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Abstract

Chip-multiprocessors (CMPs) have become ubiquitous in modern computing and the main-

stream architecture for various platforms, including laptops, desktops, and large server

machines. As technology scaling continues and more transistors are accommodated on the

chip, the number of cores on CMPs is growing, and multi-core machines are scaling up to

many-core machines. With this multi-core scaling, two major problems arise: shared-resource

contention and soft errors or transient faults. Shared-resource contention can degrade an

application’s performance significantly, and soft errors increase the probability of incorrect

application execution and the production of visible errors. To realize the full potential of

multi- and many-core platforms, it is critical to ensure that applications in a workload not

only execute e�ciently and fast, but also correctly.

In this dissertation, we develop a novel, general, and unified framework, ReSense, to

address several challenges on multicore architectures including performance optimization,

reliability improvement, power and thermal management. The framework includes five

components: a general characterization methodology, a characterization metric, a sensitivity

score, a thread mapping algorithm, and a run-time system. An instance of the framework is

applied in two phases: characterization and mapping. The characterization phase utilizes

the general characterization methodology and characterization metric to identify application

characteristics without considering any co-runner(s). It generates a resource-sensitivity score

for each application in a workload. In the mapping phase, the run-time system uses a

thread-mapping algorithm and the sensitivity scores of the applications in a workload to
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determine the thread-mappings that optimize the objective function of the targeted problem.

To demonstrate the utility and e�ectiveness of ReSense, we use it to address the problems

of shared-resource contention and soft errors for multi-threaded applications. For the resource

contention problem, the characterization methodology determines how a multi-threaded

application’s performance is a�ected as it shares a resource in the memory hierarchy. A

sensitivity score based on resource contention is produced for each application in a workload.

The run-time system uses the resource-contention sensitivity scores and a thread-mapping

algorithm to allocate threads from a workload to core to mitigate shared-resource contention,

thus improving response time and throughput.

For the soft error problem, the characterization methodology determines how a multi-

threaded application’s vulnerability to soft errors in shared caches is a�ected by its resource

occupancy duration. A sensitivity score based on cache occupancy is produced for each

application in a workload. The run-time system uses the cache-occupancy sensitivity scores

and a thread-mapping algorithm to allocate workload threads to cores to reduce the occupancy

in the shared caches, thus reducing cache vulnerability.

Both minimizing an application’s vulnerability to soft errors and maintaining application

performance are critical. The thread-mapping algorithm that ensures better reliability

may not ensure better performance. To address this problem, we develop an integrated

instance of the framework that combines application characterizations for both contention and

vulnerability to determine a trade-o� between the performance and reliability improvements.

The dissertation includes a comprehensive evaluation of all three instances, which in-

dicates that the mapping of each application in a dynamic workload according to its solo-

characterization is highly e�ective. For the resource contention instance, response time

and throughput was improved up to 30% and 47%, respectively over the native operating

system. For the soft error instance, cache vulnerability was reduced up to 70% over the native

operating system. The integrated instance was able to achieve various trade-o�s between

response time and vulnerability reductions.
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Chapter 1

Introduction

Chip-multiprocessors (CMPs) have become ubiquitous in modern computing and the main-

stream architecture for various platforms, including laptops, desktops, and large server

machines. These CMP machines are very powerful and useful for solving computation-

intensive problems and provide high throughput through their instruction- and thread-level

parallelism capabilities.

1.1 Challenges in Multicore Systems

1.1.1 Complex and Dynamic Workloads

As technology scaling continues and more transistors are accommodated on the chip, the

number of cores on CMPs is growing, and multicore machines are scaling up to many-core

machines. Because of CMP scaling, the trend of application design has shifted towards

multi-threaded and parallel programming. To fully exploit the available computational

resources, workloads, which consist of multiple multi-threaded applications, are executed.

Each application uses the underlying resources di�erently depending on how the application

threads are mapped to the available cores. Furthermore, the way the applications use di�erent

resources has an impact on the workload’s execution and overall resource management, which

can lead to performance optimization, reliability improvement, power consumption, and

1
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thermal problems on CMPs. The continuous change in the execution environment caused by

dynamic workloads, where any number of multi-threaded applications arrive, execute, and

terminate in unpredictable ways, makes these problems especially challenging and di�cult to

address.

As multicore machines continue to scale up, the performance and reliability challenges on

these architectures are becoming more severe because of the increased criticality of shared-

resource contention and soft errors [2, 3]. To realize the full potential of CMP platforms, we

need to ensure that multi-threaded workloads not only execute e�ciently and fast, but also

correctly. The following two sections describe the resource contention and soft error problems

in more detail.

1.1.2 Resource Contention

There are various resources in CMPs that are shared by several and/or all processing cores,

including on-chip shared and last-level caches (LLC), front side bus (FSB), memory bus,

disk, and I/O-devices. When there are multiple multi-threaded applications executing on

CMPs, there is increased contention among the applications for these shared resources.

Shared-resource contention is a phenomenon that occurs when an application shares any

resource (e.g., last-level cache) with its co-runner1. Because of contention, especially for

the resources in the memory hierarchy, an application’s performance can degrade by more

than 50% [4], and scalable performance improvement is often not achieved on multicore and

many-core machines [5]. Contention for the shared resources in the memory hierarchy can

also lead to ine�cient resource usage [3, 6].

Because of the resource usage behaviors, contention for the shared-memory resources

created by multi-threaded applications in a workload can be severe for two reasons. First, a

multi-threaded application can use more than one shared resource in the memory hierarchy,

which increases the degree of contentiousness. Consider the contention problem for a shared

1A co-runner is a thread from a di�erent application, which executes on the same or neighboring core and
shares any resource.
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L2-cache, which is one of the resources in the memory hierarchy. When two single-threaded

applications in a workload share the same L2-cache (Figure 1.1(a)), the application that

accesses L2-cache frequently can increase the cache contention and severely degrade the

other application’s performance. If the workload has two multi-threaded applications and

the threads from one application share the same L2-cache with the other application’s

threads (Figure 1.1(b)), the cache contention created in two L2-caches by the cache-intensive

application can also degrade the workload’s overall performance. Second, the application

threads can contend for the shared-memory resources among themselves even when the

application runs solely. If the workload has only one multi-threaded application, the sibling

threads2 can contend for the shared L2-cache (Figure 1.1(c)) and degrade the application’s

performance. On the other hand, if the sibling threads share data, then sharing the same

cache improves the application performance [7]. Thus a multi-threaded application’s resource

usage and inherent characteristics can impact the severity of resource contention and a�ect

the workload’s performance.

There has been significant research e�orts to address shared-resource contention via

both hardware and software techniques. Hardware techniques can provide performance

improvement [8, 9]; however, they are hard to implement in practice, and existing hardware

solutions might become obsolete or ine�ective for emerging and new application behaviors.

Several research e�orts have addressed shared-resource contention via software techniques,

including execution throttling, thread-mapping, and scheduling [6, 4, 10]. However, to the

best of our knowledge, these e�orts have not considered multi-threaded applications.

There are several di�erences between the characteristics of single- and multi-threaded

applications as they contend for the shared resources. A single-threaded application can have

one co-running thread on a neighboring core when it shares, for example, a L2-cache, as

shown in Figure 1.1(a). Consequently, it contends for cache resources with that co-runner.

On the other hand, a multi-threaded application can share multiple caches with multiple

2Sibling threads are defined as the threads that are created from the same multi-threaded application.



Chapter 1 Introduction 4

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

Application�1�
Thread

Application�2�
Thread

(a) Cache Contention by two single-threaded applications
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Figure 1.1: Shared cache contention for a workload with single- and multi-
threaded applications (CX stands for the processor core, L1 and L2 stand for
L1- and L2-caches, respectively.)

co-running threads, as shown in Figure 1.1(b), and contend for more than one cache with

a multi-threaded co-runner. Moreover, multi-threaded applications can have contentious

behavior among its own threads even when they do not have any co-runner [5], as shown in

Figure 1.1(c). In addition, single-threaded applications do not have data sharing, whereas,

multi-threaded applications can have data sharing [11]. In short, multi-threaded applications

su�er from shared-resource contention di�erently than single-threaded applications, for both

solo-execution and execution with co-runner(s). Existing techniques to address resource

contention do not consider these di�erences and are thus not applicable for mitigating

contention created by multi-threaded applications.
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There are several challenges to mitigating contention created by simultaneously executing

multi-threaded applications on CMPs. A multi-threaded application can su�er from contention

created by its own sibling threads and by threads from co-running application(s). For

workloads with multiple multi-threaded applications, mitigating contention depends on an

application’s characteristics, underlying resource topology of the platform, and importantly

on the characteristics of the co-running application(s). Contention mitigation becomes more

challenging for dynamic workloads. The continuous change in the execution environment

created by the dynamic workloads with increasing and decreasing numbers of applications,

arriving and terminating in unpredictable ways, makes contention mitigation even more

challenging and di�cult. Because of the dynamic nature of this problem and emerging

workloads, contention mitigation is ideally done dynamically using software techniques based

on the characteristics of the currently executing applications in the workload and the run-time

environment.

1.1.3 Soft Errors

As the technology scaling continues, the size of the transistors shrinks each process generation,

and the reliability of CMP platforms is becoming another critical issue [2, 12]. In particular,

systems are increasingly susceptible to transient faults or soft errors. Soft errors are faults

that occur randomly caused by various sources, including cosmic rays, power supply noise, and

packaging defects. Soft errors do not cause permanent damage to any hardware component,

but potentially cause applications to execute incorrectly and output wrong results. Soft errors

a�ect a system’s reliability with respect to micro-architectural resources, such as load-store

unit (LSU), re-order bu�er (ROB), instruction queue (IQ), as well as memory resources,

such as caches [13]. The occurrence rate of these soft errors increases as multicore machines

continue to scale up to many-core machines and the total bit count on these platforms

increases, posing a significant risk for these computing platforms.

An application’s resource usage can lead to vulnerable execution and have an impact on
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reliability [13, 14]. If an application occupies a particular resource for a long time during its

execution, then the long resource occupancy makes the application more vulnerable to soft

errors caused by high energetic beam particles [15]. Such errors can change an application’s

execution and result in visible errors and incorrect output, reducing application reliability on

the system. For example, if an application uses data from any resource very frequently and

executes for a longer time than an application with a shorter execution time, then the data

used by the long running application has a higher probability of being corrupted because of

its susceptibility to soft errors.

Additionally, because a multi-threaded application uses multiple resources, it is more

susceptible to soft errors. For example, each single-threaded application in a workload

uses only one L1-cache (Figure 1.1(a)). On the other hand, the siblings threads from a

multi-threaded application use two L1-caches in Figure 1.1(c). Thus, the multi-threaded

application has twice the probability of being a�ected by soft errors in L1-caches than

the single-threaded applications. Fundamentally, the resource usage characteristics of the

multi-threaded applications, in terms of both duration and number of resources, can make

the soft error problem on a multicore machine even more critical for a workload.

There has been much research e�ort addressing soft errors using both hardware and

software techniques. Hardware techniques typically include redundant bits and device

hardening to protect against soft errors. However, these techniques have significant power, area,

cost, and latency overhead, which are not suitable for systems with large numbers of cores [16,

17]. Software techniques utilize redundant executions to ensure reliable execution. However,

this mechanism has a very high performance overhead [18]. Other software techniques include

compilation to reduce an application’s susceptibility to soft errors [19]. Soft errors can a�ect an

application’s output during its execution, and the sensitivity to soft errors in modern systems

is application dependent [13]. Therefore, dynamic and lightweight software measures that

leverage application characteristics are more e�ective than the static compilation techniques

in reducing application vulnerability to soft errors.
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In general, addressing soft errors via a dynamic software technique is challenging for

several reasons. First, soft errors corrupt the contents in the hardware units, which are used

by the applications during their executions and can potentially result into visible errors. The

software technique must be able to monitor the applications’ executions continuously to

detect such corrupted data usage by the applications, which can incur high overhead. Second,

the software technique should reduce an application’s susceptibility to soft errors so that

the number of potential visible errors is minimized. Therefore, the technique should use a

metric that represents and quantifies the probability of an application being a�ected by soft

errors while it is still in execution. Determining this metric should be done accurately so that

the software technique can e�ectively take measures to reduce the probability of soft errors

a�ecting the application execution. Third, the e�ect of soft errors varies across applications

and is dynamic, depending on the occupancy duration of a particular hardware resource by

the applications in a workload [19]. Therefore, an e�ective software technique must be able

to control the occupancy duration of the resources as the applications execute.

1.2 Application-driven Thread-mapping

An application’s inherent characteristics of resource usage can impact both performance

and reliability on multicore platforms. If an application in a workload uses a particular

resource excessively, then this contentious behavior degrades the workload’s performance

when it shares the resources with its co-runners. If an application occupies a resource for a

longer period of time, then the execution becomes highly vulnerable to soft errors, and the

probability of visible errors becomes very high.

The performance and reliability challenges on a multicore platform can be addressed

e�ectively by taking into consideration how the characteristics of the applications in a workload

a�ect these problems of resource contention and soft errors, respectively. A characterization

technique would be useful to identify the application behaviors for resource usage that are

critical to address a targeted problem. The insights from such characterization and analyses
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can be used to control the resource usage of the applications by intelligently mapping them

on the appropriate cores such that the objective for the targeted problem is obtained.

For the resource contention problem, a contentious application in a workload can be

identified by analyzing its resource usage behavior. Once the contentious application(s) is(are)

identified, all the threads from a workload can be mapped such that the resource contention

is mitigated and the contentious threads have minimal impact on the workload’s performance,

i.e., response time and throughput.

For the soft errors problem, a highly vulnerable application to soft errors can be identified

by performing its resource occupancy behavior analyses. Once the highly vulnerable applica-

tion(s) is(are) identified in a workload, the resource occupancy in the targeted resources can

be reduced by mapping the application threads such that the overall vulnerability to soft

errors is minimized.

Furthermore, this approach of mapping applications using prior characterization generalizes

and can be used to improve performance and reliability for complex, dynamic workloads.

Once the application characteristics are understood and identified, then as the applications

start and finish their executions in a dynamic workload, thread-mapping can be used to

adjust the resource usage of the currently executing applications to achieve the performance

and/or reliability objective.

1.2.1 Contention/Performance Example

We describe two examples of how application characteristics can be used to address a

resource contention problem - specifically cache contention. To achieve the goal of contention

mitigation, application threads can be mapped appropriately by understanding their cache

contentious behaviors.

Consider a workload that has two multi-threaded applications, and one of the applications,

Application
1

, has severe cache contention among its siblings threads. For the first example,

if the second application, Application
2

, of the workload has shared data among its sibling
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Figure 1.2: Mapping to mitigate shared-cache contention for a workload with
two multi-threaded applications

threads, then the threads from Application
1

and Application
2

should be mapped such that

each application uses its own L2-cache (shown in Figure 1.2(a)). This mapping ensures

resource isolation so that the contentiousness from one application does not a�ect the cache

sharing of the other application.

When such resource isolation is not possible, an application’s sensitivity to the targeted

resource, based on its characterization, can be used to determine the e�ective mapping, e.g.,

the most cache-intensive application can be mapped with the least cache-intensive application

to share the same last-level cache [4]. For the second example, if Application
2

is computation-

intensive (does not contend for cache), then the threads should be mapped such that the

cache-intensive Application
1

threads share the same cache with the computation-intensive

Application
2

threads (shown in Figure 1.2(b)). As Application
2

does not have much cache

usage, this mapping would not degrade its performance significantly; however, it would

mitigate contention for the cache-intensive application and improve its performance.

1.2.2 Soft Error Example

We now describe how an application’s resource usage can be used to reduce its vulnerability

to soft errors. Consider a workload with one multi-threaded application that executes for
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Figure 1.3: Mapping to reduce application vulnerability to soft errors

a long time, and the application does not use the cache resources very frequently. If the

application threads are mapped to use two separate caches (shown in Figure 1.3(a)), then

the data in the two caches remain resident for a long period of time, and the application

becomes more vulnerable to soft errors. This vulnerability can be decreased if the threads

are mapped to use the same cache (shown in Figure 1.3(b)). This mapping can increase the

cache miss rate, which lowers the residency time of the data and reduces the probability of

being a�ected by soft errors. As a result, higher probability of correct application execution

and output is obtained by this mapping.

To summarize, on a multicore platform, a multi-threaded application’s characteristics and

behaviors can be used to guide how to map application threads from a workload to improve

performance and reliability.

1.3 The ReSense Framework

For the thread-mapping algorithm to be e�ective, it is critical to determine the applications’

behaviors that a�ect the goal, i.e., mitigating contention and reducing occupancy duration in

targeted resources (see Table 1.1). Determining such application behavior can be done online

when the workload executes, by varying the resource usage for an application and analyzing

how it a�ects the objective in the presence of co-runner(s). These online characterizations can
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be used in an on-the-fly manner by the thread-mapping algorithm to achieve the objective of

mitigating contention and reducing vulnerability.

For example, mapping di�erent co-running applications from the given workload to use the

same shared caches can vary the cache resource usage. An application’s cache usage intensity

creates contention in the shared cache, which eventually leads to application performance

degradation. An application’s cache usage characteristics can be determined online during

its execution with the co-runner(s). The determined cache usage can be used to map the

application threads with complementary cache behavior on the targeted machine during

application execution to mitigate contention and ensure optimized performance [20, 4].

However, as the number of multi-threaded applications increases in a workload, the number

of mapping configurations that must be evaluated to identify the application characteristics in

the presence of co-runners and determine the optimal thread-mappings for performance and

reliability improvement, can increase exponentially [21]. When the number of threads in a

workload is very high, this exponential complexity makes the online resource usage detection

and application thread-mappings very challenging and causes the characterization technique

to have significant overhead. The online characterization becomes even more complex when

dynamic workloads are considered because of the continuously changing and unpredictable

set of co-running applications.

1.3.1 Application Characterization

To avoid the overhead and exponential complexity of an online characterization technique,

an o�ine technique is used to determine a multi-threaded application’s characteristics that

are critical for addressing the targeted problem. This o�ine technique utilizes a general

methodology to characterize a multi-threaded application when it runs solely without any

co-runner. The characterization methodology isolates the e�ect of a targeted resource usage

on a multi-threaded application’s execution depending on the objective of performance

optimization and reliability improvement. This isolation helps the application’s behavior
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analyses based on its usage of the targeted resource. Such analyses of isolated resource usage

identify the application’s key characteristics that precisely represent its sensitivity to that

resource. Even though such characterization is performed without considering the presence

of a co-running application, the sensitivity analyses help prioritize applications in a workload

to determine the e�ective mappings for optimized performance and improved reliability.

1.3.2 Application Mapping

An application’s inherent characteristics of resource usage influence how the performance

and reliability on a targeted platform are evolved. Thread-mapping is an application-level

software technique that can control an application’s resource usage by changing the cores

on which the threads from a workload would run. It does not require special hardware, is

relatively easy to integrate into any system, and has very low run-time overhead. Therefore,

thread-mapping is an attractive approach and is used in the framework to e�ectively address

resource contention and soft errors for performance and reliability improvements on multicore

machines.

1.3.3 Components of the Framework

Based on the insights and discussion in the previous sections, we develop a novel, unified, and

general framework called ReSense that addresses several key problems on multicore archi-

tectures (see Table 1.1). The framework includes five components: a general characterization

methodology, a characterization metric, a sensitivity score, a thread mapping algorithm, and a

run-time system. An instance of the framework is applied in two phases: characterization and

mapping. The o�ine characterization phase utilizes the general characterization methodology

and characterization metric to identify a multi-threaded application’s key behavior with

respect to resource usage for a targeted problem. It generates a resource-sensitivity score

for each application in a workload. In the online mapping phase, the run-time system uses

a thread-mapping algorithm and the sensitivity scores of the applications in a workload to

determine the thread-mappings that optimize a problem-specific objective function. The
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run-time system is capable of handling complex dynamic workloads. Whenever the number

of threads changes in the workload, the run-time system invokes the mapping algorithm to

dynamically adjust the thread-mappings for the new or modified workload in the system.

1.3.4 Generality of the Framework

The ReSense framework can be used to address other problems on CMPs that are influenced

by application characteristics, e.g., thermal and power consumption.

For example, an application’s intensity of resource usage can have an impact on the

processor temperature. Consider a computation-intensive application that uses integer and

floating-point units can increase the processor temperature significantly. On the other hand,

a memory-bound application can maintain lower processor temperature as it uses the core

computational resources less intensely [22]. When these applications with di�erent thermal

profiles are considered in a workload, the intensity of their resource usage creates thermal

variation inside the processor core and can cause thermal hot-spots, leading to a thermal

emergency [22, 23]. An application’s resource usage characteristics can also a�ect energy and

power consumption of the targeted platform [24, 25].

The characterization phase of the ReSense framework can be used to identify how multi-

threaded applications’ resource usage a�ects the thermal and power issues on CMPs. Then,

ReSense’s dynamic thread-mapping algorithms can be used to reduce power consumption

and minimize hot-spots for avoiding thermal emergencies.

Column 1 of Table 1.1 lists the general challenges on a multicore architecture and Column 2

lists the corresponding targeted problems that can be addressed using the ReSense framework.

The table also includes the application behaviors to be determined in the characterization

phase (Column 3), the overall goal of the mapping phase (Column 4), and the objective

function used by the thread-mapping algorithm (Column 5). In this dissertation, we address

the resource contention and soft errors problems (first two rows of Table 1.1) using the

framework.
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Challenges Targeted Application Behavior Goal/ Objective
Problem Objective Function

Performance Resource Contentiousness Mitigate Response time
Optimization contention in shared-memory contention and

resources throughput
Reliability Soft errors Resource occupancy Reduce occupancy Vulnerability

Improvement duration duration factor
in a resource of a resource

Thermal Thermal Computational Distribute Response time
Management emergency resource usage computation and

to minimize throughput
hot spots

Power High power Power usage Reduce power Energy
Management and energy in the resources and energy delay product

consumption consumption

Table 1.1: Targeted problems on modern CMPs to be addressed using the Re-
Sense framework

1.3.5 Addressing Resource Contention and Soft Errors Using Re-

Sense

An application’s resource usage impacts its execution in a workload with respect to both

resource contention and soft errors. Shared-resource contention makes the application execute

slowly if the application uses the resources excessively. If an application occupies a resource

for a long period of time, soft errors make it error prone. Both resource contention and soft

errors can be addressed using the ReSense framework.

For the resource contention problem, the characterization methodology determines how a

multi-threaded application’s performance is a�ected as it shares a resource in the memory

hierarchy. A sensitivity score based on resource contention is produced for each application in

a workload. The run-time system uses the resource-contention sensitivity scores and a thread-

mapping algorithm to allocate threads from a workload to core to mitigate shared-resource

contention, thus improving response time and throughput (Table 1.1).
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For the soft error problem, the characterization methodology determines how a multi-

threaded application’s vulnerability to soft errors in shared caches is a�ected by its resource

occupancy duration. A sensitivity score based on cache occupancy is produced for each

application in a workload. The run-time system uses the cache-occupancy sensitivity scores

and a thread-mapping algorithm to allocate threads from a workload to core to reduce the

overall occupancy in the shared caches, thus reducing cache vulnerability (Table 1.1).

For both contention mitigation and vulnerable occupancy reduction, the thread-mapping

algorithms are designed to use the multi-threaded applications’ prior characterizations that

are determined o�ine. In particular, each multi-threaded application in any workload is

characterized only once without considering the presence of any co-runner, and the algorithms

map any combination of these multi-threaded applications using the pre-determined o�ine

characterizations for optimizing the objective functions (Table 1.1). The o�ine characteristics

for individual applications are represented as sensitivity scores, which quantitatively describe

an application’s solo-sensitivity to the targeted resources. When these applications are

considered in a workload, these sensitivity scores are used to prioritize the applications when

their thread-mappings are determined with respect to the targeted resources in the presence

of co-runners(s). The most-sensitive applications a�ect the objective function more than the

less-sensitive applications.

For example, when a workload consists of a cache-intensive and a computation-intensive

application, the mapping that gives priority to the cache-intensive application results in a

reduced response time and increased throughput because the cache-intensive application

is more sensitive to the shared cache usage than the computation-intensive application [4].

Therefore, even though the application characteristics are not determined in the presence

of co-runners, the sensitivity score captures an application’s key behavior for the targeted

resource, and applications in a workload can be prioritized and compared with each other

based on how their sensitivity scores for the targeted resource usage. The thread-mapping

algorithms thus work by prioritizing the most-sensitive applications in the workload based on



Chapter 1 Introduction 16

their sensitivity scores and dynamically determine the thread-mappings of the applications.

The performance and reliability improvements are often conflicting goals [26, 18]. The

thread-mapping algorithm that ensures better performance may not ensure better reliability.

By designing an algorithm that considers two objectives of the resource contention and soft

errors problems (Table 1.1), in this thesis, we demonstrate the use of ReSense to determine

a trade-o� between reducing response time and vulnerability factors of shared caches for a

workload.

1.4 Thesis Statement
On a multicore machine running multiple multi-threaded applications simultaneously, a

workload’s response time and throughput can be improved and vulnerability to soft errors in

shared caches can be reduced via thread-mapping driven by the resource usage characteristics

of the applications that are determined using an o�ine technique.

1.5 List of Contributions
This dissertation makes the following contributions.

• A novel and e�cient o�ine technique for characterizing a multi-threaded application’s

resource usage by running it solely.

• The use of o�ine sensitivity characterization in determining the thread-mappings of

multi-threaded applications in a workload to mitigate contention and reduce vulnerability

to soft errors.

• ReSense, a unified framework that can be used to address the performance optimization,

reliability improvement, thermal and power management challenges on a multicore

platform.

• Development of the performance instance of ReSense, ReSense_Performance. This

instance addresses the challenges of mitigating shared-resource contention in the memory
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hierarchy and optimizes response time and throughput of the applications in a workload.

Using dynamic workloads of di�erent sizes, ReSense_Performance is able to improve

the response time by up to 29.34% and throughput by up to 46.56% over the native

operating system (OS) using real hardware.

• Development of the reliability instance of ReSense, ReSense_Reliability. This instance

addresses the challenges of improving application reliability on multicore machines by

using an application-level technique and minimizes the overall cache vulnerability to

soft errors on a targeted multicore platform. ReSense_Reliability e�ectively reduces

the overall cache vulnerability by up to 70% over the native OS.

• Development of the integrated instance of ReSense, ReSense_Integration. This instance

combines application characteristics for both contention and vulnerability to soft errors

and determines a trade-o� between the performance and reliability improvement on

a multicore machine. When applications’ contentious behaviors are more preferred,

ReSense_Integration reduces applications’ response time, and when applications’ vul-

nerability characterizations are more preferred, it reduces the overall shared cache

vulnerability.

1.6 Thesis Outline
The thesis is organized as follows: Chapter 2 describes the state-of-the-art related work

for resource contention and soft errors. Chapter 3 describes the design of the ReSense

framework in more detail. Chapter 4 presents the performance instance of the ReSense

framework, including the characterization process for resource contention and the mapping

algorithm for performance optimization. Chapter 5 presents the reliability instance of ReSense

framework, including the characterization methodology for application vulnerability and

the mapping algorithm for reliability improvement. Chapter 6 describes the integration of

the performance and reliability instances to determine a trade o� between performance and
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reliability improvements. Chapter 7 summarizes the findings, describes the future work, and

concludes the thesis.



Chapter 2

Related Work

In this chapter, we discuss prior research related to resource contention and soft errors.

First, we describe the research on application characterization for resource contention and

vulnerability to soft errors. Then we describe prior research on the techniques for contention

mitigation to improve performance and the techniques for reducing the e�ects of soft errors

to improve reliability.

2.1 Application Characterization

2.1.1 Resource Contention Characterization

2.1.1.1 Characterization for Single-threaded Applications

There has been prior work on application characterization for shared-resource contention.

Zhuravlev et al. analyzes the e�ect of cache contention created by co-runners and provides

a comprehensive analysis of di�erent cache-contention classification schemes [4]. Mars et

al. synthesizes and analyzes cross-core performance interference for last-level caches (LLC)

on two architectures [27, 28]. They characterize the applications in the presence of co-

runners using synthetic workloads and determine the e�ects of contention for the memory

resources [29]. Xie and Loh characterize and classify applications by measuring cache miss-

rates for a dynamic cache partitioning scheme [30]. Zhao et al. investigates low overhead

19
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mechanisms for fine-grained monitoring of shared cache usage, interference, and sharing to

determine application characteristics [31]. These works mainly analyze cache contention for

single-threaded applications. In contrast, we design a general methodology in ReSense to

characterize any multi-threaded application for not only LLC contention, but also contention

for private caches, front-side bus, memory controllers, and memory socket connections.

2.1.1.2 Characterization for Multi-threaded Applications

There has been research work on characterizing multi-threaded applications for contention.

Jin et al. characterizes parallel workloads for resource contention in the memory hierarchy,

but they mainly focus on comparing di�erent platforms and run applications solely [32].

Whereas we focus on characterizing multi-threaded applications, both when an application

runs alone and with co-runner(s), and determine its sensitivity to contention for a particular

resource. Tang et al. analyzes and studies the performance impact of contention and sharing

for the resources in the memory subsystem on multi-threaded data-center applications [33].

Kambadur et al. describes a methodology to measure interference between data-center

applications while they are executing [34]. Luo et al. analyzes multi-threaded applications’

memory footprints to understand the active data sharing behavior among the threads [35].

Natarajan et al. characterizes multi-threaded applications based on sharing-awareness in the

replacement policies of last-level caches [36]. Krishna et al. analyzes data sharing among

multi-threaded applications in a workload and extends existing analytical models for novel

many-core chip designs [11]. These works mostly analyze a multi-threaded application’s

sharing or contentious behavior for cache usage, whereas we design a methodology in ReSense

to analyze an application’s both sharing and contentious behavior for any resource in the

memory hierarchy.

There also has been prior work on characterizing multi-threaded applications from the

PARSEC benchmark suite for resource contention. Bhaduria et al. describes the cache

performance, sensitivity with respect to DRAM speed and bandwidth, thread scalability,

and micro-architectural design choices for the benchmarks over a wide variety of real ma-
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chines [37]. In the original PARSEC paper [38], the authors provide several characteristics of

the benchmarks including working set, locality, e�ect of di�erent cache block size, degree

of parallelization, o�-chip tra�c, and programming models. Bhattacharjee et al. describes

TLB behavior of these benchmarks and provides many useful insights about redundant and

predictable inter-core I- and D-TLB misses, which are useful for better and novel TLB designs

for emerging parallel workloads [39]. The authors transform the PARSEC benchmarks in a

cache-sharing-aware manner during compilation time to improve the sharing behavior among

sibling threads [7]. Most of the work analyze and characterize the PARSEC benchmarks for

solo-execution. Our work complements the above research as we characterize the benchmarks

both for solo-execution and execution with co-runners on real hardware.

2.1.2 Vulnerability Characterization

2.1.2.1 Di�erent Vulnerability Factors

There have been prior work on characterizing applications using di�erent types of vulnerability

factors. Architectural vulnerability factor (AVF) is a metric first introduced by Mukherjee et

al. to represent an application’s susceptibility to soft errors without using an error injection

methodology [18]. Yan and Zhang define a register vulnerability factor (RVF) and propose

two cost-e�ective compiler-guided techniques to improve register reliability by minimizing

RVF [40]. Jongeun and Shrivastava also analyze an application’s RVF for di�erent compiler

optimizations [41]. Sridharan and Kaeli introduce a hardware vulnerability factor (HVF) to

quantify the vulnerability of an individual system component [42]. Oz et al. defines a thread

vulnerability factor (TVF) for multi-threaded applications to analyze how the communication

among threads changes TVF and determines a trade-o� between performance and reliability

for di�erent algorithm implementations [26]. In this work, we consider a multi-threaded

application’s resource occupancy in the shared cache and do not consider their communication

behaviors among sibling threads. Therefore, we do not use TVF as the characterization

metric.
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Sridharan and Kaeli define and describe a program vulnerability factor (PVF) metric to

capture architectural-level fault masking inherent in an application, eliminating the micro-

architectural dependency. They propose two uses of PVF, which are helpful in application

development to reduce the failure rate [43]. In this work, ReSense maps multi-threaded

applications based on an application’s resource usage behavior that is dependent on the

hardware configurations of a particular platform. Therefore, we do not use PVF as the

characterization metric because it is defined to be independent of the hardware features.

Wibowo et al. describes a cross layer approach to calculate system vulnerability factor for

the register file using AVF and application’s code vulnerability [44]. Wang et al. proposes a

new analytical model to estimate the system-level vulnerability factor for on-chip instruction

caches [45]. Zhang defines a cache vulnerability factor (CVF) and evaluates the reliability for

di�erent cache memories, including a write-through and a write-back cache [1]. In this thesis,

ReSense_Reliability targets to reduce applications’ vulnerability to soft errors in caches.

Therefore, it uses cache vulnerability factor as the characterization metric to determine

how a multi-threaded application’s cache vulnerability changes for its shared cache usage

and occupancy. Biswas et al. describes a methodology to calculate a quantized AVF (Q-

AVF) online for a specific time interval using linear regression [46]. On the other hand, the

characterization phase of ReSense_Reliability determines an application’s vulnerability to

soft errors for its entire duration of execution.

2.1.2.2 Vulnerability Analyses for Micro-architectural Resources

There have been several works analyzing the vulnerability of di�erent systems and applications.

Soundararajan et al. analyzes a multicore system’s vulnerability by varying di�erent numbers

of cores and threads configuration [47]. Fu et al. analyzes an application’s phase-wise

vulnerability in di�erent micro-architectural structures, including instruction window, re-order

bu�er, and functional units in a high-performance out-of-order super-scalar processor [48].

Zhang et al. analyzes application vulnerability for simultaneous multi-threaded (SMT)

architectures and proposes potential opportunities to reduce vulnerability for SMT micro-
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architecture by exploiting thread-aware reliability optimization technique [14]. Duan et al.

characterizes application vulnerability for shared micro-architectural resources and L1-caches

using a multi-threaded processor [49]. Nair et al. characterizes an application based on

its worst-case AVF using a stress-test analyses to identify the reliability bottleneck [50].

Tankhi et al. determines and analyses an application’s RVF for embedded processors using a

power e�cient approach [51]. Li et al. develops a novel methodology and analysis tool to

determine the e�ect of soft errors on extreme-scale scientific applications [52]. All these works

analyze vulnerability mainly for micro-architectural resources, whereas, we design a general

methodology in ReSense to characterize a multi-threaded application for its vulnerability to

soft errors in both micro-architectural and memory resources. ReSense’s characterization

methodology is complementary to these approaches.

2.1.2.3 Vulnerability Analyses for Memory Resources

There has been also research on analyzing application vulnerability for memory resources

on di�erent systems. Luo et al. analyzes the memory error vulnerability for data-center

applications by quantifying the applications’ tolerance to soft errors in memory and proposes

heterogeneous memory systems [53]. Ma et al. characterizes an application based on

its vulnerability to soft errors in caches at di�erent level of the memory hierarchy using

a fault injection methodology [54]. Wang et al. proposes a framework for conducting

comprehensive studies and characterizations of the reliability behaviors of L1-data and

instruction cache memories for novel designs [55]. Other research e�orts determine an

application’s susceptibility to soft errors in both micro-architectural and memory resources

using di�erent compiler optimization flags [40, 56, 41]. In contrast, in this work, the general

methodology of the ReSense framework for ReSense_Reliability characterizes multi-threaded

applications for any cache resource on any multicore machine via thread-mapping, which is

an application-level technique.
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2.2 Shared-resource Contention Mitigation
There have been research e�orts that address contention for co-located applications using

thread-mapping as a technique. Table 2.1 summarizes the important di�erences between

ReSense_Performance and a few state-of-the-art systems for mitigating contention for the

shared-memory resources. Some of these systems pursue the goals to independently optimize

energy, thread throughput, minimize lock contention, allocate optimal number of cores to the

applications in a workload, or improve only the latency-sensitive application’s performance.

ReSense_Performance’s goal is to improve the overall performance of the co-located multi-

threaded applications from dynamic workloads and mitigate contention for all the shared

resources in the memory hierarchy by determining the e�ective thread-mapping. All the

systems mentioned in Table 2.1 determine application characterizations in the presence

of a co-runner. In comparison, ReSense_Performance is able to characterize applications

without considering co-runners. Thus, ReSense_Performance operates in linear time to

determine application characteristics and is able to achieve similar performance improvements

and perform competitively with the other systems, where the characterization operates in

polynomial time. Details of some systems and the comparisons with ReSense_Performance

are described in Section 2.2.2.

2.2.1 Contention Mitigation for Single-threaded Applications

A number of prior works have addressed resource contention (mostly shared caches) for single-

threaded applications using execution throttling, scheduling, and thread-mapping [6, 4]. In

particular, Mars et al. describes an optimization technique that detects cross-core contention

in shared resources online and ensures quality-of-service for single-threaded SPEC benchmarks

ensuring contention aware execution [10]. Fedorova et al. describes a co-runner dependent

cache allocation via OS scheduling [57]. The authors address LLC pollution and propose a

page coloring based technique to eliminate the cache pollution [58]. Jiang et al. proposes a

hierarchical matching algorithm to co-schedule threads for reducing inter-thread latency by
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Systems ReSense_ Pusukuri Bhadauria Tang et al. Zhuravlev et al.
Performance et al. TACO’13 et al. ICS’10 ISCA’11 ASPLOS’10

All shared Last-level Shared cache All shared All shared
Resources resources cache and and bus resources resources

in memory shared lock in memory in memory
hierarchy hierarchy hierarchy

Minimize Minimize Minimize Satisfy Reduce
workload’s workload’s system’s quality of workload’s

Objective response turnaround energy service of completion
Function time and time and maxi- one latency- time

maximize maximize mize thread sensitive
throughput throughput throughput application

Application Linear, no Polynomial, Polynomial, Polynomial, Polynomial,
characteristics co-runner increases with increases with increases with increases with

detection considered the number the number the number the number
complexity of co-runners of co-runners of co-runners of co-runners

Multi-threaded Yes Yes Yes Yes No
application

Dynamic Yes Yes No No No
workloads

Performance Average Unknown Average Within Within
compared with less than less than 3% 2%
optimal/oracle 1% 1%

Baseline Native Native Suleman et al. None Native
comparison operating operating ASPLOS’08 operating

system system system

Table 2.1: Comparison between ReSense_Performance and some state-of-the-art
systems

considering LLC-contention and sharing [59]. All these works address contention for single-

threaded applications by determining its contentious behavior in caches in the presence of a

co-runner. The run-time system in ReSense_Performance dynamically maps multi-threaded

applications, considering not only contention for shared caches, but also for bus and memory

interconnections, without considering any co-runner(s).

2.2.2 Contention Mitigation for Multi-threaded Applications

There have been a few works on contention mitigation for multi-threaded applications.

Bhadauria et al. schedules threads from multiple multi-threaded applications at a time
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quantum to optimize thread throughput and energy [60]. At a particular time quantum,

their algorithm selects a number of threads from each application in the workload and the

applications to run together by considering an application’s cache miss rates (FAIRMIS policy)

or bus occupancy (FAIRCOM policy). They do not consider an application’s characteristics

for both cache and bus in the same policy. On the other hand, ReSense_Performance

mitigates contention for all the shared resources in the memory hierarchy considering both

cache and bus characteristics of the applications at the same time.

Pusukuri et al. allocates cores to multi-threaded applications using an application’s cache

and lock contention characteristics that are determined in the presence of a co-runner [61]. In

the presence of r co-runners, the number of characterizations grows polynomially, O(nr), for n

applications. Their system determines the number of cores to be allocated to each application

using a supervised learning technique, which requires more o�ine analyses compared to

ReSense_Performance. In contrast, ReSense_Performance does not require any training phase

and characterizes application without considering any co-runner. This solo-characterization

has linear complexity of O(n), which is much lower than O(nr).

Pusukuri et al. describes a scheduling policy for minimizing lock contention for multi-

threaded applications [62]. Emani et al. determines the thread count to improve an ap-

plication’s performance in the presence of external workloads [63]. Das et al. describes

application-to-core mapping for NoC systems [64]. Garcia et al. investigates dynamic schedul-

ing for “embarrassingly” parallel applications for CMPs [65]. Broquedis et al. describes

a scheduling framework for OpenMP applications [66]. These works primarily pursue the

goals to minimize lock contention, optimize a single application’s performance, minimize

communication overhead or focus on core-allocation, NoC, and data-parallel application.

These goals are di�erent than the goal pursued by ReSense_Performance, which targets

optimizing the average response time and throughput of every multi-threaded applications

from a dynamic workload by determining the thread-mappings.

Chen et al. proposes scheduling threads that share data to use the same cache to
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improve performance for multi-threaded applications [67]. ReSense_Performance considers

both contention and data sharing in caches to map multi-threaded applications. Xu et al.

presents a scheduling technique to minimize the bandwidth contention fluctuation [68]. This

online scheduling technique minimizes the bandwidth contention by maintaining bandwidth

utilization at the level of average bandwidth requirement of the workload. On the other hand,

ReSense_Performance uses o�ine characterization to mitigate the bandwidth contention for

the multi-threaded applications in a workload.

2.2.3 Mapping Applications using Prior Characterization

Some research e�orts have proposed the idea of mapping application threads or managing

shared resources based on prior characterization. Mars et al. analyzes cross-core performance

interference to determine a contention conscious scheduling [27]. They also schedule and

determine the mapping of co-located applications by characterizing the application in the

presence of co-runners and using scores from stress-test via synthetic workloads [29]. Tang et

al. studies the impact of memory subsystem resource sharing on data-center applications

and schedules the threads to meet the quality-of-service requirements of the latency-sensitive

applications [33]. Jaleel et al. maps applications using a run-time classification based on cache

replacement policy [69]. In this work, ReSense_Performance utilizes an application’s prior

performance characterization for individual shared resources by running it solely, without

using any co-running applications or special hardware policies, and is capable of determining

the thread-mappings for dynamic workloads consisting of multiple multi-threaded applications.

2.2.4 Mapping Applications using Performance Prediction

There have been several e�orts at designing di�erent analytical models that can be used

to map application threads e�ectively. Tipp et al. describes a linear regression model

from hardware performance counters for shared-resource contention, including functional

units, issue bandwidth, caches, for hyper-threaded machines. Because multicore machines

have separate micro-architectural units, we focus on the shared resource-contention in the
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memory hierarchy. Chandra et al. proposes analytical probabilistic models to analyze

inter-thread contention in the shared L2-cache in hyper-threaded CMPs for single-threaded

applications [70]. Xu et al. proposes a shared-cache aware performance model using reuse

distance histogram, cache access frequencies, and the relationship between throughput and

cache miss-rate to map processes on cores [71]. In contrast, ReSense_Performance uses

an application’s solo performance characterization for each shared resource in the memory

hierarchy to predict the e�ective thread-to-core mappings in the presence of co-runner(s).

2.2.5 Cache Partitioning Techniques

Several works address shared resource management in CMPs via hardware cache partitioning

to mitigate contention [8, 9] and software methods to partition the cache and allocate memory

pages [72, 3, 73, 74, 58]. Ding et al. uses an approach similar to cache partitioning to contain

the operating system file bu�ers into a small portion of the shared LLC to less pollute it [75].

The ReSense approach is compatible and can be combined with both hardware and software

cache partitioning techniques to further reduce cache contention and improve performance.

2.3 Techniques for Addressing Soft Errors
There has been prior work addressing soft errors in processor and memory resources using

both hardware and software techniques. These techniques can be further classified into two

categories: (a) error detection and correction, and (b) error prevention.

2.3.1 Error Detection and Correction

2.3.1.1 Hardware Techniques

Hardware techniques for error detection and correction typically include redundancy in space

to protect an application’s outputs from erroneous execution because of soft errors. Space

redundancy includes the addition of error correcting codes (ECC) in the low-level circuits,

particularly in memory systems [76]. These ECCs can be used to re-compute the results from

an application’s computation and determine incorrect execution by checking for any output
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mismatch. These redundant codes can ensure very high accuracy in application execution.

However, these techniques have significant power, area, cost, and latency overhead, and are

not e�cient and practical for systems with a large number of cores [17].

Several research e�orts address soft errors by proposing error detection and recovery via

hardware-based redundant multi-threading [18, 77]. These approaches use special hardware to

replicate an application execution to identify errors in the output, which increases hardware

design complexity and cost, including high performance overhead.

2.3.1.2 Software Techniques

Software techniques for error detection and correction include redundant execution, which is

redundancy in time, to ensure reliability against soft errors [17, 13, 78, 79, 80]. In general,

this approach creates multiple copies of the same execution to detect any mismatch in the

application output, and consequently chooses the right output to ensure reliable execution.

Although this technique is highly accurate in ensuring correct application output, it has

a very high performance overhead: 30% for single-threaded and 32% for multi-threaded

applications [18]. Wang et al. proposes another software-based redundant multi-threading

for soft error detection using compiler analysis and optimization techniques [81]. Reis et

al. presents a software-only fault tolerant technique to manage execution redundancy via

an enhanced control flow mechanism [82]. In contrast to these works, the thread-mapping

technique used by ReSense_Reliability reduces the probability of visible wrong output caused

by soft errors without any redundant execution during an application’s execution.

2.3.2 Error Prevention

2.3.2.1 Hardware Techniques

There has been much research on reducing an application’s vulnerability to soft errors in

caches using hardware and software techniques for error prevention. Hardware techniques for

error prevention include device hardening that increases the capacitance of the critical nodes

in the SRAM cells, increasing its reliability [16, 83]. There are a number of other hardware
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mechanisms that can be used to increase the capacitance of the SRAM cells. They include

increasing the size of the transistors [84], isolating critical nodes in a circuit [85], tweak the

critical threshold voltage of the circuit [86]. However, all these techniques have area and

performance overhead [16].

Other error prevention techniques are architecture-level, including cache flushing, layout

interleaving, scrubbing, early write-back. For cache flusing, the operating system or the

hardware flushes the cache to reduce its vulnerable lifetime, resulting in lower AVFs [87, 88].

Zhang et al. describes a technique that performs early write-backs of the dirty cachelines

to the memory at periodic interval to reduce the cache vulnerability [1]. Similar to memory

scrubbing [89], cache scrubbing is used to calculate the error correction code to avoid

accumulated bit-flips that can result in corrupted data in caches [90]. Sridharan et al.

describes an architecture-level technique to reduce L1-cache vulnerability by selectively

refetching cachelines from L2-caches for single-threaded applications [16]. Jeyapaul et al.

proposes a smart cache cleaning methodology that copies only specific vulnerable cache blocks

into the memory at chosen times to ensure data cache protection with minimal memory

writes [91].

Most of these hardware techniques are implemented and evaluated using a uniprocessor

system in the architectural and design level, whereas, in this research, we address soft errors

for multicore machines. The cache flushing technique can be used to prevent errors in each

cache on a multicore platform. However, as a multicore platform has multiple caches, flushing

the content of all these caches can lead to a significant increase in cache miss rates, resulting

in severe application performance degradation. Refetching the data from the memory into the

caches on a multicore platform has to be done carefully because the same data can be present

in multiple caches in di�erent states for the cache coherency protocol, which adds additional

complexity. Consequently, cache-line refetching for caches on a multicore system can be

di�cult to implement. Thus, we conclude that these techniques for uniprocessor systems may

not be e�ective and easily extended for addressing soft errors on multicore systems.
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In this research, ReSense_Reliability utilizes an application-level technique using operating

system calls to reduce a multi-threaded application’s vulnerability to soft errors in caches,

which can be combined with these techniques.

2.3.2.2 Software Techniques

Prior research using software measures to prevent soft errors includes di�erent compilation

techniques. Jones et al. analyzes the e�ect of di�erent compiler optimizations on AVF

and determines the best combination of compiler optimization flags to improve application

performance with negligible e�ect on AVF [19]. Demertzi et al. analyzes an application’s

reliability based on the compiler optimizations’ impact on the occupancy in three processor

structures, including re-order bu�er, instruction queue and load-store units [92]. Martinez-

Alvarez et al. describes a compiler-directed soft error mitigation technique and demonstrates

two case studies for embedded processors [93]. Instruction scheduling by compilers is

applied to make the application more resilient towards soft errors [94, 95]. In this thesis,

ReSense_Reliability minimizes the cache vulnerability of the applications in a workload using

dynamic thread-mapping technique, which is orthogonal to these static compiling approaches.

Walcott et al. proposes linear regression models for dynamic prediction of AVF from key

processor metric using statistical analysis [17]. Kadayif and Kandemir propose a soft error

model for caches and explore three architectural schemes to enhance reliability [96]. On

the other hand, ReSense_Reliability uses cache vulnerability models to predict the e�ective

thread-mappings to reduce the probability of soft errors a�ecting application execution and

producing visible errors.

There has been a few work on designing system-level techniques to reduce application

vulnerability to soft errors. Duan et al. proposes a machine-learning based model to

determine soft error resilient thread-to-core scheduling and reduce application vulnerability to

soft errors in micro-architectural resources [49]. On the other hand, instead of using complex

machine learning models, ReSense_Reliability uses prior characterization of the applications

to determine the thread-mappings that minimize shared cache vulnerability to soft errors for



Chapter 2 Related Work 32

workloads consisting of multiple multi-threaded applications.



Chapter 3

ReSense: A Unified Framework

In this chapter, we describe the unified framework, ReSense, which is designed to tackle several

challenges on a CMP platform. These challenges relate to e�ective application execution

and resource management on a multicore platform for optimizing performance, improving

reliability, better thermal and power management (Table 1.1). For example, to minimize

a workload’s response time and maximize throughput on a CMP, the targeted problem of

resource contention is critical to address [6, 59, 27].

When multiple multi-threaded applications simultaneously execute on a CMP platform,

these applications use the underlying resources di�erently depending on how the application

threads are mapped on di�erent cores and the resource topology of the platform. The way

these applications use di�erent resources has an impact on the workload’s execution and overall

resource management, leading to the performance optimization, reliability improvement,

power consumption, and thermal challenges on CMPs. For example, a cache-intensive

application can increase a workload’s response time by creating contention in the shared

caches [4]. A computation-intensive application that uses integer and floating-point units

can increase the processor temperature significantly and cause thermal emergency [22, 23].

Similarly, an application’s resource usage characteristics can also increase energy and power

consumption on the targeted platform [24, 25]. If an application occupies a particular resource

33
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for a long time during its execution, it is more susceptible to the bit-flips caused by soft errors

induced by high energetic beam particles. Thus, an application’s resource usage behaviors

can also lead to increased vulnerability to soft errors during its execution and have an impact

on reliability [13, 14]. Fundamentally, the intensity of resource usage of the applications in a

workload critically impacts the performance, power, reliability, and thermal problems on a

multicore machine.

The challenges related to performance optimization, reliability improvement, thermal and

power management can be individually addressed by understanding and analyzing how the

resource usage characteristics of the applications in a workload a�ect a targeted problem.

The insights from such analyses can be used to achieve the corresponding goal or objective for

that problem. For example, when the targeted problem is cache contention, understanding

the applications’ contentious behaviors for cache usage is helpful to determine the thread-

mappings of the applications in a workload for contention mitigation and response time

and throughout improvements (See Table 1.1) [4, 59]. Similarly, when applications with

di�erent thermal profiles are considered in a workload, understanding the intensity of their

computational resource usage helps distributing the computation of the threads such that

thermal emergencies can be avoided and applications’ response time and throughout can be

improved (Table 1.1). To address these problems, it is important to understand and analyze

how the resource usage characteristics of the multi-threaded applications in a workload impact

the overall application execution in terms of performance, reliability, power consumption,

and thermal problems for a targeted platform. The insights from such characterization and

analyses can be used to control the resource usage of the applications by intelligently mapping

them on the appropriate cores such that the objective for the targeted problem is obtained.

In this research, we develop the ReSense framework to address several challenges on

multicore architectures including performance optimization, reliability improvement, thermal

and power management. An overview of the framework is described below in the following

section, with more details in Section 3.2 and 3.3.
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3.1 Overview and Example of the Framework

Figure 3.1 shows the components of the ReSense framework. The framework includes five

major components: a general characterization methodology, a characterization metric, a

sensitivity score, a thread mapping algorithm, and a run-time system. An instance of the

framework is applied in two phases: characterization and mapping. The characterization

phase includes the first three components of the framework. This phase of the framework is

applied o�ine and takes the applications in a workload and a targeted problem as input. This

phase identifies the characteristics of the applications for its resource usage based on some

objective. This objective determines the application behaviors that are critical to address the

targeted problem on a platform P . The applications’ characteristics are determined o�ine by

applying the general characterization methodology that runs each multi-threaded application

in the workload by itself. This methodology isolates the e�ect of the application’s usage of

the targeted resource and determines a sensitivity score using a characterization metric. The

sensitivity score represents a multi-threaded application’s sensitivity towards the targeted

resource usage. These scores are used to compare the resource sensitivities of the applications

when they execute in a dynamic workload.

The mapping phase is performed online and includes the remaining two components

of the framework: a thread-mapping algorithm and run-time system. The thread-mapping

algorithm uses the sensitivity scores of the applications and the resource topology of P to

dynamically determine the mappings of the threads from the input workload to optimize the

problem-specific objective function. The run-time system takes as input the sensitivity scores

and the dynamic workloads that consist of multiple multi-threaded applications executing in

any order. It detects any execution changes in the workload in terms of number of threads

and employs the thread-mapping algorithm to map the applications on P .

We describe an instance of the ReSense framework using cache contention as the targeted

problem. Assume a workload has two multi-threaded applications, and these applications are
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Figure 3.1: Components of the ReSense framework

to be mapped on a multicore machine. When multiple applications are executed on a CMP

platform, extensive cache usage by these applications can cause high levels of contention.

The created contention for caches can lead to severe application performance degradation.

Here, the goal is to mitigate cache contention and the objective function is to minimize

the workload’s response time and maximize throughput (Table 1.1). Understanding how

the applications use cache resources is critical for the contention mitigation. Therefore, the

objective of the characterization phase is to determine how an application’s contentious usage

of cache resources a�ects its performance, which is used as the characterization metric. The

methodology characterizes each multi-threaded application in the workload based on how

shared-cache usage among its sibling threads a�ects its performance by running it solely.

If two applications in the workload are characterized to have contentious behavior among

its sibling threads, then the applications are mapped to use separate caches to mitigate this

contention, as shown in Figure 1.2(b). If one of the applications is more cache contentious,

then the most cache-intensive application threads are mapped with the least cache-intensive

threads of the other application to share the same caches to mitigate as much contention

as possible. The most- and least-sensitive application for cache contention are identified



3.2 Characterization Phase 37

based on the resource usage and sensitivity scores determined in the characterization phase.

Thus, even though the applications are not characterized in the presence of co-runner(s)

from a given workload, application threads can be mapped based on its solo resource usage

characteristics for contention mitigation and response time and throughput optimization.

The following two sections describe the components of the framework used in the charac-

terization and mapping phase in more detail.

3.2 Characterization Phase

An application can be characterized based on its numerous behaviors, e.g., memory access

behavior, cache usage behavior, total power consumption, and computational resource usage.

An important component of ReSense is a general characterization methodology that is used

to determine the inherent characteristics of a multi-threaded application, which are critical

to address the targeted problem. This general methodology includes a criteria or objective to

determine the application characteristics that influence or a�ect the targeted problem. For

example, if the problem is cache contention among multiple applications, then the objective of

the methodology is to identify an application’s contentiousness for its cache usage (Table 1.1)

and determine how it a�ects the overall contention problem.

Modern multicore machines have multiple instances of the same resource, e.g. caches,

thread contexts for simultaneous multi-threaded processors, memory controllers, and memory

socket connections. If the problem is influenced by the number of resources used by an

application, the methodology determines the e�ect of using the resources on application

execution and how much they impact the targeted problem. The methodology controls the

number of targeted resources a multi-threaded application uses by placing the threads on the

cores of the targeted resources. Then it characterizes the application based on its resource

usage behavior by varying the number of targeted resources used by the application.

For the cache contention problem, to characterize an application for its shared-cache usage

on a machine with multiple L2-caches, the application threads are placed on the cores that
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use one or two L2-caches. The application is characterized by determining how the number

of L2-caches used by the application impacts the severity of contention and application

execution.

For the thermal management problem, a multi-threaded application’s threads are placed

on the same die (core C0 and C1 of Figure 1.1) or on di�erent dies (core C0 and C2). The

application is characterized for its thermal behavior by comparing the processor temperature

as the threads use the computational resources of the cores on the same or di�erent dies.

There are three major components of the framework used in the characterization phase:

characterization metric, methodology and sensitivity score. These components are described

in the following sections.

3.2.1 Characterization Metric

To understand and analyze an application’s behavior for the targeted resource usage, it

is important to quantify how much the application’s execution is a�ected by the targeted

problem. Such quantification of the e�ect is used to characterize the application and is

helpful to understand the severity of the problem being exacerbated by the behaviors of

multiple applications in a workload. To perform the characterization, the methodology utilizes

a characterization metric, which represents the e�ect of the targeted problem. Di�erent

configurations of the threads’ placement on the cores are used to isolate the e�ect of a

multi-threaded application’s usage behavior for a particular resource, and the metric is used

to quantify this e�ect. For cache contention, if a multi-threaded cache-intensive application

threads are placed on the cores that use the same cache, then the contention for the shared

cache can degrade its performance. Here, performance is used as the characterization metric.

The actual value of an application’s performance degradation quantifies the severity of

contention. This characterization metric is later used to analyze and determine a multi-

threaded application’s sensitivity for the targeted resource.
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3.2.2 Characterization Methodology

On a particular platform, a general characterization methodology places application threads

in di�erent characterization configurations to isolate the e�ects of resource usage on an

application’s execution. Two di�erent characterization configurations measure the e�ect of

an application’s resource usage on its characterization metric. In the baseline or non-sharing

configuration, the application threads are placed on the cores that use two di�erent targeted

resources. In the sharing configuration, the threads are placed on the cores that use the same

targeted resource. We compute the characterization metric in both configurations. Based

on the di�erence between the characterization metrics from the non-sharing to the sharing

configuration, we characterize a multi-threaded application. For example, when we place

two threads from an application on the same core and the processor temperature increases

compared to the placing of the same threads on di�erent cores, then we conclude that the

sibling threads use the computational resources extensively and characterize the application

to create a potential thermal emergency.

To determine the e�ect of targeted resource usage on an application’s execution, the

methodology requires using a platform that has multiple numbers of targeted resources with

the same parameter values. For example, if we characterize an application for L3-cache

contention, we need a system that has three levels of caches and at least two L3-caches so that

we can use the characterization configurations to apply the methodology. The parameters

values are cache parameter, including cache size, number of ways, and cache block size. In

addition, the capacity sizes of the other related resources and how they are connected to the

targeted resources are required to be the same. For the previous example, the sizes of L1-,

L2-cache and how they share the L3-cache must be the same in the resource topology of the

platform.

The characterization methodology can be used as a stand-alone technique to determine

the resource usage behavior of any multi-threaded application.
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3.2.3 Sensitivity Score

An application’s sensitivity for a targeted resource is the di�erence between the characteriza-

tion metrics in di�erent characterization configurations. Each application’s characteristics

are represented as a sensitivity score for the targeted resource, which is calculated according

to Equation 3.1. Each application in a workload needs to be characterized only once o�ine

for a targeted platform.

SensitivityScore =

(CharacterizationMetric
non≠sharing

≠ CharacterizationMetric
sharing

) ú 100
CharacterizationMetric

non≠sharing

(3.1)

Here, CharacterizationMetric
non≠sharing

and CharacterizationMetric
sharing

are the val-

ues of the characterization metric in the two characterization configurations. Each sensitivity

score has two components: a sign and a magnitude. The sign represents whether the appli-

cation’s characterization metric increases or decreases in the sharing configuration, and the

magnitude represents the actual value of the metric being increased or decreased. A positive

sign of SensitivityScore means the characterization metric decreases when the application

threads use the same targeted resource. A negative sign of SensitivityScore means the

characterization metric increases when the application threads use the same targeted resource.

The magnitudes are used to compare the sensitivity of the applications in a workload for

the targeted resource and help prioritize the applications when their thread-mappings are

determined in the online mapping phase.

For example, to characterize a multi-threaded application for contention, we execute the

application in two characterization configurations using L2-cache as the targeted resource and

performance as the characterization metric. In the non-sharing configuration, two application

threads are placed on the two cores that have separate L2-caches, e.g., C0, C2 (shown in

Figure 3.2(a)) or C1, C3. In the sharing configuration, two application threads share and

contend for one L2-cache with each other. Here, the threads are placed on the two cores that
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Figure 3.2: Configurations to characterize a multi-threaded application L2-cache
contention

share the same L2-cache, e.g., C0, C1 (shown in Figure 3.2(b)) or C2, C3. As we characterize

an application for L2-cache usage, we avoid L1-cache contention by allowing only one thread

to access one L1-cache in both configurations. We measure the application’s performance in

both configurations and calculate its sensitivity score for L2-cache. If the sensitivity score

is positive, the application’s performance improves in the sharing configuration, and the

application is characterized to have data sharing in the cache. If the sensitivity score is

negative, the performance degrades and the application is characterized to have contention

for the shared cache among the sibling threads.

If the co-runners were considered in the characterization phase, the characterization

complexity would increase polynomially. For example, for one co-running application, there

are O(n2) pair-wise characterizations and for (r ≠ 1) co-running applications, there are O(nr)

characterizations for n applications for a targeted resource. Depending on the number of

applications and co-runners, the number of configurations to determine an application’s

resource usage behavior can be high during the characterization phase. To avoid the

characterization overhead associated with this high number of configurations, each multi-

threaded application in a workload is characterized without considering the presence of any

co-runner. The signs and magnitudes of the sensitivity scores help rank the applications
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according to their sensitivity for the targeted resources and determine the thread-mappings

to optimize the objective function.

The sensitivity scores of the applications in a workload based on di�erent characterization

objectives can be combined to address multiple targeted problems. For example, we charac-

terize a multi-threaded application based on shared cache usage for both its contention and

vulnerability behaviors separately. These characterizations result into two separate sensitivity

scores. We then can combine these characterizations and determine a combined sensitivity

score for each application, which is used in the mapping phase to determine a trade-o�

between performance and reliability objective (Chapter 6). Similar integration is also possible

for other problems.

3.3 Mapping Phase
The mapping phase is composed of two major components of the framework: a thread-mapping

algorithm and run-time system. These are described in the following sections.

3.3.1 ReSensor
Generic

Thread-mapping Algorithm

The thread-mapping algorithm maps any combination of the multi-threaded applications

in a workload using the signs and magnitudes of their pre-determined sensitivity scores to

optimize an objective function for the targeted problem. For the cache contention problem, the

objective function is to minimize response time and maximize throughput for the applications

in a given workload (Table 1.1).

Algorithm 1 shows the pseudocode for the ReSensor
Generic

thread-mapping algorithm. The

algorithm maps the threads from the multi-threaded applications in the given workload WL

using the sensitivity scores of the applications on platform P . The algorithm stores the total

number of multi-threaded applications and the applications in nApps and [Apps] variable,

respectively (line 2-3).

The algorithm considers each targeted resource R on platform P , for which each multi-

threaded application has been characterized. It counts the number of targeted resources,
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Algorithm 1 ReSensor
Generic

Thread-mapping Algorithm: Mapping application threads to
optimize an objective function

1: INPUT: Workload WL, Topology of the experimental platform P , Sensitivity scores of
the applications in WL on P

2: nApps Ω number of multi-threaded applications in WL
3: [Apps] Ω multi-threaded applications in WL
4: for each resource R on P do
5: NR Ω number of R
6: [C

+

] Ω set of cores that use or share the same R on P
7: [C≠] Ω set of cores that do not use or share the same R on P
8: [SS] Ω SensitivityScore of the applications in [Apps] for R
9: sort [SS] array in descending order of the magnitude of the SensitivityScore and

re-arrange [Apps] accordingly
10: if NR >= nApps then
11: /* Scenario 1: equal or more resources than the number of applications */
12: if there is a special case then /* Special Case */
13: for ( i = 0 ; i < nApps ; i++ ) do
14: map Apps[i]-threads according to its special characteristics
15: end for
16: else /* General Case */
17: for ( i = 0 ; i < nApps ; i++ ) do
18: if SS[i] > 0 AND [C

+

] has available core(s) then
19: map Apps[i]-threads on the available cores from [C

+

]
20: else if SS[i] < 0 AND [C≠] has available core(s) then
21: map Apps[i]-threads on the available cores from [C≠]
22: else /* [C

+

] or [C≠] does not have available core(s) */
23: map Apps[i]-threads on any core on P
24: end if
25: end for
26: end if

NR (line 5). It computes two arrays from the topology of the platform P : [C
+

], the set of

cores that share or use the same R, and [C≠], the set of cores that do not share the same R

(lines 6, 7). These two arrays are later used to look up the cores on which the threads will

be mapped. The algorithm saves the sensitivity scores of the applications in the [SS] array

(line 8). If WL has only one application, then its SensitivityScore is used directly to choose

the mapping that optimizes the objective function. If WL has multiple applications, then

the sensitivity scores of all applications are used to identify the more sensitive applications

for the resource R when determining the mappings of the application threads. Therefore,
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the algorithm sorts the [SS] array according to the magnitude of the SensitivityScore in

descending order so that the more sensitive applications are placed at the beginning of the

array and get mapped earlier than the less sensitive applications (line 9). The [Apps] array is

reorganized accordingly.

Depending on the number of applications in WL and number of targeted resources NR,

there are two scenarios.

Scenario 1: There are same or more targeted resources on P than the number of

applications in the workload at a particular time. In this scenario, there can be some problem-

specific special cases that depend on application characteristics. The algorithm considers and

handles these special cases first (line 12 - 15). If there is no such special case, it considers the

sensitivity scores to map the application threads for the general cases (line 17 - 25). As the

platform has enough targeted resources such that each application can use separate resources,

the thread-mapping algorithm considers one application at a time from the [Apps] array and

maps them according to the sign of its SensitivityScore. If the SensitivityScore is positive,

then it maps the application threads on the cores from [C
+

] (line 19) because this mapping

configuration improves the application’s characterization metric and consequently, optimizes

the objective function. If the SensitivityScore is negative, then it maps the application

threads on the cores from [C≠] (line 21) because this mapping configuration improves the

application’s characterization metric, which eventually contributes to optimized objective

function. If there is no core available, then the remaining application threads are mapped on

any cores (line 23). These remaining threads are from the less-sensitive applications, so the

arbitrary mapping would not significantly impact the objective function.

Scenario 2: There are a fewer number of targeted resources on P than the number of

applications in the workload at a particular time. In this scenario, there can be also some

problem-specific special cases that are handled by the algorithm first (line 28 - 31). If there

is no such special case, the algorithm considers the sensitivity scores to map the application

threads (line 33 - 41). As the platform does not have enough targeted resources such that
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Algorithm 1 ReSensor
Generic

Algorithm: Continued
27: else /* Scenario 2: fewer resources than the number of applications */
28: if there is a special case then /* Special Case */
29: for ( i = 0 ; i < nApps ; i++ ) do
30: map Apps[i]-threads according to its special characteristics
31: end for
32: else/* General Case */
33: for ( i = 0 ; i < nApps / 2 ; i++ ) do
34: if SS[i] > 0 AND [C

+

] has available core(s) then
35: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available [C

+

]-cores
36: else if SS[i] < 0 AND [C≠] has available core(s) then
37: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available [C≠]-cores
38: else/* [C

+

] or [C≠] does not have available core(s) */
39: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on any core on P
40: end if
41: end for
42: end if
43: end if
44: end for

each application can use separate resources, the thread-mapping algorithm maps multiple

applications to use the same targeted resource, prioritizing the more-sensitive applications’

behaviors. The more-sensitive application is prioritized because it has a higher impact on

the objective function. The magnitude of the SensitivityScore represents an application’s

sensitivity for a particular resource-sharing and the extent of how the application is benefited

or penalized from certain thread-mappings. Therefore, the prioritization is determined

considering the magnitudes of the applications’ sensitivity scores.

As [SS] array is sorted in the descending order, the algorithm maps the most-sensitive

(highest magnitude) application from the first half of [Apps] with the least-sensitive ones

(lowest magnitude) from the second half of [Apps], prioritizing the characteristics of the

most-sensitive application. If the SensitivityScore of the most-sensitive application is positive,

it maps its threads and least-sensitive application threads to the available cores from [C
+

]

(line 35). This mapping prioritizes the characteristics of the most-sensitive application for R.

If the SensitivityScore of the most-sensitive application is negative, the algorithm maps its

threads and the least-sensitive application threads to the available cores from [C≠] (line 37).
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Figure 3.3: Mapping decision for two problems

If there are no available cores from [C
+

] or [C≠], the algorithm maps threads on any core on

P (line 39). The mapping prioritization towards the most-sensitive application does not a�ect

the least-sensitive application’s execution significantly and results into overall improvement

of the objective function for the workload. The algorithm terminates when there are no

applications left in the workload whose thread-mappings are not determined.

For example, consider cache contention as the targeted problem and a workload with

two multi-threaded applications, A and B. These application threads are to be mapped on a

quad-core platform, shown in Figure 3.3. The applications are characterized according to

the general methodology using L2-cache as the targeted resource. Assume that application

A has a positive SensitivityScore of +a
P

for L2-cache, which means the application has

data-sharing in the caches. Application B has a negative SensitivityScore of ≠b
P

, which

means it has contentious behavior for the shared L2-cache on the same platform. Here,

[C
+

]=[{C0, C1}, {C2, C3}] and [C≠]=[{C0, C2}, {C1, C3}]. After sorting, if |a
P

| > |b
P

|, the

algorithm maps A’s threads on the cores from [C
+

] (C0 and C1) to take advantage of the

sharing characteristics and B’s threads on the available cores from [C≠] (C2 and C3), as shown

in Figure 3.3(a). This mapping may degrade B’s performance as it forces B’s contentious

threads to use the same cache. Because B is comparatively less sensitive for L2-cache, the
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degradation is less significant than A’s degradation if the alternate thread-mapping is selected.

As the algorithm prioritizes A’s characteristics, A has better performance using this mapping,

which results in response time and throughput improvements of the workload.

On the other hand, if |a
P

| < |b
P

|, the algorithm maps B’s threads on the cores from [C≠]

(C0 and C2) to mitigate L2-cache contention and A’s threads on the available cores from [C
+

]

(C1 and C3), as shown in Figure 3.3(b). This mapping may degrade A’s performance because

the data-sharing application threads are mapped on di�erent caches. However, application

B’s cache contentiousness is prioritized over A because B is more sensitive to L2-cache

usage, resulting in mitigated contention and improved response time and throughput of the

workload.

For the same two applications, consider the thermal management problem. Let us assume

that application A has a negative SensitivityScore of ≠a
T

for temperature, which means

the application uses the computational resources highly and increases the temperature of

the processors on the same die in the sharing characterization configuration. Application

B has a positive SensitivityScore of +b
T

for temperature, which means the application uses

computational resources less aggressively and decreases the processor temperature in the

sharing characterization configuration. Comparing the magnitudes of the sensitivity scores, if

|a
T

| > |b
T

|, the algorithm maps the application threads such that the computation-intensive

threads from A use two separate dies so that the computational resource usage is evenly

distributed, and thermal emergencies are avoided. The mapping is shown in Figure 3.3(b).

3.3.2 Run-time System

The run-time system of the framework manages application execution by employing the

thread-mapping algorithm that uses the sensitivity scores of the applications in a workload

to optimize the objective function.

Algorithm 2 shows the pseudocode of the run-time system. The run-time system executes

an infinite loop and detects any change in the total number of threads in the workload
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Algorithm 2 Run-time System
1: INPUT: Dynamic workload WL, Sensitivity scores of the applications in WL on P
2: while (1) do
3: if there is any change in total number of threads in WL then
4: invoke problem-specific instantiation of ReSensor

Generic

with WL and Sensitivity
scores of the applications in WL

5: end if
6: end while

WL, i.e., whenever a multi-threaded application creates and destroys a worker thread or an

application starts or terminates its execution (line 2, 3). If there is any change in the number

of threads, the run-time system employs the problem-specific instantiation of ReSensor
Generic

and sensitivity scores to determine the mappings of the currently executing threads from WL

on the appropriate cores (line 4). This run-time system works in the same way for di�erent

instances of the framework. Only the thread-mapping algorithm and the sensitivity scores

are di�erent in the instances depending on the targeted problem and objective function.

Figure 3.4 shows an operational overview of the ReSense framework. Consider a workload

consisting of n multi-threaded applications, {A
1

, A
2

, ..., A
n

} arriving (represented by + sign)

at time {t
1

, t
2

, ..., t
n

}, respectively on platform P . The o�ine characterization phase uses

the general methodology and characterization metric to identify the potential behaviors of

each multi-threaded application and determines each application’s sensitivity scores (SS_A
1

,

SS_A
2

, ..., SS_A
n

) for the resources on platform P . This characterization is done for each

application in isolation and consequently needs to be done only once for a particular resource

on the targeted platform.

In the online mapping phase, the run-time system employs the thread-mapping algorithm

that determines the thread-to-core mappings of the multi-threaded applications using the

sensitivity scores for each application on P . The run-time system invokes this algorithm

when there is a change in the number of threads or applications in the system. That is, as the

execution of each application starts or terminates or any thread is created or destroyed, the

run-time system dynamically adjusts the thread-mappings of the applications. For example
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Figure 3.4: An operational overview of ReSense

in Figure 3.4, at time t
1

, there is only one application A
1

, and the run-time system maps

A
1

’s threads on P . At time t
2

, A
2

starts execution, and the run-time system determines and

adjusts the thread mappings of A
1

and A
2

dynamically. At time t
n

, there are n multi-threaded

applications running, and the run-time system maps all n applications on P using the mapping

algorithm. If at time t
n+1

any application A
i

(e.g., A
1

in Figure 3.4) terminates, the run-time

system adjusts the mappings of the remaining executing applications. Thus, the run-time

system of the ReSense framework continually manages the execution of the applications in

the workload using the corresponding thread-mapping algorithm and sensitivity scores to

optimize the objective function for addressing the targeted problem.

This chapter concludes the general description of the ReSense framework. In the following

chapters, we describe the instances that are developed using the framework to address two

targeted problems on multicore architectures: shared-resource contention and soft errors.



Chapter 4

Using ReSense for Performance

This chapter describes how the ReSense framework is used to develop the performance

instance, ReSense_Performance, to optimize a workload’s performance on modern multicore

platforms. ReSense_Performance addresses the challenges of mitigating resource contention

for the shared resources in the memory hierarchy on a given CMP platform and targets

obtaining scalable performance.

4.1 Introduction

With the continuous growth of the number of cores on modern CMPs, the number of

simultaneously executing multi-threaded applications is increasing to utilize the multiple

execution cores. When there are multiple applications executing on CMPs, there is contention

among the applications for the shared resources on the targeted platform. In particular,

contention for the shared resources in the memory hierarchy can dramatically impact the

performance of applications, as shown in several recent studies [4, 10, 6, 59, 27]. To utilize

these resources to their full potential and obtain scalable performance improvements on

CMPs, it is critical to determine intelligent techniques to optimize performance [64, 4].

A number of techniques have been proposed to address the shared-resource contention

50
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problem for single-threaded applications and static workloads2 via thread-mapping and

scheduling [57, 59, 6, 27, 4, 10]. However, there are several di�erences between the mapping of

single- and multi-threaded applications when they contend for shared resources, as mentioned

in Chapter 1. Existing techniques to address resource contention for single-threaded applica-

tions do not consider these di�erences and are thus not applicable for mapping multi-threaded

applications.

For multi-threaded applications, there are two categories of contention for shared resources.

We define intra-application contention as the contention for a resource among sibling threads

when the application runs solely (without co-runners). In this situation, the application

threads compete with each other for the shared resources. We define inter-application

contention as the contention for shared resources among threads from di�erent applications.

In this case, threads from one multi-threaded application compete for the shared resources

with the threads from its co-running multi- or single-threaded application(s). Both types of

contention can severely degrade a multi-threaded application’s performance [32, 4].

There are several challenges to e�ectively map multi-threaded applications and mitigate

shared-resource contention on CMPs. For workloads with multiple applications, the most

e�ective thread-mapping, which minimizes contention in the shared resources, depends on

an application’s behaviors, underlying resource topology of the platform, and the behaviors

of the co-running applications. One approach is to develop a thread-mapping algorithm

that detects and mitigates contention online in the shared resources created by co-running

applications. Online contention detection involves performance comparison of di�erent thread-

to-core-mapping configurations, which vary the contention for the shared resources. Mitigation

involves mapping the applications in the thread-mapping configuration that ensures the lowest

contention and performance degradation [33, 20]. However, as the multi-threaded applications

in a workload can create a varying number of threads, the number of thread-to-core-mapping

configurations can increase exponentially [21]. As a result, determining the thread mapping

2A static workloads is one in which all applications start execution at the same time, and the set of
simultaneously executing applications does not change during execution.
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that minimizes contention by online contention detection in all possible thread-mapping

configurations has exponential complexity and makes mapping threads optimally to mitigate

contention an NP-complete problem [59].

Another issue arises when thread-mapping algorithms consider multi-threaded applications

in realistic dynamic workloads, where any number of multi-threaded applications arrive,

execute and terminate in unpredictable ways. Online detection and minimization of the

contention created by dynamic workloads is very challenging because of the continuous

change in the total number of applications and the intensity of contention in the execution

environment, resulting in exponentially varying numbers of thread-mapping configurations.

Another approach and the one used in this research to mitigate shared-resource contention

is to first determine the inherent characteristics and potential behaviors of each multi-threaded

application in a workload for how it creates and su�ers from the contention on the underlying

platform, using an o�ine technique, and then develop a thread-mapping algorithm to mitigate

the shared-resource contention. This approach leads to the creation of ReSense_Performance,

the performance instance of the ReSense framework.

ReSense_Performance addresses the challenges of mapping multiple multi-threaded

applications and mitigating contention for the shared resources in the memory hierar-

chy. Figure 4.1 shows the components of ReSense_Performance. The characterization

phase of ReSense_Performance instantiates the general methodology of the ReSense frame-

work to characterize a multi-threaded application based on its contentiousness in the tar-

geted shared resources. It uses performance as the characterization metric and calculates

SensitivityScores
performance

of the applications in a workload for each shared resource in the

memory hierarchy.

The general characterization methodology of the framework is instantiated to determine

the performance implications of multi-threaded applications in a workload and characterize

them with respect to both intra- and inter-application contention. This characterization

process measures the potential impact of contention for a specific shared resource in the
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Figure 4.1: Components of the ReSense_Performance Instance

memory hierarchy, including shared caches, last-level caches (LLC), front-side bus (FSB), on-

chip memory controller, and memory-socket interconnection, on a multi-threaded application’s

performance. This characterization methodology can also be used as a stand-alone technique

to determine the contentious behaviors of any multi-threaded application for any targeted

resource.

A SensitivityScore
performance

represents a multi-threaded application’s contentious behav-

ior for a particular shared resource and is determined o�ine only once for each targeted

platform. The characterization is performed by running the application by itself based on

intra-application contention on a particular CMP, which keeps the number of characteriza-

tions in linear order of the total number of multi-threaded applications in a workload. A

SensitivityScore
performance

identifies di�erent behaviors (e.g., data sharing or contentiousness)

of a multi-threaded application and is precise enough to evaluate the relative importance of

a shared resource for an application. The scores are used to compare the contentiousness

among co-running applications, as well as the contentiousness among sibling threads of the

co-running applications.

In the mapping phase of ReSense_Performance, we instantiate the ReSense run-time
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system as ReSense
Performance

(Figure 4.1). ReSense
Performance

is capable of handling dynamic

workloads and mapping any number of threads from any number of applications arriving and

terminating non-deterministically, avoiding the performance overhead of using online con-

tention detection mechanisms. The ReSense
Performance

run-time system applies the ReSensor
P

thread-mapping algorithm to dynamically map application threads whenever the number

of thread changes in the input dynamic workload. The ReSensor
P

algorithm uses the

SensitivityScore
performance

of each application in a workload to determine the thread-mappings

of the multi-threaded applications in the presence of any number of co-runners. It optimizes

the objective function of the performance instance, which is to minimize the workload’s

response time and maximize throughput by mitigating contention for the shared-memory

resources.

The outline of this chapter is as follows: Section 4.2 describes the characterization phase

of the instance including the methodology to characterize any multi-threaded application

for intra- and inter-application contention for the shared resources in the memory hierarchy.

Section 4.3 describes the mapping phase, which includes the ReSensor
P

algorithm and the

ReSense
Performance

system. Section 4.4.1 describes the experiments performed to characterize

the PARSEC and NBP benchmarks for shared-resource contention in the memory hierar-

chy using four di�erent CMP platforms to demonstrate the characterization methodology.

Section 4.4.2 summarizes the characterization results. Section 4.4.3 describes experimental

methodology, evaluation metrics and discusses the evaluation results of the mapping phase.

Section 4.5 concludes the chapter.

4.2 Characterization for Shared-Resource Contention

In this section, we describe how we apply the general methodology of the framework to char-

acterize multi-threaded applications for shared-resource contention in the memory hierarchy

and determine SensitivityScores
performance

of the applications.

Multi-threaded applications demonstrate di�erent behaviors for di�erent resource usage



4.2 Characterization for Shared-Resource Contention 55

on CMPs, which we can determine in the characterization phase. In this work, we consider

the shared resources in the memory hierarchy, e.g., shared caches, LLC, memory controller,

front-side bus (FSB), and memory socket connection.

For shared caches, multi-threaded applications can show sharing and contentious charac-

teristics. The sibling threads of a multi-threaded application typically use the same input

data. When the threads have such data sharing, if one of the sibling threads loads the data

from the memory into a shared cache, the sibling threads can directly use the data without

su�ering from the penalty of a cache miss.

On the other hand, sibling threads can demonstrate contentious characteristics when the

working set too large to fit into the same cache and the threads use di�erent data. For such

scenario, one of the sibling threads replaces the cache-lines populated by another thread and

causes cache misses. We can determine these characteristics and resource usage behaviors of

an application by comparing its performance when its threads share the same cache relative to

when they do not. If the performance of the application improves as it shares the same cache,

we characterize the application to have data sharing among its threads. If the performance

degrades, we characterize the threads to have contention for the shared cache.

For a memory controller or bus, multi-threaded applications can have di�erent bandwidth

requirement, which can be determined from its usage behavior of memory controller or memory

socket connection. We can compare an application’s performance when its threads use more

bandwidth relative to when it uses less bandwidth. If the performance of the application

improves as it uses more bandwidth, we infer that the application is memory intensive and

has high bandwidth requirement. If the performance does not change significantly, we infer

that the application is not memory-intensive and has low bandwidth requirement.

4.2.1 Characterization Metric

As performance is a direct measure of contention [27], we use performance as the characteri-

zation metric to determine a multi-threaded application’s contentious behaviors for shared
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resources. Because contention for a shared resource degrades a multi-threaded application’s

performance, this characterization metric also represents and quantifies the e�ect of the

targeted problem for this instance.

4.2.2 Characterization Methodology

We instantiate the general characterization methodology of the ReSense framework to identify

the application characteristics for resource contention. We customize the methodology

to characterize a multi-threaded application by determining the e�ect of intra- and inter-

application contention for the shared resources on application performance.

4.2.2.1 Characterization for Intra-application Contention

To characterize a multi-threaded application based on intra-application contention for a

targeted shared resource, we need to analyze how sharing the targeted resource among threads

from the same multi-threaded application a�ects its performance, compared to when they do

not share. To accomplish this measurement, the application is run solely with at least two

threads in two characterization configurations according to the general methodology. The non-

sharing configuration places the threads on the cores such that the threads do not share the

targeted resource and run using two separate dedicated resources. The sharing configuration

places the application threads on the cores such that the threads do share the targeted resource

and execute while using the same resource. Because the sharing configuration maps the

threads to use the same resource, it creates the possibility that the threads compete with each

other for that resource causing intra-application contention that degrades the application’s

performance. In both configurations, the mapping of threads keeps the e�ect on the other

resources the same. For example, if we characterize an application for intra-application

L1-cache contention, the placement of threads in both characterization configurations must

maintain the same e�ect on the rest of the memory hierarchy, including L2/L3-cache and the

memory controller or memory socket connection. Application performance is measured in

both characterization configurations.
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When we compare the performances of the two configurations, the di�erence indicates

the e�ect of contention for the targeted resource on the application’s performance. If

the performance di�erence between the non-sharing and sharing configuration is negative

(degradation), then the application is characterized to have intra-application contention for

that resource among the sibling threads. However, if the performance di�erence is positive

(improvement), the application is characterized to have data sharing among the sibling threads

and not have intra-application contention.

4.2.2.2 Characterization for Inter-application Contention

To characterize a multi-threaded application based on inter-application contention for a

targeted shared resource, we need to determine and analyze the e�ect of sharing the targeted

resource among threads from di�erent applications on the application performance. To

accomplish this analysis, multi-threaded applications are run with a co-runner, which can

be another multi- or single-threaded application. A pair of multi-threaded applications

are run in two characterization configurations. The non-sharing configuration places the

application threads on the cores such that each application has an exclusive access to the

targeted resource. In this configuration, the applications do not share the targeted resource

and there is no interference or contention for that resource from the co-running application.

The sharing configuration places the application threads on the cores such that threads

from one application share the targeted resource with the co-runner’s thread creating the

possibility of inter-application contention. Similar to the intra-application contention, both

configurations place the application threads such that the placement of threads to the other

shared resources remains the same and the e�ect of contention for the targeted resource can

be precisely determined. For example, if we characterize an application for inter-application

L2-cache contention, the mapping of the threads in both configurations should maintain the

same e�ect on L1-cache and the memory controller or memory socket connection. Application

performance is measured in both characterization configurations.

When we compare the performances of both configurations, the di�erence indicates
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the e�ect of contention for the targeted resource on each application’s performance. If

the performance di�erence between the non-sharing and sharing configuration is negative

(degradation), then the application is characterized to have inter-application contention for

that resource with the co-runner’s threads. However, if the performance di�erence is positive

(improvement), the application is not characterized to have inter-application contention

caused by the co-runner’s threads.

4.2.3 SensitivityScore
performance

: Sensitivity Scores for Performance

According to the methodology, the di�erence between the characterization metric, which is

performance in this instance, is used to compute a sensitivity score. This sensitivity score

of a multi-threaded application is represented as a SensitivityScore
performance

for each shared

resource in the memory hierarchy on a particular CMP. These sensitivity scores are calculated

using the following equation:

SensitivityScore
performance

=

(NumberOfCycles
non≠sharing

≠ NumberOfCycles
sharing

) ú 100
NumberOfCycles

non≠sharing

(4.1)

Here, NumberOfCycles
non≠sharing

and NumberOfCycles
sharing

are the total number of

cycles (by reading hardware performance counter) in the non-sharing and sharing configuration,

respectively. The number of cycles represents an application’s performance.

For the performance instance, SensitivityScores
performance

capture the contentious char-

acteristics of a multi-threaded application for shared caches and memory bandwidth and

how application performance is a�ected by shared-memory resource contention. The score

is represented as a floating-point number, which has both a sign and magnitude. The sign

indicates whether the application’s performance improves (positive sign) or degrades (negative

sign) as its threads share a particular resource.

For example, canneal has a positive SensitivityScore
performance

for the L2-cache on Intel-

Yorkfield (see Table 4.6) indicating that canneal’s performance improves in the sharing
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configuration. This improvement is because of the data-sharing among the threads and fewer

number of coherency-based memory transactions when its threads share the same L2-cache.

Streamcluster has a negative SensitivityScore
performance

for FSB on Intel-Harpertown (see

Table 4.6), which indicates its performance degrades when its threads are mapped to use

the same FSB and the application requires more FSB bandwidth. Streamcluster requires

more FSB bandwidth because it is a streaming application, which accesses many consecutive

memory locations and its performance degrades when we use the thread-mapping that reduces

the bus bandwidth. Therefore, from the sign of the sensitivity score, we can identify the key

characteristics of an application as to whether it benefits from certain resource-sharing.

On the other hand, the magnitude indicates the degree of application’s sensitivity for a spe-

cific shared resource. The higher the magnitude, the more sensitive the application is to sharing

that resource. For example, canneal has a higher magnitude of SensitivityScore
performance

and

is more sensitive to L2-cache sharing than dedup because canneal accesses more shared data.

From the magnitude of the sensitivity score, we determine how much an application benefits

or is penalized from certain resource-sharing.

The targeted multicore platform can have shared resources at multiple levels of the memory

hierarchy. A multi-threaded application is characterized and its SensitivityScore
performance

is

determined for each shared resource in the memory hierarchy applying the characterization

methodology. These scores are stored in SV
performance

. A SV
performance

of a multi-threaded

application is a vector containing the SensitivityScores
performance

of the applications for each

shared resource on a platform. For example, if the platform has N types of shared resources,

then SV
performance

is an N -element vector for each multi-threaded application in a workload.

This vector is used as an input to the ReSensor
P

thread-mapping algorithm.
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4.3 Mapping Co-located Multi-threaded Applications

for Performance

We describe the mapping phase of the performance instance of ReSense, which includes the

ReSensor
P

algorithm and the ReSense
Performance

run-time system.

4.3.1 The ReSensor
P

Thread-mapping Algorithm

To optimize the performance of a workload and mitigate contention for the shared resources, it

is critical to determine the thread-mapping, considering the characteristics of the applications

and the underlying architecture of the platform. Existing thread-mapping techniques map an

application by considering its characteristics in the presence of a co-runner [10] [4]. On the

other hand, ReSensor
P

determines the thread-mappings of a multi-threaded application in the

presence of any co-runner(s) by utilizing the characteristics determined without considering

the presence of the co-runner(s). As SensitivityScores
performance

identify the key characteristics

of multi-threaded applications for the shared resources on a particular platform, these scores

are used to determine the e�ective thread-mappings of each application in a workload to

optimize the objective function of this instance, i.e., minimize response time and maximize

throughput by mitigating contention.

Algorithm 3 contains the pseudocode of the ReSensor
P

algorithm. The ReSensor
P

algorithm is instantiated from the ReSensor
Generic

thread-mapping algorithm of the framework,

where applications’ SensitivityScores
performance

are used as the sensitivity scores. The algorithm

maps threads from a workload WL consisting of any number of multi-threaded applications

on a particular platform P . Platform P can have shared resources in multiple levels of the

memory hierarchy. In most platforms, a resource lower in the memory hierarchy contains

multiple number of resources that are at higher level in the memory hierarchy. Once the

mapping with respect to the resources lower in the memory hierarchy is determined, the

mapping with respect to resources at a higher memory hierarchy can be easily determined
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Algorithm 3 The ReSensor
P

Algorithm: Mapping application threads to mitigate contention
for the shared resources in the memory hierarchy

1: INPUT: Workload WL, Topology of the experimental platform P , Sensitivity vector
SV

performance

of the applications on P
2: nApps Ω number of multi-threaded applications in WL
3: [Apps] Ω multi-threaded applications in WL
4: for each level MHL in the memory hierarchy of P do
5: R Ω shared resource at MHL
6: NR Ω number of R at MHL
7: [C

+

] Ω set of cores that use or share the same R on P
8: [C≠] Ω set of cores that do not use or share the same R on P
9: [SS

P

] Ω SV
performance

[R] of the applications in [Apps]
10: sort [SS

P

] array in descending order of the magnitude of the SensitivityScore
performance

and re-arrange [Apps] accordingly
11: if NR >= nApps then
12: /* Scenario 1: equal or more shared resources than the number of applications */
13: for ( i = 0 ; i < nApps ; i++ ) do
14: if SS

P

[i] > 0 AND [C
+

] has available core(s) then
15: map Apps[i]-threads on the available cores from [C

+

]
16: else if SS

P

[i] < 0 AND [C≠] has available core(s) then
17: map Apps[i]-threads on the available cores from [C≠]
18: else
19: /* [C

+

] or [C≠] does not have available core(s) */
20: map Apps[i]-threads on any core on P
21: end if
22: end for
23: else
24: /* Scenario 2: fewer shared resources than the number of applications */
25: for ( i = 0 ; i < nApps / 2 ; i++ ) do
26: if SS

P

[i] > 0 AND [C
+

] has available core(s) then
27: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available cores from [C

+

]
28: else if SS

P

[i] < 0 AND [C≠] has available core(s) then
29: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available cores from [C≠]
30: else
31: /* [C

+

] or [C≠] does not have available core(s) */
32: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on any core on P
33: end if
34: end for
35: end if
36: end for
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because the number of thread-mapping configurations reduces to half. In addition, if the

algorithm considers the resources from the top of the memory hierarchy to the bottom,

the mapping determined on the basis of resource at a higher level can violate the mapping

that will be determined based on the characterization of the shared resource in the lower

level. Therefore, ReSensor
P

considers the shared resources from the bottom to the top of

the memory hierarchy, i.e., from memory bus or memory controller to the shared caches, to

determine the thread-mappings.

For example, Intel-Harpertown (shown in Figure 4.3(b)) has four L2-caches and two

FSB-connections as the shared resources. Assume we have to map an application A with

two threads on this platform. A has a negative SensitivityScore
performance

for L2-cache and

a positive SensitivityScore
performance

for FSB. From the SensitivityScores
performance

, we can

conclude that A’s performance improves when A is mapped on the the cores that use the same

FSB and separate L2-caches. If ReSensor
P

determines the thread-mapping of the application

by considering the characteristic of the L2-cache (higher at the memory hierarchy) first, then

A can be mapped on the cores that use separate cache, any one from the 24 possible thread-

mapping configurations. If the mapping {C0, C1} is chosen, then this mapping uses separate

cache to avoid cache contention. But at the same time, this mapping causes A to use separate

FSB-connections, which violates the mapping that leverages A’s FSB characterization to

use the same FSB. Therefore, the mapping {C0, C1} can degrade A’s performance. On the

other hand, if ReSensor
P

determines the thread-mapping of the applications by considering

the characteristic of FSB (lower in the memory hierarchy) first, then A can be mapped on

cores that use same FSB-connection, which reduce the number of mapping configurations

for L2-cache to 8. Therefore, ReSensor
P

considers each shared resource R from the bottom

of the memory hierarchy to the top (line 4). For the Intel-Harpertown example, ReSensor
P

considers the FSB first then L2-cache characteristics to determine the final thread-mapping.

Next, ReSensor
P

counts the number of shared resources, NR, at each memory hierarchical

level (MHL) (line 6). It computes two arrays: the set of cores that share or use the same R,
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Figure 4.2: Mapping decision for the two scenarios

[C
+

], and the set of cores that do not share the same R, [C≠] (lines 7, 8). These two arrays

are later used to determine the cores on which the threads will be mapped. It collects the

SensitivityScores
performance

of the applications for R into the [SS
P

] array (line 9). According

to ReSensor
Generic

, to optimize the objective function, the application that has the highest

sensitivity for R should be prioritized and should have its thread-mapping earlier than the

least-sensitive applications. To ensure the prioritization, the algorithm sorts the [SS
P

] array

in the descending order of the SensitivityScore
performance

’s magnitude and re-arranges the

applications in the [Apps] array accordingly (line 10).

Depending on the number of applications in a workload and number of shared resources

at a particular memory hierarchical level on a platform, there are two scenarios as the

ReSensor
Generic

algorithm. The scenarios and the corresponding actions of the algorithm for

this performance instance are described as follows.

Scenario 1: There is the same or more shared resources than the number of applications

in the workload (line 11). In this scenario, P has enough resources to be allocated to each

application for isolated execution. There is no problem-specific special case to consider for

the algorithm. Therefore, ReSensor
P

determines the thread-mappings of each application

considering the sign of the SensitivityScore
performance

for the shared resource at that level.

The sign of the SensitivityScore
performance

determines if sharing R improves the application

performance, i.e., response time and throughput. If the application’s SensitivityScore
performance
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is positive (line 14), it has sharing behavior and its performance improves when its threads

executes while using or sharing the same resource R. ReSensor
P

maps the application threads

on the available cores (the cores on which any thread is not mapped yet) from [C
+

] considering

its sharing characteristics (line 15). Sharing the same resource, especially the caches, also

reduces the number of memory transactions for maintaining the cache coherency and results

in better response time and throughput. If the application’s SensitivityScore
performance

is

negative (line 16), its performance degrades when the application threads use the same

resource R because of intra-application contention for R. Therefore, to avoid and mitigate

the contention, ReSensor
P

maps the threads on the available cores from [C≠] (line 17) so that

the threads use separate R. If there are no available cores from [C
+

] or [C≠], ReSensor
P

maps

threads on any core on P (line 20). As ReSensor
P

maps the application threads considering

its performance characterization for each shared resource, it always guarantees the mapping

that improves the workload’s response time and throughput.

For example, consider a workload that has two multi-threaded applications, A and

B. Assume both applications have negative SensitivityScores
performance

of ≠a
P

and ≠b
P

,

respectively and contentious behavior for shared L2-cache on the quad-core platform (e.g.,

Intel-Yorkfield), shown in Figure 4.2. Here, both nApps and NR equal 2 and [C
+

]=[{C0,C1},

{C2,C3}] and [C≠]=[{C0,C2}, {C1,C3}]. As both applications have contentious behavior for

the shared L2-cache, they are both mapped on the cores from [C≠]. A is mapped on C0 and

C2, and B is mapped on the two remaining cores from [C≠], as shown in Figure 4.2(a). These

applications, with negative sensitivity scores, su�er from relatively higher intra-application

contention than inter-application contention for cache resources [5], and the performance

degrades more when the sibling threads are co-located with each other compared to when

threads are co-located with the threads from the co-running application to use the same

cache. Therefore, for such workloads with negative SensitivityScores
performance

, it is beneficial

to share the resource with the co-runner’s threads than sharing the resource with its sibling

threads to improve the workload’s overall response time and throughput.
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Let us now consider, application A that has a positive SensitivityScore
performance

+a
P

and sharing behavior, and application B has a negative SensitivityScore
performance

≠b
P

and

contentious behavior for the shared L2-cache on the same platform. Similar to the last

example, both nApps and NR equal 2 and [C
+

]=[{C0,C1}, {C2,C3}] and [C≠]=[{C0,C2},

{C1,C3}]. After sorting, if |a
P

| > |b
P

|, ReSensor
P

maps A’s threads on the cores from [C
+

] (C0

and C1) to take advantage of the sharing characteristics and B’s threads on the available cores

from [C≠] (C2 and C3), shown in Figure 4.2(b). This mapping may degrade B’s performance

as it forces B’s contentious threads to use the same cache. Because B is comparatively

less sensitive for L2-cache, the degradation is less significant than A’s degradation if the

opposite thread-mapping was selected. As ReSensor
P

prioritizes A’s characteristic, A has

better response time and throughput compared to the alternative mapping when it shares

the same L2-cache with B’s threads, and the overall response time and throughput of the

workload improves.

Scenario 2: There are more applications than the number of resources at a particular

level of the memory hierarchy. There is no problem-specific special case to consider by

the algorithm. In this scenario, P does not have enough resources to be allocated to each

application for isolated execution. Therefore, ReSensor
P

needs to select more than one

application to use the same resource R. ReSensor
P

selects the most-sensitive application with

the least-sensitive application to share the same resource and chooses the mapping that benefits

the most-sensitive application. ReSensor
P

prioritizes the most-sensitive applications because

its performance has a higher impact on the workload’s overall response time and throughput

than that of the least-sensitive applications. Lines 25-34 contain the pseudo-code for mapping

applications in such cases. After sorting [SS
P

] in descending order, the algorithm maps the

most-sensitive (highest magnitude) application from the first half of [Apps] with the least-

sensitive ones (lowest magnitude) from the second half of [Apps], prioritizing the characteristics

of the most-sensitive application. If the SensitivityScore
performance

of the most-sensitive

application is positive (line 26), it maps its threads and least-sensitive application threads to



Chapter 4 Using ReSense for Performance 66

the available cores from [C
+

] (line 27) prioritizing the sharing characteristics of the most-

sensitive application for R. If the SensitivityScore
performance

of the most-sensitive application

is negative (line 28), ReSensor
P

maps its threads and the least-sensitive application threads to

the available cores from [C≠] (line 29) to avoid the intra-application contention among sibling

threads of the most-sensitive applications. If there are no available cores from [C
+

] or [C≠],

ReSensor
P

maps threads on any core on P (line 32). The mapping prioritization towards

the most-sensitive application does not a�ect the least-sensitive application’s performance

significantly and results into overall response time and throughput improvements of the

workload.

For example, let us consider a workload that has four applications [A, B, C, D] to be

mapped on the same platform from the previous example. The SensitivityScores
performance

of the four applications for L2-cache after sorting is [+c
P

, ≠a
P

, +b
P

, ≠d
P

], where |c
P

| >

|a
P

| > |b
P

| > |d|
P

. ReSensor
P

selects the most-sensitive application C and the least-sensitive

application D to map them together. As C has a positive SensitivityScore
performance

, ReSensor
P

maps C and D on the cores from [C
+

] (C0 and C1) prioritizing C’s sharing behavior for

L2-cache. Then ReSensor
P

maps A and B on the remaining cores (C2 and C3). The final

mapping is shown in Figure 4.2(c). Because C is the most sensitive application, this mapping

prioritizes C’s characteristic to ensure its improved performance. D being the least sensitive,

the mapping does not degrade D’s performance significantly and improves the workload’s

overall response time and throughput.

The algorithm terminates when there are no applications left in the workload whose

thread-mappings are not determined.

4.3.2 The ReSense
Performance

Run-time System

ReSense
Performance

is instantiated from the run-time system of the ReSense framework. The

ReSense
Performance

run-time system manages the execution of the applications in the input

workload. Whenever an application creates a new thread or destroys an existing one,
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or an application starts or terminates the execution, the run-time system detects such

changes and employs ReSensor
P

to determine the thread-mappings of the currently running

applications. ReSense
Performance

passes the SensitivityScores
performance

of the applications in the

input dynamic workload to the ReSensor
P

algorithm. The ReSensor
P

algorithm dynamically

determines the thread-mappings of the multi-threaded applications in a workload in the

presence of any number of co-runners using each application’s SensitivityScore
performance

for

a particular resource. The thread-mapping algorithm optimizes the objective function of

this instance, which is to mitigate shared-resource contention in the memory hierarchy and

minimize workload’s response time and maximize throughput. ReSense
Performance

uses the

mapping algorithm to optimize the objective function of this instance.

4.4 Evaluation of the ReSense_Performance Instance

In this section, we describe the experimental results of the characterization and mapping

phase for the ReSense_Performance instance of the framework. In the characterization

phase, we characterize the PARSEC and NPB benchmarks using the methodology described

in Section 4.2.2. We present the characterization results in Section 4.4.1 and summary in

Section 4.4.2. We present the evaluation results of the mapping phase in Section 4.4.3.

4.4.1 Characterization: Experimental Details and Results

According to the methodology, to characterize a multi-threaded benchmark based on both

types of contention, we perform two categories of experiments: (1) we run a benchmark

solely, and (2) we run each benchmark with a co-runner, which is another multi-threaded

benchmark. Each category contains multiple sets of experiments, in which each set is designed

to target a specific resource in the memory hierarchy and measures the impact of contention

on performance for that resource. The resources in the memory hierarchy that are considered

in the experiments are: L1-cache, shared L2-cache, shared L3-cache, FSB, on-chip memory

controller (MC), and memory socket connection.
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Figure 4.3: Experimental Platforms (CX stands for the processor core, L1 HW-
PF and L2 HW-PF stand for hardware prefetcher for L1- and L2-caches, respec-
tively and FSB and MB stand for Front Side Bus and Memory Bus, respectively.)

The multi-threaded applications that we use in our experiments are from the latest

PARSEC 2.1 [38] and NAS parallel benchmark suites (NPB) [97]. We use the PARSEC
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benchmark suite as it is composed of multi-threaded applications designed to be representative

of next-generation shared-memory programs for multicore architectures. We use the NAS

benchmark suite as it consists of representative applications for high performance computing.

Both benchmark suites have multi-threaded applications of diverse characteristics. The

PARSEC benchmarks used in the experiments are: blackscholes (BS), bodytrack (BT),

canneal (CN), dedup (DD), facesim (FA), ferret (FE), fluidanimate (FL), freqmine (FQ),

raytrace (RT), streamcluster (SC), swaptions (SW), vips (VP), and x264 (X2). We use

the largest native input set for the PARSEC benchmarks. We use nine benchmarks from

NPB-OMP-3.3. We use the input B for the benchmark DC and input D for all other

benchmarks as these are the largest inputs for the experimental platforms. We do not use

BT from NPB as it does not execute multiple threads.

We keep profiling overhead as low as possible and employ a simple technique to instrument

the benchmarks by identifying pthread-create system calls. By detecting new thread creation,

we gather each thread’s threadID information, which is necessary to get the per-thread profile

information.

To collect di�erent run-time statistics, as each benchmark in each experiment is run,

profile information is collected by reading hardware performance counters using the Perfmon2

tool [98]. The interfaces defined in the tool’s library allow user-level programs to read

hardware performance counters on thread-basis (per-thread) and system-basis (per-core).

These interfaces enable users to access the counters’ values with a low run-time overhead. The

initial set up for the counters takes 318µsec and reading one counter’s value takes 3.5µsec,

on average. After the initialization of the performance counters for each thread, the values of

the counters are read via signal handlers when periodic signals are sent (every second) to

each thread using the threadID information. As performance is used as the characterization

metric in this instance, we collect the counter, UNHALTED_CORE_CYCLES’s sampling

values for each thread in the characterization configurations in all experiments to determine

the e�ect of both intra- and inter-application contention.
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We use statically linked binaries for our experiments, compiled with the default GCC

version on the experimental platforms. The OpenMP benchmarks are compiled using -fopenmp

flag. We do not include any additional compiler optimization flag other than the ones used

in the benchmarks’ original makefiles. The threads are a�nitized by pinning them to cores

via Linux sched_seta�nity() system call. When we co-schedule two applications and one

application finishes before the rest, we immediately restart it. We perform this restart until

the longest running application completes five iterations. We collect the application profile

information for five iterations to ensure low variability in the collected values.

4.4.1.1 Experimental Platforms

To measure the contention among threads for di�erent levels of caches, we require a machine

that has multiple levels of cache. Because we need to map the application threads to the cores

sharing one cache to determine the e�ect of cache contention, the platform must have both

private (per-core) L1- and shared L2-caches. It must have single socket memory connection,

so the contention for the FSB is expected to be the same and we are able to measure only

contention for the caches. Intel-Yorkfield, shown in Figure 4.3(a), satisfies the requirements for

such experiments and we use this platform to characterize applications for cache contention.

This platform has four cores and each core has private L1-data and L1-instruction cache,

each of size 32KB. It has two 6MB 24-way L2-caches and each L2-cache is shared by two

cores. It has 2 GB of memory connected by single socket to the L2-cache, so there is one

FSB. It runs Linux kernel 2.6.25.

To characterize a multi-threaded application for FSB and measure contention for this

resource among threads, we need a platform that has multiple socket connections to memory,

i.e., multiple FSBs. The cache hierarchy in each FSB connection must be the same so that

we can isolate contention for the FSB by keeping the other factors (L1-/L2-cache contention)

unchanged. Intel-Harpertown, shown in Figure 4.3(b), fulfills these requirements. Therefore,

we choose this platform to determine and characterize applications for FSB contention. It

has two processors each having four cores. Each core has private L1-data and L1-instruction
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cache, each of size 32 KB. Each pair of cores share one of the four 6MB 24-way L2-caches.

This platform has dual sockets, and each processor has a separate FSB connected to 32GB

memory. It runs Linux kernel 2.6.30.

To characterize a multi-threaded application for on-chip memory controller contention,

we need a platform that has multiple numbers of memory controllers. The number of other

resources, such private and shared caches for each on-chip memory controller connection must

be the same so that we can apply the methodology to isolate the e�ect of the contention

for the memory controller. Intel-Xeon, shown in Figure 4.4(a), fulfills these requirements

and is used to characterize PARSEC and NPB benchmarks based on the memory-controller

contention. This platform has four processors. Each processor has eight cores and one 24-way

18MB L3-cache with integrated memory controller. Each core has private 32KB L1- and

256KB L2-cache. This platform is hyper-threaded, and each core has two thread contexts.

Therefore, it has a total of 32 cores and 64 thread contexts. This platform has 250GB

memory.

Similarly, to characterize applications based on contention for L3-cache and memory-

socket, we select AMD-Opteron machine, shown in Figure 4.4(b) because this platform has

multiple numbers of the targeted resources, and the L1- and L2-caches are private. It has

four processors, each having twelve cores. Six cores share one 5MB L3-cache. Each core has

private 64K L1- and 512KB L2-cache. Four processors are connected to the 95GB memory

via four memory sockets.

Table 4.1 summarizes the configurations of the experimental platforms.

4.4.1.2 Characterization for Intra-application Contention

To characterize a multi-threaded application based on intra-application contention for a

shared resource in the memory hierarchy, we run each benchmark solely according to the

characterization methodology. The experiments are described below.

L1-cache: According to the methodology, to determine the e�ect of intra-application

contention for L1-cache on application performance, we run each benchmark in two configura-
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Figure 4.4: Topology of Experimental Platforms

tions. In each configuration, the number of threads to run equals the number of cores sharing

one L2-cache. In the non-sharing configuration, two threads from a benchmark use their own

private L1-caches, and there is no intra-application L1-cache contention. These threads are

placed on the two cores that share one L2-cache, e.g., C0 and C1 (shown in Figure 4.5(a)).

In the sharing configuration, two threads from the benchmark share one L1-cache compared

to the exclusive access. In the presence of intra-application L1-cache contention, the threads
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Platform Topology Linux kernel Number of Memory system Target
/GCC version cores/contexts Resource

private 32KB L1
Intel- Figure 4.3(a) 2.6.25/4.2.4 4/4 2 shared 6MB L2 L2-cache

Yorkfield 2GB memory
Intel- private 32KB L1 L2-cache,

Harper- Figure 4.3(b) 2.6.30/ 4.2.4 8/8 4 shared 6MB L2 FSB
town 32GB memory

private 32KB L1 L3-cache
Intel- Figure 4.4(a) 2.6.32/4.4.3 32/64 private 256KB L2 + Memory
Xeon 4 shared 18MB L3 controller

250GB memory (MC)
private 64KB L1 L3-cache,

AMD- Figure 4.4(b) 2.6.32/4.4.3 48/48 private 512KB L2 Memory
Opteron 8 shared 5MB L3 socket

95GB memory

Table 4.1: Configuration of the experimental platforms
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Figure 4.5: Configurations to characterize a multi-threaded application for intra-
application L1-cache contention

compete for L1-cache space when they share the L1-cache and access conflicting cache-lines.

Here, these threads are placed on one core, e.g., C0 (shown in Figure 4.5(b)) or C1. As we

determine the e�ect of L1-cache contention, we keep the e�ect of L2-cache contention the

same by placing threads to the cores that share the same L2-cache. Furthermore, we make

sure that contention for FSB remains unchanged and choose Intel-Yorkfield that has one
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Figure 4.6: Configurations to characterize a multi-threaded application for intra-
application L2-cache contention

FSB, for this experiment. The only di�erence between these two configurations is the way

L1-cache is shared between the threads, and we are able to measure how L1-cache contention

a�ects the benchmark’s performance.

L2-cache: Similar to L1-cache contention, to determine the e�ect of intra-application

contention for L2-cache on application performance, we run each benchmark in two configu-

rations. Each configuration runs threads equal to the number of L2-caches sharing one FSB.

In the non-sharing configuration, two threads from a benchmark use their own L2-cache,

avoiding intra-application contention for L2-cache. The threads are placed on the two cores

that have separate L2-cache, e.g., C0, C2 (shown in Figure 4.6(a)) or C1, C3. In the sharing

configuration, two threads from the benchmark share one L2-cache and contend for L2-cache

with each other. Here, the threads are placed on the two cores sharing one L2-cache, e.g., C0,

C1 (shown in Figure 4.6(b)) or C2, C3. As we measure contention for L2-caches, we avoid

intra-application L1-cache contention by allowing only one thread to access one L1-cache

and keep the FSB contention unchanged between configurations by choosing Intel-Yorkfield,

which has one FSB.

Front Side Bus: To determine the e�ect of intra-application contention for the FSB

on application performance, we need to understand how sharing the FSB among appli-
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Figure 4.7: Configurations to characterize a multi-threaded application for intra-
application FSB contention

cation/benchmark threads a�ects its performance compared to using separate FSBs. For

this experiment, we use Intel-Harpertown as it has more than one FSB. According to the

methodology, we run each benchmark in two configurations. In each configuration, the

number of threads equals the number of cores sharing one FSB to fully utilize its bandwidth.

In the non-sharing configuration, four threads from a benchmark use separate FSBs equally

and do not compete for this resource. Four threads are placed on the four cores that have

separate socket connections (separate bus) to memory (via shared L2-cache), e.g., C0, C2, C1

and C3 (shown in Figure 4.7(a)). In the sharing configuration, four threads use only one FSB

and there is potential contention among them for this resource. In this case, four threads are

placed on the four cores sharing one socket connection to memory, e.g., C0, C2, C4 and C6

(shown in Figure 4.7(b)). As both configurations use the same number of threads as cores
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and L1-caches are private to each core, there is no intra-application contention for L1-cache.

Similarly, as both configurations use two L2-caches shared by an equal number of threads,

the contention for L2-cache remains the same. So comparing the performance output of the

configurations, we are able to determine how bus bandwidth and FSB contention a�ect the

performance of each benchmark.

Memory Controller: To determine the e�ect of intra-application contention for the

on-chip memory controller on application performance, we need to understand how sharing

the same memory controller among application threads a�ects its performance compared to

using separate memory controllers. For this experiment, we use Intel-Xeon as it has multiple

memory controllers. According to the methodology, we run each multi-threaded benchmark in

two configurations. In each configuration, the number of threads equals the number of cores

sharing one memory controller to fully utilize its bandwidth. In the non-sharing configuration,

eight threads from a benchmark use two separate memory controllers equally and do not

compete for this resource. Eight threads are placed on the eight cores that have separate

memory controller connections to memory, e.g., C0 - C3 and C8 - C11 of the platform shown

in Figure 4.4(a). In the sharing configuration, eight threads use only one memory controller

and there is potential contention among them for this resource. In this case, eight threads are

placed on the eight cores that share one memory controller connection to memory, e.g., C0 -

C7 of the platform shown in Figure 4.4(a). As both configurations use the same number of

threads as cores, and L1- and L2-caches are private to each core, there is no intra-application

contention for L1- and L2-cache. So comparing the performance output of the configurations,

we are able to determine how bus bandwidth and contention for memory controller a�ect the

performance of each benchmark.

L3-cache: To determine the e�ect of intra-application contention for the L3-cache on

application performance, we need to understand how sharing the same L3-cache among

application threads a�ects its performance compared to using separate L3-caches. For this

experiment, we use AMD-Opteron as it has multiple L3-caches on the same memory socket
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connection. According to the methodology, we run each multi-threaded benchmark in two

configurations. In each configuration, the number of threads equals the number of cores

sharing one L3-cache. In the non-sharing configuration, six threads from a benchmark use

two separate L3-caches equally and do not compete for this resource. Six threads are placed

on the six cores that use two L3-caches, e.g., C0 - C2 and C6 - C8 of the platform shown in

Figure 4.4(b). In the sharing configuration, six threads use only one L3-cache and there is

potential contention among the sibling threads for this resource. In this case, six threads

are placed on the six cores that share one L3-cache, e.g., C0 - C5 of the platform shown

in Figure 4.4(b). As both configurations use the same number of threads as cores and L1-

and L2-caches are private to each core, there is no intra-application contention for L1- and

L2-cache. Both characterization configurations use the same memory socket. So comparing

the performance output of the configurations, we are able to determine how contention for

L3-cache a�ects the performance of each benchmark.

Memory Socket: To determine the e�ect of intra-application contention for the memory-

socket connection on application performance, we need to understand how sharing the same

memory-socket among application threads a�ects its performance compared to using separate

memory sockets. For this experiment, we use AMD-Opteron as it has multiple memory-

socket connections. According to the methodology, we run each multi-threaded benchmark

in two configurations. In each configuration, the number of threads equals the number of

cores sharing one memory socket. In the non-sharing configuration, twelve threads from

a benchmark use two separate memory socket connections to memory equally and do not

compete for this resource. Twelve threads are placed on the twelve cores that use two separate

memory socket connection, e.g., C0 - C5 and C12 - C17 of the platform shown in Figure 4.4(b).

In the sharing configuration, twelve threads use only one memory socket creating potential

contention among them. In this case, twelve threads are placed on the cores that share one

memory socket, e.g., C0 - C11 of the platform shown in Figure 4.4(b). As both configurations

use the same number of threads and the placement of threads on the cores with respect to
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Platform: Number Non-sharing Sharing
Targeted resource of threads Configuration Configuration

Intel-Yorkfield: Maps on cores Maps on cores
L2-cache 2 C0 and C2 C0 and C1

Intel-Harpertown: Maps on cores Maps on cores
L2-cache 2 C0, C4 C0, C2

Intel-Harpertown: Maps on cores Maps on cores
FSB 4 C0, C2, C1, C3 C0, C2, C4, C6

Intel-Xeon: Maps on cores Maps on cores
L3-cache+MC 8 C0 - C3 and C8 - C11 C0 - C7
AMD-Opteron: Maps on cores Maps on cores

L3-cache 6 C0 - C2 and C6 - C8 C0 - C5
AMD-Opteron: Maps on cores Maps on cores
Memory-socket 12 C0 - C5 and C12 - C17 C0 - C11

Table 4.2: Characterization configurations on the experimental platforms

L1-, L2- and L3-caches are the same, there is no intra-application contention for L1-, L2-,

and L3-caches. So comparing the performance output of the configurations, we are able to

determine how contention for memory socket a�ects the performance of each benchmark.

The characterization configurations for each targeted shared resources on the experimental

platforms are summarized in Table 4.2. Each benchmark’s SensitivityScore
performance

is

calculated using Equation 4.1.

4.4.1.3 Characterization Results and Analyses for Intra-application Contention

Figure 4.8-4.16 show the characterization results of the PARSEC and NPB benchmarks,

represented as SensitivityScore
performance

, based on intra-application L1-, L2-cache, FSB,

on-chip memory controller, L3-cache, and memory socket contention. The positive and

negative SensitivityScore
performance

indicate an application’s performance improvement and

degradation, respectively. We do not characterize the NPB benchmarks on Intel-Yorkfield

and Intel-Harpertown as these platforms are too resource constrained for these long-running

applications.

L1-cache: The results of intra-application contention of the PARSEC benchmarks for

L1-caches on Intel-Yorkfield, represented as SensitivityScore
performance

, are shown in Figure 4.8.
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Figure 4.8: Characterization results of the PARSEC benchmarks for intra-
application L1-cache contention, represented as SensitivityScore

performance

We observe in the figure that all the benchmarks except blackscholes (BS), ferret (FE) and

vips (VP) show performance improvement (positive SensitivityScore
performance

). When two

threads from the same benchmark are placed on the core that uses one L1-cache, data

sharing among the threads causes fewer cache misses as they share more than they contend

for L1-cache. The fewer number of cache misses reduces the number of cycles to complete

execution, improving the application performance. Additionally, as the benchmark’s threads

share data, when they are placed on the cores that use the same L1-cache, there are up to

99% reduced cache-snooping operations, decreasing the cache coherency protocol’s overhead.

These benchmarks, showing performance improvements, do not su�er from intra-application

contention for L1-cache. As facesim (FA) and streamcluster (SC) have a large amount

of data sharing, they show performance improvements of 8.6% and 11.42%, respectively.

Dedup (DD) and fluidanimate (FL) show performance improvement of 0.9% and 1.6%,

respectively. Canneal (CN), freqmine (FQ), raytrace (RT) and x264 (X2) show very small

performance improvements of 0.34%, 0.55%, 0.29%, and 0.28%, respectively. Although

bodytrack (BT) and swaptions (SW) show performance improvement, the magnitude of the
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improvement is very close to zero, less than 0.1%. So the data sharing in these benchmarks

yields minimal improvements. On the other hand, ferret and vips have fewer number of

sharers compared to other benchmarks [38], causing contention when the threads share

L1-cache. This characteristic results in more cache-misses and performance degradation

by approximately 1% and 7%, respectively. Because these benchmarks show performance

degradation (negative SensitivityScore
performance

) when the threads only share L1-cache, they

su�er from intra-application contention for L1-caches. Blackscholes shows the lowest and

almost negligible performance degradation of 0.4% and is not much a�ected by L1-cache

contention.
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Figure 4.9: Characterization results of the PARSEC benchmarks for intra-
application L2-cache contention, represented as SensitivityScore

performance

L2-cache: The results of intra-application contention of the PARSEC benchmarks for

L2-caches on Intel-Yorkfield, represented as SensitivityScore
performance

, are shown in Figure 4.9.

In the figure we observe that facesim and x264 show performance degradation close to 1%, on

average and su�er from intra-application contention for L2-caches. The rest of the benchmarks

show performance improvements because of sharing and reduced cache coherency tra�c and

do not su�er from intra-application L2-cache contention. Among these, canneal, dedup and
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streamcluster ’s performance improvements are among the highest, respectively 4.5%, 2.4%

and almost 10%, respectively. Bodytrack and freqmine also show performance improvements

of approximately 2%. Although vips does not show performance improvement due to sharing

in L1-caches, it shows slightly better sharing in L2-cache and small performance improvement

of 0.28%. Ferret, fluidanimate and swaptions show small performance improvements of

0.27%, 0.49%, and 0.28%, respectively. Blackscholes and raytrace have negligible performance

improvements, approximately 0.03% and 0.02% respectively, showing very small amount of

sharing.
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Figure 4.10: Characterization results of the PARSEC benchmarks for intra-
application FSB contention, represented as SensitivityScore

performance

Front Side Bus: The results of intra-application contention of the PARSEC benchmarks

for the FSB on Intel-Harpertown, represented as SensitivityScore
performance

, are shown in

Figure 4.10. We observe from the graph that the performances of most of the benchmarks,

except bodytrack and vips, degrade when we map the threads to use one FSB. Because there

is performance degradation for the reduced bus bandwidth, we conclude that there is intra-

application contention for the FSB among the threads of these benchmarks. Streamcluster

su�ers the most performance degradation (nearly 12%), thereby showing the highest intra-
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Figure 4.11: Characterization results of the PARSEC benchmarks for
intra-application on-chip memory controller contention, represented as
SensitivityScore

performance

application contention for the FSB. Canneal su�ers nearly 4% performance degradation.

Facesim and fluidanimate show nearly 2% performance degradation. The performances

of blackscholes, dedup, ferret and freqmine degrade on average by 1%. The performance

degradation of swaptions and raytrace is negligible, less than 0.05%. In contrast, vips and

bodytrack show very small performance improvements of 0.4% and 0.4% respectively and do

not show intra-application contention for the FSB.

Memory Controller: The results of intra-application contention of the PARSEC bench-

marks for the on-chip memory controller on Intel-Xeon, represented as SensitivityScore
performance

,

are shown in Figure 4.11. We observe from the graph that the performances of most bench-

marks degrade when the threads are placed on the cores that use the same memory controller,

except canneal and streamcluster. The on-chip memory controller has L3-cache integrated

with it, and sharing the same memory controller means sharing the same L3-cache. The

performances of canneal and streamcluster improve, respectively, by more than 8% and 14%

in the sharing configuration because of the data-sharing among the threads in the L3-cache.
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Figure 4.12: Characterization results of the NPB benchmarks for
intra-application on-chip memory controller contention, represented as
SensitivityScore

performance

Except these two applications, the rest of the benchmarks su�er from intra-application

contention for the on-chip memory controller and L3-cache. Especially vips and x264 have

performance degradation of more than 11% and 10%, respectively.

The SensitivityScore
performance

results of intra-application contention of the NPB bench-

marks for the memory controller are shown in Figure 4.12. We observe from the graph that

the performances of most benchmarks degrade when the threads are placed on the cores that

use the same memory controller and L3-cache, except CG.D. CG.D’s performance improves

because its bandwidth requirement is satisfied by one memory controller, and the threads

do not have contention for the combined memory controller and L3-cache. The remaining

benchmarks su�er from severe contention for the memory controller and L3-cache, where the

performance degradation ranges from 7% to more than 31%. These application threads need

more bandwidth during their executions.

L3-cache: The results of intra-application contention of the PARSEC benchmarks for

L3-cache on AMD-Opteron platform, represented as SensitivityScore
performance

, are shown
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Figure 4.13: Characterization results of the PARSEC benchmarks for intra-
application L3-cache contention, represented as SensitivityScore

performance

in Figure 4.13. From the graph, we observe that most benchmarks’ performances improve

in the sharing configuration, which range from roughly 1% to 10%. These performance

improvements are because of the sharing behavior in the L3-cache by the sibling threads,

especially for canneal and streamcluster. There are three benchmarks that su�er performance

degradation because of L3-cache contention among the sibling threads. These applications are

blackscholes, fluidanimate, and freqmine, and they have intra-application L3-cache contention.

The characterization results of intra-application contention of the NPB benchmarks for

L3-cache on AMD-Opteron platform, represented as SensitivityScore
performance

, are shown in

Figure 4.14. We observe from the graph that the performances of all benchmarks, except

EP.D, degrade when the threads are placed on the cores that use the same L3-cache. EP.D

has a negligible performance improvement of less than 1%. The remaining benchmarks

su�er from severe contention for the L3-cache, where the performance degradation ranges

from 10% to more than 233%. These applications have very large memory footprint. When

they are placed on the cores that use two L3-caches to the cores that use one L3-cache,

the di�erence in total cache space causes the application to contend more and results in a
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Figure 4.14: Characterization results of the NPB benchmarks for intra-
application L3-cache contention, represented as SensitivityScore

performance

-1 

3 

7 

11 

15 

19 

23 

27 

31 

35 

39 

BS BT CN DD FA FE FL FQ RT SC SW VP X2 

Benchmarks 

 S
en

si
tiv

ity
S

co
re

pe
rfo

rm
an

ce
 (%

) 

Figure 4.15: Characterization results of the PARSEC benchmarks for intra-
application memory socket contention, represented as SensitivityScore

performance

significant performance degradation.

Memory Socket: The results of intra-application contention of the PARSEC benchmarks

for the memory socket connection on AMD-Opteron platform, represented as SensitivityScore
performance

,
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Figure 4.16: Characterization results of the NPB benchmarks for intra-
application memory socket contention, represented as SensitivityScore

performance

are shown in Figure 4.15. From the figure we observe that most applications have improved

performance when the threads share the same memory socket connection. Especially canneal,

facesim and streamcluster have performance improvements of more than 8%, 24%, and 36%

respectively. When these application threads are spread across to use separate memory

sockets, the threads use distributed memory and the latency of remote memory accesses

degrades the application performance. When they are placed on the cores that share the same

memory socket, they do not use the distributed memory and use only local memory. The

local memory access reduces the latency and improves application performance in the sharing

configuration than that of the non-sharing configuration. Only one application, raytrace, has

negligible performance degradation of 0.04% when the threads share the same memory socket,

su�ering from very low intra-application memory socket contention.

The results of intra-application contention of the NPB benchmarks for the memory socket

connection on AMD-Opteron platform, represented as SensitivityScore
performance

, are shown

in Figure 4.16. We observe that most applications have performance improvements when

all threads share the same memory socket connection because of reduced access to remote
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memory and lower memory latency. Three benchmarks IS.D, FT.D, and MG.D have more

memory bandwidth requirements. Therefore, if they are placed on the cores that use one

memory socket connection, the sibling threads have intra-application contention for this

resource, which leads to performance degradation.

The characterization results of PARSEC and NAS benchmarks based on intra-application

contention for the shared targeted resources are used in the mapping phase of the framework.

As inter-application contention results are not used in the mapping phase, we show the

characterization based on inter-application contention for only the PARSEC benchmarks using

Intel-Yorkfield and Intel-Harpertown platforms. The NPB benchmarks can be characterized

in the same way as PARSEC, using the characterization configurations described below.

4.4.1.4 Characterization for Inter-application Contention

To understand the e�ect of inter-application contention for a particular resource in the memory

hierarchy on application performance, each benchmark is run with another benchmark (co-

runner) in two configurations. The resources in the memory hierarchy that are considered

in the experiments are: L1-cache, shared L2-cache, FSB. The experiments for each shared

resource are described below.

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

Application�1�
Thread

Application�2�
Thread

(a) Non-sharing Configuration

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

(b) Sharing Configuration

Figure 4.17: Configurations to characterize a multi-threaded application for
inter-application L1-cache contention
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L1-cache: To measure the e�ect of inter-application contention for L1-cache on a multi-

threaded application’s performance, we run pairs of PARSEC benchmarks each with two

threads in two configurations. In the non-sharing configuration, two threads of each benchmark

get exclusive L1-cache access. There is no inter-application contention for L1-cache between

them because L1-cache is not shared with the co-runner’s threads. Two threads of one

benchmark are placed on one core, e.g., C0 and two threads of the co-running benchmark are

placed on the other core, e.g., C1 (shown in Figure 4.17(a)). In the sharing configuration,

two threads from both benchmarks share the L1-caches and there is potential contention for

L1-cache among them. Here, two threads from both benchmarks are placed on the two cores

that share the same L2-cache, e.g., C0 and C1 (shown in Figure 4.17(b)). As we measure

contention only for L1-caches, we keep the e�ect of L2-cache contention the same using one

L2-cache and choose Intel-Yorkfield, having one FSB, to make sure that the contention for

the FSB remains unchanged.

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

Application�1�
Thread

Application�2�
Thread

(a) Non-sharing Configuration

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

Application�1�Thread

Application�2�Thread

(b) Sharing Configuration

Figure 4.18: Configurations to characterize a multi-threaded application for
inter-application L2-cache contention

L2-cache: Similar to L1-caches, to determine the e�ect of inter-application contention for

L2-caches, we run pairs of PARSEC benchmarks each with two threads in two configurations.

In the non-sharing configuration, two threads of each benchmark get exclusive L2-cache access.

There is no inter-application L2-cache contention among them as L2-cache is not shared with
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the co-runner’s threads. On Intel-Yorkfield, two threads of one benchmark are placed on two

cores, e.g., C0, C1 (shown in Figure 4.18(a)) or C2, C3 and two threads of the co-running

benchmark are placed on the remaining cores, e.g., C2, C3 (shown in Figure 4.18(a)) or C0,

C1. In the sharing configuration, one thread each from both benchmarks shares the L2-caches

and there is potential contention for L2-cache between them. As shown in Figure 4.18(b),

one thread from both benchmarks are placed on the two cores that share one L2-cache, e.g.,

C0, C1 and the second threads from both benchmarks are placed on the remaining two cores,

which share the second L2-cache, e.g., C2, C3. Both configurations use the same number of

L1-caches and single socket memory connection. So we are able to measure how L2-cache

contention a�ects each benchmark’s performance because the only di�erence between these

configurations is how the L2-cache is shared between co-runners.

Front Side Bus: We run two PARSEC benchmarks each with four threads on Intel-

Harpertown in two configurations to determine the e�ect of inter-application contention for

FSB. In the non-sharing configuration, each benchmark gets its exclusive FSB access and

there is no FSB interference/contention from the co-running benchmark. Four threads from

one benchmark are placed on the four cores that share one socket connection to memory, e.g.,

C0, C2, C4, C6 and four threads from the other benchmark are placed on the remaining four

cores that share the second socket connection to memory, e.g., C1, C3, C5, C7 (shown in

Figure 4.19(a)). In the sharing configuration, both benchmarks share both FSB and there is

potential contention for this resource between them. Here, four threads from one benchmark

are placed equally on the four cores that have separate socket connections (separate bus) to

memory, e.g., C0, C2, C1 and C3 and the remaining threads on the remaining cores (shown

in Figure 4.19(b)). The only di�erence between these two configurations is how applications

share the FSB connection to the memory. As both configurations use the same sized L1-

and L2-cache, the contention for L1- and L2-cache remains unchanged, and we are able to

determine how separate FSB usage a�ects the performance of each benchmark.

For the performance analysis for inter-application contention for a particular resource, we
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C0 C2 C4 C6

L2 L2

L1 L1L1 L1

C1 C3 C5 C7

L2 L2

L1 L1L1 L1

Application�1�Thread

Application�2�Thread

(a) Non-sharing Configuration

Memory

C0 C2 C4 C6

L2 L2

L1 L1L1 L1

C1 C3 C5 C7

L2 L2

L1 L1L1 L1

Application�1�Thread

Application�2�Thread

(b) Sharing Configuration

Figure 4.19: Configurations to characterize a multi-threaded application for
inter-application FSB contention

use Equation 4.2 to calculate the percentage performance di�erence between the application’s

performances in the two characterization configurations with each of its co-runners using the

following formula:
Percent_Performance_Difference

i

=

(SumOfCycles
non≠sharingi ≠ SumOfCycles

sharingi) ú 100
SumOfCycles

non≠sharingi

(4.2)

Here, SumOfCycles
non≠sharingi and SumOfCycles

sharingi are the sum of the hardware

performance counter, UNHALTED _CORE _CYCLES’s, sampling values in the non-sharing

and sharing configuration, respectively, with the i-th co-runner, where i = 1, 2, ..., n and n =

number of co-runners.
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4.4.1.5 Characterization Results and Analyses for Inter-application Contention

The characterization results of the PARSEC benchmarks for inter-application L1-, L2-cache

and FSB contention are shown in Figure 4.20- 4.22. In each figure, the X-axis corresponds to

each benchmark in alphabetical order. Each column is a percentage stacked graph, where the

stacks or segments show the performance results of a benchmark with each of its co-runners

in alphabetical order from the bottom to the top. The lighter shade segments represent

performance improvement, and darker shade segments represent performance degradation.

For example, in Figure 4.20 for BS, the first segment from the bottom shows performance

improvement with BT, the next segment shows performance degradation with CN while

measuring inter-application L1-cache contention. Similarly, for BT, the first and second

segment from the bottom shows performance degradation respectively with BS and CN.

If a particular segment in a benchmark’s column is in the lighter shade, it means that the

benchmark’s performance improves in the sharing configuration. A performance improvement

results when the benchmark’s threads show lower contention for the resource with its co-

runner’s threads compared to the contention among its own threads for that resource. For

example, in Figure 4.21, FE’s (Ferret) performance improves when running with RT (Raytrace)

as its co-runner, which means FE’s threads do not have much sharing among themselves and

have more L2-cache contention among themselves than the contention with the co-running

RT’s threads. On the other hand, if a particular segment in a benchmark’s column is

in the darker shade, it means that the benchmark’s performance degrades in the sharing

configuration and the benchmark’s threads su�er from higher contention with its co-runner’s

threads than the contention among its own threads. For example, in Figure 4.21, FE’s

performance degrades when running with SC (Streamcluster) as its co-runner, which means

FE’s threads have more L2-cache contention with the co-running SC’s threads than the

contention among its own threads.

The number on top of each column (Absolute Performance Di�erence Summation (APDS))

is the sum of the absolute percentage performance di�erences of each benchmark with each of
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Figure 4.20: Characterization results of the PARSEC benchmarks for inter-
application contention for L1-cache

its co-runners. The height of each segment in the columns represents percentage performance

di�erence of a benchmark with one of its co-runners, normalized with respect to this summation

to keep the total height of the column at 100%. To get the actual percentage performance

di�erence for a benchmark with any co-runner, we multiply the height of the appropriate

segment in the benchmark’s column with the APDS value above the column. For example, to

get the actual percentage performance improvement for BS with BT for L1-cache contention,

we multiply the height of first segment of first column in Figure 4.20 with 1.96, which is

0.1173 ú 1.96 = 0.23%.

L1-cache: From the results of inter-application contention of the PARSEC benchmarks

for L1-cache (shown in Figure 4.20), we can categorize the benchmarks into three classes.

This classification depends on how much they su�er from inter-application contention for

L1-cache resulting in performance degradation or number of the darker shaded segments
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in each column. The first class includes the benchmarks whose column has most of its

segments in the darker shade and shows highest inter-application contention for L1-cache.

This class includes bodytrack, facesim, fluidanimate, raytrace, streamcluster, swaptions and

x264. Among these benchmarks, facesim, streamcluster, x264 and raytrace, swaptions show,

respectively, the most and least contention as the APDS values are among the highest and

lowest of all benchmarks in this class. The next class includes the benchmarks whose columns

have almost half of its height in the lighter and the other half in the darker shade. This

class includes blackscholes and dedup. From the magnitude of APDS, we infer that dedup

has more performance impact for L1-cache contention compared to blackscholes. The third

category includes the benchmarks whose columns have most segments in the lighter shade.

This class includes canneal, ferret and vips, which su�er more from intra-application than

inter-application contention for L1-cache as their performance improve with most of the

co-runners. Vips su�ers the most due to intra-application contention as it has the highest

APDS value among these benchmarks (also validated by the Figure 4.8 results).

L2-cache: Figure 4.21 shows the experimental results of the inter-application contention

of the PARSEC benchmarks for L2-cache on Intel-Yorkfield. Similar to L1-cache contention

results, we can categorize the benchmarks in three classes. In this case, we categorize them

based on the APDS values as we observe in the figure that most of the benchmarks have

all the column-segments in the darker shade, denoting performance degradation due to

inter-application L2-cache contention. The first class includes the benchmarks that have the

highest APDS values representing greater impact on the performance. This class includes

canneal, dedup, streamcluster, and vips. All the segments of these benchmarks’ columns

are in the darker shade showing performance degradation due to high inter-application

contention for L2-cache. The next category includes the benchmarks that have lower APDS

than that of the previous class. This class includes bodytrack, facesim, ferret, fluidanimate,

and x264. These benchmarks have most column segments in the darker shade showing

performance degradation for L2-cache contention except x264 and ferret. X264 shows more
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Figure 4.21: Characterization results of the PARSEC benchmarks for inter-
application contention for L2-cache

intra-application contention for L2-cache with blackscholes, canneal, dedup, and swaptions

as co-runner. Ferret shows more intra-application L2-cache contention with raytrace and

swaptions as co-runner. The last class includes the rest of the benchmarks that show very

small APDS values. This class includes blackscholes, raytrace, and swaptions. For each

co-runner, these three benchmarks show on average 0.24%, 0.07% and 0.31% performance

di�erences respectively, which is very small compared to those of the other benchmarks. So

we can conclude that these three benchmarks’ performances are not much a�ected by the

inter-application L2-cache contention.

Front Side Bus: From the results of inter-application contention of the PARSEC

benchmarks for the FSB on Intel-Harpertown (shown in Figure 4.22), we can categorize

the benchmarks into three classes. Similar to L1-cache, the classification depends on how

much they su�er from inter-application contention for the FSB resulting in performance
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Figure 4.22: Characterization results of the PARSEC benchmarks for inter-
application contention for FSB

degradation (i.e., the total length of darker segments in each column). The first class includes

the benchmarks dedup, swaptions and vips, which have the most column area in the darker

shade. Dedup and vips show the highest APDS values in this class and su�er more from

inter-application contention for the FSB. The second class includes benchmarks that have

both the lighter and darker shaded segments of almost equal length. This class includes

blackscholes, ferret, raytrace and x264. Among these benchmarks, blackscholes and raytrace

have very small APDS values, so their performance is not much a�ected because of the

FSB contention. The third class includes the benchmarks whose columns have most of the

segments in the lighter shade. These benchmarks’ performances improve because of the

increased bandwidth and they have more intra-application than inter-application contention

for the FSB. This class includes bodytrack, facesim, fluidanimate, canneal and streamcluster.

Among these benchmarks, facesim and streamcluster have the highest APDS values, which

indicate they have higher intra-application contention for the FSB and is also validated by
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Benchmarks L1-cache L2-cache FSB Memory L3-cache Memory
Controller Socket

blackscholes yes no yes yes yes no
bodytrack no no no yes no no
canneal no no yes no no no
dedup no no yes yes no no

facesim no yes yes yes no no
ferret yes no yes yes no no

fluidanimate no no yes yes yes no
freqmine no no yes yes yes no
raytrace no no yes yes no yes

streamcluster no no yes no no no
swaptions no no no yes no no

vips yes no no yes no no
x264 no yes yes yes no no

Table 4.3: Summary of the intra-application contention results for the PARSEC
benchmarks

the results in Figure 4.10. We include canneal in this category as for most of its co-runners,

it improves performance when it uses increased bandwidth and it also has high APDS value.

All benchmarks su�er from inter-application contention for the FSB when they run with

streamcluster as co-runner in sharing configuration. From this we infer that streamcluster has

a higher memory requirement for which its co-runners su�er. Only facesim does not degrade

performance with streamcluster as it su�ers more due to intra-application contention.

4.4.2 Characterization: Discussion and Summary

Table 4.3 summarizes the characterization results of PARSEC benchmarks based on intra-

application contention for the targeted resources on the four experimental platforms. From

the table we observe that most PARSEC applications do not su�er from intra-application

contention for the shared caches. Only three out of thirteen benchmarks su�er from intra-

application contention for L1-, L2- and L3-caches. In particular, canneal and streamcluster

do not su�er from intra-application contention for any cache resource, including private and

shared caches. These two applications have data sharing among the sibling threads that
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Benchmarks Memory L3-cache Memory
Controller Socket

IS.D yes yes yes
DC.B yes yes no
SP.D yes yes no
LU.D yes yes no
FT.D yes yes yes
CG.D no yes no
MG.D yes yes yes
EP.D yes no no
UA.D yes yes no

Table 4.4: Summary of the intra-application contention results for the NPB
benchmarks

help the application performances to improve when the threads share the same cache. Most

PARSEC applications su�er from FSB and the on-chip memory controller contention among

the sibling threads. All benchmarks, except raytrace, perform better when the sibling threads

use the same memory socket connection, which reduces remote memory access and its latency.

Table 4.4 summarizes the characterization results of the NPB benchmarks for the targeted

resources on Intel-Xeon and AMD-Opteron. From the table we observe that IS.D, FT.D,

and MG.D su�er from intra-application contention for all the shared resources on the two

platforms including the memory controller, L3-cache, and memory socket. Most benchmarks

su�er from intra-application contention for the integrated memory controller with L3-cache

on Intel-Xeon and L3-cache on AMD-Opteron. Three out of nine benchmarks su�er from

memory socket contention among the sibling threads on AMD-Opteron.

Table 4.5 summarizes the characterization results of PARSEC benchmarks based on inter-

application contention for the targeted resources on Intel-Yorkfield and Intel-Harpertown.

Analyzing the APDS values in all inter-application contention results, we infer that the

performances of blackscholes, raytrace and swaptions are not a�ected when the threads share

the targeted resource with co-runners, and they do not have inter-application contention

for the resources in the memory hierarchy. When a PARSEC application’s threads are
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Benchmarks L1-cache L2-cache FSB
blackscholes no no no
bodytrack yes yes no
canneal no yes no
dedup yes yes yes

facesim yes yes no
ferret no yes no

fluidanimate yes yes no
raytrace no no no

streamcluster yes yes no
swaptions no no no

vips no yes yes
x264 yes yes no

Table 4.5: Summary of the inter-application contention results for the PARSEC
benchmarks

mapped to use the same shared cache with co-runners, the application performance degrades

compared to when the cache is being only used by the sibling threads. Thus, we can conclude

that most PARSEC benchmarks su�er from inter-application L2-cache contention. X264

su�ers the most performance degradation due to inter-application L1-cache contention. Vips

su�ers the most due to inter-application contention for L2-cache. Only dedup and ferret

show inter-application contention for FSB. Dedup is the only benchmark that su�ers from

inter-application contention for all the resources considered in the memory hierarchy on these

two platforms.

Tables 4.6 and 4.7 show the SensitivityScores
performance

of the PARSEC and NPB bench-

marks, respectively. Positive SensitivityScore
performance

means application performance im-

proves, and negative SensitivityScore
performance

means application performance degrades in

the sharing configuration. These SensitivityScores
performance

are used later in the mapping

phase of the framework.

4.4.3 Mapping: Experimental Details and Results

To evaluate ReSense
Performance

’s e�ectiveness in mapping the threads of applications from a

workload using ReSensor
P

, we choose applications from the multi-threaded benchmark suites,
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Platform Intel- Intel- Intel- Intel- AMD- AMD-
Yorkfield Harper- Harper- Xeon Opteron Opteron

town town
Benchmarks L2-cache L2-cache FSB L3-cache L3-cache Memory

+MC Socket
blackscholes (BS) 0.0354 ≠0.0922 ≠0.1277 ≠7.5441 ≠1.1348 0.1289
bodytrack (BT) 2.2210 3.412 0.2922 ≠4.6291 0.5649 0.0558
canneal (CN) 4.4049 4.6012 ≠3.3664 8.1034 6.7756 8.5197
dedup (DD) 2.4294 1.7702 ≠0.2925 ≠5.4493 2.2727 1.1811
facesim (FA) ≠0.5406 ≠6.6455 ≠1.1869 ≠6.0272 3.8579 24.148
ferret (FE) 0.2665 ≠0.4081 ≠0.6787 ≠3.0600 4.0712 1.1431

fluidanimate (FL) 0.4920 1.9047 ≠1.7727 ≠7.8056 ≠1.0396 0.3836
freqmine (FQ) 2.065 ≠0.4574 ≠0.3188 ≠8.6898 ≠0.2647 0.0623
raytrace (RT) 0.0196 0.7365 ≠0.0036 ≠0.4280 1.1278 ≠0.0463

streamcluster (SC) 9.9298 9.1566 ≠11.3983 14.4905 10.9319 36.148
swaptions (SW) 0.2762 0.2570 0.0061 ≠6.3446 0.6461 0.2931

vips (VP) 0.2803 1.1600 0.4082 ≠11.2819 0.0897 0.1766
x264 (X2) ≠0.4192 ≠0.7398 ≠0.2531 ≠10.9900 0.7736 0.0787

Table 4.6: SensitivityScore
performance

of the PARSEC benchmarks

Platform Intel- AMD- AMD-
Xeon Opteron Opteron

Benchmarks L3-cache L3-cache Memory
+MC Socket

IS.D ≠12.4783 ≠52.0424 ≠10.4446
DC.B ≠7.1677 ≠11.0202 1.9157
SP.D ≠21.5190 ≠10.1729 21.6309
LU.D ≠25.8932 ≠22.3693 1.1384
FT.D ≠31.2067 ≠233.2549 ≠38.6669
CG.D 1.5424 ≠107.5569 17.9871
MG.D ≠11.9599 ≠66.5676 ≠43.0097
EP.D ≠11.4738 0.0476 0.2832
UA.D ≠23.3012 ≠19.5132 0.9321

Table 4.7: SensitivityScore
performance

of the NPB benchmarks

PARSEC and NAS parallel benchmarks with the same input set described in Section 4.4.1.

We choose the same four experimental platforms: Intel-Yorkfield, Intel-Harpertown, Intel-

Xeon, and AMD-Opteron. Table 4.1 describes the configurations of the platforms in detail.

The selected machines represent a range of di�erent micro-architectures, topologies and

types of shared resources in the memory hierarchy and provide evidence of the generality of



Chapter 4 Using ReSense for Performance 100

ReSense
Performance

and ReSensor
P

.

The ReSense
Performance

run-time system is implemented as a user-level virtual execution

manager using REEact [99]. We choose this framework because it is customizable, especially

designed for CMPs, and has very low (less than 3%) run-time overhead. ReSense
Performance

uses

several services provided by REEact to detect the creation and termination of an application

thread, including detecting the start and finish of an application and pinning application

threads on specific cores.

We compare the experimental results with the native OS, as after an extensive search for

similar work, we find it is the only viable option. Most of the previous thread-mapping or

scheduling work focus on single-threaded applications, and extensions to accommodate multi-

threaded applications are not obvious. The prior research on multi-threaded applications,

on the other hand, focuses on optimizing energy, choosing the thread count, minimizing

lock contention, or optimal core allocation, goals and techniques which are di�erent than

mitigating shared-resource contention and improving application performance by determining

the thread-mapping. This work is the first to have management of contention for shared-

memory resources for multiple multi-threaded applications from dynamic workloads via

thread-mapping as the goal. We believe comparing to the native OS is a fair comparison

as recent operating systems, including the one we use, consider an application’s cache and

memory behavior in scheduling [100].

To evaluate ReSense
Performance

’s e�ectiveness over the native OS, we run the experiments

in two configurations. In the first or baseline configuration, we run the workloads under

the OS’s control where the native OS determines the thread-mapping (called OS-mapping).

In the second configuration, we run the workloads under ReSense
Performance

’s control, using

the mapping determined by ReSensor
P

(called ReSensor
P

-mapping). In all experiments, the

number of workloads are chosen to assure statistical significance for t-test (See Section 4.4.4).

The evaluation metrics, average response time and throughput are computed according to the

following equations and the evaluation results are normalized with respect to the native OS.
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Here, n is the total number of applications in a workload and Execution Time is the average

wall-clock execution time of an application.

Average Response T ime =
q

n

i=1

ExecutionT ime
i

n
(4.3)

Throughput =
nÿ

i=1

1
ExecutionT ime

i

(4.4)

In all our experiments described in the following sections, we configure each benchmark to

run with two, four, eight and six threads on Intel-Yorkfield, Intel-Harpertown, Intel-Xeon and

AMD-Opteron, respectively. We represent each workload, WL
n

that consists of n applications,

as {ts
1

(BM
1

,k
1

) ts
2

(BM
2

,k
2

) ... ts
n

(BM
n

,k
n

)}, which means at time-stamp ts
i

, BM
i

arrives

and executes for k
i

iterations. Depending on the size of a workload, the time-stamps are

randomly chosen between 0 and 400 seconds, and the benchmarks are randomly selected

from the PARSEC and NPB benchmark suites. The number of iterations is randomly chosen

between 1 and 10. These parameters for the di�erent-sized workloads are described in the

corresponding experiments in detail.

4.4.3.1 Evaluation Results: Small Dynamic Workloads

To evaluate if ReSense
Performance

determines the e�ective thread-to-core mappings of the

multi-threaded applications using SensitivityScores
performance

and ReSensor
P

, we first use

Small dynamic workloads. We randomly select three PARSEC benchmarks. The first two

benchmarks start execution simultaneously. After the second benchmark finishes, the third

benchmark executes for a random i
3

iterations. We choose to execute the third benchmark

to evaluate ReSense
Performance

’s e�ectiveness at dynamically adjusting the mapping based on

the new benchmark’s SensitivityScore
performance

. Each workload has simultaneously executing

two or one benchmark at some point in time. The benchmarks and the parameters of the

workloads are described in details in Table 4.8.

In Figure 4.23(a) we observe that the average response time and throughput of most
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Figure 4.23: Performance results of Small Dynamic Workloads, normalized to
the native OS (ReSense

Performance

performs better than the OS)

workloads improve by up to 4.75% and 5.32% on Intel-Yorkfield. The improvement indicates

that ReSense
Performance

adjusts the benchmarks’ thread-mappings dynamically in the presence

of a co-runner using ReSensor
P

and the corresponding SensitivityScores
performance

. The

workloads, WL2, WL3, WL5 and WL7, consist of at least two benchmarks that are not

L2-cache sensitive, and thus the performance di�erence between the OS and ReSense
Performance

is small.
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Workloads Parameters of Parameters of
Small Workloads Medium Workloads

WL1 {(CN ,10)(FL,4)(SW ,8)} {(FA,5)(FL,7) 117 (SP ,9) 322 (DD,5)}
WL2 {(FL,9)(BS,6)(BT ,2)} {(SC,8)(LU ,5) 289 (IS,7) 196 (BS,6)}
WL3 {(SW ,3)(CN ,10)(FL,8)} {(EP ,2)(SW ,3) 228 (UA,9) 211 (DD,5)}
WL4 {(RT ,4)(SC,1)(CN ,3)} {(MG,4)(RT ,10) 242 (DC,7) 275 (BT ,5)}
WL5 {(BS,7)(FL,7)(FA,2)} {(SC,8)(BS,2) 113 (IS,9) 139 (DC,10)}
WL6 {(FA,1)(BS,3)(SC,3)} {(FE,7)(DC,6) 227 (CN ,3) 284 (BT ,10)}
WL7 {(CN ,4)(FA,1)(BS,1)} {(SC,9)(FE,7) 257 (FQ,3) 147 (IS,6)}
WL8 {(CN ,2)(SW ,9)(SC,5)} {(UA,4)(SW ,10) 133 (CG,6) 146 (V P ,7)}
WL9 {(SC,9)(FQ,3)(SW ,3)} {(SP ,3)(FQ,6) 138 (SC,8) 155 (CN ,10)}
WL10 {(FQ,5)(CN ,4)(RT ,2)} {(CN ,5)(FA, 9) 157 (IS,4) 167 (FL,9)}

Table 4.8: Small and Medium Dynamic Workload Set

In Figure 4.23(b) we observe that the average response time and throughput improve by up

to 8.89% and 14.88% for most workloads on Intel-Harpertown, especially those containing SC,

FA, FL and CN. These benchmarks have the highest SensitivityScores
performance

for FSB and

are more memory-intensive than the other benchmarks. SC, FL and CN also have data sharing

in the L2-cache. Because ReSensor
P

considers the benchmarks’ SensitivityScore
performance

for

both L2-cache and FSB, ReSense
Performance

maps the threads to use both FSB’s bandwidth and

the same cache, resulting in response time and throughput improvements. As the benchmarks

in other workloads do not have high SensitivityScores
performance

for FSB, their performance

di�erences between OS and ReSense
Performance

are small.

The improvement of both average response time and throughput by up to 16.52% and

13.70% (Figure 4.24(a)) and by up to 27.03% and 19.97% (Figure 4.24(b)), indicates

that ReSensor
P

e�ectively adjusts the thread-mappings depending on the benchmarks’

SensitivityScores
performance

and the underlying platform’s resource topology. Comparing

Figure 4.23 and Figure 4.24, we observe that the performance improvements on the more

powerful machines (Intel-Xeon and AMD-Opteron) are much higher than that of the less

powerful machines (Intel-Yorkfield and Intel-Harpertown). This discrepancy between the

performance gains of the more and less powerful machine is caused by the benchmarks, which
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Figure 4.24: Performance results of Small Dynamic Workloads, normalized to
the native OS (ReSense

Performance

performs better than the OS)

are more sensitive to the shared resources on the more powerful machine.

To summarize, by utilizing an application’s SensitivityScore
performance

, ReSense
Performance

e�ectively uses ReSensor
P

to map threads from dynamic pairs of multi-threaded applications

and improves response time and throughput.
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4.4.3.2 Evaluation Results: Medium Dynamic Workloads

To demonstrate that ReSense
Performance

e�ectively maps threads from workloads consisting of

multi-threaded applications, we run experiments with Medium workloads. Each workload

consists of four randomly selected benchmarks from both PARSEC and NPB to have a diverse

set of applications. Two benchmarks start simultaneous execution at the beginning and the

third and fourth benchmark arrive after random intervals. A benchmark in the workload

continues to execute and re-execute for a number of times. Thus, even when the third and

fourth benchmarks arrive and execute, the first and second benchmarks are still executing. If

any benchmark finishes execution, it restarts immediately without any intermediate delay

if its number of iterations is not over. Therefore, on average more than 50% of the time,

there are four simultaneously executing multi-threaded applications in the system for Medium

workloads. The benchmarks and the parameters of the workloads are described in Table 4.8.

In Figure 4.25, we observe that ReSense
Performance

improves the average response time

and throughput by up to 12.38% and 30% on Intel-Xeon and 20.89% and 46.56% on AMD-

Opteron, over the native OS. From the improvements in both metrics for every workload,

we conclude that ReSense
Performance

e�ectively maps multi-threaded applications from very

diverse dynamic workloads and dynamically adjusts the thread-mappings using ReSensor
P

as

the benchmarks arrive and execute non-deterministically.

On Intel-Xeon, all the benchmarks in WL1, WL3, WL4, and WL8 have negative

SensitivityScores
performance

for (L3-cache+MC). Therefore, ReSense
Performance

maps the sibling

threads on separate L3-caches to reduce the cache contention among threads. Under OS-

mapping, the sibling threads are randomly mapped on the cores using separate L3-caches

and the mapping determined by ReSensor
P

and OS is similar. Therefore, the performance

di�erence between ReSense
Performance

and the OS is small.

To summarize, ReSense
Performance

improves the workload’s average response time and

throughput by dynamically adjusting the thread-mappings of the multi-threaded applications

in the presence of multiple dynamic co-runners using ReSensor
P

and SensitivityScore
performance
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Figure 4.25: Performance results for Medium Dynamic Workloads, normalized
to the native OS (ReSense

Performance

performs better than the OS)

of the applications.

4.4.3.3 Evaluation Results: Large Dynamic Workloads

To evaluate ReSense
Performance

’s scalability and the capability of handling more multi-threaded

applications and threads in a more dynamic environment, we run experiments with Large

dynamic workloads. The workloads are composed of randomly selected eight benchmarks
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from both PARSEC and NPB to create diversity. Because the arrival time and execution

duration of the benchmarks are randomly selected, each workload has one to eight benchmarks

simultaneously executing in the system at some point in time. The benchmarks and the

parameters of the workloads are described in Table 4.9.

Workload Parameters
WL1 {12 (BS,3) 34 (DC,7) 50 (CN ,4) 68 (FL,6) 85 (RT ,5) 101 (IS,3) 114 (FE,5) 141 (SW ,6)}
WL2 {25 (SW ,6) 28 (SP ,7) 89 (SC,6) 90 (DC,5) 123 (FQ,2) 132 (DD,6) 150 (RT ,2) 173 (CN ,3)}
WL3 {8 (CN ,3) 38 (SC,6) 45 (SW ,5) 50 (IS,3) 57 (FA,4) 80 (RT ,1) 111 (DD,5) 120 (FL,5)}
WL4 {18 (UA,5) 30 (SW ,4) 68 (FA,5) 71 (SC,7) 102 (LU ,9) 124 (FE,6) 160 (CG,5) 169 (FQ,2)}
WL5 {16 (FQ,8) 12 (FL,3) 20 (EP ,2) 28 (BS,9) 40 (CN ,5) 51 (FA,10) 60 (DD,2) 72 (UA,4)}
WL6 {5 (IS,7) 56 (RT ,8) 85 (LU ,8) 109 (CN ,5) 111 (EP ,9) 119 (BS,1) 127 (FL,9) 131 (V P ,8)}
WL7 {84 (FQ,10) 95 (SP ,1) 96 (SW ,3) 136 (CG,8) 147 (UA,4) 167 (SC,10) 175 (RT ,3) 194 (FA,2)}
WL8 {57 (FA,7) 66 (RT ,9) 70 (BT ,3) 106 (SW ,5) 118 (DC,3) 131 (UA,4) 140 (FE,7) 191 (CG,1)}
WL9 {79 (EP ,3) 110 (LU ,1) 120 (BS,1) 127 (SC,6) 163 (MG,4) 169 (DC,3) 178 (V P ,2) 198 (FE,3)}
WL10 {10 (CN ,2) 11 (EP ,7) 78 (DC,8) 96 (DD,2) 99 (IS,3) 154 (RT ,5) 168 (CG,1) 195 (FL,4)}

Table 4.9: Large Dynamic Workload Set

In Figure 4.26, we observe that ReSense
Performance

improves the average response time and

throughput of the workloads up to 8.29% and 13.65%, respectively, on Intel-Xeon and 29.34%

and 29.86%, respectively, on AMD-Opteron, over the native OS. On Intel-Xeon, all workloads

show improvements for both metrics. The mapping decision of ReSensor
P

is similar to the

OS-mapping for WL1, WL5, and WL7. Therefore, the performance di�erences between the

OS and ReSense
Performance

are small.

On AMD-Opteron, most workloads have high performance improvements for both metrics.

The benchmarks in WL1, particularly RT, SW and BS are not very sensitive to contention

for the shared resources on this platform. ReSense
Performance

maps IS ’s threads on separate

processors and L3-caches and OS-mapping also maps the threads randomly on any processor.

Because both OS and ReSensor
P

map the threads similarly on the cores, the performance

di�erence between the OS and ReSense
Performance

for WL1 is small. The throughput degrades

by 2% for WL8. ReSense
Performance

co-locates one of the benchmarks in the workload, FE,

with the long-running NAS-benchmarks, causing FE’s performance degradation. As FE has

a lower execution time, it has a higher impact on the throughput equation. Therefore, even
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Figure 4.26: Performance results for Large Dynamic Workloads, normalized to
the native OS (ReSense

Performance

performs better than the OS)

if the average response time improves for this workload, the throughput does not improve

over the native OS.

In summary, ReSense
Performance

e�ectively manages large dynamic workloads, consisting of

eight randomly selected benchmarks and improves both average response time and throughput

using the thread-mappings determined by ReSensor
P

.
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Dynamic Metrics Intel- Intel- Intel- AMD-
Workloads Yorkfield Harpertown Xeon Opteron

Small

Average 2.25 ± 1.58 3.73 ± 2.68 14.15±13.4 7.45±6.18
Response Time p-val= 0.0005 p-val= 0.005 p-val= 0.005 p-val= 0.0005

Throughput 2.70 ± 1.64 3.27 ± 3.95 4.89±4.03 11.70±6.39
p-val= 0.0005 p-val= 0.025 p-val= 0.005 p-val= 0.0005

Medium

Average – – 4.94 ±4.18 11.70±7.45
Response Time p-val= 0.005 p-val= 0.0005

Throughput – – 9.005 ± 9.74 16.17±14.80
p-val= 0.01 p-val= 0.005

Large

Average – – 3.67±3.37 17.60±14.19
Response Time p-val= 0.005 p-val= 0.005

Throughput – – 4.95±4.45 10.58±10.8
p-val= 0.0005 p-val= 0.01

Table 4.10: Confidence interval of performance improvements for three work-
loads

4.4.4 Mapping: Discussion and Statistical Analyses

Because we use workloads having randomly selected benchmarks in our experiments, we

perform a significance test for the reported average response time and throughput. We

assume the null hypothesis that ReSense
Performance

does not improve the average response

time and throughput of the workloads over the native OS. As we perform each experiment in

two configurations, using the native OS and ReSense
Performance

run-time, each experiment has

two distributions, OS and ReSense. We perform a t-test to compare these distributions to

determine if OS is better than ReSense in terms of average response time and throughput [101].

For each dynamic workload on the experimental platforms, we observe that the null hypothesis

is rejected with p-value of at most 0.005 for average response time and 0.025 for throughput.

It indicates that the probability of ReSense
Performance

improving a workload’s average response

time and throughput over the OS is very high, at least 99.5% and 97.5%, respectively.

We determine the confidence intervals of the mean improvement of the average response

time and throughput provided by ReSense
Performance

over the native OS, shown in Table 4.10.

If the confidence interval for any metric is x±y with p≠val = z, it means that at (1≠z)ú100%
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confidence interval the mean improvement ranges from x ≠ y to x + y. From the table, we

observe that the lower interval for the average response time is always greater than 0, which

indicates ReSense
Performance

always improves the average response times of the three dynamic

workload sets on the four platforms using ReSensor
P

. For throughput, the lower interval is

always greater than 0 except the negligible -0.68% for Small on Intel-Harpertown, -0.69% for

Medium on Intel-Xeon, and -0.22% for Large on AMD-Opteron. These negligible negative

values are caused by the very small performance degradation of the benchmark that has a

smaller execution time than the other applications in the workloads. From the higher interval,

we observe that the maximum average response time improvement is 31.79% for Large and

the maximum throughput improvement is 30.97% for Medium on AMD-Opteron, over the

native OS.

To summarize, the statistical analysis validates ReSense
Performance

’s e�ectiveness to map

and improve the performance of multi-threaded applications over the native OS using the

thread-mappings determined by ReSensor
P

.

4.4.5 Mapping: Performance Comparison with Experimentally

Determined Optimal Thread-mapping

To evaluate ReSensor
P

’s e�ectiveness in contention mitigation, we compare application

performance obtained from ReSense
Performance

- and the experimentally determined optimal

thread-mappings. We experimentally determine the optimal performance of a workload

by choosing the minimum average response time and maximum throughput of the optimal

thread-mapping among all possible thread-to-core-mapping configurations. Throughout this

section, when we use “optimal” we mean the experimentally determined optimal. Dynamic

workloads have O(rn1 ú rn2 ú ... ú rnn) numbers of di�erent thread-mapping configurations,

where r is the number of a particular shared resources on a platform, and n
1

, n
2

, ..., n
n

are the numbers of executing applications at time t
1

, t
2

, ..., t
n

, respectively. As dynamic

workloads have such a large number of configurations, it is unfeasible to experimentally
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Figure 4.27: Performance comparison between ReSense
Performance

and experimen-
tally determined Optimal thread-mapping for pair-wise workloads, normalized
to the native OS

determine the optimal performance. Therefore, we choose to use workloads that have all the

benchmarks start at the same time and execute for the same number of iterations so that it

is feasible to determine the optimal performance.

For performance comparison on Intel-Yorkfield and Intel-Harpertown, we run experiments

with randomly selected ten pair-wise workloads from the PARSEC benchmark suite. We
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do not include the NAS benchmarks in the random selections because those benchmarks

have execution times that are too long to finish the experiments for all possible thread-

mapping configurations. Figure 4.27 shows the experimental results relative to the native

OS, where the X-axis labels the initials of the benchmarks used as the workload. For each

workload, the first two bars show average response times (ART) for ReSense
Performance

and

experimentally determined optimal mappings, and the last two bars show throughput (TP)

for ReSense
Performance

and experimentally determined optimal mapping. In both Figure 4.27(a)

and 4.27(b), we observe that ReSense
Performance

’s performance improvements are very close to

that of the optimal. The average ART di�erence between ReSense
Performance

and experimentally

determined optimal is 0.27% and 0.18% on Intel-Yorkfield and Intel-Harpertown, respectively.

The average TP di�erence between ReSense
Performance

and experimentally determined optimal

is 0.49% and 0.10% on Intel-Yorkfield and Intel-Harpertown, respectively. Both the ART

and TP di�erences between ReSense
Performance

and optimal are negligible on both machines,

and we conclude that ReSense
Performance

always ensures near-optimal performance on these

machines using the thread-mappings determined by ReSensor
P

.

For performance comparison on Intel-Xeon and AMD-Opteron, we run experiments

with randomly selected ten 4-application workloads from the PARSEC benchmark suite.

Figure 4.28 shows the experimental results relative to the native OS. In both Figure 4.28(a)

and 4.28(b), we observe that ReSense
Performance

’s performance improvements are very close

to that of the experimentally determined optimal. The average ART di�erence between

ReSense
Performance

and experimentally determined optimal is 1.49% and 0.05% on Intel-Xeon

and AMD-Opteron, respectively. For CN_BS_DD_FQ, ReSense
Performance

degrades the

throughput by 2% on both machines. Because of the short execution time of the benchmark

DD, even if ReSense
Performance

degrades DD’s performance by 1 second, it caused the overall

throughput degradation because of throughput’s definition. The average TP di�erence

between ReSense
Performance

and experimentally determined optimal is 2.08% and 0.49% on

Intel-Xeon and AMD-Opteron, respectively. Both the ART and TP di�erences between
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Figure 4.28: Performance comparison between ReSense
Performance

and experimen-
tally determined Optimal thread-mapping for 4-applications Workloads, normal-
ized to the native OS

ReSense
Performance

and experimentally determined optimal are very small on both machines.

Therefore, we can conclude that ReSense
Performance

performs very competitively with the

optimal mapping using the thread-mappings determined by ReSensor
P

.

The improvements over the native OS by ReSense
Performance

are mainly due to the charac-

terization and use of these characterizations by ReSensor
P

. If ReSensor
P

does not consider
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Thread- 2-application workload 4-application workload
mappings Avg. Response Time Throughput Avg. Response Time Throughput

C
+

-1.70% 5.57% 14.1% 8.28%
C≠ 0.51% -3.77% -2.5% -6.51%

ReSense
Performance

5.07% 7.90% 16.77% 11.82%

Table 4.11: Average performance improvements (positive values) or degradation
(negative values) over the native OS, for thread-mappings using fixed positive,
fixed negative and characterization-based SensitivityScores

performance

any SensitivityScore
performance

(SensitivityScores
performance

are 0) to determine the thread-

mappings, the performance of the workload is the same as the native OS. To further isolate

the benefits of the SensitivityScores
performance

, we explore the performance of workloads when

the SensitivityScore
performance

of each application is set to the same magnitude with positive

or negative sign and run the ReSensor
P

algorithm for these two cases. Table 4.11 summa-

rizes these experimental results for the 2-application and 4-application workloads used in

Section 4.4.5 on Intel-Harpertown and AMD-Opteron, respectively, relative to the native OS.

The rows C
+

and C≠ show the performance results of the thread-mappings determined using

the fixed positive and negative SensitivityScore
performance

(same magnitude with positive or

negative sign), respectively, for all applications in the workloads. The row ReSense
Performance

shows the performance results of the thread-mappings determined by ReSensor
P

using an

application’s SensitivityScore
performance

from the characterization. From the table we observe

that the C
+

thread-mapping degrades application performance for the 2-application work-

loads, and the C≠ thread-mapping degrades application performance for both 2-application

and 4-application workloads. Therefore, thread-mappings determined using a fixed positive

or negative SensitivityScore
performance

do not ensure application performance improvements.

In contrast, with the computed SensitivityScore
performance

from the characterization, for

the 2-application workloads ReSense
Performance

improves the workloads’ both average response

time by 5.07% and throughput by 7.9% on average, and for the 4-application workloads

ReSense
Performance

improves both the workloads’ average response time by 16.77% and through-
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put by 11.82% on average, relative to the native OS. Therefore, these results show that the

computed SensitivityScore
performance

is essential for the workload’s improved performance.

4.5 Summary

In this chapter, we addressed the challenges of mitigating shared resource contention in the

memory hierarchy caused by multi-threaded applications in modern multi- and many-core

machines using ReSense_Performance, a performance instance of the ReSense framework.

In the characterization phase, we instantiated the general methodology of the ReSense

framework to characterize a multi-threaded application for both intra- and inter-application

contention for the shared resources in the memory hierarchy using performance as the charac-

terization metric. To demonstrate the methodology, we characterized the applications in the

widely used PARSEC and NPB benchmark suites for shared-memory resource contention on

four di�erent multicore platforms. The characterization revealed several interesting aspects

of the benchmark suites. Two of the thirteen PARSEC benchmarks exhibited no intra-

application contention for the cache resources at any level of the memory hierarchy. Nine

PARSEC benchmarks exhibited inter-application contention for the L2-cache. Contention for

the front-side bus and memory controller was a major factor with most the benchmarks and

degraded application performance by more than 11%. All benchmarks, except one, performed

better when the sibling threads used the same memory socket connection, which reduced

remote memory access and its latency. On the other hand, two of the nine NPB benchmarks

su�ered from intra-application contention for all the shared resources on the platforms includ-

ing the memory controller, L3-cache, and memory socket. Three out of nine NPB benchmarks

su�ered from memory socket contention among the sibling threads. Each application’s

characteristics for a particular shared resource was represented as SensitivityScore
performance

,

which was determined o�ine as the application ran solely using the methodology developed

for intra-application contention.

In the mapping phase, the ReSense run-time system was instantiated as ReSense
Performance

.
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The ReSense
Performance

run-time system employed the ReSensor
P

algorithm to map application

threads from the input dynamic workloads. ReSensor
P

dynamically determined the thread-

mappings of the multi-threaded applications in a workload in the presence of any number

of co-runners using each application’s SensitivityScore
performance

for a particular platform.

The algorithm optimized the objective function of this instance, which was to minimize the

workload’s average response time and maximize throughput. ReSense
Performance

did not require

the application’s source code modifications. To determine ReSense
Performance

’s e�ectiveness,

SensitivityScores
performance

were determined for 22 benchmarks from PARSEC-2.1 and NPB-

OMP-3.3 for the shared resources in the memory hierarchy on four di�erent platforms. Using

three di�erent sized dynamic workloads composed of randomly selected two, four and eight

co-running benchmarks with randomly selected start times, ReSense
Performance

was able to

improve the average response time of the three workloads by up to 27.03%, 20.89%, and

29.34% and throughput by up to 19.97%, 46.56%, and 29.86% respectively, over the native OS

using ReSensor
P

on real hardware. By estimating and comparing ReSensor
P

’s e�ectiveness

with the optimal thread-mapping for two di�erent workloads, we found that the maximum

average di�erence with the experimentally determined optimal performance was 1.49% for

average response time and 2.08% for throughput.

From the results of both characterization and mapping phase, we conclude that the

ReSense framework was e�ectively used to mitigate contention for the shared resources in

the memory hierarchy on both multi- and many-core architectures.



Chapter 5

Using ReSense for Reliability

This chapter describes how the ReSense framework is used to develop the reliability in-

stance, ReSense_Reliability, for improving reliability on modern multicore architectures.

ReSense_Reliability targets minimizing the e�ect of soft errors in shared caches on a given

CMP platform.

5.1 Introduction

Soft errors induced by alpha particles from packaging and atmospheric neutrons are a

significant source of transient errors in modern microprocessors [15, 2]. These transient faults

arise from high energetic particles that generate electron-hole pairs when passing through any

semiconductor device. These electron-hole pairs cause the transistor nodes to collect charges.

When these charges are su�ciently accumulated, they may invert the state of a logic device

and create logical faults. These phenomena of state inversions in logic devices are also known

as bit-flips. Because this type of fault does not result into a permanent failure of a device,

these are known as soft or transient errors [15].

Because of technology scaling, the size of the transistors decreases and the total number

of bits on the multicore platforms increases. As a result, the occurrence rate of these soft

errors increases because of the higher number of smaller transistors on the system [12, 2].

117
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Therefore, as multicore machines continue to scale up to many-core machines, soft errors pose

a significant risk for multicore processors and any systems-on-chip. The soft error failure rate

continues to grow significantly especially for exa-scale computing [102]. The growing rate

of soft errors increases the probability of higher bit-flips that potentially cause applications

to execute incorrectly. The incorrect executions of the applications result in wrong outputs

and visible errors, which reduces the reliability and dependability of the targeted system.

Therefore, it is crucial to develop techniques to address soft errors and minimize its e�ect on

application execution so that reliable execution can be ensured on CMP machines.

Research e�orts have proposed both hardware and software techniques to reduce the

e�ect of soft errors. These techniques can be further classified into two categories: (a) error

detection and correction, and (b) error prevention. The techniques that detect and correct

errors have a high overhead in terms of performance, area, cost, and power. Such high

overhead makes these approaches impractical and unsuitable for a large number of cores on a

targeted multicore platform. Therefore, in this research, we focus on error prevention using

software techniques to reduce the probability of soft errors a�ecting application execution.

Software techniques for error prevention include compilation to reduce an application’s

susceptibility to soft errors [40, 19, 56, 92, 41]. Instruction scheduling is applied to make

an application more resilient towards soft errors [94, 95]. These compiling techniques are

static approaches to reduce the e�ect of soft errors on application execution. However, the

soft errors a�ect an application’s dynamically during its execution because of its transient

nature. Therefore, a software technique that dynamically adjusts an application execution

can be more e�ective in reducing the impact of soft errors, and is orthogonal to the compiling

techniques.

Soft errors can a�ect an application’s execution by causing bit-flips in the application’s

data as it occupies any hardware component during its execution. Such bit-flips in the

resources result in wrong application outputs and visible errors to the users. As di�erent

applications occupy and use the hardware resources in di�erent ways, the sensitivity to soft
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errors in the resources on a particular platform is highly application dependent [13]. For

example, consider an application that frequently reads the content of a cache-line, X, during

its entire execution. If the content of the cache-line X is corrupted because of soft errors at

some point, the application’s execution is a�ected when it reads the same cache-line during

its next cache access.

On the other hand, if the data being used by the application occupy a resource for a

long period of time, it increases the probability of application execution being a�ected by

soft errors. In the previous example, even when the cache-line X is accessed infrequently

by the application, if the duration of X residing in the cache is very long, the probability

of its being a�ected by soft errors increases. Therefore, the probability of an application’s

execution being a�ected by the bit-flips from soft errors in any resource, which is defined

as an application’s vulnerability to soft errors [103], depends on the application’s usage and

occupancy behaviors of that resource.

The e�ects of soft errors and its severity on application execution also depend on the

execution platform and the underlying resources. For example, if the platform has a large

cache, then it is more susceptible to soft errors because more die area is exposed to the

energetic particles, which increases the probability of potential bit-flips. Therefore, the

execution platform’s underlying resources can make the application execution and output

more sensitive to the e�ect of soft errors.

The e�ect of soft errors on a multi-threaded application can be severe for several reasons

on a CMP. A multicore platform has multiple copies of the micro-architectural resources,

e.g., re-order bu�ers on each processor core and memory resources, e.g., private and shared

caches. A multi-threaded application typically executes with multiple threads of execution

that can occupy multiple resources at the same time. Occupying multiple resources increases

both the frequency of resource access and the occupancy duration in the resources. This

high occupancy increases the probability of bit-flips corrupting the application execution and

makes the application more vulnerable to soft errors. The resources on a multicore machine
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are heavily occupied when a workload with multiple multi-threaded applications is executed.

Depending on the applications that constitute a workload, the level of applications’ resiliency

to soft errors depends on the resource usage and occupancy behavior of the individual

applications. To minimize the probability of soft errors a�ecting any application’s execution,

the behaviors that increase vulnerability should be controlled from the application-level.

Therefore, in this research, we focus on designing a dynamic, lightweight, and application-level

software technique that leverages a multi-threaded application’s characteristics to reduce its

vulnerability to soft errors.

There are several challenges in minimizing application vulnerability via dynamic application-

level software measures. First, the transient errors can occur anytime during an application’s

execution, and the probability of these error occurrences need to be represented as a metric

to quantify its e�ect. It is important to accurately determine this metric by the software

technique so that it can e�ectively take measures to reduce the probability of soft errors

a�ecting the application execution. Second, soft errors cause bit-flips in the hardware micro-

architectural and memory resources that are used by an application during its execution [19].

Therefore, the application-level technique should e�ectively control the application’s occu-

pancy duration in these resources so that its susceptibility to soft errors remains low. Third,

being dynamic and transient in nature, soft errors a�ect di�erent applications in various ways.

Therefore, an e�ective software technique must be able to control the occupancy duration

of the resources when any combination of applications executes so that this soft-error e�ect

remains at the minimum level.

To address these challenges using an application-level error prevention technique to reduce

the e�ect of soft errors, we need to understand how application behavior of resource usage

and occupancy, along with the underlying resource parameters on the platform, a�ect the

probability of visible errors when the execution is corrupted by soft errors. Once we understand

the application behavior that influences its vulnerability to soft errors on a particular platform,

we can design and develop an e�ective application-level error prevention technique, which
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Figure 5.1: Components of the ReSense_Reliability Instance

can minimize the probability that an application output is impacted by soft errors and

improve the overall reliability. These insights motivate the creation of ReSense_Reliability,

a reliability instance of the ReSense framework to minimize the e�ect of soft errors on the

multi-threaded applications in a workload for multicore architectures.

Soft errors can a�ect an application’s output because of the bit-flips created by high

energetic particles in both micro-architectural and memory resources. The micro-architectural

resources include the re-order bu�er, reservation station, and load-store unit, and the memory

resources include private and shared caches. Between these two types of resources, it is

extremely rare to observe any visible error during application execution because of bit-flips

in the micro-architectural resources even under high-flux beam-test condition [104]. On the

other hand, as caches occupy a significant die area in the machine’s hardware, visible errors

because of bit-flips in caches are very frequent [105, 106]. In particular, L2-caches are more

vulnerable than L1-data and L1-instruction caches [107]. Therefore, in this work, we focus

on the e�ect of soft errors that occur in the memory resources, particularly shared caches.

Figure 5.1 shows the components of ReSense_Reliability. An application’s inherent

characteristics and execution behaviors determine its usage and occupancy duration in the
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cache resources, which impacts its vulnerability to soft errors. The characterization phase

of ReSense_Reliability instantiates the general methodology of the ReSense framework to

characterize a multi-threaded application based on its resource occupancy duration in the

shared caches. It uses cache vulnerability factor as the characterization metric and calculates

SensitivityScores
CVF

for the applications in a workload. Each SensitivityScore
CVF

represents

the vulnerability characteristics of a multi-threaded application. These characterizations

reveal several insights about the applications’ behaviors and help determine the e�ective

mapping to reduce the overall cache vulnerability for a workload.

In the online mapping phase of ReSense_Reliability, we instantiate the run-time system of

the ReSense framework as ReSense
Reliability

. The ReSense
Reliability

run-time system dynamically

manages the mappings of the application threads from a given dynamic workload by employing

a thread-mapping algorithm, ReSensor
R

and the pre-determined SensitivityScores
CVF

. The

ReSensor
R

algorithm determines the thread-mappings of the multi-threaded applications in a

workload using the SensitivityScores
CVF

of the applications. The algorithm optimizes the

objective function of this instance, which is to minimize the overall cache vulnerability factor

to reduce the e�ect soft errors in caches on a workload’s execution.

We assume that the shared caches include redundant bits, e.g., parity bits, error-correcting

codes (ECC). When the application execution is exposed to high energetic particles and beams,

these redundant bits in the hardware can correct some soft errors depending on the error-

correcting capability of the codes. For example, SECDED ECCs can correct a single-bit error

and detect a double-bit error. Such error correcting techniques are commonly used to protect

shared caches [15]. By reducing the overall cache vulnerability factor, ReSensor
R

reduces the

probability of uncorrectable double-bit errors. Furthermore, if there is a performance penalty

or overhead for correcting single-bit errors, ReSensor
R

reduces the probability of occurring

the penalty.

Minimizing cache vulnerability also leads to reduced failure-in-time (FIT) rate. Utiliz-

ing a thread-mapping algorithm demonstrates the use of an application-level technique to



5.2 Characterization for Vulnerability to Soft Errors 123

reduce applications’ vulnerability to soft errors. The thread-mapping algorithm reduces the

probability of visible errors;however, it does not guarantee a 100% error protection.

The outline of this chapter is as follows: Section 5.2 describes the characterization phase

of the instance, which includes the characterization methodology and metric to determine

a multi-threaded application’s vulnerability characteristics for shared caches. Section 5.3

describes the mapping phase, which includes ReSense
Reliability

system and ReSensor
R

algorithm

that dynamically map threads from a workload by utilizing the o�ine pre-determined

characterizations of the applications in the workload to improve reliability. Section 5.4.1

describes the experiments performed to characterize the multi-threaded PARSEC benchmarks

for vulnerability to soft errors in the shared caches and presents the detailed characterization

results and analyses. Section 5.4.3 describes the experimental methodology and evaluation

metrics for the mapping phase. Section 5.4.4 discusses the mapping results and analyzes

them statistically. Section 5.5 concludes the chapter.

5.2 Characterization for Vulnerability to Soft Errors
In the characterization phase of the ReSense_Reliability instance, we instantiate the general

methodology of the ReSense framework to characterize a multi-threaded application based

on its vulnerable resource occupancy in shared caches.

5.2.1 Background

According to the general methodology of the ReSense framework, we need a metric to charac-

terize an application based on its resource occupancy and vulnerability. This characterization

metric represents an application’s characteristics with respect to how much its execution is

susceptible to soft errors.

The architectural vulnerability factor (AVF) is a well-studied metric to quantify the

architectural masking of raw soft errors in any processor structure [103]. AVF represents

the probability with which a fault in a processor structure will result in a visible error

during the execution of an application. AVF can be calculated as the percentage of time the
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structure contains architecturally correct execution (ACE) bits (i.e., the bits that a�ect the

final application output). AVF can be calculated for both micro-architectural structures in

the processor and memory resources. For a storage cell in memory resources, AVF is the

percentage of cycles that this cell contains ACE bits [103].

The ACE lifetime is defined as the percentage of cycles during which a resource contains

ACE bits. It represents the lifetime during which an application is vulnerable or susceptible

to soft errors. Any bit-flips because of soft errors during the ACE lifetime can result into

incorrect application outputs.

R R R W

W R W W

C D ReplRepl

R: Read      W: Write      Repl: Replacement

C: Clean     D: Dirty

(a)                                               (b)

(c) (d)

(e) (f)

Figure 1. Access patterns (intervals) of cache lines (a) Read-Read pattern (b) Read-
Write pattern (c) Write-Read pattern (d) Write-Write Pattern (e) Clean-Replacement
pattern (f) Dirty-Replacement pattern.

Configuration Parameter Value
Processor

Functional Units 4 integer ALUs
1 integer multiplier/divider

4 FP ALUs
1 FP multiplier/divider

Fetch Width 4 instructions/cycle
Cache and Memory Hierarchy

L1 Instruction Cache 32KB, 1-way, 32 byte blocks
1 cycle latency

L1 Data Cache 32KB, 1-way, 32 byte blocks, WB
1 cycle latency

L2 1MB unified, 8-way LRU, WB
64 byte blocks
6 cycle latency

Memory 100 cycle latency
TLB Size 128-entry, 30-cycle miss penalty

Table 1. Configuration parameters of simulated microprocessor.

3 Evaluation Methodology

We have implemented the computation of CVF for different caches by using the method de-
scribed in section 2 in the Simplescalar 3.0 [7]. Our simulator models a superscalar microprocessor
similar to Alpha 21264 [5]. The important parameters of the processor and the memory hierarchy
are listed in table 1. We randomly select eleven applications from the SPEC 2000 suite [8] for this
evaluation.
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Figure 5.2: Access patterns (intervals) of cache lines (a) Read-Read pattern (b)
Read-Write pattern (c) Write-Read pattern (d) Write-Write Pattern (e) Clean-
Replacement pattern (f) Dirty-Replacement pattern [1]

The cache vulnerability factor (CVF) is the AVF for cache memory resources. CVF

represents the probability that a soft error in cache memories can propagate to the processor

or other memory hierarchy resources and result in a possible visible error [1]. CVF can be

calculated for a cache by performing ACE lifetime analyses for each cache block or cache-line.

The total lifetime of a cache block is defined as the interval between the time when the cache

block is brought into the cache because of a cache miss and the time when this block is

replaced or evicted by another cache block, determined by a cache replacement policy. A cache

block can be in either a “clean” or “dirty” state depending on whether it has been modified
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by the application or not. As the processor is executing the application and performing

read-write operations on the cache blocks, we can divide the stream of cache accesses to a

cache-line into six di�erent patterns or lifetime intervals for a write-back cache, as shown in

Figure 5.2. Among these patterns, bit-flips or soft errors generated during the write-write

(W-W) and read-write (R-W) intervals are corrected by the latter write operations, and soft

errors occurred between the clean and replacement (C-Repl) interval are discarded at the

time of replacement. On the other hand, the bit-flips because of soft errors that occur in the

cache-lines between the read-read (R-R) and write-read (W-R) intervals can be loaded to

the processor, and the bit-flips during the dirty-replacement (D-Repl) intervals can a�ect

the lower-level memory hierarchy resources after writing back. Therefore, the R-R, W-R,

and D-Repl lifetime intervals contribute to the ACE lifetime and CVF of a write-back cache.

Any bit-flip during these time intervals in caches can propagate to the processor or other

components in the system and result in incorrect application execution and output. The

CVF is defined as the fraction of the average time the application is susceptible to soft errors

during its execution with respect to its total execution time, and is calculated using the

following equation [1]:

CV F =
q

n

i=1

V ulnerableLifetime(block
i

)
q

n

i=1

TotalLifetime(block
i

) (5.1)

=
q

n

i=1

Lifetime
R≠R, W ≠R, D≠Repl

(block
i

)
q

n

i=1

TotalLifetime(block
i

) (5.2)

Here, block
i

is any cache block that is loaded into the cache as the application executes

and n is the total number of cache blocks or cache-lines. V ulnerableLifetime represents

the total time interval that block
i

is susceptible to soft errors and TotalLifetime represents

the total lifetime of block
i

. Lifetime
R≠R,W ≠R,D≠Repl

represents the summation of vulnerable

lifetimes of block
i

for a write-back cache (Equation 5.2), which consists of W-R, R-R, and

D-Repl time intervals.
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5.2.2 Characterization Metric

The described CVF model is designed for a uniprocessor machine [1]. In this research, as we

address cache reliability in a multicore architecture that typically has multiple private and

shared caches, we adjust this model to consider multiple caches. When there are multiple

caches in multicore machines, the MESI protocol is usually implemented in the hardware to

maintain the cache coherency [108]. Therefore, we modify the original CVF model to account

for the MESI protocol. In the MESI protocol, when an application executes, each cache-line’s

status gets updated, which is one of the four states: modified (M), exclusive (E), shared (S),

and invalid (I). For each cache-line, we maintain a time-stamp that gets updated whenever

its status gets changed during application execution. For all the state changes for a cache-line

that go to the modified and invalid state, the di�erence between the current time-stamp and

the time-stamp when it was last updated is not considered to contribute to the ACE lifetime.

This is because any bit-flips in the cache-line because of a soft error during that time interval

is overwritten, and thus cannot change the output of the execution. These state changes fall

into the (b) and (d) access pattern shown in Figure 5.2.

On the other hand, the time intervals when the cache-line’s state changes from the shared,

modified, and exclusive state to the shared and exclusive state are considered to contribute to

ACE lifetime because any soft errors during these intervals may cause a visible error. These

state changes fall into the (a) and (c) access pattern shown in Figure 5.2, which contributes

to the ACE lifetime. If any dirty cache block is being replaced by a new cache block for

a write-back cache, the write-back duration until the dirty cache block is written back to

the resources at the lower level of the memory hierarchy, is considered as ACE lifetime. We

calculate the CVF for the caches on a multicore platform using Equation 5.3.

CV F
mc

=
q

n

i=1

Lifetime
before≠after

(block
i

)
q

n

i=1

TotalLifetime(block
i

) (5.3)

=
q

n

i=1

Lifetime
S≠S,S≠E,E≠E,E≠S,M≠E,M≠S,M≠I

(block
i

)
q

n

i=1

TotalLifetime(block
i

) (5.4)
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Here, Lifetime
before≠after

represents the vulnerable ACE lifetime of block
i

for a cache

with MESI protocol, which includes the time intervals between the cache-line state changes

from before to after. The ACE patterns of the cache-line’s state changes include S-S, S-E,

E-S, E-E, M-S, M-E, and M-I. Among these, the cache-line status change patterns of S-S,

S-E, E-S, and E-E represent R-R cache access pattern, and cache-line status patterns of M-S

and M-E represent the W-R cache access pattern in Figure 5.2. Lastly, M-I represents the

D-Repl access pattern. The summation of the time intervals between these state changes are

considered as ACE lifetime, and contribute to an application’s vulnerability to soft errors in

caches on multicore architectures (Equation 5.4).

For ReSense_Reliability, to characterize a multi-threaded application for its resource

occupancy behavior in the shared caches on a multicore platform, we use CV F
mc

as the

characterization metric.

5.2.3 Characterization Methodology

To characterize a multi-threaded application based on its resource occupancy duration, we

vary an application’s resource occupancy and determine how this occupancy variance impacts

its venerability to soft errors. Because a multi-threaded application can be configured to create

multiple threads of execution, each thread can use a separate targeted resource. Therefore, a

multi-threaded application’s resource occupancy can be varied by controlling the number of

targeted resources its threads use.

We instantiate the general characterization methodology of the ReSense framework to

characterize a multi-threaded application based on its occupancy duration behavior for a

targeted resource. We run each multi-threaded application with at least two threads in

two characterization configurations. In the first or non-sharing configuration, application

threads are placed on the cores that use multiple targeted resources, where each thread

use a separate targeted resource. In the second or sharing configuration, the threads are

placed on the cores that use the same targeted resource. The placement of the threads
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(a) Non-sharing Configuration
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(b) Sharing Configuration

Figure 5.3: Configurations to characterize a multi-threaded application for vul-
nerability to soft errors in shared L2-cache

with respect to the other resources, i.e., the number of other resources the application

uses, remains the same across these two configurations. Because the threads are placed on

the cores that use di�erent numbers of targeted resources in these two configurations, the

application’s occupancy duration and usage in the resource are varied during its execution.

This variance has an impact on the vulnerable (ACE lifetime) and total lifetime, which a�ects

the application’s vulnerability to soft errors in the targeted shared resource.

According to the general characterization methodology described in Section 3.2.2, the

experimental platform should have multiple numbers of the targeted resource so that the

characterization configurations can be applied.

Figure 5.3 shows the characterization configurations for a multi-threaded application to

determine its vulnerability behavior to soft errors in a shared L2-cache. In the non-sharing

configuration, application threads are placed on the cores that use separate L2-caches (core

C0 and C2), and in the sharing configuration, application threads are placed on the cores

that use the same L2-cache (core C0 and C1). In both configurations, the application thread

use the same number of L1-caches. The only di�erence between these configurations is the

number of L2-caches used by the application threads, which creates variation in the L2-cache

occupancy by the application. CV F
mc

is determined in both configurations and used to
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calculate SensitivityScore
CVF

.

5.2.4 SensitivityScore
CVF

: Sensitivity Scores for Reliability

As a multi-threaded application’s vulnerability characteristics vary depending on the under-

lying platform and cache configurations, the o�ine characteristics for di�erent resources is

determined only once for a particular cache configuration on the targeted platform. The

sensitivity score of a multi-threaded application is represented as a SensitivityScore
CVF

for

each shared cache on a particular CMP. A multi-threaded application’s SensitivityScore
CVF

is calculated using Equation 5.5.

SensitivityScore
CV F

= (CV F
mc≠non≠sharing

≠ CV F
mc≠sharing

) ú 100
CV F

mc≠non≠sharing

(5.5)

Here, CV F
mc≠non≠sharing

is the average CV F
mc

of the shared caches in the non-sharing

configuration, and CV F
mc≠sharing

is the CV F
mc

of the same shared cache in the sharing

configuration.

SensitivityScore
CVF

has both a sign and magnitude. The positive sign of the SensitivityScore
CVF

indicates that an application’s CV F
mc

decreases and reliability improves in the sharing con-

figuration, when the threads share the same cache. It means this configuration reduces or

eliminates the vulnerable intervals described in Figure 5.2, which causes the overall reduction

in the ACE lifetime and consequently CV F
mc

of the cache. On the other hand, the negative

sign of the SensitivityScore
CVF

indicates that the application’s vulnerability in caches in-

creases as the threads share the same cache. This means this configuration increases the ACE

lifetime of the individual cache block during the application’s execution and causes the overall

CV F
mc

to increase. The magnitude of SensitivityScore
CVF

represents how much the CV F
mc

varies across configurations. Therefore, the sensitivity score for reliability represents how

the cache usage a�ects an application’s cache vulnerability and helps design the ReSensor
R

algorithm in the mapping phase.
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If the targeted platform has multiple levels of shared caches, then each multi-threaded

application is characterized for the shared caches at each level. We store each application’s

SensitivityScore
CVF

for the shared caches at each level in the SV
vulnerability

vector. For

example, if the targeted platform has two levels of shared caches, then the sensitivity vector,

SV
vulnerability

, is a two-element vector for each multi-threaded application in a workload. This

vector is used as an input to the thread-mapping algorithm.

5.3 Mapping Co-located Multi-threaded Applications

for Reliability

We describe the mapping phase of ReSense framework for the reliability instance, which

includes the ReSensor
R

algorithm and the ReSense
Reliability

run-time system.

5.3.1 The ReSensor
R

Thread-mapping Algorithm

Because a SensitivityScore
CVF

represents an application’s shared-cache vulnerability to soft

errors, the algorithm uses these scores to determine the thread-mappings for any number of

multi-threaded applications in a given workload and optimizes the objective function, i.e.,

minimizes the cache vulnerability factors.

Depending on the cache miss rate characteristics of the co-running applications in the

given workload and the application’s vulnerability characteristics as SensitivityScore
CVF

,

there can be two cases:

Special Case: If an application has a higher miss rate when its threads share the same

cache, these application threads can cause the CV F
mc

to decrease by frequently updating

cache-lines with the fetched data blocks. If the workload has one or more applications whose

high miss rate causes the CV F
mc

to decrease, then the other applications in the workload are

mapped to share the same cache with these cache-intensive application threads as co-runners.

Here, the cache-intensive application’s cache usage and high miss rate cause the shared cache

vulnerability to reduce.
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General Case: If none of the applications in the workload has high enough cache misses

that lower the overall shared CV F
mc

, then the algorithm considers the sign and magnitude

of the SensitivityScore
CVF

for the applications in the workload and maps them by choosing

the mapping configuration that lowers the ACE lifetime according to their characterization.

Similar to the ReSensor
Generic

thread-mapping algorithm of the framework, depending on

the number of applications in the given workload and the number of targeted resources, there

can be two scenarios. Here, by targeted resources we mean the shared caches. Both cases

described in the previous paragraphs are applicable in these two scenarios. We describe these

scenarios and the intuition behind the algorithms in the following paragraphs:

Scenario 1: There are the same or more targeted shared resources on the targeted

platform than the total number of applications in the given workload. In this scenario, if

the workload has applications that have high cache miss rates causing low CV F
mc

, then the

applications are mapped to use the same targeted shared cache, according to Special Case.

Otherwise, the mapping should be done according to General Case.

Scenario 2: There are a fewer targeted shared resources on the targeted platform than

the total number of applications in the given workload. In this scenario, as the number of

applications is higher, the applications are mapped such that threads from one application

share the same targeted resource with the threads from a di�erent application. Intuitively,

this mapping causes most of the cache access patterns to not contribute to ACE lifetime

because threads from di�erent applications have di�erent access patterns and can cause

potential cache misses. These cache misses can replace the content of the cache-lines and

lower the CV F
mc

. Cache vulnerability can be further reduced by grouping the applications

more intelligently based on their cache characteristics. If there is any application that satisfies

the condition described in Special Case, then this application’s threads are spread across

the shared caches and mapped to use the same shared cache with the other applications in

the workload. The high cache misses of the cache-intensive co-running application would

lower the CV F
mc

by reducing the ACE lifetimes of the cache blocks. On the other hand, if
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the workload does not have any application satisfying the condition for Special Case, then

the thread-mappings are followed for General Case.

Considering these scenarios and cases, we instantiate the ReSensor
R

algorithm from the

ReSensor
Generic

algorithm to determine the thread-mappings of multi-threaded applications

using their cache vulnerability characterizations, SensitivityScores
CVF

.

Algorithm 4 gives the ReSensor
R

algorithm, which maps the application threads from

the input workload WL using the applications’ SensitivityScores
CVF

. Platform P can have

multiple levels of shared caches, and the vulnerability characterizations of the applications in

WL for the caches at each level are stored in SV
vulnerability

. The algorithm stores the total

number of multi-threaded applications and the applications in nApps and [Apps] variable

(line 2, 3), respectively.

The algorithm determines the thread-mappings of each application considering the re-

sources at the bottom of the memory hierarchy to the top (line 5), i.e., from L3-caches to

L2-caches. At each level of the memory hierarchy, the algorithm identifies the shared cache

R at that level and the total number of R (line 6 and 7). It computes two arrays: the

set of cores that share or use the same R, [C
+

], and the set of cores that do not share the

same R, [C≠] (lines 8, 9). These two arrays are later used to determine the cores on which

the application threads are mapped. The [V ulApps] variable is initialized to be empty in

the beginning of the loop iteration (line 4). The algorithm computes the set [V ulApps] for

handling Special Case, which stores the applications that have significantly higher miss

rates in shared caches causing its CV F
mc

to decrease in the sharing configuration (line 10).

It updates the [Apps] variable to save the rest of the applications (line 11). The algorithm

then collects the SensitivityScores
CVF

of the applications in the updated [Apps] for resource

R in [SS
V

] (line 13). It then sorts the [SS
V

] array according to the magnitude of the

SensitivityScore
CVF

in descending order so that the application with the most sensitivity is

prioritized during mapping (line 14).

Now depending on the values of NR and nApps, there are two scenarios described earlier.
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Algorithm 4 The ReSensor
R

Algorithm: Mapping application threads to minimize overall
vulnerability to soft errors in shared caches

1: INPUT: Workload WL, Topology of the experimental platform P , Sensitivity vector
SV

vulnerability

of the applications in WL on P
2: nApps Ω total number of multi-threaded applications in WL
3: [Apps] Ω set of all multi-threaded applications in WL
4: [V ulApps] Ω ÿ
5: for each level MHL in the memory hierarchy of P do
6: R Ω shared cache at MHL
7: NR Ω number of R at MHL
8: [C

+

] Ω set of cores that use or share the same R on P
9: [C≠] Ω set of cores that do not use or share the same R on P

10: [V ulApps] Ω set of cache-intensive multi-threaded applications, whose higher cache
miss rate in R causes lower CV F

mc

11: [Apps] Ω [Apps] ≠ [V ulApps] / * Compute set di�erence */
12: nV ulApps Ω number of applications in [V ulApps]
13: [SS

V

] Ω SV
vulnerability

[R] of the applications in [Apps]
14: sort [SS

V

] array in descending order of the magnitude of the SensitivityScore
CVF

and
re-arrange [Apps] accordingly

15: if NR >= nApps then
16: /* Scenario 1: equal or more shared resources than the number of applications */
17: if [V ulApps] ! = ÿ then /* Special Case */
18: n Ω maximum (nV ulApps, nApps ≠ nV ulApps)
19: for ( i = 0 ; i < n ; i++ ) do
20: if [C

+

] has available core(s) then
21: map Apps[i]-threads and V ulApps[i]-threads on the available cores from [C

+

]
22: else
23: map Apps[i]-threads and V ulApps[i]-threads on any core on P
24: end if
25: end for
26: else if [V ulApps] == ÿ then /* General Case */
27: for ( i = 0 ; i < nApps ; i++ ) do
28: if SS

V

[i] > 0 AND [C
+

] has available core(s) then
29: map Apps[i]-threads on the available cores from [C

+

]
30: else if SS

V

[i] < 0 AND [C≠] has available core(s) then
31: map Apps[i]-threads on the available cores from [C≠]
32: else
33: /* [C

+

] or [C≠] does not have available core(s) */
34: map Apps[i]-threads on any core on P
35: end if
36: end for
37: end if
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Figure 5.4: Mapping decision for the two cases in Scenario 1

Scenario 1: This scenario handles the mapping when the number of resources is equal

or more than the number of applications (line 15 - 37). There are two cases to consider

depending on if [V ulApps] variable is empty or not. For Special Case, when [V ulApps]

is not empty, application threads from [V ulApps] are mapped on the cores from [C
+

] to

share the same cache with the application threads from [Apps] (line 21). Sharing the same

cache with the cache-intensive application, which has the important characteristics that more

cache misses decrease its CV F
mc

, is e�ective in minimizing the overall cache vulnerability by

reducing the ACE lifetime of the cache-lines.

For example, consider a workload that has two multi-threaded applications, A and B

each with two threads, and these applications are to be mapped on the quad-core platform

(e.g., Intel-Yorkfield), shown in Figure 5.4. Here, both nApps and NR equal 2, and [Apps]

= [A, B], [C
+

]=[{C0,C1}, {C2,C3}], and [C≠]=[{C0,C2}, {C1,C3}]. Let us assume that A

is a cache-intensive application, whose CV F
mc

decreases because of high cache miss rate.

A is saved in [V ulApps] and [Apps] is updated to contain only B. As [V ulApps] array is

non-empty, the threads from the applications in [V ulApps] are mapped with the threads

from the applications in [Apps] on the cores from [C
+

] to share the same L2-cache. The final

mapping is shown in Figure 5.4(a).

For General Case, where [V ulApps] is empty, the algorithm considers the applications’
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SensitivityScores
CVF

, which are stored in [SS
V

], to determine the thread-mappings (line

26 - 36). The [SS
V

] array is sorted according to the magnitudes of SensitivityScores
CVF

in

descending order, so that the most sensitive application for vulnerability is prioritized. The

algorithm then determines the mappings of the application threads according to the sign

of its SensitivityScore
CVF

. If the application has a positive SensitivityScore
CVF

, then the

threads are mapped on the cores from [C
+

] (line 28 - 29). This mapping helps lowering the

CV F
mc

for those applications, where sharing the same cache lowers its vulnerable lifetime

interval. If the application has negative SensitivityScore
CVF

, then the threads are mapped

on the cores from [C≠] (line 30 - 31). This mapping helps to lower the CV F
mc

for those

applications, where using separate caches lowers its D-Repl lifetime interval. If there is no

core left in [C
+

] or [C≠] array, the threads can be mapped on any available core (line 34).

For the same workload and platform described above, let us now assume that none of

the applications is cache-intensive with lower CV F
mc

, and the conditions for Special Case

is not satisfied. Assume that the SensitivityScore
CVF

for application A and B are ≠a
R

and ≠b
R

, respectively, and |a
R

| > |b
R

|. Here, the algorithm first considers application A

because it has a higher magnitude. It maps the threads on the cores from [C≠] because its

SensitivityScore
CVF

’s sign is negative. Then it maps the second application, B’s threads

on the remaining cores from [C≠] considering its negative SensitivityScore
CVF

. The final

mapping of the application threads is the same as shown in Figure 5.4(a).

When the signs of the SensitivityScore
CVF

for two applications are di�erent, the algorithm

already considers the most-sensitive application first and the final mapping does not impact

the less-sensitive application’s vulnerability significantly. For example, let us assume that

that the SensitivityScore
CVF

for application A and B are +a
R

and ≠b
R

, respectively and

|a
R

| > |b
R

|. Because A has a higher magnitude of SensitivityScore
CVF

, the algorithm maps

A’s threads onto the cores from [C
+

] considering its positive sign of the sensitivity score. It

then maps the B’s thread on the available cores from [C≠]. Here, application A has a higher

sensitivity to sharing L2-cache and higher probability of lowering the vulnerable interval than
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the alternate mapping. Therefore, the algorithm chooses the mapping configuration, shown

in Figure 5.4(b), to minimize the overall cache vulnerability.

Algorithm 4 The ReSensor
R

Algorithm: Continued
38: else
39: /* Scenario 2: fewer shared resources than the number of applications */
40: if [V ulApps] ! = ÿ then /* Special Case */
41: n Ω maximum (nV ulApps, nApps ≠ nV ulApps)
42: for ( i = 0 ; i < n ; i++ ) do
43: if [C

+

] has available core(s) then
44: map Apps[i]-threads and V ulApps[i]-threads on the available cores from [C

+

]
45: else
46: map Apps[i]-threads and V ulApps[i]-threads on any core on P
47: end if
48: end for
49: else if [V ulApps] == ÿ then /* General Case */
50: for ( i = 0 ; i < nApps / 2 ; i++ ) do
51: if SS

V

[i] > 0 AND [C
+

] has available core(s) then
52: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available [C

+

]-cores
53: else if SS

V

[i] < 0 AND [C≠] has available core(s) then
54: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available [C≠]-cores
55: else
56: /* [C

+

] or [C≠] does not have available core(s) */
57: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on any core on P
58: end if
59: end for
60: end if
61: end if
62: end for

Scenario 2: This scenario handles the mapping when the number of resources is less than

the number of applications in a workload (line 39 - 61). Similar to the previous scenario, there

can be two cases depending on the emptiness of [V ulApps]. If [V ulApps] has applications

that satisfy the condition of Special Case (lower CV F
mc

for higher cache miss rate), then

the mapping algorithm pairs the applications from [V ulApps] and the remaining applications

from [Apps] to share the same cache (line 41 - 48). This mapping causes the cache-intensive

application to increase the cache miss rates in the shared caches, which reduces the ACE

lifetime of the cache blocks and consequently, decrease the overall CV F
mc

.
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Figure 5.5: Mapping decision for the two cases in Scenario 2

For example, consider a workload that has four multi-threaded applications, A, B, C, and

D each with two threads, and these applications are to be mapped on the same quad-core

platform, shown in Figure 5.4. Here, nApps equals 4 and NR equals 2, and [Apps] = [A,

B, C, D]. Let us assume that A and B are the cache-intensive applications, whose CV F
mc

decreases because of high miss rate in the shared caches. [V ulApps] contains application A

and B and [Apps] is updated to contain application C and D. As [V ulApps] is non-empty,

the algorithm maps A’s threads with C and B’s threads with D to use the same shared

caches. The final mapping is shown in Figure 5.5(a). If there is only one application (assume

A) that satisfies the condition of Special Case, then A’s threads are spread across the
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shared caches so that CV F
mc

s of both L2-caches are lowered. The rest of the applications

are spread across the two shared cache such that their threads use the same shared L2-cache

with A’s thread. The final mapping for this case is shown in Figure 5.5(b).

For General Case, where [V ulApps] is empty, the algorithm considers each application’s

SensitivityScore
CVF

, which is stored in [SS
V

], to determine the thread-mappings (line 50 - 59).

As the [SS
V

] array is already sorted according to the magnitude of the SensitivityScore
CVF

in descending order, the algorithm considers the applications with complementary behav-

ior together and prioritizes the more sensitive application while mapping. The algorithm

selects the most-sensitive and least-sensitive applications and then determines the map-

pings of the application threads according to the sign of the most-sensitive application’s

SensitivityScore
CVF

, which is similar to how ReSensor
Generic

maps application threads in this

scenario. If the more sensitive application has a positive SensitivityScore
CVF

, then the threads

of the applications are mapped on the cores from [C
+

]. The algorithm selects this mapping

to lower the shared cache’s vulnerable lifetime interval. If the more sensitive application has

a negative SensitivityScore
CVF

, then the threads are mapped on the cores from [C≠].

Let us consider the same four applications [A, B, C, D] to be mapped on a quad-core

machine. Here, we assume that none of the applications satisfies the condition of Spe-

cial Case. Let us assume, SensitivityScores
CVF

of these four applications after sorting

are [+a
R

, ≠c
R

, +d
R

, ≠b
R

], where |a
R

| > |c
R

| > |d
R

| > |b
R

|. For this workload, the algo-

rithm considers the most-sensitive application A and the least-sensitive application B and

maps them to share the same L2-cache (on [C
+

]-cores) because of the positive sign of A’s

SensitivityScore
CVF

. Then it considers the next most-sensitive application C and D and maps

the threads on the remaining cores. The final mapping for this case is shown in Figure 5.5(c).

The algorithm terminates when there are no applications left in the workload whose

thread-mappings are not determined.
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5.3.2 TheReSense
Reliability

Run-time System

The ReSense
Reliability

run-time system is instantiated from the ReSense framework. The

ReSense
Reliability

run-time system detects any thread/application creation and termination,

and employs the ReSensor
R

thread-mapping algorithm to adjust the application mappings

of the input workload. The run-time system takes SensitivityScores
CVF

of the applications

in a workload as input from the characterization phase and passes these scores and the set

of applications whose thread-mappings need to be determined as parameters to ReSensor
R

.

The ReSensor
R

algorithm determines the thread-mappings of the applications in the passed

workload from ReSense
Reliability

using the o�ine pre-computed SensitivityScores
CVF

. It

optimizes the objective function of this instance, which is to minimize the shared cache

vulnerability to soft errors.

5.4 Evaluation of the ReSense_Reliability Instance
In this section, we describe the experimental results of the characterization and mapping

phase for the ReSense_Reliability instance of the framework. In the characterization phase,

we characterize the PARSEC benchmarks using the methodology described in Section 5.2.3.

We present the characterization results in Section 5.4.1 and summary in Section 5.4.2. We

present the evaluation results of the mapping phase in Section 5.4.3.

Since we need in-depth and detailed information about the lifetime of individual cache-

lines, we use a simulation infrastructure for both the characterization and mapping phase

of ReSense_Reliability. For our experiments, we use Simics, which is a timing-accurate

full system simulator [109]. Simics is capable of running a full Linux operating system.

Therefore, it is used to map application threads to the cores according to the characterization

methodology using the set-a�nity system call.

The targeted platform that we use in our experiments is a four-core machine. We could

simulate a multicore machine with more than four cores. However, for the limitations of the

simulator capability and its execution time, we choose the targeted platform to have a small
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Parameters Values
Platform four-core x86 processor (Tango)

Operating System Linux Kernel version 2.6.15
Cache block size 64 bytes

Cache replacement Least-recently-used (LRU) policy
Cache coherency protocol MESI protocol

L1-cache 32KB/core 2-way set associative
L1-cache write policy write-back, write-allocate

L1-cache latency 1 cycle
L2-cache 4MB 4-way set associative, shared

L2-cache write policy write-back, write-allocate
L2-cache latency 4 cycle
Memory latency 200 cycles

Table 5.1: Simics configuration for the targeted experimental platform

number of cores, which is typical for a desktop machine. The characterization and mapping

phases would work for any cache or system configuration. We choose similar architecture and

resource topology as Intel-Yorkfield, described in Figure 4.3(a). The targeted machine has

32KB of L1-D and L1-I cache, which are private for each core. There are two L2-caches, each

shared by a pair of cores. The L1-D and L2-caches maintain coherency by the MESI protocol.

Both L2-caches are connected to the memory. The details of the simulation configuration are

shown in Table 5.1.

We implement the CVF model [1] using the g-cache module of the simulator, which

supports the MESI protocol in maintaining coherent caches for the targeted multicore

machine. We calculate the CV F
mc

for shared L2-cache using Equation 5.3.

We use the multi-threaded applications from the PARSEC benchmark suite [38]. We

choose to use PARSEC benchmark suite because it has a representative set of applications

with diverse cache access behaviors that we can analyze for cache vulnerability. Among

the thirteen benchmarks in the suite, we characterize eight applications. We select the

applications that create worker threads in the beginning of the application execution so that

we can analyze CV F
mc

for both caches on the targeted platform. We do not use blackscholes

and canneal, because these two benchmarks have only the main thread during a significant
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portion of their execution duration. We do not use dedup as the targeted platform did not

have enough memory to execute the benchmark. We do not use vips and ferret as these

applications required a special library, which is not included in the operating system image

of the simulator. For all our experiments, we use the largest input set of each benchmark,

simlarge, for the evaluation using a simulation environment.

5.4.1 Characterization: Experimental Details and Results

We characterize a multi-threaded application for its resource occupancy behavior in the

shared caches on the targeted experimental platform according to the methodology presented

in Section 5.2.3. As the targeted platform has two cores that share the same shared cache,

we configure each benchmark to use two threads so that we can vary the number of resources

the application uses.

We run each PARSEC benchmark in two characterization configurations. In the first

or non-sharing configuration, we place the application threads on the cores such that each

thread uses a separate L2-cache. The application threads are placed on core C0 and C2

(shown in Figure 5.3(a)) and use two L2-caches. In the non-sharing configuration, we place

the application threads on the cores such that both threads use the same L2-cache (shown in

Figure 5.3(b)). Both configurations place the application threads to use the same number of

L1-caches (in this case, 2). The only di�erence between these configurations is how the threads

are placed on the cores with respect to the shared L2-cache. Since these two characterization

configurations vary the number of L2-caches the application uses, there is a variation in the

resource occupancy created by the application, which a�ects the application’s vulnerability

to L2-cache. We measure the application’s average CV F
mc

in both configurations for the

L2-cache and calculate its SensitivityScore
CVF

using Equation 5.5.

5.4.1.1 Characterization Results and Analyses

In this section, we present and analyze the experimental results of the PARSEC benchmarks for

their cache vulnerability characterizations. The eight benchmarks used in the experiments are:
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Figure 5.6: Experimental results of vulnerability characterizations of the
PARSEC benchmarks for a write-back shared L2-cache, represented as
SensitivityScore

CVF

. Negative values mean increased CV F
mc

, positive values
mean decreased CV F

mc

in the sharing configuration.

bodytrack (BT), facesim (FA), fluidanimate (FL), freqmine (FQ), raytrace (RT), streamcluster

(SC), swaptions (SW), and x264 (X2).

Figure 5.6 shows the SensitivityScore
CVF

of the selected PARSEC benchmarks for a write-

back, write-allocate shared L2-cache. From the figure we observe that the thread-mapping

configurations with respect to sharing the L2-cache has significant impact on the CV F
mc

,

where the di�erence in magnitude ranges from 5% to more than 50%. Therefore, we can

conclude that we can utilize thread-mapping, an application-level technique, in order to

control an application’s vulnerability to soft errors in caches.

The sharing configuration decreases L2-cache vulnerability for streamcluster, swaptions,

and x264 (positive SensitivityScore
CVF

). Figure 5.7 shows the plot of the samples collected

during the execution of streamcluster on the simulated target platform, when the application

threads share the same L2-cache (sharing configuration). The X-axis of the plot shows

the di�erent sample instances during streamcluster ’s execution, and the Y-axis shows the
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Figure 5.7: Plot of cache miss rate and CV F
mc

samples during the execution of
streamcluster

percentage value of the cache read miss rate and CV F
mc

. The black line shows the plot of the

cache miss rate, and the grey line shows the plot and variations in CV F
mc

values. From this

figure, we observe that as the cache read miss rate increases, the CV F
mc

for the shared cache

decreases. The high cache miss rate is caused by the streaming behavior of streamcluster and

each cache-line being sequentially accessed by the worker threads. When these threads share

the same cache, the threads undergo more cache misses than the non-sharing configuration

and replace the existing cache blocks with new cache blocks. As the cache blocks get replaced

with the new blocks, the timestamp associated with each cache-line gets updated for a

cache-line “write” operation and most of these cache access pattern becomes W-W, which

does not contribute to the ACE lifetime of the shared cache. Therefore, increasing the cache

miss rate by creating cache contention reduces the CV F
mc

of the shared cache. For x264,

CV F
mc

reduces in L2-cache sharing configuration and we observed about 12% increase in
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Figure 5.8: Percentage ACE lifetime intervals during the execution of swaptions

cache read miss rate, compared to the non-sharing configuration. This behavior can also

be explained in the same way. As x264 threads share the same cache, they contend for the

cache-lines among themselves. Because of such intra-application contention, the cache blocks

brought into the cache-line replaces the old cache blocks, creating large number of W-W

intervals, which decreases the ACE lifetime, consequently CV F
mc

of the L2-cache.

For swaptions, both CV F
mc

and cache miss rate decrease in the sharing configuration

when the sibling threads share the same cache. However, the magnitude of cache miss rate do

not change significantly. The cache miss rate decreases from 10% to 8%, whereas the CV F
mc

decreases from 38% to 20%. To further analyze how L2-cache sharing configuration changes

swaptions’ CV F
mc

for L2-cache, we collect the lifetime data of various ACE intervals that are

defined in Figure 5.2. Figure 5.8 shows the stacked graph of swaptions’ lifetime breakdown for

the three ACE cache-line access pattern for a write-back cache. From the figure, we observe

that the non-sharing configuration has W-R lifetime interval, which is much smaller in the

lifetime breakdown for the sharing configuration. This happens because in the non-sharing

configuration, the swaptions threads access twice as many cache blocks than that of the

sharing configuration. Therefore, some cache-lines in the non-sharing configuration have data

that have a longer ACE occupancy. In contrast, the cache-lines get replaced or invalidated by

the threads because of more accesses in the same cache for the sharing configuration, which

lowers the W-R interval and ACE occupancy duration. Therefore, swaptions has a lower
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CV F
mc

for L2-caches in the sharing configuration than the non-sharing configuration.

On the other hand, CV F
mc

increases in the sharing configuration for rest of the bench-

marks. Among these benchmarks, bodytrack has a decreased cache miss rate in the sharing

configuration. Lower cache miss rate means the threads have a higher hit rate in the cache,

which can be caused by the data sharing behavior between the bodytrack threads. Because of

the sharing behavior, the application threads keep using the same cache blocks. From Fig-

ure 5.9(a), we observe that the D-Repl interval is much increased in the sharing configuration,

which means bodytrack threads have shared write operations. The time interval between the

write operation and cache-line replacement contributes to the D-Repl lifetime, consequently

to the ACE lifetime. In addition, as the cache miss rate is lower, the cache-line statuses are

not frequently changed to the W-state. This phenomenon reduces the interval between the

current state changes to W-state and consequently increases the ACE lifetime. Therefore,

both lower cache miss rates and shared write operations increase bodytrack’s ACE lifetime, in

turn CV F
mc

, in the sharing configuration.

Figure 5.9 shows the stacked intervals of ACE lifetime for fluidanimate and freqmine. In

both figures we observe that the W-R and R-R ACE intervals are much reduced when the

application threads are mapped in the sharing configuration, especially for freqmine. Most of

the ACE lifetime consists of the D-Repl interval in both characterization configurations, which

means these applications have frequent write operations in the cache-lines that eventually get

replaced. Both fluidanimate and freqmine have increased cache miss rates of 8% and 1%,

respectively in the sharing configuration. The increased cache miss rates cause the dirty cache

block to be evicted so that the requested cache block can be placed in the cache according

to the cache replacement policy. The replaced dirty cache blocks need to be written and

updated in the resources lower at the memory hierarchy so that the memory is consistent with

the application execution. The latency of the write-back operations contribute to the ACE

lifetime because any bit-flips in the cache block before it is written back to the lower-level

resources can result in wrong application output when the same cache block is read and
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Figure 5.9: Percentage ACE lifetime intervals during the execution of the appli-
cations

used by the application later in the execution. Thus, the long-latency write-back operation

causes the CV F
mc

of L2-cache for these applications to increase in the sharing configuration.

Similar explanation is also applicable to facesim (lifetime data shown in Figure 5.9(d)). The

remaining benchmark, Raytrace, has cache miss rate increase from 16% to 18%, which is

very small. We can conclude that raytrace’s threads in the sharing configuration increases

its vulnerability to soft errors in L2-cache by prolonging the ACE residency time of the

cache-lines.

5.4.2 Characterization: Discussion and Summary

From the characterizations of the eight PARSEC benchmarks for cache vulnerability, we

obtain several insights. Depending on how application threads are placed on the cores to share
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Benchmark Configuration Reason
to reduce CV F

mc

for the reduced CV F
mc

streamcluster (SC) Sharing Increased miss-rate
swaptions (SW) Sharing Reduced ACE lifetime

x264 (X2) Sharing Increased miss-rate
bodytrack (BT) Non-sharing Increased miss-rate
facesim (FA) Non-sharing Reduced write-back

fluidanimate (FL) Non-sharing Reduced write-back
freqmine (FQ) Non-sharing Reduced write-back
raytrace (RT) Non-sharing Reduced ACE lifetime

Table 5.2: Characterization summary of the PARSEC benchmarks

the same cache or not, the CV F
mc

s of di�erent applications range from 4% to 78%, and for a

particular application, the di�erence of CV F
mc

across di�erent characterization configurations

ranges from 5% to more than 50%. Therefore, we conclude that thread-mapping technique

can be used as an approach to understand the ACE behavior of a multi-threaded application

because the technique varies an application’s occupancy behavior in the shared caches.

Table 5.2 summarizes the findings of the characterization phase of ReSense_Reliability

for the PARSEC applications. It describes the characterization configuration that reduces

each application’s L2-cache vulnerability and the reason for the reduction. From the charac-

terization, we observed that three PARSEC benchmarks’ cache vulnerabilities reduce as the

threads share the same L2-cache in the sharing configuration. Among these three applications,

streamcluster and x264 have increased cache miss rates in the sharing configuration, which

causes most of the cache-line access pattern to result in W-W intervals and decreases the ACE

lifetime of the shared cache. Swaptions’ cache miss rate decreases in the sharing configuration,

which reduces both W-R and D-Repl lifetime intervals and causes its vulnerability to decrease.

For rest of the PARSEC benchmarks, the L2-cache vulnerability is reduced when its

threads are mapped in the non-sharing configuration. Among these applications, bodytrack

has decreased L2-cache miss rate in the sharing configuration, which causes its threads to

have a higher hit rate in the cache increasing the ACE lifetime. To reduce cache vulnerability

of this application, its threads should be mapped in the non-sharing configuration so that the
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Benchmark SensitivityScore
CVF

L2-cache
bodytrack (BT) - 34.99
facesim (FA) - 29.91

fluidanimate (FL) - 18.89
freqmine (FQ) - 5.66
raytrace (RT) - 51.74

streamcluster (SC) + 6.03
swaptions (SW) + 44.44

x264 (X2) + 11.86

Table 5.3: SensitivityScore
CVF

of the PARSEC benchmarks

cache hit rate and ACE lifetime are reduced. Three other applications, facesim, fluidanimate,

and freqmine, have increased CV F
mc

in the sharing configuration because of the long-latency

and frequent write-back operations of the dirty cache-lines, which increase the ACE D-Repl

interval. To reduce the duration of this ACE lifetime, these applications should be mapped in

the non-sharing configuration so that the frequency and duration of the write-back operations

are decreased. The CV F
mc

of raytrace is decreased in the non-sharing configuration because

of the overall reduction in its ACE lifetime.

From these observations and insights about application characteristics of cache resource

usage, we can conclude that thread-mapping can be used to reduce CV F
mc

of the shared

caches. In particular, by choosing co-runner(s) that decrease cache vulnerability by increasing

the miss rates in the shared caches and allowing applications to use multiple caches to

decrease the duration of frequent write-back operations, the mapping algorithm reduces the

applications’ vulnerability from a workload to soft errors in shared caches.

We summarize the SensitivityScore
CVF

for the eight PARSEC applications in Table 5.3,

which are used as input in the mapping phase. Positive sign represents reduction of CV F
mc

and negative sign represents increase of CV F
mc

in the sharing configuration.
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5.4.3 Mapping: Experimental Details and Results

To evaluate ReSense
Reliability

’s e�ectiveness in minimizing application’s vulnerability to soft

error in caches, we use workloads consisting of multi-threaded applications from PARSEC

benchmark suite. To design workloads for evaluating the mapping phase, we use the same eight

applications with the simlarge input set, used in Section 5.4.1. As the evaluation platform,

we use the same Simics configuration, described in Table 5.1 used in the characterization

phase.

For evaluation, we use several pairs of PARSEC applications as workloads, where both

applications start execution simultaneously. We choose three types of pairs: one benchmarks

with a positive and one benchmark with a negative SensitivityScore
CVF

, two applications with

positive SensitivityScore
CVF

, and two benchmarks with negative SensitivityScore
CVF

. From

each category, we select the benchmarks with the execution times such that the simulation

are finished within reasonable amount of time.

ReSense
Reliability

can be implemented as a virtual execution manager, similarly as the

ReSense
Performance

run-time system. However, as we do experiments using a full-system

simulation infrastructure, we execute each pair such that both applications run simultaneously

only once in order to ensure the applications run to completion in a reasonable amount of

simulation time. For this one iteration, we manually set the core a�nity of the applications

using the thread-mappings provided by the ReSensor
R

algorithm. This limitation is not

because of the run-time system or the algorithm, but for using the Simics simulator.

To evaluate the e�ectiveness of ReSense
Reliability

, we use CV F
mc

as the evaluation metric.

For the general case when the targeted platform has multiple shared caches, we use the

following equation, Equation 5.6, to calculate the evaluation metric CV F
mc≠avg

.

CV F
mc≠avg

=
q

n

i=1

CV F
mc≠SharedCachei

n
(5.6)
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Here, n is the total number of shared caches on the experimental platform and CV F
mc≠SharedCachei

is the cache vulnerability factor of the i-the shared cache.

Most of the techniques for reducing the application vulnerability are architecture-level

approaches. As we use an application-level technique to reduce cache vulnerability, we choose

a technique that is also implemented in the application-level for comparison. Therefore,

we compare our evaluation results with that of the native operating system (OS), which

is used as a baseline. We run each application workload pair described in the previous

paragraphs in two configurations. In the baseline configuration, we run the application

under the operating system’s control where the native OS determines the thread-mappings

of the application threads. In the second configuration, we run each application pair under

ReSense
Reliability

’s control, where the mapping is determined by the ReSensor
R

algorithm

using SensitivityScores
CVF

. In both configurations, we calculate CV F
mc≠avg

for the shared

caches to present the mapping results.

5.4.3.1 Evaluation Results

Figure 5.11 shows the experimental results when pairs of PARSEC applications are mapped

using ReSense
Reliability

run-time system in ReSensor
R

-mapping. The Y-axis shows CV F
mc≠avg

of the shared L2-caches on the experimental platform, for both baseline (OS-mapping) and

the mapping determined by the ReSensor
R

algorithm. The X-axis shows the application

pairs used in the experiments. With two applications each with two threads, there are two

mapping configurations for the application threads, which are shown in Figure 5.10.

From the figure we observe that for all the application pairs, CV F
mc≠avg

reduces up to 70%

over the native OS mapping, when the application threads are controlled by ReSense
Reliability

run-time system and mapped using ReSensor
R

. The first pair of streamcluster and swaptions

are the applications that have both positive SensitivityScore
CVF

. According to the algorithm,

[V ulApps] contains streamcluster because its CV F
mc

decreases as its cache miss rate increases

(Figure 5.7). Therefore, Special Case of the algorithm is chosen by the run-time system, and

it maps the threads from di�erent applications to share the same shared cache (Figure 5.10(b)).
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Figure 5.10: Configurations for mapping two multi-threaded applications, each
with two threads

This mapping configuration allows the application threads to space-share the targeted resource.

The SC-threads increase the cache miss rates in both shared caches, which reduces the ACE

lifetime of the cache-lines and consequently CV F
mc≠avg

over the native OS by 31%.

The next six workloads consist of one application that has a positive SensitivityScore
CVF

and one application that has a negative SensitivityScore
CVF

. The first pair with streamcluster

and bodytrack application satisfies the condition for Special Case of the algorithm. The

application threads are mapped in the space-sharing configuration, which reduces the ACE

lifetime because of the cache misses from the SC-threads. The next three application pairs

have streamcluster as a co-runner, which satisfies the Special Case requirement. Also the

other applications in the pairs, facesim, fluidanimate, and freqmine have higher CV F
mc

when

their sibling threads share the same cache. It means CV F
mc

is lower for these applications

when their sibling threads are spread across the shared caches. These applications also have

higher magnitudes of the SensitivityScore
CVF

than that of streamcluster, which means the

application threads are mapped according to the negative sign of the SensitivityScore
CVF

of

these applications. For these reasons, the space-sharing mapping configuration is chosen by

the algorithm where the application thread can share the same cache with SC-threads. This

mapping results in CV F
mc≠avg

reductions of SC_FA, SC_FL, SC_FQ pairs by 12%, 70%,
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Figure 5.11: Experimental results showing average CV F
mc

of the shared caches
for pairs of PARSEC application for ReSensor

R

and OS mapping (Lower bar is
better)

and 38% respectively, over the native OS mapping.

For the pairs with swaptions as the co-running application, General Case of the algorithm

is applied as [V ulApps] array is empty, and the mappings are determined by comparing the

magnitudes of the SensitivityScores
CVF

. For the BT_SW pair, swaptions’ CV F
mc

reduces

when its threads share the same L2-cache. On the other hand, bodytrack’s CV F
mc

increases

when its threads share the same cache. Therefore, in this case, the ReSensor
R

algorithm needs

to prioritize the applications to determine the mapping that lowers CV F
mc≠avg

compared to

the alternate mappings. Comparing the magnitudes of the SensitivityScores
CVF

, swaptions has

a higher sensitivity score than bodytrack. Therefore, ReSensor
R

algorithm prioritizes swaptions

for determining the mapping that reduces CV F
mc≠avg

and chooses the non-sharing mapping

(Figure 5.10(a)). This mapping increases the CV F
mc

of the cache shared by bodytrack by

8%, but decreases the CV F
mc

of the cache shared by swaptions by 67%. The reduction of
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CV F
mc≠avg

over the native OS is 33%. This mapping results in a lower CV F
mc≠avg

than the

alternate space-sharing mapping, which lowers the CV F
mc≠avg

over the native OS by 27%.

Similar explanation and observation is applicable for FL_SW pair. Fluidanimate has

write operations in the cache-lines that eventually get replaced because of increased cache miss

rate in the sharing configuration (Figure 5.3(b)). The latency of the write-back operations

contributes to the ACE lifetime of the cache-lines and the CV F
mc

s of the shared caches

increase in the sharing mapping configuration. Therefore, the threads from fluidanimate

should be mapped on the cores that use two separate caches with the threads from swaptions

according to the space-sharing mapping (Figure 5.10(b)). However, this mapping increases the

CV F
mc

of the cache shared by swaptions by 80%. Therefore, this pair is mapped by comparing

the magnitude of the SensitivityScore
CVF

of the applications in the workload. ReSensor
R

algorithm chooses to map these application threads in the non-sharing configuration by

prioritizing the more-sensitive application swaptions and reduces the CV F
mc≠avg

over the

native OS by 18%. Therefore, we can conclude that ReSensor
R

algorithm chooses the mapping

that minimizes CV F
mc≠avg

among the possible mapping configurations for the application

pairs with swaptions as co-runner.

For the remaining pairs, [V ulApps] array is empty, and the pairs consist of the applications

that both have negative SensitivityScores
CVF

. For these pairs, both applications’ character-

istics of resource occupancy cause the CV F
mc

of the shared L2-caches to reduce when the

threads are spread across the shared caches. For the pairs with bodytrack, when the threads

from bodytrack share the same L2-cache in the non-sharing configuration, the CV F
mc

of that

cache increases because of the increased vulnerable D-Repl lifetime. The other applications in

the pair, fluidanimate and freqmine causes the shared cache’s CV F
mc

to increase by frequently

modifying the cache-lines, which increase the write-back latency contributing to the ACE

lifetime. For these inherent characteristics of the applications, ReSensor
R

algorithm chooses

to map the application threads in the space-sharing configuration to reduce the ACE lifetime

of the cache-lines. As a result of this mapping, for BT_FL and BT_FQ pairs, CV F
mc≠avg
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reduces by 9% and 13% respectively, over the native OS.

For the last pair, ReSensor
R

maps the application threads in the space-sharing configura-

tion because both applications have negative SensitivityScores
CVF

. However, this mapping

increases CV F
mc≠avg

of the shared caches by 0.19% over the native OS, which is very small.

The alternate non-sharing mapping configuration increases the CV F
mc≠avg

by almost 23% over

the native OS, which is much higher than 0.19%. Therefore, the space-sharing configuration

for FQ_FL pair is better for reducing CV F
mc≠avg

.

To summarize, we can conclude from the experimental results that ReSense
Reliability

run-

time system e�ectively uses ReSensor
R

to reduce the CV F
mc≠avg

of the shared caches using

the o�ine vulnerability characteristics of the applications in a workload over the native OS

mapping. This reduction in cache vulnerability factors results in a proportional reduction of

the overall FIT rate and improvement of the mean-time-to-failure (MTTF) metric for the

shared caches.

5.4.4 Mapping: Discussion and Statistical Analyses

We perform an analysis on the experimental results presented in the previous section to

determine its statistical significance. We assume the null hypothesis that ReSense
Reliability

run-

time system does not reduce the average cache vulnerability, CV F
mc≠avg

, for the workloads

over the native OS. As we perform each experiment in two configurations, using the native

OS and ReSense
Reliability

run-time, each experiment has two distributions, OS and ReSense.

We perform a paired t-test to compare these distributions to determine if OS is better

than ReSense for the CV F
mc≠avg

metric [101]. For the workload with application pairs,

the null hypothesis is rejected with a p-value of 0.005. It indicates that the probability

of ReSense
Reliability

and ReSensor
R

reducing the workload’s average cache vulnerability to

soft errors over the native OS is 99.5%, which is very high. In addition, we determine the

confidence interval of the average reduction of CV F
mc≠avg

by ReSense
Reliability

and ReSensor
R

over the native OS. This average reduction ranges from 2% to 52%. Because the reduction is
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positive, it means ReSense
Reliability

always reduces the application average cache vulnerability

using ReSensor
R

, and this reduction of cache vulnerability can be as high as 52% over the

native OS.

5.5 Summary

In this chapter, we addressed the challenges of minimizing the e�ect of soft errors in the

memory resources on modern multicore architectures using ReSense_Reliability, a reliability

instance of the ReSense framework.

The characterization phase of ReSense_Reliability instantiated the general methodology

of the ReSense framework to characterize a multi-threaded application based on its resource

occupancy duration in the shared caches. It used cache vulnerability factor as the char-

acterization metric and calculated SensitivityScores
CVF

for the applications in a workload.

Each SensitivityScore
CVF

represented the vulnerability characteristics of a multi-threaded

application.

Using the methodology, we characterized multi-threaded applications from the PARSEC

benchmark suite for a write-back, write-allocate shared L2-cache. The characterization

revealed several important insights. Di�erent thread-mapping configurations caused the

cache vulnerability of di�erent benchmarks to range from 4% up to 78%. Three benchmarks

had decreased cache vulnerability and five benchmarks had increased cache vulnerability

as the threads shared the same L2-cache. From the characterization results, we had two

observations regarding when an application’s CV F
mc

decreased. The first observation is when

application threads had a high cache read miss rate, it caused the cache-lines to be frequently

updated with the fetched data blocks, which increased non-vulnerable W-W interval of its

total lifetime and decreased the CV F
mc

. The second observation is when the application

threads had frequent write operations, it resulted into modified cache-lines. If there was a

cache miss and a modified cache-line needed to replaced, the write-back operation of the

dirty cache-line contributed to the D-Repl lifetime and increased the ACE lifetime of the
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cache block and consequently CV F
mc

. These two observations and insights about application

resource usage were used to reduce CV F
mc

of the shared caches. In particular, by increasing

the miss rate significantly in shared caches by choosing cache-intensive co-runner(s) and

allowing applications to use multiple caches to decrease the duration of frequent write-back

operations, the mapping algorithm could decrease an application’s vulnerability to soft errors

in a shared cache.

In the online mapping phase of ReSense_Reliability, the run-time system of the ReSense

framework was instantiated as ReSense
Reliability

. The ReSense
Reliability

run-time system dynam-

ically managed the mappings of the application threads from a given workload by employing

a thread-mapping algorithm, ReSensor
R

and the pre-determined SensitivityScores
CVF

. The

ReSensor
R

algorithm determined the thread-mappings of the multi-threaded applications in

a workload using the SensitivityScores
CVF

of the applications. The algorithm optimized the

objective function of this instance, which was to minimize the overall cache vulnerability factor

to reduce the e�ect soft errors in caches on a workload’s execution. ReSense
Reliability

’s e�ec-

tiveness was evaluated using ten workloads that consisted of pairs of PARSEC multi-threaded

applications. The evaluation revealed that ReSense
Reliability

e�ectively used applications’

SensitivityScore
CVF

and ReSensor
R

mapping algorithm and reduced the overall cache vul-

nerability by up to 70% over the native operating system. The statistical analyses revealed

that the probability of ReSense
Reliability

and ReSensor
R

reducing the workload’s average cache

vulnerability to soft errors over the native OS was very high, 99.5%, and the reduction of

average cache vulnerability could be as high as 52%.

From the analyses results of both characterization and mapping phase, we conclude that

the ReSense framework was e�ectively used to minimize application vulnerability to soft errors

in shared cache on a multicore architecture. This reduction in cache vulnerability can result in

a proportional reduction of the overall FIT rate and improvement of the MTTF for the shared

caches. Utilizing thread-mapping technique to reduce the e�ect of soft errors demonstrated a

novel approach and addressed the challenges of improving application reliability using an
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application-level technique.



Chapter 6

Using ReSense for Performance and

Reliability Integration

In this chapter, we present a preliminary exploration of the usage of the ReSense frame-

work to address two targeted problems for shared caches: resource contention and soft

errors. The chapter describes how ReSense can be used to develop an integrated instance,

ReSense_Integration, which addresses these two targeted problems and determines a trade-

o� between application performance and reliability improvements on modern multi-core

platforms.

6.1 Introduction

The thread-mapping configurations determined by the ReSensor
P

algorithm (presented in

Chapter 4) that improves an application’s performance may not improve its reliability. A

cache-intensive multi-threaded application contends for the shared cache when its threads share

the same cache. Because the threads contend for the cache, they replace the contents of the

cache-lines very frequently and reduce the cache-lines’ vulnerable occupancy duration. This

behavior reduces the application’s susceptibility to soft errors in the shared caches. However,

this mapping degrades the application’s performance because it causes more cache misses and

158
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creates contention in the cache. To mitigate cache contention, the application’s threads are

mapped to use separate caches, which leads to application performance improvement. However,

this mapping can increase the vulnerable occupancy duration of the cache-lines because the

application threads less frequently replace their contents. This increased occupancy duration

of the cache-lines can increase the shared cache’s vulnerability to soft errors. Similarly,

the thread-mapping configurations determined by the ReSensor
R

algorithm (presented in

Chapter 5) that improves an application’s reliability may not improve its performance.

Therefore, there is a trade-o� between application performance and reliability improvements.

The thread-mapping that determines a trade-o� between the performance and reliability

improvements, should utilize an application’s sensitivity to the targeted resources. This

sensitivity can vary with respect to its contention and vulnerability characterizations for

a targeted resource, which is determined by its contentiousness and resource occupancy

behaviors. The trade-o� between performance and reliability improvements should be

determined based on the preference between the contention and vulnerability characterizations

of the applications in a workload. If the contentious behavior of the multi-threaded applications

in a workload are preferred more than its occupancy and vulnerability to soft errors in the

targeted resource, the trade-o� thread-mapping should more target mitigating resource

contention. If the applications’ occupancy and vulnerability behaviors to soft errors are

preferred more than the contentiousness in the targeted resource, the trade-o� thread-mapping

should more target reducing the application vulnerability to soft errors.

To determine an application’s behaviors for contention and vulnerability to soft errors in a

targeted resource, a characterization technique can be used. This characterization technique

should determine how a multi-threaded application’s performance and vulnerability are

a�ected by its contentiousness and occupancy duration in the targeted resource, respectively.

Once these application characteristics are identified in isolation, these characterizations can

be integrated to determine the application’s combined behaviors for both resource contention

and soft errors. These application behaviors help determine the thread-mappings for a
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Figure 6.1: Components of the ReSense_Integration Instance

trade-o� between performance and reliability improvements.

This approach leads to creating an integrated instance of the ReSense framework, Re-

Sense_Integration, for achieving a trade-o� between performance and reliability improvements.

Figure 6.1 shows the components of ReSense_Integration. The characterization phase of

the instance applies the characterization methodology of the framework to characterize each

multi-threaded application in a workload based on its contentiousness and occupancy duration

in a shared cache. It uses application performance and cache vulnerability factor as the char-

acterization metrics and calculates SensitivityScore
performance

and SensitivityScore
CVF

for each

application. These sensitivity scores are combined to calculate SensitivityScore
integrated

, which

represents the combined contention and vulnerability characteristics of each multi-threaded

application in a workload.

In the mapping phase of the instance, run-time system of the ReSense framework is instan-

tiated as ReSense
Integrated

, and thread-mapping algorithm is instantiated as ReSensor
I

. The

ReSense
Integrated

run-time system employs the ReSensor
I

algorithm and SensitivityScores
integrated

to map application threads from a dynamic workload. ReSensor
I

dynamically determines

the thread-mappings of the applications in a workload using the pre-determined integrated
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characteristics of the applications on the targeted platform. The algorithm optimizes the

objective function of this instance, which is to determine a trade-o� between response time

and cache vulnerability factor reductions.

The outline of this chapter is as follows: Section 6.2 describes the characterization phase,

which includes the integration of a multi-threaded application’s contentious and resource

occupancy characteristics for shared caches using the general characterization methodology

of ReSense. Section 6.3 describes the mapping phase, which includes the ReSensor
I

thread-

mapping algorithm and the ReSense
Integrated

run-time system. Section 6.4.1 presents the

integrated characteristics of the PARSEC benchmarks for shared caches. Section 6.4.2

describes the experimental methodology and evaluation metrics of the mapping phase and

presents the evaluation results of the workloads using the ReSense
Integrated

run-time system.

Section 6.5 concludes the chapter.

6.2 Characterization for Resource Contention and Vul-

nerability

For this instance, to combine application characteristics for contention and vulnerability, the

applications should be characterized for the same targeted resource. Because we determine

an application’s cache vulnerability for the ReSense_Reliability instance, we consider shared

caches as the targeted resource.

6.2.1 Characterization Metric

To characterize a multi-threaded application based on its contentiousness and resource

occupancy behavior for the shared caches, we use performance and cache vulnerability factor,

CV F
mc

, as the characterization metrics. We characterize each multi-threaded application in

a workload based on how contention for the shared cache a�ects its performance and resource

occupancy in the shared caches a�ects its CV F
mc

.
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6.2.2 Characterization Methodology

According to the characterization methodology of ReSense, application threads are placed in

two characterization configurations. In the non-sharing configuration, the application threads

are placed on the cores that use two separate shared caches. In the sharing configuration, the

application threads are placed to use the same shared cache. Both configurations use the same

number of application threads, which equals the number of cores that use the same shared

cache. Both configurations use the same number of private caches so that the e�ect of private

cache usage is not included in the characterization. In both characterization configurations, we

measure each application’s performance and CV F
mc

and calculate SensitivityScore
performance

and SensitivityScore
CVF

according to Equation 3.1.

6.2.3 SensitivityScore
integrated

: Sensitivity Scores for Performance

and Reliability

To determine a trade-o� between performance and reliability improvements, we combine

two characterizations, SensitivityScore
performance

and SensitivityScore
CVF

, to determine the

integrated sensitivity scores of the applications using an addition function and Equation 6.1.

SensitivityScore
integrated

=

w
P

ú SensitivityScore
performance

+ w
R

ú SensitivityScore
CVF

(6.1)

Here, SensitivityScore
performance

represents a multi-threaded application’s sensitivity to

contention for shared cache, and SensitivityScore
CVF

represents a multi-threaded application’s

sensitivity to its vulnerability to soft errors in a shared cache. We choose an addition function

as a simple way of combining the sensitivity scores so that the trade-o� between performance

and reliability improvements can be easily manipulated. Other functions can be used, which

are left for more exploration as future work.
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As both SensitivityScore
performance

and SensitivityScore
CVF

represent an application’s

characterization for a shared cache, we can combine them. W
P

and w
R

are the weighting

factors, whose summation ranges from 0 to 1. W
P

is the performance weighting factor, and

w
R

is the reliability weighting factor. These weighting factors are used as knobs to control

the application behaviors that are prioritized for the integrated instance. If an application’s

contentious behavior is preferred more to its vulnerability, w
P

is set higher than w
R

, and vice

versa. In general, for ReSense_Performance, w
P

= 1.0, w
R

= 0, and for ReSense_Reliability,

w
P

= 0, w
R

= 1.0. For the integrated instance, 0 <= w
P

+ w
R

<= 1.0. Thus, the objective

of the integrated instance is configurable using these weighting factors as they are combined

with the simple addition function.

Similar to SensitivityScore
performance

and SensitivityScore
CVF

, SensitivityScore
integrated

has both a sign and magnitude, which are used by the ReSensor
I

thread-mapping algo-

rithm to determine a trade-o� between performance and reliability improvements. The

sign and magnitude of SensitivityScore
integrated

depend on the signs and magnitudes of

both SensitivityScore
performance

and SensitivityScore
CVF

. If both SensitivityScore
performance

and SensitivityScore
CVF

have positive signs, then SensitivityScore
integrated

has a positive

sign. The positive sign means the application has both improved performance and reduced

cache vulnerability to soft errors when its threads share the same shared cache. If both

SensitivityScore
performance

and SensitivityScore
CVF

have negative signs, then SensitivityScore
integrated

has a negative sign. The negative sign means the application has both degraded performance

because of cache contention and increased cache vulnerability to soft errors when its threads

share the same shared cache.

If SensitivityScore
performance

and SensitivityScore
CVF

have di�erent signs, then their magni-

tudes and the weighting factors determine the sign of SensitivityScore
integrated

. The weighted

sensitivity score with the higher magnitude determines the sign of SensitivityScore
integrated

. As-

sume, SensitivityScore
performance

is positive, SensitivityScore
CVF

is negative, and w
P

> w
R

. If |

w
P

* SensitivityScore
performance

| > | w
R

* SensitivityScore
CVF

|, then SensitivityScore
integrated
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has a positive sign. In this case, the positive sign represents that the application’s sharing

behavior is preferred more than its vulnerability for shared caches for the chosen weights.

The positive sign means that sharing the same cache improves the application performance;

however, the cache vulnerability increases because of its SensitivityScore
CVF

’s negative sign.

Here, performance is prioritized over reliability if these threads are mapped to use the same

cache.

Assuming the same magnitudes of the sensitivity scores, if the weighting factors are

chosen such that | w
P

* SensitivityScore
performance

| < | w
R

* SensitivityScore
CVF

|, then

SensitivityScore
integrated

has a negative sign. The negative sign means that the application’s

vulnerability behavior is preferred more to its sharing behavior in shared caches. Reliability

is prioritized over performance if these threads are mapped to use separate shared caches.

This mapping may degrade application performance because its data sharing behavior is

not considered. These two examples show the trade-o� between performance and reliability

improvements.

Other cases are also possible when applications with di�erent signs and magnitudes

of SensitivityScore
performance

and SensitivityScore
CVF

are considered and di�erent weighting

factors are chosen. Because SensitivityScore
integrated

is calculated using an application’s

both contentious and vulnerability characteristics, it helps determine a trade-o� between

performance and reliability improvements for a given workload.

If the targeted platform has multiple levels of shared caches, we characterize the appli-

cations and determine its SensitivityScore
performance

and SensitivityScore
CVF

for the shared

caches at each level. These sensitivity scores are used to calculate SensitivityScore
integrated

for

each shared cache, which is saved in the SV
integrated

vector. If the targeted platform has two

levels of shared caches, then this SV
integrated

vector is a two-element vector for each multi-

threaded application. This vector is passed as an input parameter to the ReSense
Integrated

thread-mapping algorithm.
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6.3 Mapping Co-located Multi-threaded Applications

for Performance and Reliability Trade-o�

We describe the components of the mapping phase for the integrated instance, including the

ReSensor
I

algorithm and the ReSense
Integrated

run-time system, in the following sections.

6.3.1 The ReSensor
I

Thread-mapping Algorithm

Depending on the characteristics of the applications in a workload, one mapping can improve

application performance at the cost of less reliable execution, and a di�erent mapping may

ensure application reliability at the cost of application performance degradation. The goal of

the integrated ReSensor
I

thread-mapping algorithm is to dynamically map the application

threads from the input workload such that the mapping prioritizes the preferred characteristics

of the applications, i.e., contentiousness or vulnerability, as chosen by the weighting factors.

If the multi-threaded applications’ resource contention characteristics are preferred, the

ReSensor
I

thread-mapping algorithm maps the application threads to mitigate contention

by prioritizing performance over reliability. Similarly, if the applications’ vulnerability

characteristics for shared caches are preferred by choosing the appropriate weighting factors,

the thread-mapping algorithm dynamically adjusts the mapping to reduce cache occupancy by

prioritizing reliability over performance. Because an application’s SensitivityScore
integrated

is

determined using both its contentiousness and resource occupancy characteristics, it is used by

the algorithm to determine the thread-mappings that prioritize the preferred characteristics

of the applications in a workload.

Algorithm 5 contains the pseudocode of the ReSensor
I

algorithm. The ReSensor
I

algorithm

is instantiated from the ReSensor
Generic

thread-mapping algorithm of the framework, where

applications’ SensitivityScores
integrated

are used as the sensitivity scores. The algorithm maps

threads from a workload WL consisting of any number of multi-threaded applications on

a particular platform P . Platform P can have shared resources, i.e., caches, in multiple
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Algorithm 5 The ReSensor
I

Algorithm: Mapping application threads to determine a trade-o�
between performance and reliability improvements

1: INPUT: Workload WL, Topology of the experimental platform P , Sensitivity vectors
SV

integrated

of the applications in WL on P
2: [Apps] Ω multi-threaded applications in WL
3: nApps Ω number of multi-threaded applications in WL
4: for each level MHL in the memory hierarchy of P do
5: R Ω shared cache at MHL
6: NR Ω number of R at MHL
7: [C

+

] Ω set of cores that use or share the same R on P
8: [C≠] Ω set of cores that do not use or share the same R on P
9: [SS

I

] Ω SV
integrated

[R] of the applications in [Apps]
10: sort [SS

I

] array in descending order of the magnitude of the SensitivityScore
integrated

and re-arrange [Apps] accordingly
11: if NR >= nApps then
12: /* Scenario 1: equal or more shared resources than the number of applications */
13: for ( i = 0 ; i < nApps ; i++ ) do
14: if SS

I

[i] > 0 AND [C
+

] has available core(s) then
15: map Apps[i]-threads on the available cores from [C

+

]
16: else if SS

I

[i] < 0 AND [C≠] has available core(s) then
17: map Apps[i]-threads on the available cores from [C≠]
18: else
19: /* [C

+

] or [C≠] does not have available core(s) */
20: map Apps[i]-threads on any core on P
21: end if
22: end for
23: else
24: /* Scenario 2: fewer shared resources than the number of applications */
25: for ( i = 0 ; i < nApps / 2 ; i++ ) do
26: if SS

I

[i] > 0 AND [C
+

] has available core(s) then
27: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available cores from [C

+

]
28: else if SS

I

[i] < 0 AND [C≠] has available core(s) then
29: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on the available cores from [C≠]
30: else
31: /* [C

+

] or [C≠] does not have available core(s) */
32: map Apps[i]- and Apps[nApps ≠ i ≠ 1]-threads on any core on P
33: end if
34: end for
35: end if
36: end for
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levels of the memory hierarchy. ReSensor
I

considers the shared caches from the bottom

to the top of the memory hierarchy, i.e., from L3-caches to L2-caches, to determine the

thread-mappings (line 4). The algorithm counts the number of shared caches R at a particular

memory hierarchy level MHL (line 6) and determines the [C
+

] and [C≠] arrays (line 7, 8).

These arrays are used to identify the cores that share the same or di�erent resource R and

keep track of the availability of free cores, on which application threads are not mapped yet.

Each application’s SensitivityScore
integrated

for resource R is saved into the [SS
I

] ar-

ray (line 9). This [SS
I

] array is sorted in the descending order of the magnitude of

SensitivityScore
integrated

metric so that the algorithm can prioritize the applications according

to their integrated sensitivity to the resource R and re-arranges [Apps] accordingly (line 10).

Depending on the number of applications in the workload, nApps and NR, the algorithm

handles two scenarios as the generic ReSensor
Generic

algorithm (with no problem-specific

special cases).

Scenario 1: There are the same or more targeted resources than the number of ap-

plications, nApps, in the workload at a particular time on platform P . The algorithm

maps the application threads the same way as ReSensor
Generic

, according to the sign and

magnitude of the SensitivityScore
integrated

after sorting the [SS
I

] array (line 13 - 22). If the

sign of SensitivityScore
integrated

of i-th application is positive, then the threads are mapped

on the cores from [C
+

] (line 15). Depending on the performance and vulnerability sensitivity

scores of the application and the weighting factors, this configuration maps application

threads prioritizing its preferred characteristics, targeting either more improved performance

or reliability. For example, if SensitivityScore
performance

is positive and SensitivityScore
CVF

is negative for the i-th application and the weighting factors are chosen such that | w
P

*

SensitivityScore
performance

| > |w
R

* SensitivityScore
CVF

|, then this application’s resource

contention behavior is preferred, and the threads are mapped on the [C
+

]-cores to prioritize

its sharing behavior and reduce application response time. This mapping may increase its

cache vulnerability because of its negative SensitivityScore
CVF

.
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Figure 6.2: Mapping decisions for the two examples in Scenario 1

On the other hand, if the sign of the SensitivityScore
integrated

metric is negative, the

threads are mapped on the [C≠]-cores that do not share the targeted resource R (line

17). If SensitivityScore
performance

is positive and SensitivityScore
CVF

is negative for i-th

application and the weighting factors are chosen such that |w
P

* SensitivityScore
performance

| < |w
R

* SensitivityScore
CVF

|, then this application’s shared cache vulnerability to soft

errors is preferred, and the threads are mapped on the [C≠]-cores to reduce the overall

cache vulnerability. However, this mapping can degrade application performance because its

SensitivityScore
performance

is positive and the application threads are mapped to use separate

caches. If there is no core available for the remaining applications, then the threads are

mapped on any cores (line 20). As these applications are the least-sensitive ones (because

they are at the end of the sorted array), they do not impact the performance or reliability

trade-o�s significantly.

Let us consider a workload that has two multi-threaded applications, A and B each

with two threads, and these applications are to be mapped on the quad-core platform (e.g.,

Intel-Yorkfield), shown in Figure 6.2. Here, nApps = NR = 2, [Apps] = [A, B], [C
+

] =

[{C0,C1}, {C2,C3}], and [C≠] = [{C0,C2}, {C1,C3}]. The shared L2-cache is the targeted

resource. Let us assume, A’s SensitivityScore
performance

is +a
P

and SensitivityScore
CVF

is
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≠a
R

. B’s SensitivityScore
performance

is ≠b
P

and SensitivityScore
CVF

is +b
R

.

For ReSense_Performance, if |a
P

| > |b
P

|, the applications are mapped by ReSensor
P

such that A’s threads can share the same cache, as shown in Figure 6.2(a). This mapping

improves A’s performance more than B’s performance degradation, resulting into overall

response time improvement for the workload. From the reliability perspective, this mapping

reduces CV F
mc

of the cache shared by B (positive b
R

), but increases the CV F
mc

of the cache

used by A (negative a
R

). Therefore, better performance is achieved at the cost of reduced

reliability.

For ReSense_Reliability, if |a
R

| > |b
R

|, A-threads are mapped to share the same cache

with B-threads according to the ReSensor
R

algorithm to minimize both caches’ overall

CV F
mc

, as shown in Figure 6.2(b). This mapping may degrade the more sensitive application

A’s performance because its threads are not mapped considering its sharing behavior in cache

and result in overall performance degradation, i.e., increased response time. Therefore, better

reliability is achieved at the cost of degraded performance.

For ReSense_Integration, let us assume the weighting factors are chosen such that A’s

and B’s contentious characteristics are preferred and | w
P

* a
P

| > |w
R

* a
R

|, |w
P

* b
P

| > |w
R

* b
R

|. Considering the integrated characterization, because |w
P

* a
P

| > |w
R

* a
R

|, A has a

positive SensitivityScore
integrated

, +a
I

. And because |w
P

* b
P

| > | w
R

* b
R

|, B has a negative

SensitivityScore
integrated

, ≠b
I

. Depending on the magnitudes of a
I

and b
I

, one of the two

mapping configurations (shown in Figure 6.2) is chosen by the ReSensor
I

algorithm. If the

mapping in Figure 6.2(a) is chosen, the algorithm prioritizes the sharing behavior of A more

and improves response time at the cost of reduced reliability. If the mapping in Figure 6.2(b)

is chosen, the algorithm prioritizes B’s cache contentiousness more and improves response

time at the cost of its increased vulnerability. Both mappings improve the response time

of the workload and increase cache vulnerability, which demonstrates the trade-o� between

performance and reliability e�ectively determined by ReSensor
I

.

Scenario 2: For this scenario, the workload has more applications than the number of
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(a) Scenario 2: Example 1

Figure 6.3: Mapping decision for an example in Scenario 2

shared caches on P . The algorithm maps multiple applications prioritizing the more sensitive

application’s behavior (line 25 - 34), which is the same way as ReSensor
Generic

maps the

application threads. It maps the most-sensitive (highest magnitude) application from the first

half of [Apps] with the least-sensitive ones (lowest magnitude) from the second half of [Apps],

prioritizing the characteristics of the most-sensitive application. If the SensitivityScore
integrated

of the most-sensitive application is positive, it maps its threads and least-sensitive application

threads to the available cores from [C
+

] (line 27). This mapping prioritizes the characteristics

of the most-sensitive application for R. If the SensitivityScore
integrated

of the most-sensitive

application is negative, the algorithm maps its threads and the least-sensitive application

threads to the available cores from [C≠] (line 29). If there are no available cores from [C
+

] or

[C≠], the algorithm maps threads on any core on P (line 32). The algorithm terminates when

there are no applications left in the workload whose thread-mappings are not determined.

For example, consider a 4-applications workload on the same quad-core platform. The

four applications are A, B, C, and D with SensitivityScore
integrated

of +a
I

, ≠b
I

, +c
I

, ≠d
I

respectively, and assume after sorting [SS
I

] = [+a
I

, ≠b
I

, ≠d
I

, +c
I

], where |a
I

| > |b
I

| > |d
I

| >

|c
I

|. The algorithm chooses the most sensitive application A and the least-sensitive application

C, and maps them to share the same cache on the [C
+

]-cores as the sign of a
I

is positive. If

A’s SensitivityScore
performance

is +a
P

and SensitivityScore
CVF

is ≠a
R

, this mapping improves
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A’s performance when |w
P

* a
P

| > |w
R

* a
R

|. Assuming, C’s SensitivityScore
performance

of

≠c
P

and SensitivityScore
CVF

of +c
R

where |w
P

* c
P

| < |w
R

* c
R

|, this mapping reduces

L2C
0

’s ACE lifetime when |a
R

| < |c
R

| and degrades C’s performance. The algorithm maps

the rest of the application threads on the remaining cores. The final mapping is shown in

Figure 6.3(a). If B has SensitivityScore
performance

of +b
P

and SensitivityScore
CVF

of ≠b
R

, and

D has SensitivityScore
performance

of ≠d
P

and SensitivityScore
CVF

of +d
R

, then this mapping

improves B’s performance and degrades D’s performance as realized by the signs of their

SensitivityScores
performance

. However, this mapping can increase L2C
1

’s vulnerability when

|b
R

| > | d
R

| because this mapping cause B’s ACE resource occupancy to increase.

For the overall workload, this mapping configuration prioritizes the performance charac-

teristics of application A as its SensitivityScore
integrated

has the highest magnitude and A’s

sharing behavior is preferred by choosing the appropriate values of the weighting factors.

Thus, this mapping can reduce the workload’s response time and may increase the overall

vulnerability of the caches. On the hand, if applications’ vulnerable characteristics and its

ACE resource occupancy is preferred by adjusting the weighting factors, then a di�erent

mapping would reduce the overall vulnerability of the shared caches. Thus, depending on

the applications’ characteristics for its cache contention and vulnerability and the chosen

weighting factors, the ReSensor
I

determines a trade-o� between the workload’s response time

and vulnerability reductions.

6.3.2 The ReSense
Integrated

Run-time System

The ReSense
Integrated

run-time system is instantiated from the ReSense framework. It detects

any change in the total number of threads in a workload and uses the ReSensor
I

thread-

mapping algorithm and SensitivityScore
integrated

to map the application threads on the targeted

platform.
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Benchmark SensitivityScore
performance

SensitivityScore
CVF

bodytrack (BT) + 0.48 - 34.99
facesim (FA) - 0.29 - 29.91

fluidanimate (FL) - 0.27 - 18.89
freqmine (FQ) + 0.06 - 5.66
raytrace (RT) - 0.07 - 51.74

streamcluster (SC) - 0.52 + 6.03
swaptions (SW) 0 + 44.44

x264 (X2) - 0.05 + 11.86

Table 6.1: SensitivityScore
performance

and SensitivityScore
CVF

of the PARSEC
benchmarks on Simics for a shared L2-cache

6.4 Evaluation of the Integrated Instance

To evaluate ReSense
Integrated

’s e�ectiveness in determining a trade-o� between performance and

reliability improvements, we use multi-threaded applications from the PARSEC benchmark

suite. For this evaluation, we use the same eight applications used in Section 5.4.1 with the

simlarge input set. For this integrated instance, because we consider application characteristics

for vulnerability, we use the same Simics configuration described in Table 5.1 as the evaluation

platform to emulate the Intel-Yorkfield platform.

6.4.1 Characterization: Integrated Characteristics of the PAR-

SEC benchmarks

We characterized the PARSEC benchmarks for resource contention using real hardware for

ReSense_Performance. However, for the integrated instance, we need to characterize these

applications using the same platform as ReSense_Reliability so that we can combine their

characterizations. Therefore, we characterize the eight PARSEC applications using the Simics

simulation infrastructure. The SensitivityScore
performance

and SensitivityScore
CVF

of these

eights applications are summarized in Table 6.1.

From the table, we observe that the performances of bodytrack and freqmine improve in

the sharing configuration. The cache miss rate of bodytrack reduces from 6% to 4%, and
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Benchmark Sensitivity Sensitivity Sensitivity
Score

integrated

Score
integrated

Score
integrated

Weighting w
P

= 0.99 w
P

= 0.30 w
P

= 0.20
Factors w

R

= 0.01 w
R

= 0.70 w
R

= 0.80
bodytrack (BT) + 0.12 - 24.35 - 27.89
facesim (FA) - 0.58 - 21.02 - 23.98

fluidanimate (FL) - 0.45 - 13.13 -15.16
freqmine (FQ) + 0.003 - 4.17 - 4.78
raytrace (RT) - 0.59 - 36.24 - 41.40

streamcluster (SC) - 0.45 + 4.06 + 4.72
swaptions (SW) + 0.44 + 31.11 +35.55

x264 (X2) + 0.07 + 8.22 + 9.48

Table 6.2: SensitivityScore
integrated

of the PARSEC benchmarks for L2-cache
using di�erent weighting factors

the application has shared write operations, which causes the application performance to

improve when the threads share the same cache. Although the cache miss rate of freqmine

increases by 1% in the sharing configuration, its performance slightly improves because of

the reduced invalidation bus transactions. On the other hand, the performances of facesim,

fluidanimate, raytrace, streamcluster, and x264 degrade when the threads are mapped in

the sharing configuration. This performance degradation is caused by the increased cache

miss rate when the application threads share the same L2-cache. Lastly, the performance of

swaptions does not change from the non-sharing to the sharing configuration because it is a

computation-intensive application, and is not a�ected by cache contention. Therefore, it has

a SensitivityScore
performance

of 0.

Comparing the magnitudes of SensitivityScore
performance

and SensitivityScore
CVF

of the

eight applications in Table 6.1, we observe that these PARSEC applications have much higher

sensitivity towards their cache vulnerability characteristics than that of cache contention on

the targeted platform. The low magnitudes of SensitivityScore
performance

can be caused by

the simlarge input set. This input set is smaller in size than the native input, thus, having

smaller impact on the contentious characteristics of the applications.

Table 6.2 shows the calculated SensitivityScore
integrated

of the PARSEC benchmarks using
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two sets of weighting factors. The first set, which uses w
P

= 0.99 and w
R

= 0.01, is biased

towards performance improvement by preferring an application’s contention characterization.

The second set, which uses w
P

= 0.30 and w
R

= 0.70, is biased towards reliability improvement

by preferring an application’s vulnerability characterization. The third set, which uses w
P

=

0.20 and w
R

= 0.80, is also biased towards reliability improvement.

6.4.2 Mapping: Experimental Results and Analyses

For the evaluation of ReSense
Integrated

, we use the same ten pairs of PARSEC applications

that were used in ReSense_Reliability. We use an additional four-application workload

consisting of SC, SW, BT and FL. As the evaluation metrics, we use the total response time

and overall cache vulnerability CV F
mc≠avg

, defined using Equation 6.2 and 5.6. Here, n is

the total number of applications in a workload and Execution Time is the average wall-clock

execution time of an application.

Total Response T ime =
nÿ

i=1

ExecutionT ime
i

(6.2)

Each workload is mapped by the ReSense
Integrated

run-time system that uses the ReSensor
I

algorithm. Because each pair-wise workload has two applications each with two threads,

there are two mapping configurations shown in Figure 5.10. Depending on how the weighting

factors are chosen and the SensitivityScore
integrated

of the applications, the ReSensor
I

algorithm

maps the application threads in one of these configurations, which coincides with either the

ReSensor
P

-mapping or ReSensor
R

-mapping.

Figure 6.4 shows the performance results of the PARSEC pairs when the application

threads are mapped using the ReSense
Integrated

run-time system and the ReSensor
I

algorithm

for the first set of weighting factors (w
P

= 0.99 and w
R

= 0.01). These weighting factors are

chosen to be biased towards application performance improvements (lower response time).

The graph shows the total response time for the baseline OS and the ReSensor
P

mapping for
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Figure 6.4: Experimental results showing total response time for the pairs of
PARSEC application using OS, ReSensor

P

and ReSensor
I

mapping for w
P

=
0.99 and w

R

= 0.01 (Lower bar is better)

comparison. From the figure we observe that ReSensor
I

maps the applications in the same

configuration as ReSensor
P

for nine pairs and reduces total response time over the native OS

for eight pairs. Here, the magnitudes of performance improvement are not high because the

applications are not very sensitive for L2-cache contention for using the simlarge input (low

magnitudes of SensitivityScore
performance

). For BT_FL pair, ReSensor
P

maps the threads

in the non-sharing configuration considering the higher positive SensitivityScore
performance

of

bodytrack. On the other hand, ReSensor
I

maps the threads from BT_FL pair in the space-

sharing configuration considering the higher negative SensitivityScore
integrated

of fluidanimate,

which causes the total response time to increase by 0.23% over the ReSensor
P

-mapping.

Figure 6.5 shows the reliability results of the PARSEC pairs when the application threads

are mapped using the ReSense
Integrated

run-time system and the ReSensor
I

algorithm for the

first set of weighting factors (w
P

= 0.99 and w
R

= 0.01). The graph shows CV F
mc≠avg

for
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Figure 6.5: Experimental results showing average CV F
mc

of the shared caches
for pairs of PARSEC application using OS, ReSensor

R

and ReSensor
I

mapping
for w

P

= 0.99 and w
R

= 0.01 (Lower bar is better)

the baseline OS and the ReSensor
R

mapping for comparison. Because the weighting factors

are chosen to be biased towards application performance improvements, ReSensor
I

increases

CV F
mc≠avg

for two pairs SW_FL and BT_FQ more than 5% and 25%, respectively than the

ReSensor
R

-mapping. From these two results for using the weighting factors biased towards

performance, we conclude that ReSense
Integrated

uses the ReSensor
I

algorithm to map the

application threads in the right configuration that is biased more towards performance than

reliability for almost all the pairs using the SensitivityScores
integrated

of the applications in a

pair.

Figure 6.6 shows the reliability results of the PARSEC pairs when the application threads

are managed by the ReSense
Integrated

run-time system and the ReSensor
I

algorithm for the

second set of weighting factors (w
P

= 0.30 and w
R

= 0.70). The weighting factors are chosen

to be biased towards application reliability improvements (lower cache vulnerability). The
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Figure 6.6: Experimental results showing average CV F
mc

of the shared caches
for pairs of PARSEC application in OS, ReSensor

R

and ReSensor
I

mapping for
w

P

= 0.30 and w
R

= 0.70 (Lower bar is better)

graph shows CV F
mc≠avg

for the baseline OS and the ReSensor
R

mapping for comparison.

From the results, we observe that ReSensor
I

performs competitively with ReSensor
R

and maps

the applications from nine out of ten pairs in the same configuration as ReSensor
R

-mapping.

ReSense
Integrated

reduces CV F
mc≠avg

over the native OS by up to 70%. For SC_SW pair,

ReSensor
I

maps the application in the non-sharing configuration because of higher positive

magnitude of SensitivityScore
integrated

for swaptions and increases CV F
mc≠avg

by 5% than the

ReSensor
R

-mapping.

Figure 6.7 shows the performance results of the PARSEC pairs when the application

threads are mapped using the ReSense
Integrated

run-time system and the ReSensor
I

algorithm

for the second set of weighting factors (w
P

= 0.30 and w
R

= 0.70). The graph shows the

total response time for the baseline OS and the ReSensor
P

mapping for comparison. Because

the weighting factors are chosen to be biased towards application reliability improvement,
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Figure 6.7: Experimental results showing total response time for the pairs of
PARSEC application in OS, ReSensor

P

and ReSensor
I

mapping for w
P

= 0.30
and w

R

= 0.70 (Lower bar is better)

ReSensor
I

increases total response time for SC_SW, SW_FL and BT_FL pairs by up to

0.24% compared to ReSensor
P

-mapping. From these two results for using the weighting

factors biased towards reliability improvement, we conclude that ReSense
Integrated

uses the

ReSensor
I

algorithm to dynamically map application threads in the right configuration as

ReSensor
R

-mapping for almost all the pairs and reduces CV F
mc≠avg

of the shared caches

using SensitivityScores
integrated

of the applications in a pair.

Table 6.3 shows the experimental results of the four-application workload, SC_SW_BT_FL,

for the third set of weighting factors w
P

= 0.20 and w
R

= 0.80. From the table, we ob-

serve that ReSensor
I

reduces CV F
mc≠avg

by 14.70% over the native OS as preferred by the

weighting factor. However, as the weighting factors are biased towards reliability, ReSensor
I

increases the total response time of the workload by 4.42% compared to OS and 5.86%

compared to ReSensor
P

-mapping. This performance degradation is caused by the positive
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Mapping Configuration CV F
mc≠avg

Total Response
(%) Time (sec)

OS-mapping 34.69 31.65
ReSensor

P

27.37 31.22
ReSensor

R

26.27 32.07
ReSensor

I

29.59 33.05

Table 6.3: Experimental results showing CV F
mc≠avg

and total response time for
a four-application PARSEC workload in di�erent mapping configurations for w

P

= 0.20 and w
R

= 0.80 (Lower number is better)

SensitivityScore
integrated

of streamcluster, which is mapped to share the same cache even

though it su�ers from cache contention. However, from reliability perspective, ReSensor
I

performs competitively with ReSensor
R

and determines a trade-o� between performance and

reliability improvements.

6.5 Summary

In this chapter, we presented a preliminary exploration of the usage of the ReSense framework

and addressed the challenges of determining a trade-o� between the performance and reliability

improvements on modern multi- and many-core machines by creating ReSense_Integration,

an integrated instance of the ReSense framework.

The characterization phase of the instance applied the characterization methodology

of the framework to characterize each multi-threaded application in a workload based on

its contentiousness and occupancy duration for a shared cache. It used application per-

formance and cache vulnerability factor as the characterization metrics and calculated

SensitivityScore
performance

and SensitivityScore
CVF

for each application. These sensitivity

scores were combined to calculate SensitivityScore
integrated

, which represented the com-

bined contention and vulnerability characteristics of each multi-threaded application in

a workload. This SensitivityScore
integrated

was calculated using an equation that weighted

SensitivityScore
performance

and SensitivityScore
CVF

, using two weighting factors. W
P

was

the performance weighting factor, and w
R

was the reliability weighting factors. The sign
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and magnitude of a SensitivityScore
integrated

depended on the signs and magnitudes of the

weighted SensitivityScore
performance

and SensitivityScore
CVF

. We characterized eight PARSEC

benchmarks for L2-cache contention and vulnerability to soft errors and determined their

SensitivityScores
integrated

. Comparing their characteristics, we observed that these applications

had much higher SensitivityScore
CVF

than SensitivityScore
performance

for a L2-shared cache on

the targeted platform.

In the mapping phase of the instance, the run-time system of the ReSense framework

was instantiated as ReSense
Integrated

, and the thread-mapping algorithm was instantiated as

ReSensor
I

. The ReSense
Integrated

run-time system employed the ReSensor
I

algorithm and

SensitivityScores
integrated

to map application threads from a dynamic workload. ReSensor
I

dynamically determined the thread-mappings of the applications in a workload using

SensitivityScores
integrated

, the pre-determined integrated characteristics of the applications

on the targeted platform. The algorithm optimized the objective function of this instance,

which was to determine a trade-o� between response time and cache vulnerability factor

reductions for the chosen weighting factors. To evaluate the e�ectiveness of ReSense
Integrated

,

we used ten application pairs and one four-application workload by choosing benchmarks from

PARSEC. From the pair-wise results, we observed that ReSensor
I

mapped the application

threads in the same configuration chosen by ReSensor
P

for nine pairs when w
P

was set

higher than w
R

and reduced total response time for eight pairs over the native OS. This

mapping increased CV F
avg≠mc

by up to 25% than that of the ReSensor
R

-mapping. Similarly,

ReSensor
I

mapped the application threads in the same configuration chosen by ReSensor
R

when w
R

was set higher than w
P

and reduced CV F
avg≠mc

over the native OS by up to 70%.

The ReSensor
I

-mapping increased the total response time over ReSensor
P

-mapping by 0.24%.

For the four-application workload and using the weighting factors biased towards reliability,

ReSensor
I

reduced CV F
mc≠avg

by 14.70% over the native OS and increased total response

time by 5.86% relative to ReSensor
P

-mapping.

From the results in the mapping phase, we can conclude that ReSense
Integrated

dynamically



6.5 Summary 181

adjusted the application thread-mappings and determined a trade-o� between performance

and reliability improvements for a targeted platform. The run-time system also demonstrated

a novel approach in determining the performance and reliability trade-o� using thread

mapping, which is an application-level technique.



Chapter 7

Conclusion and Future Work

The contributions of this dissertation can have a significant impact on designing run-time

systems and thread-mapping algorithms that tackle important challenges on multicore

architectures using the ReSense framework. As we conclude the thesis, in this chapter, we

summarize the contributions of the dissertation research, its possible impact in the research

community, and the some future directions to move this research forward.

7.1 Summary of the Contributions

7.1.1 The ReSense Framework

In this thesis, we designed and developed a unified framework, ReSense, which can be used

to address multicore research problems that are influenced by the characteristics of the appli-

cations in a workload. The framework included five components: a general characterization

methodology, a characterization metric, a sensitivity score, a thread mapping algorithm, and

a run-time system. An instance of the framework was applied in two phases: characterization

and mapping. The characterization phase utilized the general characterization methodology

and characterization metric to identify a multi-threaded application’s key behavior with

respect to resource usage for a targeted problem. The application characterizations were

performed o�ine only once for each targeted resource on a particular platform. These
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characteristics and behaviors were represented as sensitivity scores for each application in

a workload. The characterization methodology can be used as a stand-alone technique to

determine the resource usage behavior of any multi-threaded application.

In the online mapping phase, the run-time system used a thread-mapping algorithm and

the sensitivity scores of the applications in a workload to determine the thread-mappings that

optimize a problem-specific objective function. The run-time system was capable of handling

complex dynamic workloads. Whenever the number of threads changed in the workload, the

run-time system invoked the mapping algorithm to dynamically adjust the thread-mappings

for the new or modified workload in the system.

Shared-resource contention and soft errors are the two major problems that limit the

possible performance gains by the increasing numbers of cores on multicore machines, as well

as, reliable execution. As the multicore machines continue to grow into many-core machines

and transistors continue to shrink because of technology scaling, these two problems become

more critical to realize the full potential of the platforms. We addressed these two problems

on multicore architectures using the ReSense framework.

7.1.2 ReSense_Performance: The Performance Instance of Re-

Sense

The performance instance of the ReSense framework, ReSense_Performance, addressed

the challenges of mitigating shared-resource contention in the memory hierarchy caused by

multi-threaded applications on modern multi- and many-core machines.

In the characterization phase, we instantiated the general methodology of the ReSense

framework to characterize a multi-threaded application for both intra- and inter-application

contention for the shared resources in the memory hierarchy using performance as the

characterization metric. To demonstrate the methodology, we characterized the applications

in the widely used PARSEC and NPB benchmark suites for shared-memory resource contention

on four di�erent multicore platforms. Each application’s characteristic for a particular shared
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resource usage was represented as SensitivityScore
performance

, which was determined o�ine as

the application ran solely using the methodology developed for intra-application contention.

In the mapping phase, the ReSense run-time system was instantiated as ReSense
Performance

.

The ReSense
Performance

run-time system employed the ReSensor
P

algorithm to map application

threads from the input dynamic workloads. ReSensor
P

dynamically determined the thread-

mappings of the multi-threaded applications in a workload in the presence of any number

of co-runners using each application’s SensitivityScore
performance

for a particular platform.

The algorithm optimized the objective function of this instance, which was to minimize

the workload’s average response time and maximize throughput. ReSense
Performance

did not

require the application’s source code modifications.

The experimental results include:

• Thorough contention characterization of several PARSEC-2.1 and NPB-OMP-3.3 bench-

marks. Two of the thirteen PARSEC benchmarks exhibited no intra-application con-

tention for the cache resources at any level of the memory hierarchy. Nine PARSEC

benchmarks exhibited inter-application contention for the L2-cache. Contention for the

front-side bus and memory controller was a major factor with most the benchmarks

and degraded application performance by more than 11%. All benchmarks, except one,

performed better when the sibling threads used the same memory socket connection,

which reduced remote memory access and its latency. On the other hand, two of the

nine NPB benchmarks su�ered from intra-application contention for all the shared

resources on the platforms including the memory controller, L3-cache, and memory

socket. Three out of nine NPB benchmarks su�ered from memory socket contention

among the sibling threads.

• SensitivityScores
performance

for 22 benchmarks from PARSEC-2.1 and NPB-OMP-3.3

benchmark suites for the shared resources in the memory hierarchy on four state-of-the-

art platforms.
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• A comprehensive empirical evaluation of the e�ectiveness of ReSense
Performance

, which

demonstrated improved average response time and throughput of dynamic workloads

consisting of multiple multi-threaded applications by up to 29.34% and 46.56% respec-

tively, over the native operating system (OS) using real hardware.

• A performance comparison of ReSensor
P

’s e�ectiveness in mitigating contention and

improving application performance with that of the optimal thread-mapping, which

demonstrated that the maximum average di�erences with the experimentally determined

optimal performance was 1.49% for average response time and 2.08% for throughput

for two di�erent workloads.

7.1.3 ReSense_Reliability: The Reliability Instance of ReSense

The reliability instance of the ReSense framework, ReSense_Reliability, addressed the

challenges of minimizing the e�ect of soft errors in the memory resources on modern multicore

architectures.

The characterization phase of ReSense_Reliability instantiated the general methodology

of the ReSense framework to characterize a multi-threaded application based on its resource

occupancy duration in the shared caches. It used cache vulnerability factor as the char-

acterization metric and calculated SensitivityScores
CVF

for the applications in a workload.

Each SensitivityScore
CVF

represented the vulnerability characteristics of a multi-threaded

application.

In the online mapping phase of ReSense_Reliability, the run-time system of the ReSense

framework was instantiated as ReSense
Reliability

. The ReSense
Reliability

run-time system dynam-

ically managed the mappings of the application threads from a given workload by employing

a thread-mapping algorithm, ReSensor
R

and the pre-determined SensitivityScores
CVF

. The

ReSensor
R

algorithm determined the thread-mappings of the multi-threaded applications in

a workload using the SensitivityScores
CVF

of the applications. The algorithm optimized the

objective function of this instance, which was to minimize the overall cache vulnerability
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factor to reduce the e�ect soft errors in caches on a workload’s execution. ReSense
Reliability

did not require the application’s source code modifications.

The experimental results include:

• The vulnerability characterization of several multi-threaded applications from the

PARSEC benchmark suite, represented as SensitivityScore
CVF

, for a write-back, write-

allocate shared L2-cache.

• Several important insights from the characterization. Di�erent thread-mapping con-

figurations caused the cache vulnerability of di�erent benchmarks to range from 4%

up to 78%. Three benchmarks had decreased cache vulnerability and five benchmarks

had increased cache vulnerability as the threads shared the same L2-cache. From

the characterization results, we had two observations regarding when an application’s

CV F
mc

decreased. The first observation is when application threads had a high cache

read miss rate, it caused the cache-lines to be frequently updated with the fetched

data blocks, which increased non-vulnerable W-W interval of its total lifetime and

decreased the CV F
mc

. The second observation is when the application threads had

frequent write operations, it resulted into modified cache-lines. If there was a cache

miss and a modified cache-line needed to replaced, the write-back operation of the

dirty cache-line contributed to the D-Repl lifetime and increased the ACE lifetime

of the cache block and consequently CV F
mc

. These two observations and insights

about application resource usage were used to reduce CV F
mc

of the shared caches.

In particular, by increasing the miss rate significantly in shared caches by choosing

cache-intensive co-runner(s) and allowing applications to use multiple caches to decrease

the duration of frequent write-back operations, the mapping algorithm could decrease

an application’s vulnerability to soft errors in a shared cache.

• The evaluation of ReSense
Reliability

’s e�ectiveness, which demonstrated that ReSense
Reliability

e�ectively used ReSensor
R

mapping algorithm and reduced the overall cache vul-
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nerability by up to 70%. The statistical analyses revealed that the probability of

ReSense
Reliability

reducing the workload’s average cache vulnerability to soft errors over

the native operating system was very high, 99.5%, and the reduction of average cache

vulnerability could be as high as 52%.

7.1.4 ReSense_Integration: The Integrated Performance and Re-

liability Instance of ReSense

In this dissertation, we presented a preliminary exploration of the usage of the ReSense

framework to develop ReSense_Integration, which addressed the challenges of determining

a trade-o� between the performance and reliability improvements for modern multi- and

many-core machines using multi-threaded applications.

The characterization phase of the instance applied the characterization methodology

of the framework to characterize each multi-threaded application in a workload based on

its contentiousness and occupancy duration for a shared cache. It used application per-

formance and cache vulnerability factor as the characterization metrics and calculated

SensitivityScore
performance

and SensitivityScore
CVF

for each application. These sensitivity

scores were combined to calculate SensitivityScore
integrated

, which represented the com-

bined contention and vulnerability characteristics of each multi-threaded application in

a workload. This SensitivityScore
integrated

was calculated using an equation that weighted

SensitivityScore
performance

and SensitivityScore
CVF

, using two weighting factors. W
P

was the

performance weighting factor, and w
R

was the reliability weighting factors. The sign and

magnitude of a SensitivityScore
integrated

depended on the signs and magnitudes of the weighted

SensitivityScore
performance

and SensitivityScore
CVF

.

In the mapping phase of the instance, the run-time system of the ReSense framework

was instantiated as ReSense
Integrated

, and the thread-mapping algorithm was instantiated as

ReSensor
I

. The ReSense
Integrated

run-time system employed the ReSensor
I

algorithm and

SensitivityScores
integrated

to map application threads from the input workload. ReSensor
I
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dynamically determined the thread-mappings of the applications in a workload using

SensitivityScores
integrated

, the pre-determined integrated characteristics of the applications on

the targeted platform. The algorithm optimized the objective function of this instance, which

was to determine a trade-o� between response time and cache vulnerability factor reductions

for the chosen weighting factors.

The experimental results include:

• Combined characterization of cache contention and vulnerability for eight PARSEC appli-

cations. The characterization revealed that these applications had higher SensitivityScore
CVF

than SensitivityScore
performance

and consequently, were more vulnerable to soft errors

than being contentious in L2-caches on the same targeted platform.

• The evaluation of ReSense
Integrated

’s e�ectiveness in determining a trade-o� between

performance and reliability improvements. From the pair-wise results, we observed

that ReSensor
I

mapped the application threads in the same configuration chosen

by ReSensor
P

for nine pairs when w
P

was set higher than w
R

and reduced total

response time for eight pairs over the native OS. This mapping increased CV F
avg≠mc

by up to 25% than that of the ReSensor
R

-mapping. Similarly, ReSensor
I

mapped

the application threads in the same configuration chosen by ReSensor
R

when w
R

was set higher than w
P

and reduced CV F
avg≠mc

over the native OS by up to 70%.

The ReSensor
I

-mapping increased the total response time over ReSensor
P

-mapping

by 0.24%. For the four-application workload and using the weighting factors biased

towards reliability, ReSensor
I

reduced CV F
mc≠avg

by 14.70% over the native OS and

increased total response time by 5.86% relative to ReSensor
P

-mapping.

7.2 Future Work

In this section, we describe the future direction of the research presented in this thesis.
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7.2.1 Applying the framework to other instances

In this research, we have not considered the e�ect of hardware prefetchers on an application’s

contention or vulnerability behavior. An application’s memory access behavior a�ects the

way the pre-fetchers fetch the cachelines to reduce cache miss latency. Therefore, hardware

prefetchers have an impact on an application’s cache contention behavior and eventually

would a�ect its performance [110]. In addition, as the cachelines are prefetched before the

application accesses them, the prefetchers can also a�ect the vulnerable lifetime of the caches.

Therefore, ReSense framework can be instantiated to mitigate cache contention and reduce

cache vulnerability by considering the e�ect of hardware prefetchers.

The described ReSense framework can be also applied to address other research problems

that are influenced by application characteristics. One of the challenges on multicore machines

is the management of hardware environment from the application-level, e.g., temperature and

power. Both power and temperature are influenced and a�ected by application resource usage

behavior. For example, if an application has many floating-point operations, then it accesses

the floating-point unit very frequently, which eventually increases the processor temperature

and power consumption. We can apply the ReSense framework to create temperature and

power instances to address the power and thermal challenge for a multicore architecture.

These instances first need to characterize multi-threaded applications based on its temperature

and power consumption behaviors, and later manage the application execution by choosing

the mapping configurations that reduce thermal emergency and power consumption on the

targeted CMPs.

7.2.2 Phase-level characterization

In this research, we designed the ReSense framework to characterize an application based

on its entire execution. That is, the framework is designed for mapping application threads

based on its application-level characterization. One direction is to extend the framework

to perform a phase-level characterization by determining an application’s contention and



Chapter 7 Conclusion and Future Work 190

vulnerability characteristics for individual phases during its execution. However, some phase

changes are regular or periodic, and others are random. Therefore, it is very di�cult to

detect and handle phase changes during application execution because each phase change

can happen anytime and can last for any time duration.

Using prediction techniques to determine when a future phase change would occur and

how long it would last, the framework can be extended for phase-level characterization and

mapping. Depending on when a phase change would happen, the characterization phase

needs to apply the characterization methodology to determine an application’s behaviors

for each phase. Then all these phase-level characterizations can be represented as an array

of sensitivity scores. Once the phase-level characterization is done, the mapping phase can

select the thread-mappings that optimize the objective function for the applications in a

workload for each phase change, using the corresponding sensitivity scores.

7.2.3 Instance for minimizing vulnerability of micro-architectural

resources and write-though caches

In this research, we presented the reliability instance of the framework that minimized an

application’s cache vulnerability to soft errors in shared write-back caches. We consider a

shared cache as the targeted resource because it occupies a bigger die area in the processor

and is more vulnerable than the core resources and L1-cache. The framework can be used to

reduce application vulnerability for micro-architectural resources and write-though caches.

In the characterization phase of the framework, a multi-threaded application’s vulnerability

characteristics can be determined by following the methodology in Section 5.2.3 and using AVF

as the characterization metric. For a micro-architectural structure, the AVF is the percentage

of cycles that it processes ACE bits or instructions. For characterizing a multi-threaded

application for its vulnerability to soft errors in the micro-architectural resources, we measure

an application’s AVF in the configurations described by the characterization methodology,

and determine the SensitivityScores
AVF

using Equation 7.1. Here, AV F
non≠sharing

is the
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average AVF of the targeted micro-architectural resource when the threads use two separate

resources, and AV F
sharing

is the AVF of the targeted micro-architectural resource when the

threads use the same resource. Once the scores are determined, then the ReSensor
R

algorithm

is used to determine the thread-mappings of the multi-threaded applications in a workload.

SensitivityScore
AV F

= (AV F
non≠sharing

≠ AV F
sharing

) ú 100
AV F

non≠sharing

(7.1)

A write-through cache is only vulnerable during the R-R and W-R intervals because the

replaced blocks in the write-through caches need not be written back to the resources at

the lower level of the memory hierarchy. Therefore, for a write-through cache, the ACE

lifetime consists of R-R and W-R time intervals, and the CVF can be calculated using

Equation 7.2. Here, Lifetime
R≠R,W ≠R

represents the vulnerable lifetime of block
i

for a

write-through cache, which consists of time intervals of W-R and R-R cache access patterns.

Equation 7.3 can be used to calculate the CV F
mc

for a write-through cache with MESI

protocol for multicore machines. Lifetime
S≠S,S≠E,E≠E,E≠S,M≠E,M≠S

represents the total

vulnerable lifetime between the cacheline state changes from S to S, S to E, E to E, E to S, M

to E, M to S, according to the MESI protocol. Then the same characterization methodology

and mapping algorithm for a write-back cache can be used to minimize vulnerability for a

write-through cache.

CV F
uniprocessor

=
q

n

i=1

Lifetime
R≠R,W ≠R

(block
i

)
q

n

i=1

TotalLifetime(block
i

) (7.2)

CV F
mc

=
q

n

i=1

Lifetime
S≠S,S≠E,E≠E,E≠S,M≠E,M≠S

(block
i

)
q

n

i=1

TotalLifetime(block
i

) (7.3)

7.2.4 Combine techniques for vulnerability minimization

In this research, we present an application-level technique, thread-mapping, as an error

prevention technique for soft errors in shared caches. As discussed in Section 2.3, there exists

other architecture-level and circuit-level techniques that are also used to reduce application
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vulnerability in caches. One possible future work would be to combine the application-level,

architecture-level, and circuit-level techniques as a hybrid cross-layer approach to minimize

application vulnerability towards soft errors.

7.2.5 Model CVF on real hardware

In the reliability instance of ReSense, we used a simulation infrastructure to characterize

and map application threads based on the CVF model. We used a simulation infrastructure

because we needed some very detailed lifetime information of each cache-line to calculate CVF

of the caches. One future direction would be to model CVF such that the reliability instance

can be applied on real hardware. One possible way to model CVF is by using the hardware

performance counters to obtain the lifetime information. The major challenge in designing

the CVF model using real hardware components is model validation. Such model validation

requires rigorous analyses for di�erent cache hierarchies, configurations, and parameters to

make it very general. We leave this model design and verification as future work.

7.2.6 Di�erent variations of the integrated instance

In this dissertation, we explored the usage of the ReSense framework for addressing the

targeted problems of cache contention and soft errors in the shared caches. We used an addition

function to combine the contentious and vulnerability characterization of the applications.

This instance can be explored more and extended by choosing di�erent functions to combine

the contentious and vulnerability characteristics of the multi-threaded applications. More

experiments are needed in the integrated instance to fully understand the integration of

problems using ReSense.
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