counter location). The execution manager uses this information to take appropriate actions

for each event, as shown in Table 9 and discussed below. 

5.4.1    Signal Handling

The first algorithm on lines 2-25 in Table 9 shows the actions performed by the execution manager when a

breakpoint is hit. The input to the execution manager is the code cache location where a breakpoint was hit.

The execution manager uses the DIR and a mode, the ExecutionPhase. The output is an application loca-

tion which can be provided to the native debugger as the breakpoint location, if requested. In the algorithm,

a location value of NULL indicates that execution should be continued without notifying the debugger. 

For breakpoints hit in the program, the execution manager consults the DIR to determine whether

the breakpoint corresponds to a breakpoint inserted by the native debugger; if so, the native debugger is

notified of the breakpoint. A breakpoint may not always correspond to those inserted by the native debug-

ger. Such breakpoints, called invisible breakpoints, are inserted at late points, stop points and at targets of

INSERT mappings. When invisible breakpoints are hit, the execution manager does not notify the native

debugger and instead takes special actions. When a late point is hit, the execution is rolled ahead using the

RIG and the ExecutionPhase is set to RecordPhase. Execution is subsequently continued (lines 6-9). 

If a stop point is reached in the record-phase, the RIG decides and notifies the execution manager

whether execution should be continued. A value NULL returned by the RIG indicates that execution

Algorithm
Input: event, args[] // An event is accompanied with additional data as args 

if Event.type = signal then
signal_handler <args> // Algorithm 1 in Table 8

else if event.type = breakpoint then 
insertRemoveBreakpoint <args> // Algorithm 2 in Table 8

else
retrieveDataValue <args> // Algorithm 3 in Table 8

Table 8: Summary of execution manager’s actions
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should be continued (lines 16-19). When the RIG returns a non-NULL value, the execution manager sin-

gle-steps program execution and invokes the RIG after each instruction. In this way, execution is rolled

ahead (lines 20-21).

When execution is in Normal phase and the breakpoint is not a late point, the execution manager

looks up the code location mapping and determines the untranslated location corresponding to the stopped

(code cache) location. The native debugger is invoked if the untranslated location is non-NULL. For

instructions inserted by the SDT system (and trampolines), the untranslated location is NULL. In this case,

invisible breakpoints are inserted at the target of the INSERT mapping (line 12). The native debugger is

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27

28
29
30

31
32
33
34
35
36

//Algorithm 1: Handle a breakpoint that was hit in program 
Globals: DIR, ExecutionPhase
Input: cCacheLocation
Output: appLocation

if ExecutionPhase = NORMAL_PHASE then // Normal execution phase
if ∃d ∈ DIR.DebugPlans: cCacheLocation = d.latePoint then

// LATE point : enter record phase
ExecutionPhase ← RECORD_PHASE
the RIG (cCacheLocation)
appLocation ← NULL

else // no late point at cCacheLocation
if ∃m ∈ DIR.CLMappings : {cCacheLocation ∈ m.TailLocations} then

if (appLocation ← m.headLocation) = NULL then insertInvisible()
else 

appLocation ← cCacheLocation
else if ExecutionPhase = RECORD_PHASE then // Record phase

if ∃d ∈ DIR.DebugPlans : {cCacheLocation ∈ d.StopPoints} then
// STOP point in record phase
appLocation ← the RIG (cCacheLocation)

else
the RIG (cCacheLocation) 
appLocation ← NULL

else if ExecutionPhase = REPLAY_PHASE then // Replay phase
appLocation = the RIG (cCacheLocation)

// Algorithm 2: Insert or remove breakpoints: call Breakpoint Manager
Global: DIR
Input: action, appLocation

DIR.Breakpoints ← BreakpointManager (action, appLocation)

//Algorithm 3: Query variable values; given the unoptimized variable loc 
Input: variableLocation, cCacheLocation
Output: variableValue

if ∃m ∈ DIR.DLMappings : {variableLocation = m.oldLocation} then
variableLocation ← m.newLocation

if ExecutionPhase = REPLAY_PHASE then
variableValue ← queryRangeRecords (variableLocation, cCacheLocation)

else
variableValue ← value(variableLocation)

Table 9: Algorithms used by Execution Manager
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also invoked when no code location mappings exist for the stopped location (line 14). The lack of code

location mapping indicates a breakpoint hit in untranslated code, such as the SDT system itself. 

5.4.2    Insert and Remove Breakpoints

To insert and remove a user breakpoint, the native debugger invokes the execution manager as shown in

Algorithm 2 in Table 9. The execution manager simply invokes the breakpoint manager (line 27).

5.4.3    Retrieve Data Values

Algorithm 3 in Table 9 shows the retrieval of variable values from the DIR when a variable is queried in

replay phase (line 31-36). First, the data location mappings are used to determine if alternative storage

locations exist for the expected value. If an alternative location exists then the variableLocation is set

to this alternative location (lines 31-32). If the execution is in the replay phase, a data structure called

“range records” is consulted for the data value. Range records are used by the runtime information genera-

tor to store extracted data values. If the execution is not in replay phase, the value stored in the alternative

location is returned to the native debugger (lines 33-34). 

5.5    Breakpoint Handling

The breakpoint manager is a component of the debug engine that inserts and removes breakpoints (and

watchpoints). When the native debugger initiates a breakpoint insertion or removal in the application code,

the breakpoint manager is invoked by the execution manager to perform the same action in the code cache.

The breakpoint manager uses the algorithm in Table 10. When a breakpoint is to be inserted or removed at

an application location, the breakpoint manager looks up the code location mappings to determine the cor-
62



responding code cache locations (line 4). The breakpoint insertion or deletion is then performed at the code

cache locations (lines 5-8). 

Breakpoints are inserted in code cache for instructions with INSERT as well as DELETE. With

DELETE, an instruction that gets eliminated during translation is associated with the next logical instruction

(the one appearing later in the instruction stream). Therefore, a breakpoint at an instruction with DELETE

is also inserted at the next logical instruction. In a debug session, if breakpoints are inserted at both of these

instructions, the debug engine reports two breakpoints hit in the expected order. 

When a breakpoint is inserted at a code cache location with a debug plan, additional invisible

breakpoints are inserted by the breakpoint manager. Each debug plan contains a late point and one or more

stop points. Invisible breakpoints are inserted at each of these locations (late and stop points), as shown in

lines 10-13. The breakpoints are stored in the DIR along with the mappings and debug plans. 

When the SDT system is active (program execution is paused for dynamic translation), the break-

point manager removes all breakpoints in the code cache and re-inserts them before execution resumes. In

this way, the SDT system does not accidentally read or overwrite a breakpoint instruction (if breakpoints

are implemented in software). This is not shown in the algorithm in Table 10. 

1
2
3

4
5
6
7
8
9

10
11
12
13
14

//Algorithm to insert/remove a breakpoint 
Global: DIR
Input: action, appLocation

∀m ∈ DIR.CLMappings : {m.headLocation = appLocation ∧ 
m.type = REGULAR ∨ DELETE}

if action = INSERTION then 
DIR.Breakpoints ← DIR.Breakpoints ∪ {m.TailLocations} // insert bp

else 
DIR.Breakpoints ← DIR.Breakpoints - {m.TailLocations} // remove bp

∀d ∈ DIR.DebugPlans : {d.ccLoc ∈ m.TailLocations}
if action = INSERTION then

DIR.Breakpoints←DIR.Breakpoints ∪ {d.ccLoc} // insert invisible bp
else

DIR.Breakpoints←DIR.Breakpoints - {d.ccLoc} // remove invisible bp

Table 10: Algorithm used by Breakpoint Manager
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5.6    Record Replay

Record-replay is a technique to save the program state during execution and to subsequently replay the

same execution in a controlled manner. The RIG is a component in the debug engine that uses record-

replay to extract variable values whose computation has been moved during code transformation. When a

late point is hit, the execution manager sets ExecutionPhase to record phase and invokes the RIG. Table 11

shows the algorithm used by the RIG. 

In the record phase, information about the current instruction is saved, including the code cache

location of the instruction, values computed by the instruction and the breakpoints encountered. The

instruction location is saved in a sequential list, called RecordedInstructions, which is maintained in the

DIR. This is shown on line 6. In the algorithm, the operator ⊕ adds an element to the end of a list and pop-

First removes the first element. If there is a breakpoint at the instruction being recorded, the instruction

location is added to another list, called the RecordedBreakpoints, which is also maintained in the DIR. This

is shown in lines 7 and 8. Values that are live at the instruction are saved into a data structure called range

records (line 9), in the DIR. Range records are similar to live ranges, except that a range record contains a

value of a live variable [23]. At a definition of a variable, a new range record is created that contains the

variable’s value. The live range is extended until the definition is killed. A re-definition of a variable cre-

ates a new live range. 

Execution is subsequently continued by the execution manager and the RIG is invoked after exe-

cuting every subsequent instruction. In this way, the RIG records instructions, values computed and the

breakpoints encountered for each of the instructions. When the RIG finds that the instruction being

recorded has a late point, it updates a set containing all the late points encountered so far, as shown in lines

10-12. The record phase continues and when a stop point is hit, the corresponding late point is removed

from the list (lines 13-14). The replay phase starts when no more late points are left, as shown in lines 15

and 16. 
64



In the replay phase, the RIG removes recorded instructions from the RecordedInstructions (using

popFirst) until the next breakpoint location (bLocation) in RecordedBreakpoints (lines 18-19). The range

records are updated to reflect values available at the current instruction (line 20). Control is subsequently

returned to the execution manager and subsequently to the native debugger. The stopped location is indi-

cated as the actual location of the instruction, as shown in lines 21-24. 

In this way, the RIG provides an expected order of instructions, breakpoints and update of variable

values to the native debugger. The RIG and breakpoint manager are both invoked by the execution man-

ager which communicates with the native debugger. 

5.7    Debug Information Repository

The Debug Information Repository (DIR) is where each debug engine component stores information

intended for other components. The information stored in the DIR includes mappings, debug plans, values

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

//Algorithm to record and replay an instruction
Global: DIR, ExecutionPhase
Input: cCacheLocation
Output: appLocation, variableValue

if ExecutionPhase = RECORD_PHASE then // Record phase
DIR.RecordedInstructions ← DIR.RecordedInstructions ⊕ cCacheLocation
if cCacheLocation ∈ DIR.Breakpoints then 

DIR.RecordedBreakpoints ← DIR.RecordedBreakpoints ⊕ cCacheLocation
addToRangeRecords (cCacheLocation) 

if ∃d ∈ DIR.DebugPlans: cCacheLocation ∈ {d.latePoint ∪ d.StopPoints}
if cCacheLocation = d.latePoint then // LATE point : extend record phase

RecordedLatePoints ← RecordedLatePoints ∪ {cCacheLocation}
else // STOP point found: start replay phase

RecordedLatePoints ← RecordedLatePoints - d.latePoint
if RecordedLatePoints = ∅ then

ExecutionPhase ← REPLAY_PHASE 

else if ExecutionPhase = REPLAY_PHASE then // Replay phase
bLocation ← popFirst (RecordedBreakpoints)
∀fLocation ← popFirst (RecordedInstructions) : bLocation ≠ fLocation

removeFromRangeRecords (cCacheLocation)
if ∃m ∈ DIR.CLMappings : {fLocation ∈ m.TailLocations} then

appLocation = m.headLocation
else

appLocation ← fLocation

Table 11: Algorithm used by the Runtime Information Generator
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extracted by the RIG and a list of live breakpoints. The mappings and debug plans are generated and

updated during dynamic translation and used during execution. Therefore, the DIR must allow querying of

the mappings and debug plans with untranslated program binary locations and code cache locations. The

former is used for modifying existing mappings and plans, while the latter is used during execution for

debugging. Similarly, the DIR must allow for querying breakpoints with untranslated and translated

addresses. The former is used during insertion/removal, while the latter is used when a breakpoint is hit.

The DIR is essentially a communication link for the components of the debug engine. The specific

details of the DIR are left to implementation.

5.8    Example

To understand how source level debugging can be performed using Tdb, consider the example in Figure 24

in which the untranslated code is transformed by a dynamic optimizer. Suppose, a user wishes to insert a

breakpoint at a source code statement with line number SL1, single-step to SL2 and then query the value of

variable var. SL1 corresponds to binary instructions 0x1bc8 − 0x1bd4, SL2 corresponds to instructions

0x1bd8 − 0x1be0 and var is stored in register %o5. With Tdb, the mapping generator and the planner

generate code location mappings and debug plans, as shown in Table 12. The actions of the native debug-

ger corresponding to user commands and queries are intercepted by Tdb’s debug engine. 

When the native debugger inserts a breakpoint at untranslated location 0x1bc8, the debug

engine’s execution manager determines that the corresponding location in the code cache is 0x100c8. The

execution manager uses the code location mapping shown in Row 1 of Table 12. When the user issues a

single-step command, which directs the native debugger to resume execution of the program and gives

control back to the user when the source location SL2 is reached. The native debugger resumes execution

and pauses after executing every instruction and determining if the stopped binary location corresponds to
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source location SL2. In the above example, execution resumes at code cache location 0x100c8. When

execution reaches 0x100cc, Tdb’s execution manager gains control and notifies the debugger that binary

location 0x1bd0 has been reached using Row 3 in Table 12. Note that 0x1bd0 is the instruction following

0x100c8. The instruction at location 0x1bcc (Row 2) is never reached as far as the native debugger is

concerned. In this way execution continues until execution reaches code cache location 0x100d0 (Row 5). 

When execution reaches 0x100d0 with a debug plan, the execution manager invokes the RIG. The

RIG determines that the stop point is at location 0x100d8 and continues execution until the stop point is

reached and value in %o1 computed at the stop point is saved. Interestingly, the debug plan shows %o5 as

the storage location with DDelete. However, the data location mappings are used (shown in Figure 24) to

determine that the storage location %o5 is mapped to %o1. Therefore, if the native debugger tries to find the

value in %o5, the execution manager returns the value contained in %o1. 

Once the value in %o1 has been determined, the execution manager gives control to the native

debugger to indicate that binary location 0x1bd8 has been reached. The native debugger gives control

back to the user, showing that source location SL2 has been reached. When the user queries the value of

source variable var, the native debugger determines the corresponding binary storage location to be %o5.

The value in %o1 is subsequently reported to the user. 

Figure 24: Transformation descriptors for a dynamically optimized code snippet

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 ld  [%o2+408],%o4

0x100cc sll  %o3, 2, %o5
0x100d0 inc  %o3
0x100d4 cmp  %o3, 0xff
0x100d8 ld  [%o2+%o5],%o1
0x100dc ble  0x100f4
0x100e0 add  %o0,-16,%o0
0x100e4 save %sp, 96, %sp
0x100e8 sethi %HI(SDT),%o1
0x100ec jmp %o1
0x100f0 or %o1,%LO(SDT),%o1
0x100f4 restore

Untranslated Code Dynamically Optimized Code

(a) (b)

Trans Prim
ID
CD

ID, DM (%g1)
ID, DD (%o5)
ID, DD (%o5)

CM
ID
ID
CI
CI
CI
CI
CI

(c)
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5.9    Summary

This chapter presented the TDB’s debug engine, which is responsible for generating and using debug infor-

mation in a SDT environment. The chapter describes the components of the debug engine and illustrates

how they address each code transformation descriptor. Finally, an example is used to illustrate how source

level debugging is facilitated with Tdb.

Source 
Location

Untrans. 
Binary 

Location

Binary 
Location in 

F. Cache

Trans 
descriptor

Code Location 
Mapping: 

<type, uLoc, FCLoc>

Debug Plan:
<FCLoc, Storage, Late, Stop>

SL1 0x1bc8 0x100c8 ID <ID,1bc8,100c8>

0x1bcc CD <CD,1bcc,NULL>

0x1bd0 0x100cc ID <ID,1bd0,100cc>

0x1bd4 0x100d8 CM <ID,1bd4,100d8>

SL2 0x1bd8 0x100d0 ID, DM <ID,1bd8,100d0> <100d0,%o5,100d0,100d8>

0x1bdc 0x100d4 ID, DM <ID,1bdc,100d4> <100d4,%o5,100d0,100d8>

0x1be0 0x100dc ID <ID,1be0,100dc>

Table 12: Code location mappings and debug plans for transformation shown in Figure 20 on 
page 43
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Chapter 6.  Implementing a Tdb-based Debugger

The previous chapters describe the structure and functionality of the Tdb framework. This chapter

describes strategies to implement a source level debugger based on Tdb. This chapter does not describe a

specific implementation. Rather, it shares some interesting experiences and implementation choices that

were made along the evolution of the techniques developed in this dissertation. The goal of this chapter is

to aid the reader (and implementor of a Tdb-based debugger) in deciding the right course of action when

encountering the same implementation alternatives. 

During the course of this dissertation research, three debuggers were implemented based upon the

Tdb framework, as shown in Table 13. Each implementation was targeted to a different SDT system or a

different host system (operating system and instruction set architecture) to evaluate the portability of Tdb.

For clarity, these debuggers are referred to as Tdb-1, Tdb-2 and Tdb-3. Tdb-1 and Tdb-3 were targeted to a

dynamic instrumenter and a dynamic optimizer based on Strata for the SPARC platform. Tdb-2, however,

was initially developed for Pin on x86 platform. Tdb-2’s debug engine was later reused, with minor config-

uration changes, for a dynamic instrumenter based on Strata for the SPARC platform. In each implementa-

tion, the organization of the Tdb framework stayed the same, i.e., a SDT system, a debug engine and an

existing debugger were organized together. However, the underlying communication mechanisms, the

interception of native debugger’s commands and the program tracker were implemented differently. 

This chapter uses the three debuggers to compare and contrast the design decisions made and

implementation choices considered while developing each debugger. First, Section 6.1 describes the

address space layout of Tdb’s debug engine for each implementation, i.e., what parts of the debug engine
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are placed in SDT system’s address space and what parts are in the native debugger’s address space. Sec-

tion 6.2 details how the program tracker was realized in each implementation. Section 6.3 discusses what is

involved in targeting the debug engine interfaces with a focus on the technique used by each implementa-

tion for intercepting the native debugger. Section 6.4 describes implementation details of the debug

engine’s components. This section also describes the interfaces provided by each debug engine component

for other components. Finally, Section 6.6 summarizes this chapter.

6.1    Address Space Layout

Modern operating systems provide support for a two-process model of debugging: the program being

debugged executes as a process separate from the debugger. This debugging model is used in all three Tdb

implementations, where the native debugger (Gdb) executes as one process and the SDT system executes

as another process. Figure 25 illustrates the address space layout of Tdb’s debug engine with respect to the

SDT system and the native debugger, used in all three implementations. As demarcated by the dotted line

in the figure, some components of the debug engine are placed in the address space of the SDT system,

while others are in the address space of the native debugger. 

The mapping generator and planner components of the debug engine are invoked by the SDT sys-

tem’s program tracker when new code is generated or existing code modified/deleted. Therefore, the map-

Implementation SDT system Native 
Debugger

Instruction set Communication 
mechanism

N. Debugger 
Interception 
mechanism

Tdb-1 Dynamic instru-
menter (FIST) Gdb SPARC Shared memory Modification to 

debugger

Tdb-2 Dynamic instru-
menter (Pin) Gdb Intel-x86 Shared memory Intercept ptrace 

library calls

Tdb-3 Dynamic opti-
mizer (Strata-DO) Gdb SPARC /proc based IPC Modification to 

debugger

Table 13: Comparison of three source level debuggers based on Tdb framework
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ping generator and the planner are placed in the same address space as the SDT system. In the

implementations, these components are compiled into a library and linked against the SDT system.

The execution manager, the breakpoint manager and the runtime information generator compo-

nents of the debug engine interact with the native debugger. Therefore, these components are placed in the

address space of the native debugger. 

The DIR is used by all components of the debug engine. Therefore, the DIR is accessible to both

processes (the native debugger and the SDT system). Clearly, some form of inter-process communication

(IPC) mechanism is needed regardless of which address space holds the DIR. Tdb’s efficiency requirement

(for generating debug information) motivates the placement of the DIR in the SDT system’s address space.

The native debugger’s actions are based upon an interactive debug user’s commands and queries. There-

fore, the efficiency requirement for the communication between the DIR and the debug engine’s compo-

nents in the native debugger’s address space are not as strict. 

The first two implementations, Tdb-1 and Tdb-2, place the DIR in a shared memory segment

accessible to both processes. The accessor functions for inserting, querying and removing information in

the DIR are also available to both processes. One advantage of using the shared memory mechanism is that

the interleaved code generation and execution in SDT systems avoids contention for the shared memory

data (debug information). Therefore, accesses to the DIR are quick for both processes. 

Figure 25: Address space layout of the debug engine
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The disadvantage of the shared memory approach is a practical matter. Shared memory is a scarce

resource, and most systems have a predetermined limited size of shared memory segments. Larger seg-

ments require intervention of the system administrator. Therefore, scalability and portability of the debug

engine suffers when the share memory mechanism is used. The third implementation, Tdb-3, did not use

the shared memory mechanism for these reasons. 

Tdb-3 places the DIR and all its accessor functions in the address space of the SDT system. This

ensures efficient accesses of the DIR from the program tracker. The debug engine components in the native

debugger’s address space access the DIR using /proc based IPC mechanism [60]. Accessing the DIR

from the native debugger involves invoking an accessor function in the SDT system’s address space using

the following four steps. 

1. Prior to calling an accessor function, the execution context of the executing program is saved, includ-

ing the general purpose registers and some machine specific registers such as the condition codes and 

the program counter; 

2. A dummy stackframe is setup before calling the accessor function. The dummy stackframe ensures 

that if execution stops in the called function (e.g., because of a crash), the native debugger can deter-

mine that it was the debug engine’s execution and not the program’s. The dummy stackframe is set up 

by extending the program’s stack, as shown in Figure 26, so that live data on the stack are unmodified 

during calls to the accessor functions. Note the unused stack space marked by dotted lines in the Figure 

26. The untranslated program binary was generated by the Gcc compiler [89], which occasionally 

saves live data computed by leaf functions outside the current stackframe. This behavior is not compli-

ant with SPARC ABI. However, to get around intermittent bugs caused by such live data, Tdb-3 left a 

predetermined amount of stack address space (64 bytes) unused. 

3. The accessor functions are called by setting the program counter (PC) to the first instruction in the 

function and the return address to be NULL; an invalid return address ensures that the debugger is 

given control after the function has executed. 
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4. The returned values are garnered by a /proc read operation (read register) and the saved program con-

text is restored.

The main advantage of the /proc based approach is that this communication mechanism greatly

enhances the scalability of debug information generated and the portability of the debug engine. The

implementation effort required in this approach is not significant because Gdb uses the same mechanism

on Solaris based systems to allow debug users to call arbitrary functions in the program being debugged.

Indeed, future implementations should piggyback the IPC mechanism on the one used by the correspond-

ing native debugger, e.g., /proc or ptrace. 

6.2    The Program Tracker

In general, SDT systems are implemented differently, possibly using different kinds of intermediate repre-

sentation for performing transformations. The program tracker needs to be specific to each SDT system.

Indeed, the Tdb framework does not specify the design of the program tracker for this very reason. Tdb’s

program tracker can be viewed as a component of a SDT system that uses services provided by other com-

ponents and install callbacks into other components. This view is illustrated in Figure 27 and used in all

Figure 26: Depiction of a program’s stack segment, where a dummy stackframe is constructed to 
make /proc based calls into the program’s address space for invoking DIR’s accessor functions. A 

stackframe is defined by its frame pointer (fp) and stack pointer (sp)

fp

sp

fp

fp
sp

sp

Program’s current 
stackframe

Live variables 
outside the 
stackframe

A “dummy” 
stackframe

Stackframe of the 
accessor function
73



three implementations discussed below, i.e., Tdb-1, Tdb-2 and Tdb-3. 

6.2.1    Program Tracker for Tdb-1 and Tdb-2

The SDT system used in Tdb-1, FIST, overloads the translate phase of Strata to perform a check to decide

whether to instrument the current instruction [49]. The intermediate representation used by FIST is close to

the machine instructions and does not carry any semantic information (e.g., the untranslated program

binary location for an instruction). 

The program tracker, in Tdb-1, installs callbacks in the “fetch” and “emit” stages of the SDT sys-

tem. When the callback installed on the fetch stage is hit, the program tracker records the untranslated loca-

tion of instruction and in the emit stage, the corresponding translated location is recorded. Subsequently, an

Identity descriptor is generated as <Identity, untranslated, translated>. 

For each instruction that was not fetched but was emitted, a CInsert is generated as <CInsert,

translated, translated + 1>. The CInsert results in an INSERT mapping that will allow the debug

engine to “skip” execution of code at translated until translated+1 is reached. In this way, execution

of the instrumented code is kept invisible to a debug user. 

Figure 27: The program tracker installs callback in SDT system’s components and uses services 
provided by the SDT system
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The SDT system used in Tdb-2 is another dynamic instrumenter, Pin, on the x86 platform. Pin uses

a similar model of instrumentation as FIST. The intermediate representation used by Pin, however, con-

tains the untranslated location for each instruction. The program tracker, in Tdb-2, installs a callback in the

“emit” stage of the SDT system. When this callback is hit, Identity and CInsert descriptors are generated

based upon whether the untranslated location for an instruction is non-NULL. 

6.2.2    Program Tracker for Tdb-3

The SDT system used in Tdb-3 is a dynamic optimizer, Strata-DO [32]. Strata-DO forms instruction traces,

constructs a RTL-based intermediate representation, optimizes a trace in several passes and then emits the

trace into the code cache. Tracking the effect of all optimization passes on each instruction is too complex

to be accomplished simply by installing callbacks at each optimization routine. Traditionally, debuggers

for statically optimized code have required significant modification to the optimizer and have resulted in

non-linear computation time [8,22,34,41,1,100,102]. With Tdb-3, a new technique of automatically infer-

ring the effect of program transformations is used that determines program transformations by comparing

untransformed and transformed instruction traces. 

Essentially, the program tracker associates an id, called a statement-id, with each instruction that is

fetched and records its untranslated location. The optimizer is modified so that it preserves statement-id’s

when applying optimizations. For example, if an instruction is moved, the statement-id remains

unchanged. If an instruction is duplicated, each of the statements get the same statement-id. After all opti-

mizations have been applied to a trace, the list of statement-id’s in the optimized code are compared with

the original ones that were recorded during instruction fetch. As a result of this comparison, the code trans-

formations are inferred and the transformation descriptors generated. The algorithm shown in Table 14,

transprim, describes Tdb-3’s program tracker. 
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// 1. Determine all live ranges in trace (a) before optimizations 
// are applied; (b) before register allocation is performed; and 
// (c) after register allocation if performed. LiveRanges is defined as:
// LiveRanges : {firstInstruction, AllInstructions, storageLocation}
// 
// 2. Assign stmt-id to instructions; record their unoptimized locations

// Algorithm 1(a): Compute Original and Actual positions for each stmt
Input: Trace, LiveRangesBeforeOpt, LiveRangesBeforeRA, LiveRangesAfterRA
Output: ID, CI, CD, CM, DD, DM // Transformationdescriptors

∀s : s ∈ Trace ∧ s.moved = FALSE // update moved attribute of insns
∀id : (id > s.stmtId) ∧ (id < s.next.stmtId)

if ∃s’∈ Trace : s’.stmtId = id then
s’.moved ← TRUE

actualPosition ← 0
∀s : s ∈ Trace // update actual position for all stmts

actualPosition ← actualPosition + 1
s.actualPosition ← actualPosition 

∀s : s ∈ Trace // update original positions for all stmts
if (s.moved = TRUE) then 

// find the first instruction on trace with a higher statement-id
if ∃s’∈ Trace : (s’.stmtId > s.stmtId) ∧ (s’.moved=FALSE) then

s.originalPosition ← s’.actualPosition 
else 

s.originalPosition ← ∞
else 

s.originalPosition ← s.actualPosition 

// Algorithm 1(b): Compute Identity descriptors
∀s : s ∈ Trace // find all instructions on trace that did not move

if s.originalPosition = s.actualPosition then
ID ← ID ∪ {s}

// Algorithm 1(c): Compute CInsert descriptors
∀s : s ∈ Trace // find all instructions on trace with stmtId not set

if s.stmtId = ∅ then
CI ← CI ∪ {s}

// Algorithm 1(d): Compute CDelete descriptors
∀id in [1,lastStmtId] // find all unopt instructions absent in Trace

∀s ∈ Trace : s.stmtId ≠ id then 
CD ← CD ∪ {(id, untranslatedLocation[id])}

// Algorithm 1(e): Compute CMove descriptors
∀s : s ∈ Trace // find all instructions that moved 

if s.originalPosition ≠ s.actualPosition then
CM ← CM ∪ {s}

// Algorithm 1(f): Compute DDelete descriptors
∀s ∈ Trace : s.actualPosition > s.originalPosition

∀s’∈ {ReachingDefinition (s’, Trace) = s} 
DD ← DD ∪ {(s, s’)}

// Algorithm 1(g): Compute DMove descriptors
∀lb : lb ∈ LiveRangesBeforeRA

if ∃la ∈ LiveRangesAfterRA : (la = lb) then 
∀s : s ∈ Trace ∩ l.AllInstructions

DM ← DM ∪ {(s.untransLoc, lb.storageLocation, la.storageLocation)}

Table 14: Algorithm to generate Code Transformation descriptors for an optimized trace
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Transprim computes transformation descriptors after all optimizations have been applied.

Transprim has two pre-processing steps: (1) live ranges of variables are computed before and after regis-

ter allocation (an optimization used in Strata-DO) and are available for use; (2) each instruction in the

unoptimized trace are assigned statement-id’s and their untranslated locations are recorded. A statement-id

is a unique number associated with instructions and can be assigned in a linear fashion. 

Transprim determines an original and an actual position of each instruction in the optimized

trace and uses these positions to compute the transformation descriptors. The original and actual positions

of instructions are computed in four steps as shown in Algorithm 1(a). The first step finds the instructions

that move due to optimization, as shown in lines 4-7. With code movement, statement-id’s are rendered out

of order. An instruction is deemed to have moved if its statement-id lies between that of two instructions

with higher statement-ids. Other instructions are assumed to have not moved. For example, in a sequence

of statement-id’s: {1,2,4,5,3,6}, the statement with id 3 is considered to be moved because its statement-id

lies between 5 and 6 which are both higher than 3. 

Note that this technique does not accurately find which instructions moved. In the above example,

it is possible that statement with id 3 was not moved from its position, rather statements with id’s 4 and 5

were moved to earlier than 3. In fact, all code movements detected are forward code movements, irrespec-

tive of whether the code movement happened in the forward or backward direction. What this technique

does, is to find all instructions whose relative positions are different than in the original code. The original

order of instructions can be reconstructed by determining the correct (relative) position of instructions con-

sidered moved. A debugger can then relate the original positions of instructions with their actual ones.

Therefore, detecting moved instructions in the proposed manner suffices for debugging purposes. 

In the second step, Algorithm 1(a) linearly assigns actual positions to each instruction in the opti-

mized trace (lines 8-11). The third step of the algorithm determines the original position of each instruc-

tion. Intuitively, the original position of an instruction is the position where it would have been, had no

code movement taken place. Note that the original position is a position in the optimized code, not the
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unoptimized code. The algorithm sets the original position for “unmoved” instructions to be the same as

their actual positions (lines 12, 19-20). For moved instructions, the algorithm scans the trace to find the

first “unmoved” instruction with a higher statement-id. Since the first step marked out-of-order instruc-

tions as moved, the original position of moved instruction is just before the first “unmoved” instruction

with a higher statement-id. The computation of original positions of moved instructions are shown in lines

13-18. Once the original and actual positions have been determined, the code transformation descriptors

are computed as described below. 

Identity. Any instruction in optimized code that did not move is associated with an Identity descriptor.

Transprim finds all instructions in an optimized trace whose original and actual positions are the same

and adds them to a set of instructions, ID, with Identity descriptor. Algorithm 1(b) in lines 22-24 shows

computation of the Identity descriptors. 

CInsert. All instructions in the optimized trace that did not have a statement-id assigned to it must be an

artifact of dynamic translation. This is because a statement-id is assigned to each instruction in the trace

before optimizations. Transprim adds instructions without statement-id’s to a set, CI, with CInsert

descriptors. The algorithm used for CInsert is shown in Algorithm 1(c) (lines 26-28).

CDelete. All instructions that were deleted during optimization are not present in the optimized trace.

Transprim checks for statement-id’s in unoptimized trace that are not associated with any optimized

instructions, as shown on lines 30 and 31 in Algorithm 1(d). The statement-id not found in the optimized

trace along with the corresponding untranslated location are added to a set, CD, with CDelete descriptors

(lines 32). Recall that the untranslated location for each statement-id is recorded in the pre-processing

stage of transprim. 

CMove. Any instruction marked as moved must have its original position different than its actual position.

Transprim adds such instructions to a set, CM, with CMove descriptors, as shown in Algorithm 1(e) on

lines 34-36. Note that a transformation descriptor describes the summary effect of all transformations
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applied to an instruction. Therefore, even if an instruction is moved several times during optimization

passes, there will be only one CMove descriptor that describes its final position on the trace relative to its

original position.

DDelete. A DDelete descriptor is associated with each instruction where a definition is not reachable

because the definition (an instruction) was moved. DDelete is generated in conjunction with CMove

descriptors. The program tracker performs a reaching definitions analysis for the variable defined by each

moved instruction at its original position. Each instruction that is reachable from the original position are

associated with a DDelete descriptor. Algorithm 1(f) on lines 38-40 shows the computation of DDelete

descriptors, which are then added into a set, DD. 

If an instruction is eliminated from a trace (e.g., via dead code elimination) and appropriate com-

pensation code is generated (see Section 2.1.3), the reaching definition analysis assumes that a definition

exists at the end of the trace, and analysis is terminated. DDelete descriptors are then associated with all

instructions in the trace (except exit stubs with compensation code) following the original position of the

moved instruction. 

DMove. Register allocation can change storage locations of variables. Algorithm 1(g) determines the new

and old storage locations of each live range before and after register allocation is performed. The instruc-

tion and its storage locations are added to a set, DM, of DMove descriptors (lines 42-45). 

Example. Figure 28 uses an example SPARC code snippet to illustrate how transprim generates trans-

formation descriptors. In the example, dynamic optimization of the code snippet leads to exactly one code

movement resulting in Identity, CMove and DDelete descriptors. The code snippet is shown in Figure

28(a). The first column of Figure 28(a) shows several application binary locations in the text segment of a

program. Column 2 in the figure shows binary instructions at each of the application binary locations.

Before optimizations are applied, each instruction in the trace is assigned a unique statement-id. The state-

ment-id’s are shown in Figure 28(b). 
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Figure 28: Algorithm in Table 14 is used to generate code transformation descriptors for dynami-
cally optimized code. The instruction at untranslated location 0x1bd4 (see (a) above) is moved 

during optimization. DMove descriptors are not shown in the example above. 

Id    Moved    Actual    Orig      Insn
1.   ld..
2.    clr..
3.    sll..
4.    ld..
5.    inc..
6.    cmp..
7.    ble..
8.    add..

(a) Application binary instructions

App Loc     Application Instructions
0x1bc8   ld  [%o2+408],%o4
0x1bcc   clr  %o3
0x1bd0   sll  %o3, 2, %g1
0x1bd4   ld  [%o2+%g1],%o5
0x1bd8   inc  %o3
0x1bdc   cmp  %o3, 0xff
0x1be0   ble  0x1bd0
0x1be4   add  %o4,%o5,%o4
...

Untranslated Code

(b) Statement-id’s assigned to instructions 
during dynamic translation

Code During Translation

Code After Optimization

(c) Optimization moves insn with id 4; 
Statement marked Moved

Id    Moved    Actual    Orig      Insn
1.   ld..
2.    clr..
3.    sll..

5.    inc..
6.    cmp..
4.   ld..
7.    ble..
8.    add..

(d) Actual positions assigned to all 
insns; original to unmoved insns

Id    Moved      Actual      Orig    Insn
1.    1.   1. ld..
2.     2.   2. clr..
3.     3.   3. sll..

5.  4.   4. inc..
6.  5.   5. cmp..
4. 6.   ld..
7.  7.   7. ble..
8.  8.   8. add..

Code After Optimization

(e) Original position of moved insn is 
the same as actual position of first 

insn with a higher statement-id

Id    Moved    Actual    Orig     Insn
1.    1.   1. ld..
2.     2.   2. clr..
3.     3.   3. sll..

5.  4.   4. inc..
6.  5.   5. cmp..
4. 6.   4. ld..
7.  7.   7. ble..
8.  8.   8. add..

Code After Optimization  Dynamically Optimized Code                  Prim

(f) After code generation in fragment cache, Original 
and Actual positions are replaced by fragment cache 
locations and Transformation primitives computed

Frag Loc     Id      Actual         Orig        Insn   
0x100c8  1. 0x100c8 0x100c8 ld..  ID
0x100cc  2. 0x100cc 0x100cc clr.. ID
0x100d0  3. 0x100d0 0x100d0 sll.. ID

0x100d4  5. 0x100d4 0x100d4 inc..ID,DD
0x100d8  6. 0x100d8 0x100d8 cmp..ID,DD
0x100dc  4. 0x100dc 0x100d4 ld.. CM,DD
0x100e0  7. 0x100e4 0x100e4 ble.. ID
0x100e4  8. 0x100e8 0x100e8 add.. ID
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The first step in Algorithm 1(a) of transprim is to find moved instructions and mark them. In

Figure 28(c), the ld instruction (originally at location 0x1bd4 in Figure 28(a)) is moved during optimiza-

tion. The code movement is depicted by the arrow in the figure. Figure 28(c) also shows the statement-id’s

of the instructions after all optimizations have been applied. Note that the statement-id 4 is out of order and

is therefore marked as moved. The second step in Algorithm 1(a) assigns actual positions to each instruc-

tion and the third step assigns original positions. The actual positions are marked in a linear sweep through

the optimized code. The original position of “unmoved” instructions are set to be the same as their actual

positions. The original and actual positions for the optimized code are shown in Figure 28(d). For instruc-

tions that move during optimization (see instruction with statement-id 4), the original position is assigned

to be the actual position of the first “unmoved” instruction with a higher statement-id. In this case, the

instruction with statement-id 5 was not moved during optimization. Therefore the original position of

moved instruction is set to 4, as shown by the arrow in Figure 28(d). Note that, if the instruction with state-

ment-id 4 had not moved during optimization, its location would have been before the instruction with

statement-id 5. 

Once the original and actual positions of all instructions are known, the code transformation

descriptors are determined. According to Algorithm 1(b) in Figure 28, the Identity descriptor is associated

with all but the moved instruction and the CMove descriptor with the moved instruction. The moved

instruction defines register %o5 and the original definition reaches the instructions with statement-id 5, 6

and 7. What this means is that the expected value in %o5 at instructions with statement-id’s 5, 6 and 7 will

not be the actual value. DDelete descriptors are associated with these instructions. The transformation

descriptors are shown in the last column in Figure 28(f). Note that the abbreviation ID refers to Identity

descriptor, CM to CMove and DD to DDelete descriptor. 

When optimized instructions are finally emitted in the code cache during code translation, the

original and actual positions of each instruction are replaced by their corresponding code cache locations.

The actual position of an instruction is replaced by the location where the instruction is placed in the code
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cache. Note that all the actual positions in Figure 28(f) are the same as the corresponding code cache loca-

tion. The original position p for each instruction is replaced by the code cache location corresponding to

the instruction whose actual position is p. Therefore, the original location for any “unmoved” instruction is

the same as its actual location. For example, the original location for the first instruction in Figure 28(f) is

0x100c8, which is the same as its actual location. However, the original location for a moved instruction

is the code cache location where the instruction would have been, in the absence of code movement. In

Figure 28(f), the original position for instruction at 0x100dc is 0x100d4. 

Discussion. In Tdb-3, the program tracker generates transformation descriptors with linear complexity.

While the algorithm used by the program tracker in Tdb-3 can be used in many other SDT systems, includ-

ing Tdb-1 and Tdb-2, the complexity of this algorithm is not needed in Tdb-1 and Tdb-2 where transforma-

tion descriptors can be determined with significantly lower implementation effort. For example, the

program tracker in Tdb-2 was less than 10 lines of code. It did not require modifications to any SDT com-

ponent (except for a callback) and had linear complexity. The implementation effort in Tdb-1 was similar.

The minimal effort in these implementations was due to the presence of only two transformation descrip-

tors, Identity and CInsert, that could be determined relatively easily. In designing the program tracker, the

complexity of code transformations should be analyzed and accordingly a solution chosen. Indeed, the

algorithm used by Tdb-3’s program tracker will be useful to a large set of SDT systems: those that apply

transformations on instruction traces.

6.3    Debug Engine Interfaces

The debug engine provides the SDT interface for communication with the SDT system and the native

debugger, as discussed in Section 5.1. The APIs in the SDT interface essentially specify a representation

for the code and data descriptors. Consequently, once the program tracker has generated the transformation
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descriptors, it can easily target these APIs. This section focuses on the debug engine APIs provided by the

native debugger interface, because they have interesting implementation choices. The rest of this section

discusses how the native debugger interface was targeted in the three Tdb-based implementations.

6.3.1    Targeting the Native Debugger Interface

The APIs provided by the native debugger interface are invoked when the native debugger would other-

wise take an action on the program binary (e.g., inserting a breakpoint1) or when the program execution

pauses due to a breakpoint hit. The implementations discussed in this chapter used one of the following

two ways to target the native debugger interface: Tdb-1 and Tdb-3 modified appropriate locations in the

native debugger, where an action was performed on the program binary, to explicitly make an API call into

the debug engine. Tdb-2 intercepted library calls made by the native debugger and called into the native

debugger interface instead. These approaches are discussed below and summarized in Table 15.

Tdb-1 and Tdb3. The native debugger, Gdb, used in Tdb-1 and Tdb-2 is a retargetable and widely used

source level debugger [88]. Tdb-1 and Tdb-3 modify Gdb to target the native debugger interface. The

advantage of this approach is that it is operating system independent. Retargeting Tdb-1 to another operat-

ing system and/or another SDT system requires implementing a new program tracker. The debug engine

does not need to be re-implemented as it is already portable. 

Targeting the native debugger interface required modification of only seven functions in Gdb, as

shown in the second column of Table 15. The native debugger interface is essentially an interface to a

library that is linked against the native debugger. The initial implementation effort, that required under-

standing some internals of Gdb, was less than two weeks. 

1. There are three ways of inserting breakpoints: writing an address into a hardware debug regis-
ter, overwriting an instruction with a breakpoint trap, and software based breakpoints using 
jump instructions. In the implementations discussed in this chapter, the first mechanism was 
used by the native debugger. However, irrespective of which technique is used by a native 
debugger, they all boil down to writing into a program’s address space. 
83



Tdb-2. Tdb-2 was targeted to a commercial environment where portability across debuggers was a

requirement. Recompilation of the native debugger was not an option. However, the target platform was

fixed: x86/Linux. On Linux, source level debuggers, including Gdb [88] and Idb [40] make use of the

ptrace [33] system call provided by Linux. Ptrace provides a debugger the ability to read and write into a

program’s address space and to handle signals on behalf of a program. To read or write into a program’s

address space, a debugger makes ptrace library calls, which in turn call the ptrace system call. The debug-

ger also installs signal handlers for SIGTRAP (breakpoint/watchpoint), SIGSEGV (segmentation fault) and

SIGBUS (bus error), among others. 

In Tdb-2, the ptrace calls made by the native debugger were intercepted by implementing a

dummy function call, also named ptrace, that invokes the debug engine instead of the ptrace system call.

The dummy ptrace was compiled into a shared object that was loaded and dynamically linked against the

native debugger. POSIX systems, such as Linux, allow a library to be “preloaded” into a program by using

an environment variable LD_LIBRARY_PRELOAD. This environment variable was used in Tdb-2 to over-

ride original ptrace library calls and instead invoke the “dummy” ptrace calls. The third column of Table

15 shows the ptrace calls that were intercepted and the corresponding debug engine APIs that were

invoked in Tdb-2. In addition to intercepting the ptrace calls, Tdb-2 also installed custom signal handlers

Native Debugger Interface Gdb functions modified in Tdb-1 
and Tdb-3

Parameters of intercepted ptrace 
calls in Tdb-2

signal_handler handle_inferior_event(signal) // custom signal handler

read_value target_read_memory(memaddr)
read_register(regno), regno != PC

ptrace(GETREGS)
ptrace(PEEK_DATA)
ptrace(PEEK_USR)

insert_breakpoint target_write_memory(memaddr, TRAP) ptrace(POKE_TEXT, TRAP)
ptrace(POKE_DATA, TRAP)

remove_breakpoint target_write_memory(memaddr, !trap) ptrace(POKE_TEXT, !TRAP)
ptrace(POKE_DATA, !TRAP)

read_pc read_pc(memaddr) ptrace(GETREGS)

write_pc write_pc(value) ptrace(SETREGS)

Table 15: Mechanisms used by different implementation to target the native debugger interface. In 
the table, PC refers to “program counter” and TRAP is a breakpoint instruction. 
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for SIGTRAP to invoke the execution manager. This signal handler overrode the native debugger’s signal

handler. In this way, any breakpoints that were hit during the execution of the program were reported to the

debug engine instead of the native debugger. 

6.4    The Debug Engine 

The debug engine described in Figure 21 is really the debug engine used in Tdb-3. In Tdb-1 and Tdb-2, the

only descriptors generated by the program tracker are Identity and CInsert. Consequently, there is no data

value problem. Therefore, the debug engine used in Tdb-1 and Tdb-2 do not have the planner and the RIG

components. This section describes some implementation details for the debug engine components and

gives the interfaces provided by each component to other components. The interfaces are shown in Table

16. 

6.4.1    The Mapping Generator

The mapping generator consumes the transformation descriptors and produces debug mappings. Indeed,

the debug engine interfaces exposed to the program tracker, for communicating the transformation descrip-

tors, are really the interfaces of the mapping generator. Note that the interfaces provided by the mapping

generator, as shown in the first row of Table 16, are the same as the SDT interfaces described in Section

5.1. 

The debug mappings generated by the mapping generator are designed to closely resemble the

transformation descriptors (see Section 5.2). This design permits the mapping generator to perform fast

processing and quickly generate the debug mappings. The implementation of the mapping generator is

straightforward for all transformation descriptors, i.e., the algorithms in Table 6 on page 54 provide the
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sufficient detail. The mapping generator performs one optimization when handling DMove descriptors,

which is discussed below. 

DMove is typically a result of register allocation, where live ranges are reallocated to a new stor-

age location. Therefore, at any given instruction, there are a number of variables that reside in a different

location than the original one. In Tdb-3, the mapping generator generates only one data location mapping

per live range. The data location mapping is identical to the DMove descriptor (see Table 6). The mapping

generator associates the data location mapping with the first instruction of a live range and associates a bit-

map, called data_avail, with an appropriate bit set at every other instruction. The bits that are set in

data_avail represent all variables whose storage location has changed due to program transformation. At

runtime, when the execution manager queries the DIR for a storage location, the DIR first checks

Debug Engine Component Component Interfaces

The Mapping Generator code_descriptor <type, sourceLocation, targetLoc>
data_descriptor <type, dataValueInfo, locationAfter>

The Planner data_descriptor <type, dataValueInfo, NULL>

The Execution Manager

signal_handler <>
read_value <variableLocation>
insert_breakpoint <instructionLocation>
remove_breakpoint <instructionLocation
read_pc <>
write_pc <>

The Breakpoint Manager insert_breakpoint <instructionLocation>
remove_breakpoint <instructionLocation>

The Runtime Information Generator perform_recording <codeCacheLocation>

The Debug Information Repository

insertMappingIntoRepos <type, src, targ, isBitmask>
insertPlanIntoRepos <{loc}, loc, {loc}, bitmask>
insertBreakpointIntoRepos <type, location>
recordInstruction <codeCacheLocation>
recordBreakpoint <codeCacheLocation>
recordLatePoint <codeCacheLocation>
insertRangeRecords <variable, value, codeCacheLoc>
lookupMappingInRepos <type, codeCacheLocation>
lookupPlanInRepos <type, codeCacheLocation>
lookupRangeRecords <variableLocation, codeCacheLoc>
lookupBreakpoint <type, location>
lookupRecordedInstruction <codeCacheLocation
lookupRecordedBreakpoint <codeCacheLocation>
lookupRecordedLatePoint <codeCacheLocation>
removeFromRangeRecords <codeCacheLocation

Table 16: Interfaces provided by the Debug Engine components
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data_avail to decide if the storage location has been relocated. If so, the data_avail associated with previ-

ous instructions are scanned sequentially until the corresponding data location mapping is found. Note that

a sequential traversal of instructions works because the SDT system in Tdb-3 operates at a trace granular-

ity, which is linear in nature.

The mapping generator invokes the planner using the interface shown in row 2 of Table 16 for all

DDelete descriptors. The mapping generator stores all the mappings into the DIR using the following inter-

face, where isBitmask determines whether the target is a bitmask (in case of DMove) or a location. 

insertMappingIntoRepos <type, source, target, isBitmask>

6.4.2    The Planner

The planner, only implemented in Tdb-3, handles DDelete descriptors by generating debug plans for each

instruction in the live range specified by the descriptor. The algorithm used to generate debug plans, con-

sisting of late and stop points, is described in Table 7 on page 58. For each DDelete, Tdb-3 associates a

debug plan with the first instruction in the corresponding live range and a bit is set in data_avail for all the

other instructions. The technique of setting a bit in data_avail is similar to that used by the mapping gener-

ator for DMove. The planner’s interface to the mapping generator is the same as used by the program

tracker to communicate data descriptors, as shown in row 2 of Table 16. The planner uses the following

interface to store the debug plans in the DIR, where ccLoc is the instruction location where debug plan is

attached, StopPoints is a set of associated stop points and bitmask specifies the variable for which the

debug plan is generated. When the bitmask is NULL, the late and stop points are associated with the

ccLoc (the late point is ccLoc); otherwise, the bitmask is associated with the ccLoc and stored into the

DIR. 

insertPlanIntoRepos <ccLoc, StopPoints, bitmask> 
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6.4.3    The Execution Manager

The execution manager consists of a SIGTRAP handler and the functionality to deal with reads and writes

of memory locations and registers. Insertion and removal of a breakpoint is writing a breakpoint trap at a

memory location, in all three implementations. The algorithm used by the execution manager is described

in Table 9 on page 61. With Tdb-1 and Tdb-2, the signal handler has to only deal with whether a breakpoint

was hit at an instruction with REGULAR or INSERT mapping and take an appropriate action. The signal

handler is a stripped down version of the Algorithm 1 in Table 9, consisting of only lines 11-14. In Tdb-3,

the entire Algorithm 1, shown in Table 9, comprises the signal handler. 

The APIs comprising the native debugger interface are essentially the interfaces of the execution

manager, as shown in row 3 of Table 16. The execution manager uses the interfaces provided the break-

point manager and the RIG (rows 4 and 5 in Table 16). In addition, the execution manager uses the follow-

ing APIs of the DIR. 

lookupMappingInRepos <type, codeCacheLocation>

lookupPlanInRepos <type, codeCacheLocation>

lookupRangeRecords <variableLocation, codeCacheLoc>

lookupBreakpoint <type, location>

6.4.4    The Breakpoint Manager

The breakpoint manager inserts and removes breakpoints. Internally, the breakpoint manager uses three

types of breakpoints: Original, Visible and Invisible. The original breakpoints are breakpoints at program

binary locations. When the native debugger tries to insert a breakpoint at a program binary location, its

actions lead to the execution manager inserting a breakpoint at the corresponding translated code locations

as well as the originally intended (untranslated) locations. Breakpoints are needed at untranslated locations

so that if the code containing such a breakpoint gets translated after breakpoint insertion, the breakpoint
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manager can correctly insert the breakpoint in the translated code. 

The visible breakpoints are breakpoints in the code cache that correspond to user breakpoints in

the program binary code. The invisible breakpoints are breakpoints inserted by the debug engine at late

points, stop points and the target of INSERT mappings. All breakpoints are temporarily removed when exe-

cution of the translated code pauses for further code generation or for inspection by the native debugger.

This ensures that the SDT system and the native debugger do not accidentally read breakpoint instructions

instead of the original instructions at program locations containing breakpoints. When execution resumes,

all breakpoints are re-inserted. 

The breakpoint manager provides interfaces, shown in row 4 of Table 16, to the execution manager

and uses the following interfaces of the DIR.

lookupMappingInRepos <type, codeCacheLocation>

lookupPlanInRepos <type, codeCacheLocation>

6.4.5    The Runtime Information Generator

The runtime information generator, implemented only in Tdb-3, uses the algorithm described in Table 11

on page 65. The data structure used to record values of variables is interesting enough to demand further

deliberation. 

The runtime information generator uses a modified version of range records data structures that

was previously proposed by Coutant [23]. Instead of recording all live data values at each instruction,

range records provide an efficient mechanism of recording only those values that change at an instruction.

The rest of the values can be reconstructed from earlier information. Coutant’s range records were com-

puted statically to track the storage location of a variable. Tdb-3’s implementation uses the range records

for keeping track of data values instead. 
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At the start of the record phase, the RIG creates a live range for each variable available at the

instruction. Initially, the live range starts and ends at the first recorded instruction. At subsequent instruc-

tions in the record phase, if the value of a variable does not change, the live range is extended. If the value

of a variable changes, a new live range for the variable is started at that instruction. 

The live ranges constructed by the data-value tracker are illustrated by the example in Figure 29.

The arrows in the figure show the statement that is about to be executed. The figure shows four instruc-

tions, each of which assign a new value to one of the three variables x, y, and z. In Figure 29(a), the execu-

tion is at the first instruction. Assume all variables are live at this point. The live ranges for each variable

are created and contain the first instruction in the range. When the first instruction executes, the value of

variable x changes; therefore a current live range for x ends and a new live range starts, as shown in Figure

29(b). The live ranges for variables y and z are extended. The second instruction defines variable y. If the

value of y changes from the existing value when this instruction is executed, a new live range is created for

y as shown in Figure 29(c). Similarly, new live ranges are created for variable x and extended for y and z

at the third and fourth instructions as shown in Figure 29(d). The live range of variable z encompasses all

four instructions, since its value was never changed. During replay, if the value of a variable is queried

while replaying an instruction, the range records are consulted to determine the value of the variable. 

Figure 29: Construction of live ranges for three variables x, y and z as execution progresses 
through a set of 4 statements
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The runtime information generator provides interfaces, shown in row 5 of Table 16, to the execu-

tion manager. The RIG uses the following interfaces of the DIR. 

recordInstruction <codeCacheLocation>

recordBreakpoint <codeCacheLocation>

recordLatePoint <codeCacheLocation>

insertRangeRecords <variable, value, codeCacheLoc>

lookupMappingInRepos <type, codeCacheLocation>

lookupPlanInRepos <type, codeCacheLocation>

lookupBreakpoint <type, location>

lookupRecordedInstruction <codeCacheLocation

lookupRecordedBreakpoint <codeCacheLocation>

lookupRecordedLatePoint <codeCacheLocation>

removeFromRangeRecords <codeCacheLocation

6.4.6    The Debug Information Repository

The DIR is a set of repositories for storing debug information, including debug mappings, debug plans,

live breakpoints, range records and lists of instructions and breakpoints recorded by the debug engine’s the

RIG component. The debug mappings and debug plans are stored in a hashtable structure for quick access.

All other information is stored in linked lists. The representation of the debug mappings and debug plans in

the DIR merits further discussion. 

The DIR views debug mappings and debug plans simply as tuples and is not concerned with their

associated semantic information (e.g., the type of code location mapping). The DIR internally maintains

two types of mappings: one-many and one-one. The one-many mappings are used to represent REGULAR

code location mappings, where the target of the corresponding mapping is a set (see Table 6 on page 54).

The one-many mappings are indexed by untranslated locations, the source of the REGULAR mapping, and
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used during lookups performed by the mapping generator (see Table 6). When a breakpoint is hit and the

execution manager queries the DIR for an untranslated location corresponding to a translated location, the

DIR provides a reverse lookup of the REGULAR mapping. To facilitate this reverse lookup, the DIR gener-

ates a one-one mapping for each REGULAR code location mapping in addition to the one-many discussed

above. The one-one mapping is indexed by the translated location in a REGULAR mapping. 

The DIR also uses one-one mapping for INSERT and DELETE code location mappings, the data

location mappings and the debug plans. The one-one mappings for DELETE are indexed by untranslated

locations, while all other one-one mappings are indexed by translated locations. The DIR maintains a sep-

arate repository for each type of code location mapping, data location mapping and the debug plans. The

memory requirements of the DIR are proportional to the size of code cache used by the SDT system

because no more than a code cache full of translated instructions are live at any time. 

The DIR provides interfaces to all other components in the debug engine, as shown in Table 16.

Each of the DIR interfaces have already been discussed earlier in this section. 

6.5    Lessons Learnt

The following discussion summarizes some of the lessons learnt from the three implementations of Tdb. 

•  The program tracker becomes significantly more complicated when the SDT system performs the

code movement transformation. Therefore, if it is known that the SDT system performs little or no

code movement, CMoves should not be generated. As discussed in this chapter, the program tracker

was less than ten lines of code in Tdb-2, which did not perform code movement. 

•  The descriptor DDelete can usually be avoided. Any computation that is eliminated by a SDT system

is likely not to be queried by a user debugging at the source level. Often deleted instructions are dead

code or computation of compiler temporaries, where breakpoints will never hit. 
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•  When retargetability across host systems (operating system, instruction set architecture) is not

desired, a better approach to intercepting the native debugger is the one followed in Tdb-2. That is,

perform the interception in library code, instead of modifying the source code of the debugger. 

•  The shared memory model for inter-process communication can be used when the code cache sizes

are fixed to a small size (e.g., less than 64 MB). When the code cache size is large or unbounded, this

approach is not portable. 

6.6    Summary

This chapter discussed the experiences and interesting implementation choices that were encountered dur-

ing the course of this dissertation research. In all, three implementations of the Tdb framework have

existed. This chapter compared how the goals and the target SDT system and environment affected some

of the implementation decisions. Hopefully, the implementation details discussed in this chapter will help

engineers, implementing a Tdb-based debugger, to choose an appropriate solution when presented with the

same choices. 
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Chapter 7.  Debugging Dynamically Instrumented Code

Dynamic instrumentation is a powerful technique by which external code can be inserted into an executing

program. Dynamic instrumentation has been used for a variety of purposes, including software security

[47,80], where the injected code can monitor programs for suspicious behavior, program analysis and pro-

filing [49,59,62,104], where counters are injected at appropriate places in programs, and architectural sim-

ulation [19,51], where simulation is performed at certain code locations such as every instruction accessing

memory. Dynamic instrumenters can be quickly realized using software dynamic translation. In fact, a

number of dynamic instrumenters have been built using SDT including Pin [59], FIST [49] and Dyninst

[62]. 

Despite the usefulness of dynamic instrumenters and relative ease of developing them with SDT

technology, techniques for debugging instrumented code at the source level have been lacking. For some

instrumented applications, such as software security [47,80] and memory debugging [65], instrumentation

code remains in a program while the program is being debugging. With instrumentation code interspersed

with regular binary code, it becomes hard for a developer to debug his/her programs. This chapter presents

a new debugger, Tdb-1, based upon the Tdb framework to provide debugging support for dynamically

instrumented programs. Tdb-1 assumes that dynamic instrumentation is performed in SDT environment. 

The first section of this chapter, Section 7.1, briefly describes FIST, a dynamic instrumenter based

on Strata, that is used in Tdb-1. The next section, Section 7.2 gives the experimental results. Finally, Sec-

tion 7.3 summarizes the chapter. 
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7.1    FIST: A SDT-based Dynamic Instrumenter

FIST is a dynamic instrumenter that inserts external code into an executing program that is dynamically

translated by Strata [49]. Figure 30(a) shows a high level view of FIST, where the dynamic translator com-

municates with a dynamic instrumenter before code is emitted into the code cache. Figure 30(b) illustrates

how the translate stage of a basic SDT system (in this case, Strata) can be overloaded to realize a dynamic

instrumenter (in this case, FIST). 

FIST inserts external code into at certain locations in translated code. The instrumenter performs a

static analysis of code being dynamically translated to determine if it should be instrumented. For instance,

a basic block profiler is an instrumentation application in which external code is inserted at the beginning

of each basic block [71]. The static analysis in this case would be to determine whether code currently

being translated is the target of a branch instruction. When the static analysis determines that instrumenta-

tion code should be inserted at a given location, called the instrumentation point, instrumentation code is

generated along with the usual translated code and emitted into the code cache. In the case of a basic block

profiler, the external code increments a counter. In addition to this external code, the instrumentation code

Figure 30: A dynamic instrumenter can be built by extending a basic SDT system
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also includes a prologue and an epilogue that save and restore the context of execution (registers) so that

the external code does not perturb the execution state of the application. Figure 31 illustrates how external

code can be interspersed with the original code in the code cache after dynamic instrumentation. 

Instrumentation code can be inserted into a program in different ways based upon a number of fac-

tors, such as whether code layout changes are permissible or whether instrumentation will need to be

removed later. The overheads associated with dynamic instrumentation may also be a concern in some

instrumentation systems. FIST uses three different mechanisms to instrument code. These mechanisms are

described in detail in Kumar et al. [49]. The following discussion illustrates, by means of an example, two

instrumentation mechanisms in FIST that is commonly used by most dynamic instrumenters, including

Pin[59], Dyninst [62] and RAIL [12]. 

7.1.1    Inline versus Fast-breakpoint Instrumentation

On the basis of the position of instrumented external code relative to its instrumentation point, dynamic

instrumentation can be classified as inline or fast-breakpoint. Figure 32 shows the two methods of instru-

mentation using an example. In the inline method of instrumentation, the external code is placed along

with the application code, modifying the original layout of the application code. Figure 32(a) shows the

inline method of instrumentation. The fast-breakpoint method of instrumentation, on the contrary, places

Figure 31: With dynamic instrumentation, additional code is spread across the instruction stream. 
Each instrumentation point has a prologue, an epilogue and the instrumented external code

...
Instruction
Instruction

Instrumentation
Instruction
Instruction
Instruction
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(a) Instruction Stream (b) Code at each instrumentation point
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  External Code // instrumentation
  Epilogue          //restore context
96



external code in a separate location than the original application code. Figure 32(b) shows the fast-break-

point method of instrumentation. In the fast-breakpoint method, control transfer to the instrumentation

code is performed via a branch instruction which replaces the instruction at the instrumentation point. In

Figure 32(b), the instrumented code is shown in the box marked as such. The original ld instruction is

appears to be part of the instrumentation code, which is executed before control transfers back to the appli-

cation instruction following the instrumentation point. The payload function in both methods of instrumen-

tation in Figure 32 refer to an external function invoked as part of instrumentation code.

7.1.2    Removal of Instrumentation

Instrumentation once placed in an application program may eventually need to be removed. For example, a

dynamic optimizer may instrument counters into code blocks to detect frequently executed code regions

and remove the counter once they reach a threshold. With the inline instrumentation method, removing

instrumentation involves either overwriting the instrumentation code with nops or regenerating the code

without instrumentation. FIST supports the latter method (regenerating code), because additional nops can

increase overheads substantially. Removing the instrumentation code is much easier when fast-breakpoint

Figure 32: Dynamic instrumentation using inline method and fast-breakpoint method; in both 
methods, the prologue contains a “save” instruction and epilogue contains a “restore” instruction

0x1bc8 ld  [%o2+408],%o4
0x1bcc clr  %o3
0x1bd0 sll  %o3, 2, %g1
0x1bd4 ld  [%o2+%g1],%o5
0x1bd8 inc  %o3
0x1bdc cmp  %o3, 0xff
0x1be0 ble  0x1bd0
0x1be4 add  %o4,%o5,%o4
...
...

0x100c8 save %sp, -96, %sp
0x100cc sethi %HI(ctr),%o1
0x100d0 ori %o1,%LO(ctr),%o1
0x100d4 ld  %o2, [o1]
0x100d8 add %o2, 1, %o2
0x100dc sd  %o2, [o1]
0x100e0 restore
0x100e4 ld  [%o2+408],%o4
0x100e8 clr  %o3
0x100ec sll  %o3, 2, %g1
0x100f0 ld  [%o2+%g1],%o5
...

Untranslated Code Dynamically Instrumented Code

(a) Original code (b) Inline instrumentation

Dynamically Instrumented Code

0x100e4 b,a 0x110a0
0x100e8 clr  %o3
0x100ec sll  %o3, 2, %g1
0x100f0 ld  [%o2+%g1],%o5
...

0x110a0 save %sp, -96, %sp
0x110a4 sethi %HI(ctr),%o1
0x110a8 ori %o1,%LO(ctr),%o1
0x110ac ld  %o2, [o1]
0x110b0 add %o2, 1, %o2
0x110b4 sd  %o2, [o1]
0x110b8 restore
0x110bc ld  [%o2+408],%o4
0x110bc b,a 0x100e8

(c) Fast-breakpoint instrumentation
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method is used for instrumentation. The branch instruction that transfers control to the instrumented code

can simply be replaced by the original instruction. This method of removal is supported in FIST. Another

way to remove fast-breakpoint instrumentation is to regenerate the code without instrumentation, as

described before for inline method.

7.2    Experimental Evaluation

Tdb-1 uses FIST as the dynamic instrumenter and Gdb (version 5.3) as the native debugger [88]. FIST uses

a fast breakpoint method of instrumentation and the instrumentation, once inserted, is never removed. 

Tdb-1 is used in a scenario involving a code security checker. The code security checker can

enforce policies on the use of operating system calls, using dynamic instrumentation at system

calls[80,79]. For example, the use of file open may be restricted to not open certain files (e.g., the password

file). Tdb-1 is validated to ensure that source-level information can be correctly reported. Tdb-1’s perfor-

mance and memory overheads for generating and using the mappings are also evaluated. 

7.2.1    Methodology

For the experiments, several SPEC2000 benchmarks were used to compare the results and overhead of

Gdb and Tdb-1. All experiments were run on a 500 MHz Sun Blade 100 with 256 MB RAM and Solaris 9.

Strata’s default code cache size of 2 MB was used. The dynamic instrumenter instrumented all system calls

to enforce restrictions on operating system services. 

Numerous user breakpoints were inserted in the benchmarks with Gdb and Tdb-1. To find appro-

priate breakpoint locations that would likely be hit, the functions that accounted for 90% of the execution

time in each benchmark were selected to have breakpoints. Within these hot functions, breakpoint loca-

tions were selected at assignment, conditional, and switch instructions. Breakpoints were also inserted at
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function calls, returns, and instrumented system calls. The number of breakpoints varied from 149–218,

with 6–13 functions selected per benchmark. 

All benchmarks were run until at least 10,000 breakpoints were hit. The actual number of hits var-

ied depending on the number of system calls that were executed. The breakpoints that were hit covered all

dynamic code translations, overhead reduction techniques, and instrumentation points. 

7.2.2    Verification

Validating the operation of Tdb-1 required checking that Tdb-1 correctly mapped breakpoint locations to

appropriate source instructions. The validation compared the information reported by Gdb without

dynamic translation to the information reported by Tdb-1 with dynamic translation. The validation was

automatically done by scripts that inserted breakpoints, controlled the program execution, and generated

output at each breakpoint. The output from each benchmark run under Gdb and Tdb-1 was also automati-

cally compared. 

Table 17 shows the distribution of the breakpoints that were hit for the benchmarks. The table

shows the number of unique breakpoints that were hit for the different types of translations. In the table,

“Regular” are regularly translated instructions, “Cond” are conditional branches, “Calls” are function calls,

“Indirect” are register-indirect branches, and “Instr” is instrumented system calls. For example, in mcf, 14

unique breakpoints on assignment instructions were hit a total of 1,569 times. It was verified that Gdb and

Tdb-1 hit the same breakpoints, in the same order and the same number of times. In all cases, the same

breakpoints were hit by both debuggers. It was also verified that the breakpoint commands in both cases

reported the same information (e.g., which source line number was hit). The programs were allowed to run

to completion when all breakpoints were disabled. 
99



7.2.3    Performance and Memory

To evaluate performance and memory overhead, the run-times of both debuggers were compared and the

memory requirements of Tdb-1 was measured. Table 18 shows the run-times for the benchmarks under

Gdb and Tdb-1 when breakpoints are inserted and hit, according to the methodology in Section 7.2.1. The

first two table columns report run-time in seconds for hitting at least 10,000 user breakpoints. As the table

shows, Gdb has run-times that range from 135 to 244 seconds and Tdb-1 has run-times from 192 to 379

seconds. Tdb-1 incurs an additional overhead of 42% (bzip) to 110% (vortex), with an average of 63%,

over Gdb. This extra overhead is due to generating and using mappings and inserting additional break-

points in the translated code. To determine where Tdb-1 spends most of the debug time, the overhead due

to generating and using the mappings were measured and found to be negligible, accounting for less than

1% of the overhead. The cost of translation and instrumentation was also negligible. The main cost is the

insertion of additional breakpoints.

Program
Number of Unique Breakpoints Hit Number of Breakpoints Hit

Regular Cond. Calls Indirect Instr. Regular Cond. Calls Indirect Instr.
mcf 14 7 15 8 10 1569 2018 3348 3065 382
gcc 24 15 32 7 6 4583 1467 3051 899 2501
gzip 8 3 9 4 9 1804 1219 5404 1572 65
bzip 3 3 6 6 9 1667 1667 3333 3333 76
twolf 32 9 33 14 14 4649 424 3602 1325 566
vortex 3 5 13 5 12 1132 923 5327 2618 1501

vpr 5 6 6 13 27 3174 1005 4898 114 498
Table 17: Number and type of breakpoints hit

Program
Execution Time (secs.) Total Breakpoints Number of Mappings Memory

(kilobytes)GDB TDB GDB TDB Identity CInsert1 CInsert2

mcf 183 283 1,941,434 4,280,539 6,081 186 1,701 56
gcc 244 354 2,737,719 6,222,586 174,796 6,806 52,065 1,634
gzip 164 234 1,680,855 3,736,738 8,154 230 1,930 74
bzip 135 192 1,511,400 3,195,215 9,060 220 2,210 82
twolf 191 379 1,996,974 5,382,900 42,580 1,999 8,568 382
vortex 156 329 1,736,651 5,557,198 116,013 683 21,074 1,015

vpr 153 231 1,774,162 3,843,540 29,424 1,548 6,340 267

Table 18: Run-time performance, number of breakpoints, number of mappings, and memory overhead
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As Table 18 shows in the third and fourth columns (“Total Breakpoints”), Tdb-1 inserts many

more breakpoints than Gdb. The number of additional breakpoints inserted is increased by 111% (bzip) to

220% (vortex), with an average increase of 141%. More breakpoints are inserted by Tdb-1 due to code

duplication in Strata. Tdb-1 inserts breakpoints in the untranslated in addition to those in the translated

code, which further increases the number of breakpoints. As the table demonstrates, the amount of extra

overhead incurred by a benchmark directly tracks the number of additional breakpoints inserted. 

The number of breakpoints is high for both debuggers due to an implementation artifact. When a

breakpoint is hit at run-time, Gdb and Tdb-1 remove all active breakpoints and re-insert them when execu-

tion resumes. Both implementations can be improved to remove and insert necessary breakpoints on-

demand only as determined by the debug commands issued by the user. Furthermore, in an actual usage

scenario, very few breakpoints are active at once, and it has been our experience that the overhead due to

breakpoint insertion is not perceivable. From these performance results, the run-time overhead incurred by

Tdb-1 over Gdb is reasonable, given the large number of breakpoints inserted. 

The memory overhead of Tdb-1 is shown in the last four columns of Table 18 (“Number of Map-

pings” and “Memory”). Tdb-1’s memory requirements are related to the size of the code location mappings

and number of breakpoints that are active, with the former dominating. Code location mappings are gener-

ated for each code descriptor. In mcf, the number of Identity descriptors is 6,081, CInsert descriptors due to

instrumentation code (shown as CInsert1) is 1,701, and CInsert descriptors due to trampoline code (shown

as CInsert2) is 186. The maximum size of the mapping table is limited by the size of Strata’s code cache.

Entries in the mapping table need 8 bytes for Identity mappings and 4 bytes for the other mappings. In the

worst case, there is one entry per instruction in the code cache. For a 2 MB code cache, there are roughly

500,000 instructions, and the mapping table needs 16 MB of memory. In practice, however, the number of

entries in the mapping table is considerably less than the maximum number of instructions. For example,

mcf has a maximum of 7,968 entries at any time and gcc has 233,667 entries, as shown in the table. The

average number of entries is 23,425 across all benchmarks. The total amount of memory for the mapping
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table varies from 56 KB to 1.3 MB (average of 501 KB). The breakpoint table’s size is minimal as the table

holds only active breakpoints. The memory requirement was less than 1KB in all benchmarks. 

7.3    Summary

This chapter described a debugger for dynamically instrumented code, Tdb-1, based on the Tdb frame-

work. Tdb-1 enables source level debugging in dynamic instrumenters by interposing a layer (the debug

engine) between a native debugger and the application program being dynamically instrumented. The

results show that Tdb-1 can be debugged at the source level with minimal performance and memory over-

heads. The experiments validate the claim that Tdb framework is sufficient to debug dynamically instru-

mented programs. 
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Chapter 8.  Debugging Dynamically Optimized Programs

Dynamic optimization is the transformation of programs during execution with the goal of improving runt-

ime performance. Dynamic optimizers can be built in hardware as well as software. Among software based

dynamic optimizers, JIT based and SDT based optimizers are common. Although, SDT based dynamic

optimizers can be relatively quickly realized using a SDT framework such as Strata, source level debug-

ging techniques for such dynamic optimizers currently do not exist. This chapter presents a debugger,

called Tdb-3, that uses the Tdb framework to debug dynamically optimized programs. 

A SDT based dynamic optimizer typically applies dynamic optimizations on instruction traces

[3,5,9,14,64,97]. Traces are particularly well suited for dynamic binary optimization because frequent exe-

cution ensures high payoff from optimizations and a trace’s straightline control flow simplifies runtime

analysis and optimization [3,5,9,14,64,97]. Section 8.1 of this chapter briefly describes a trace based

dynamic binary optimizer, Strata-DO, that was used for experimental analysis of Tdb-3. Section 8.2 pre-

sents the experimental evaluation of Tdb-3. The experiments show that nearly all values can be reported

from a dynamically optimized program with Tdb-3. Section 8.3 summarizes the chapter. 
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8.1    Strata-DO - A Trace-based Dynamic Optimizer

Strata-DO is a dynamic optimizer built on the Strata infrastructure that optimizes instruction traces at runt-

ime [32]. Due to the changing nature and low cost of trace execution, Strata-DO applies optimizations con-

tinuously and frequently as new traces are generated, and existing traces are deleted, combined and/or

optimized again (re-optimized). Strata-DO performs several optimizations, including constant propagation,

copy propagation, redundant load removal, redundancy elimination, partial redundancy elimination, dead

code elimination, partial dead code elimination, partial loop peeling and loop invariant code motion. It also

re-optimizes and combines traces during execution. Strata-DO targets the SPARC V9 instruction set.

Figure 33 shows the structure of Strata-DO. Strata-DO intercepts the execution of a program, opti-

mizes and executes it from a software-managed code cache. The dynamic translator component in the fig-

ure is a basic SDT system (see Section 2.1.1) that intercepts the executing program to fetch code blocks

one at a time, insert counters and emit translated blocks into the code cache from where they execute. The

counters keep track of the frequency of execution of the block. After a block of code has executed, the

dynamic translator regains control and fetches the next block that executes. When a counter in a code block

reaches a threshold, the dynamic optimizer is invoked. The dynamic optimizer constructs instruction traces

starting at the frequently executed code block. Traces are single-entry and multiple exit entities. A trace

exit is a “stub” that transfers control to either the dynamic translator or other traces. 

Figure 33: A trace-based dynamic optimizer
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8.2    Implementation and Experimental Evaluation

Tdb-3 was implemented using the implementation discussed in the previous chapter (see Table 13). Tdb-3

integrates Strata-DO [32] and the Gdb debugger [88] with a debug engine. Two sets of experiments were

performed to evaluate the effectiveness in reporting values and the efficiency of techniques developed in

this research. 

The first set of experiments determined how optimizations affect the reportability of values. These

experiments assume that all program paths are equally likely. The next set of experiments measured report-

ability when user breakpoints are hit. These experiments measured “actual” value reportability in a debug

session and the performance and memory overheads of Tdb-3. For the experiments, Strata-DO with a

default 4 MB code cache was used. A Sun Blade 100 with a 500 MHz UltraSPARC IIe processor with 256

MB of RAM, running Solaris 9, and the reference input sets of the SPECint2000 benchmark suite were

used. 

To compute the effects of dynamic optimization on the reportability of values, the number of

instructions that moved due to optimizations and the variables that were not reportable due to these code

movements were counted. The results are shown in Table 19. Column 2 gives the total number of traces

that were generated during optimization. Re-optimization in Strata-DO always leads to combining traces.

The number of traces varied from 165 to 6333 across the benchmarks. Column 3 shows the percentage of

duplicate instructions in the code cache. This number varied from 58% to 69% with an average of 62%.

Column 4 shows the number of debug plans generated by the planner, which ranges from 110 to 2439

(average 552). The number of debug plans depend on the number of instructions moved and deleted from

paths. Columns 5 and 6 show the percentage of optimized instructions that were moved or deleted. The

average percentage of moved and deleted instructions was 2% and 0.5%. Column 7 column shows the

increase in reportability due to Tdb-3. The baseline is when the data value problem is not solved. The

improvement in reportability ranges from a factor of 2.8 to 34, with an average of 6.4 and a median of 3.
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The percentage of values not reportable in Tdb-3, due to instruction deletion, is shown in the last column

and it ranges from 0.01% to 0.1% (average 0.05%). The improvement in reportability is high because opti-

mizations on a trace do not affect reportability at exit stubs. 

The overheads of generating Tdb-3’s mappings and debug plans were measured next. Programs

were run with and without generating debug information and compared the runtimes. Figure 34 shows that

the slowdown that ranges from 0% in mcf to 2.6% in gcc with an average of less than 1%. The overheads

are higher for programs that undergo a lot of code translation and code cache flushes. The low overheads

of Tdb-3 make it feasible to generate debug information even when the program is not being debugged.

This is useful for analyzing core dumps (post-mortem debugging). 

The next experiments gathered the debug-time statistics shown in Table 20. For these experiments,

breakpoints were inserted at source-level instructions that were moved during dynamic optimization. To

get these breakpoint locations, Strata-DO was modified to output the instructions that were moved during a

training run, so that the locations from the training run could be used to place breakpoints in an actual run.

The inputs to the benchmarks in the training run and the actual run were the same. Out of the potential

breakpoint locations, 50 breakpoints per benchmark were randomly selected. Scripts were used to insert

breakpoints before execution and continue execution until 10,000 breakpoints hits. 

The results from the debug-time experiments are shown in Table 20. Column 2 in the table shows

the average number of invisible breakpoints inserted per user-visible breakpoint. These breakpoints were

Figure 34: Slowdown due to debug information generation
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inserted due to debug plans and duplicate instructions. The third column shows the percentage of break-

points hit that had a non-reportable variable due to optimizations, without using Tdb-3. The percentage

ranges from 5.5% to 97%, with an average of 62%. Although breakpoints were set at instructions where

some variables were not reportable, the numbers in this column are less than 100% because duplicate

instructions are often optimized differently. Column 4 shows the percentage of variables at the breakpoints

that were not reportable in our framework due to instruction deletion. This ranges from 1.98% to 8.4%,

with an average of 3.7%. The percentage of values not reportable is much higher than those in the last col-

umn of Table 19 because in our experiments, breakpoints were set at locations where variables are not

reportable. Also, in Table 19 the assumption is that all paths are equally likely. Therefore, the percentage of

non-reportable values are an upper bound. The last column in Table 20 shows the average length of roll-

ahead in every benchmark due to debug plans. The roll-ahead length ranges from 5 to 25 instructions with

Table 19: How optimization affects reportability (program paths assumed equally likely)

Bench-
mark traces duplicate debug 

plans moved deleted reportabil-
ity factor

not report-
able

mcf 165 64% 134 2.2% 0.6% 30 0.01%
gcc 6333 60% 2439 3% 0.4% 2.8 0.07%
gzip 317 65% 125 1.6% 1% 34 0.03%
bzip 356 69% 241 3% 0.6% 27.9 0.07%
vortex 1232 58% 577 0.7% 0.5% 33 0.1%
twolf 1040 61% 110 2% 0.15% 31 0.03%
gap 1468 58% 239 2.6% 0.004% 32 0.03%

Table 20: Reportability at user breakpoints (runtime)

Benchmark #invisible
% values not 
reportable w/o 
Tdb-3

% values not 
reportable in Tdb-
3

roll-ahead lengtha

mcf 14 67% 8.4% 22
gcc 1.51 5.5% 3.17% 25
gzip 1.38 97% 3.22% 18
bzip 2.3 96% 1.98% 9

vortex 1.9 85% 3.44% 15
twolf 1.6 65% 2.32% 11
gap 1.22 24.5% 3.22% 5

a. Tdb does not report values which are not computed in translated code, i.e., whose computation is elimi-
nated. However, Tdb never reports an incorrect value of any variable. 
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an average of 15 instructions. The results demonstrate that even with breakpoints at instructions that have

non-reportable variables, Tdb-3 is able to report a large fraction of variables. 

Figure 35 shows the performance overhead of Tdb-3. Figure 35 shows the average time taken by

one breakpoint with and without roll-ahead. The time taken to hit one breakpoint when no roll-ahead is

needed (i.e., where reportability wasn’t affected) was a constant 0.08 seconds. This result is shown using

the smaller bars in the figure. When roll-ahead was needed, the record-replay of each rolled-ahead instruc-

tion took 0.05 seconds. The average time to hit one breakpoint ranged from 0.12 seconds in gap to 0.88

seconds in gzip. The difference is due to the difference in roll-ahead frequency and the average roll-ahead

length, as shown in columns 3 and 5 of Table 20. Note that in our experimental setup, the breakpoints were

inserted specifically at locations where reportability was an issue (leading to roll-ahead). Therefore, these

run-times are a rather extreme case. The overheads in Tdb-3 are not noticeable in an interactive debug ses-

sion. 

Figure 36 shows the memory overheads of Tdb-3 using a logarithmic scale. The memory overhead

ranges from 69 KB to 2.7 MB, with an average of 685 KB. The memory overheads comprise of debug

mappings, debug plans, range records and lists of live breakpoints. The memory consumed changes

throughout the execution of a program as new code is generated and older code removed (flushed). The

Figure 35: Time to hit one breakpoint without and with roll-ahead
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memory overheads shown in Figure 36 represent the maximum amount of memory consumed during the

execution of a benchmark. The code cache size of Strata-DO was set to 4 MB for these experiments, which

provides an upper bound to memory overheads. Some benchmarks have a footprint much smaller than the

code cache size. For instance, the benchmarks mcf, gzip and bzip led to generation of less than a thou-

sand straightline code blocks, while the benchmark gcc filled up the code cache many times during a sin-

gle execution. Therefore, the memory overhead in the case of gcc was more than an order of magnitude

higher than that in the case of mcf, gzip or bzip. The memory overheads of Tdb-3, as a ratio of memory

consumed over the amount of code size, are comparable to overheads in debuggers for statically optimized

code [8,22,34,41,1,100,102]. 

Figure 36: Memory overheads
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8.3    Summary

This chapter described a debugger for dynamically optimized code, Tdb-3, based on the Tdb framework.

Tdb-3 enables source level debugging in TDO systems by interposing a layer (the debug engine) between a

native debugger and the application program being dynamically optimized. The results show that Tdb-3

can report most program values and has very low overhead. The results also show that Tdb-3’s techniques

are practical, with a minimal performance overhead of up to just 2.6% when generating debug information

during program execution. The experimental results validate that the Tdb framework allows efficient

debugging of dynamically optimized programs. 
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Chapter 9.  Conclusions and Future Work

A source level debugger is one of the most important software engineering tools available to a program-

mer. Irrespective of the programming environment, programmers almost assume the existence of a source

level debugger. Currently, source level debugging is largely unavailable to the domain of SDT systems.

The acceptance of SDT in mainstream computing, while certainly growing, requires adequate development

of software engineering tools. Perhaps more important than any other, a source level debugger would be

indispensable. 

This thesis is the first work that permits source level debugging targeted to SDT systems. The

techniques developed in this research do not inhibit or induce a change in how a SDT system operates

when it is being debugged. A framework for debugging, called Tdb, is developed that requires minimal

changes to a SDT system and an existing source level debugger (for native programs) to enable debugging

of dynamically translated programs. The Tdb framework is highly portable across different SDT systems

and host machines. A salient feature of Tdb is that it allows a programmer debugging a dynamically trans-

lated program to use his/her favorite source level debugger (for native programs). The programmer, there-

fore, does not need to learn new debugging commands or a new debugging environment. The techniques

developed in this research were implemented in three different SDT systems and experimentally evaluated.

The experiments validate that: (1) source level debugging can be efficiently performed in SDT systems; (2)

the same debugging techniques can be applied to different SDT systems; and (3) the Tdb framework is

highly portable across SDT systems and host machines. This research achieved its goals. 
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9.1    Summary of Contributions

SDT systems modify programs during execution, thereby rendering static debug information inconsistent

with the executing program. If we do not want to restrict the operation of the SDT system, clearly the solu-

tion is to generate debug information at runtime as the program is modified and make it available to a

debugger for its use. There are three challenges that must be addressed to achieve this solution. First, a sys-

tematic approach to determining and representing program modifications is needed. Second, actions that a

debugger can use to hide program modifications need to be devised. Finally, a communication mechanism

should be developed for informing the debugger about the program modifications. This research addresses

all of these challenges to achieve its goals. This thesis makes several research contributions that are

described below.

1. A framework, called Tdb, is developed that brings an existing source level debugger together with a 

SDT system and provides techniques to facilitate source level debugging. The debug engine is highly 

portable and does not need to be modified when new SDT systems, host machines or debuggers are to 

be targeted. As long as a SDT system and a debugger interacts with the debug engine through its inter-

faces, source level debugging can be performed. In this way, the Tdb framework allows different SDT 

systems and source level debuggers to be plugged together. Tdb provides a debug engine that inter-

faces with the SDT system and the debugger. 

2. This thesis describes a notion of Transformation Descriptors, that are attributes associated with 

instructions and data values. A transformation descriptor expresses the combined effect of all transfor-

mations that affected the associated instruction or data value. The transformation descriptors are fine-

grained ⎯ they do not carry any semantic information (e.g., what optimization led to the program 

transformation). Therefore, the transformation descriptors are portable across SDT systems. In Tdb, a 

component added to SDT systems, the program tracker, dissects the program transformations into 

transformation descriptors and communicates them to the debug engine. 
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3. This thesis gives algorithms that are used by the debug engine to generate debug information based 

upon the transformation descriptors. The debug information is generated whenever new transformation 

descriptors become available and used in response to a debugging action performed by the debugger. 

The debug information is used in the following three events. First, if a breakpoint is hit in the trans-

lated code, a signal handler in the debug engine handles the breakpoint. Second, if the debugger inserts 

or removes a breakpoint in the original program, the debug engine uses debug information to insert and 

remove breakpoints in the translated code. Finally, if the debugger queries the value of a variable, the 

debug engine determines whether the value is available for reporting and reports the expected value. 

This thesis gives the algorithms used by the debug engine for all of these three events. 

4. This thesis describes three implementations of the Tdb framework and experimentally evaluates two 

implementations (data for the third one is not available). The experimental evaluation shows that Tdb 

is effective in debugging dynamically translated programs at the source level and that Tdb’s overheads 

are comparable to the overheads of debuggers of statically generated code. In addition to the experi-

mental evaluation, this thesis also describes and contrasts the experiences in implementing Tdb’s tech-

niques in the three debuggers. 

9.2    Future Work

There are a number of open and interesting research problems along the lines of this dissertation research.

This dissertation research can be evaluated in different systems and the capabilities of the described debug

framework can be enhanced. Further, the transformation descriptors developed in this research can be used

in applications other than debugging. Several interesting research directions are mentioned below.

1. The transformation descriptors are relatively easy to generate for straightline code sequences (e.g., 

traces). One area of future work is to target SDT systems that operate on a general CFG. The transfor-
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mation descriptors would need to be extended and the mapping generator would have to handle code 

movement differently. Its not clear whether the overheads of computing transformation descriptors and 

generating debug mappings would be manageable. One way to reduce the overheads would be to gen-

erate debug information on-demand. 

2. The transformation descriptors developed in this thesis should be extended to support bytecodes. The 

descriptors should be combined with the concept of anchor points developed in Wu’s research on 

debugging optimized code to develop generalized transformation descriptors. Generalized transforma-

tion descriptors will be able to describe any kind of program transformation and Tdb’s debug engine 

will be able to act as a retargetability layer for native debuggers. If Tdb’s techniques can be imple-

mented for a general CFG, it would be possible to use Tdb for JIT compiled programs. Moreover, cur-

rently Java and .NET change the behavior of a program when in debug session (e.g., optimizations are 

disabled); Tdb would enable debugging without the behavioral changes. It would be interesting to 

debug Java and .NET programs using the same debugger !!

3. A difficult problem in developing SDT systems is that errors in SDT systems often are visible as bugs 

in the translated program. Tdb’s framework can be used to develop software engineering tools that can 

automatically pin-point errors in the SDT system. One way to approach this problem is by means of 

comparison checking [42]. An untranslated program is run side-by-side with a dynamically translated 

program. Breakpoints are set at each source or untranslated binary statement. When a breakpoint is hit, 

all values computed in the untranslated program are compared with the translated counterpart. As soon 

as a value is found to be different, a prompt is provided to the SDT system developer for introspection.

4. A SDT infrastructure such as Strata is inherently retargetable. An easy extension of this research 

would be to retarget the Tdb framework to different instruction set architectures and operating sys-

tems.

5. One assumption about SDT systems considered in this thesis was that SDT systems do not modify the 

semantics of a program (although they can add new semantics). A future area of work would be shed 
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this assumption. Consider a software updater that loads a newer version of a program module during 

execution. If the program crashes afterwords, debug support would be appreciated that can unravel 

whether the program crashed because of the newer software module. 

6. Another assumption in this thesis was that the execution paradigm of SDT systems is traditional sin-

gle-threaded programs. This assumption can be relaxed to target the Tdb framework to a multi-

threaded domain or a real time domain.

7. Currently, the debug information generated by Tdb is not maintained in a standard format such as stabs 

[61] or DWARF [94]. An area of future work is to standardize the debug information representation. 
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