
Program Representations for Testing Wireless Sensor
Network Applications

Nguyet T.M. Nguyen
Department of Computer Science

University of Virginia
ntn3a@cs.virginia.edu

Mary Lou Soffa
Department of Computer Science

University of Virginia
soffa@cs.virginia.edu

ABSTRACT
Because of the growing complexity of wireless sensor net-
work applications (WSNs), traditional software development
tools are being developed that are specifically designed for
their special characteristics. However, testing tools have yet
to be proposed. One problem in developing testing tools
is the need for a program representation that expresses the
execution behavior. Due to characteristics of WSN applica-
tions that use a concurrent, event-based execution model, a
representation is challenging to develop. In this paper, we
present novel representations for WSNs applications that ex-
press the execution behavior of event and tasks, the major
components of a WSN application. Our representations in-
clude a task posting graph, an event graph and finally an
application graph that expresses the relationships among
events and tasks as well as both timing and environmental
interrupts. These representations are the first step in de-
veloping testing tools for WSN applications. Based on the
graphs, traditional and event-based coverage criteria can be
evaluated. When combined with individual Control Flow
Graphs(CFGs) of events and tasks, the graphs’ paths can
be used as a criterion for evaluating the completeness of the
test cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Verification

Keywords
program representation, wireless sensor networks, test crite-
ria

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DoSTA’07, September 4, 2007, Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-726-1/07/09 ...$5.00.

Wireless sensor networks (WSNs) continue to expand in
both the number of such networks and the size of the net-
works as the recognition of their importance increases and
technology improves. They are used in many different ap-
plications, from monitoring and controlling aspects of the
environment to managing safety critical events such as the
braking system on a car. Indeed, scientists have forecasted
that WSN applications will dominate the software market
in the near future [3].

As the demand and complexity of the applications in-
creases and market forces become more competitive, devel-
opers of WSN applications are turning to traditional soft-
ware development techniques. Thus, WSN applications are
being implemented in high level languages such as Java and
source level debuggers are being developed [13]. However,
tools to systematically test WSN applications have yet to
be developed.

Identifying software faults is one of the significant chal-
lenges in developing WSNs systems today. Due to resource
limitations and the desire to develop more complex func-
tionality, applications on WSNs often have a limited capac-
ity to handle errors: the software crashes before being able
to inform the user about the error. Moreover, as WSNs are
mainly deployed in hard-to-reach locations, patching and
fixing software after deployment is very costly. Therefore,
testing tools for WSNs are critical components to help pro-
vide the reliability that is needed. Unfortunately, neither
the WSN nor the software engineering research communi-
ties have applied systematic, structural software testing or
regression testing tools and techniques to this domain. Cur-
rent testing of WSN has depended on the use of ad-hoc
methods using simulators and either simulated, profiled or
randomly generated inputs from the environment [6, 10, 11].
However with this approach, the application is not being
tested on the actual hardware or in the actual environment
in which it will run.

WSN applications are concurrent, event-driven systems
which frequently interact with their environments through
interrupts and events that happen at arbitrary times. There-
fore, to analyze and test WSN applications, we need to be
able to determine the impact of these interrupts on the code.
Currently, there is no comprehensive set of testing tools, or
a testing framework, that can be used to systematically test
WSNs that takes into account the execution environment
and its execution model.

An important component of a testing framework is a pro-
gram representation that can model all possible execution
behaviors of the software. Because of the novel characteris-

20

tics of WSN applications, conventional representations such
as CFGs or event graphs [9] cannot adequately model the
execution behavior. Although there have been some efforts
to construct representations for WSNs [4, 12], they have
been developed for a purpose other than testing and their
models are not fine-grained enough to express the execution
behavior at statement level; thus they cannot be employed
for structural testing purposes.

Because WSN applications employ an event-based, con-
current execution model, challenges arise in the develop-
ment of a detailed representation that can accurately ex-
press every program execution path. For instance, in tinyOS
[1], the most widely used operating system for WSNs, pro-
gram execution is rooted in hardware interrupts caused by
timers, sensors, and communication devices. Long running
processes can be triggered in response to these interrupts
by tasks that are placed in a single task queue. Execution
order is tightly bound to the timing of interrupts, so that
the sequencing of events cannot be determined using only
source code. As a result, conventional representations, such
as call graphs and CFGs, are helpful for extracting some
information, but cannot be used to determine the order of
execution of events and tasks and their relationships. The
event graph that Memon proposed for representing a GUI
[9] cannot represent the concurrency of WSNs. Hence, a new
representation for WSNs, which does consider the function-
ality of the code as well as the possible behavior of events
and interrupts that can occur on motes is necessary to facil-
itate the development of testing tools, and in particular the
definition and evaluation of testing coverage criteria.

In this paper, we present a representation of an applica-
tion executing on a mote of a WSN that expresses the execu-
tion order of events and tasks, and thus program paths. Our
representation expresses (a) the time at which events are an-
ticipated and (b) the order in which a certain event directly
or indirectly posts its tasks to the system task queue. In
particular, we present three representations: an event graph
and a task posting graph, which together are used to form
an application graph. The graph for an event expresses the
order in which tasks are posted; the task posting graph rep-
resents the order in which tasks post other tasks and the ap-
plication graph represents all of the events in an application.
After integrating the CFG of event handlers, tasks and both
timing and environmental interrupts, our application graph
can be used to obtain all program execution paths, which
can be used as a testing coverage criterion. Conventional
code coverage criteria such as all-events coverage, all event
sequence coverage and def-use can be naturally derived and
checked.

It should be noted that our representation is for a single
mote running in a network. Our representation expresses
communication from other motes to the mote and the in-
terrupts that can occur. We do not represent the entire
network though, which is a part of our future work.

In the next section, we present a brief background of WSN
applications. Then, challenges in developing representations
for WSN applications are discussed in Section 3. Section 4
describes each of the three representations in detail. We then
briefly discuss our implementation in Section 5. Section 6
addresses related work.

2. WSN BACKGROUND
Among existing executing systems for wireless sensor net-

Figure 1: Elements of an application on a mote and
their interactions

works, tinyOS is the most commonly used operating system
[1]. Although tinyOS assumes a particular execution model,
other systems, such as SensorSim [10] and EmStar [6], have
very similar characteristics to those of tinyOS. Therefore,
to provide focus, our research is directed to establishing a
representation for an WSN application running on tinyOS.
Although we focus on tinyOS and the language NesC, our
technique is general for other wireless sensor networks that
use a concurrent, event driven execution model.

To support event-based programming of WSNs, tinyOS
introduces a new concurrency model with two types of threads:
tasks and hardware event handlers. A task is a non-preemptive
function, which is posted into the task queue and its execu-
tion is deferred until it is at the front of the queue. After
the mote is initialized and started, the application enters
a loop to perform any tasks in the task queue in the or-
der of posting. If the task queue is free, the mote goes to
sleep. If a hardware interrupt (event) occurs, the corre-
sponding hardware event handler is activated, preempting
tasks, functions and other event handlers. The event itself
can post other tasks and this process is repeated. Therefore,
the order of events and tasks during execution cannot be
determined statically from the program code because of the
implicit control flow caused by events and deferred tasks. As
a result, the representation needs to model not only the code
of application but also the order in which tasks are posted
as well as all possible orders in which events can occur.

NesC [5], a dialect of C, is specifically designed for devel-
oping WSN applications running with tinyOS. NesC fully
supports tinyOS’s concurrency model and WSN’s character-
istics with the introduction of a component-based structure
and a set of new keywords, including post, signal and call.
Each nesC application is a set of components linked together
by interfaces. Typically, a component corresponds to a hard-
ware device and a special component called Main initializes,
starts hardware components and initializes global variables.
Each interface defines commands and events used to commu-
nicate with the hardware. The component must implement

21

l1: command result_t StdControl.start(){
l2: call Timer1.start(TIMER_REPEAT, TIMER_INTERVAL1);
l3: call Timer2.start(TIMER_REPEAT, TIMER_INTERVAL2);
l4: return SUCCESS;
l5: }

l7: event result_t Timer1.fired(){
l8: if (numberOfRead==0) post task1();
l9: else post task4();
l10: return SUCCESS;
l11:}

l13:task void task1(){
l14: ++numberOfRead;
l15: uint8_t readrate=1/numberOfRead;
l16: if (readrate>=MAX_RATE) post task2();
l17: else post task3();
l18:}
--
l19:event retult_t Timer2.fired(){
l20: uint8_t readrate2=1/numberOfRead;
l21: post task3();
l22: post task4();
l23:}

Figure 2: Code of the Example Application

all commands of each provided interface, all events handlers
of each used interface, and any necessary tasks. Command
is the traditional type of function called by the call keyword,
an event handler is triggered by either an interrupt or the
signal keyword and a task is placed on the task queue as
indicated by the post keyword.

In this paper, we refer to tasks, commands and event han-
dlers and other regular functions as task posting units.
Figure 1 illustrates detailed interactions between different
types of task posting units. As implied by the name, any
task posting unit can post tasks to the task queue. More-
over, they can also call commands or functions and signal
software events or secondary events. A hardware event han-
dler is the only type of task posting unit that is able to in-
terrupt tasks and other task posting units. Hardware event
handlers usually belong to one of the tinyOS’s system com-
ponents; hence, secondary events are considered as hardware
event handlers with a limited number of interrupting points.
More information of interrupting points and events is pre-
sented later in Section 4.3

Figure 2 displays a portion of a WSN application that
performs a calculating task at two different frequencies and
toggles a set of leds when the calculation finishes. Hence,
the program employs two different instances of the TimerC
component to communicate with the mote’s timers and a
LedC component to control the leds via corresponding in-
terfaces. The application’s Main component starts the two
timers. The application code consists of the implementa-
tion of each command of the initialization and the two firing
events of the two timers. When each timer fires, the appli-
cation chooses to perform some tasks (task1, task2, task3,
task4), depending on the mote’s status. Figure 2 illustrates
the main part of application code: a command (StdCon-
trol.start), a task (task1) and 2 event handlers (Timer1.fired,
Timer2.fired). The example will be used in later sections as
we describe the representations.

3. CHALLENGES
Unique characteristics of tinyOS, nesC and WSNs lead to

challenges in developing a representation useful for testing

that can successfully express the ordering relationships in
which tasks and events are executed in a mote application.

First, the concurrency model of tinyOS extends the tra-
ditional control flow. Tasks add a new type of control flow
which are deferred function calls. Traditionally, when a pro-
gram performs a function call, the execution immediately
jumps to the entry of the function. After the function com-
pletes, control is returned back to the calling routine. Hence,
calling statements explicitly define the execution order of
the callee and caller. However, the time at which a task
is posted is not an indicator of when the task will actually
be executed; it only executes when it is at the front of the
queue. Therefore, the comparative ordering of a posted task
and a posting routine is different than the traditional order-
ing between a caller and a callee and needs to be represented
differently.

Furthermore, tasks can change the behavior of events. If
an event is trigged by an interrupt, the event handler obtains
control of the system and starts executing. After the event
handler completes, it may leave some unfinished tasks in
the task queue. We cannot entirely analyze the impact of
an event on the application without thoroughly investigating
these tasks. Moreover, because events can occur at any time
during an application’s lifetime, an event can happen when
tasks posted by other events have not been executed. Tasks
from the new event interact with tasks of existing events
that have yet to complete.

WSN applications typically need to comply with some
timing restrictions, usually soft real-time requirements. Thus,
an appropriate representation needs to cover program execu-
tion caused by timing interrupts. As some events can repeat,
the representation should be able to model repeating events
and their frequency.

4. REPRESENTATION
As discussed in Section 2, a WSN application is character-

ized by a set of events and tasks. An application’s behavior
continues to change in response to the appearance of events.
An event’s effects of the application depend on both the
code of the event and the time at which the event occurs.
Hence, to understand the behavior of a particular applica-
tion, we need a representation that describes (a) the time
of events’ anticipation and (b) the order in which a certain
event directly or indirectly posts its tasks to the task queue.
Our application graph (GApp) integrates the information of
(a) and (b). Analyzing a path of the GApp, we can obtain a
sequence of event handlers and tasks in a specific ordering of
their appearance during the application’s lifetime. Combin-
ing this sequence with the CFG of each task posting unit,
an execution path of the application can be determined that
is useful for testing purposes.

To develop a GApp, we need to collect the following in-
formation: (i) the order in which a task posting unit di-
rectly posts tasks; (ii) the set of tasks posted directly or in-
directly by a certain event and the order of posting, and (iii)
the point that each event is anticipated during the applica-
tion’s execution. Hence, we develop GApp by first developing
graphs that express individual tasks and events: (1) Posting
graphs (GPost) describe all tasks directly posted by a task
posting unit and (2) Event graphs (GEvent) express the post-
ing of tasks that originate in an event without considering
any interactions from other events. The GApp then incorpo-
rates the set of events and tasks with events’ anticipating

22

information.
Before describing the details of each graph, we introduce

some related definitions. First, we define the relationships
among events, tasks and other task posting units in Def-
inition 1 based on the activation method used to access a
task posting unit. Then, Definition 2 defines an interrupting
point.

Definition 1. Three types of relationships that can occur
between a pair of task posting unit in a NesC application
are:

• Called in: the “called in” relationship refers to a
relation between a caller and callee in a function or
command call.

• Posted after: A task posting unit uj is “posted af-
ter” task posting unit ui if uj is a task and ui posts
the task to the task queue at some point. If the task
queue is free, the entry point of uj will immediately
follow the exit point of ui in an execution path; oth-
erwise the task executes when it is at the front of the
queue. In our graphs, both “called in” and “posted
after” relations correspond to an edge.

• Anticipated in: the “anticipated in” relationship
implies a relation between a task posting unit and an
event handler. The event handler ej is anticipated in
an unit ui if (a) the hardware event ej can occur while
the system is executing ui or (b) a signal statement in
the code of ui explicitly activates ej . As a result, the
entry point of ej ’s CFG might immediately follow any
valid interrupting points of ui and ej stops executing
before returning back to ui. Each “anticipated in”
relation is represented by an anticipating edge in our
GApp and is characterized with a set of valid interrupt-
ing points.

Definition 2. In general, an interrupting point of a task
posting unit is a location within the task posting unit’s CFG
at which the task posting unit can be interrupted by an arbi-
trary hardware interrupt. Usually, it is a statement outside
any atomic region.

Each task posting unit has a set of interrupting points; how-
ever, not every interrupting point of the unit is valid for a
specific event. The set of valid interrupting points accompa-
nying a pair of < unit, event > depends on the constraints
of the events and types of events. More information about
events’ prerequisites is investigated in Section 4.3.

4.1 Task Posting Graph
The basic step in our representation’s construction is to

determine the order in which tasks are directly posted. A
task posting graph (GPost), defined in definition 3, describes
the direct relationship between a particular task posting unit
to other task posting units. A GPost also reveals the relative
orders of tasks posted by the same task posting unit.

Definition 3. A task posting graph for a task posting
unit u is a two-tuple GPost(u)=< Nu, Eu >, where Nu is a
set of nodes and Eu is a set of directed edges. Each node
ni ∈ Nu is a location of a call or post statement in u’s CFG
and is named by the target of this call or post statement.
There is an edge e<ni,nj> in Eu if ni is accessed before nj

Figure 3: (a) CFG and (b) GPost for task1

in a path of u’s CFG. Two special nodes nentry and nexit

are the starting and the exiting points of GPost.

A GPost is obtained from the task posting unit’s CFG by
eliminating irrelevant blocks, which are blocks without any
call or post statements or call or post blocks to targets lo-
cated in standard libraries or system components. A GPost

is empty if relevant blocks do not exist. Figure 3 illustrates
the CFG of task1 in Figure 2 and its corresponding GPost.
Only two posting blocks of task2 and task3 are in the GPost.
The GPost specifies that task1 posts either task2 or task3 in
an execution path and there is no relationship between task2
or task3.

4.2 Event Posting Graph
WSN applications interact with the outside environment

through events. When an event occurs, its event handler is
executed and the event is activated. However, some tasks
posted directly or indirectly from the event handler would
execute after the event handler exits. Therefore, an event
is not deactivated when the event handler terminates but
only when all posted tasks have finished. Hence, an event
handler’s GPost is insufficient to analyzing the event’s be-
havior. We need to employ another graph, Event Posting
Graph (GEvent) as given in definition 4.

Definition 4. An event posting graph for an event e is
a two-tuple GEvent(e) = < Nu, Eu > where the set of nodes
Ne is defined as:

Ne = nActivate

⋃
nDeactivate

i=n⋃
i=1

Nui

Each ui is a task directly or indirectly posted from e’s han-
dler and Nui is the set of nodes of GPost(ui). nActivate and
nDeactivate are the activation point and deactivation point
of e. nActivate corresponds to e’s handler. Eu is a set of
directed edges. Each edge e<nj ,nk> in Ee connects the two
nodes if nj is posted before nk in a path of a GPost(ui) or
nj is posted inside nk.

Each path in a GEvent models a possible ordering of tasks
occurring from event e’s activation time to the deactivation
time of e. If the task queue is free whenever e posts a task,
that path is expanded into a code execution’s path. In case
of multi-events, tasks from other events can interleave with

23

Figure 4: (a) GPost of Timer1.fired()’s handler and
(b) the complete GEvent after expanding task1

tasks of event e. These interactions are not covered by a
GEvent but by a GApp.

To establish a GEvent, we first expand node nActivate as
follows: (1) eliminate nodes associating with any call state-
ments by inlining these GPosts of the target to the GPost of
nActivate and (2) connect the GPost of each posted task to
the corresponding GPost of e’s handler. Then, the expan-
sion process is repeated with each newly added nodes until
all the newly added tasks have empty GPosts.

Figure 4 depicts two steps in developing the complete
GEvent for event Timer1.fired(). Starting with the GPost

of Activate Timer1.fired() depicted in Figure 4(a), we con-
nect it to the GPost of task1 by (i)identifying the last task
posted by the event before task1 is executed and (2) insert-
ing the GPost corresponding to task1 in between of the last
task and Deactivate Timer1.fired(). As task1 is posted in
only one branch of the event handler, the other branch still
connects to the Deactivate and is not effected by the GPost

of task1. Because task2,task3,task4 do not post any tasks,
their GPosts are empty and are not analyzed.

If the task posting process contains a loop, the above con-
necting procedure becomes an infinite loop. Therefore, the
number of orderings of paths may grow exponentially. To
solve this problem, we apply k-limiting approach[7] to find
a reasonable approximation of an GEvent with only k in-
stances of each node appearing in a specific GEvent. With
this approximation, each path in an GEvent presents either
a complete or a partial execution order of tasks originated
by the event.

4.3 Application Posting Graph
A WSN application can have multiple events that inter-

act through task postings and interrupts. To understand
relationships between events, we determine all potential an-
ticipating points of events. The information is encoded in
an Application Posting Graph or a GApp. Definition 5 below
explains how the anticipating information is modeled and
Definition 6 describes a GApp.

Definition 5. An anticipating edge connecting a task
posting unit ui and an event ej is a three-tuple AEdge<ui,ej>

= < ui, ej ,Ipoints<ui,ej>, where ej is “anticipated in”
ui, Ipoints<ui,ej> is the set of valid interrupting points at
which ej can take controls from ui.

Definition 6. An application posting graph for an ap-
plication A is a three-tuple GApp = < EventsA, G-EventsA,

Figure 5: An Application Posting Graph for the ex-
ample application

AEdgesA >, where EventsA is the set of events antici-
pated in A, G-EventsA is the set of GPosts of all events in
EventsA and AEdgesA is a set of anticipating edges. Each
application has three special events called einit, estart and
estop for three standard commands Main.StdControl.init(),
Main.StdControl.start() and Main.StdControl.stop() which
are always executed at the beginning and at the end of an
application.

To generate anticipating edges, we detect “anticipated in”
relations between task posting units. In other words, our
algorithm classifies which event is expected after a certain
statement. As mentioned in Section 2, an event is trigged
by either a hardware interrupt or a signal statement so the
event can occur if (a) the hardware is ready to send inter-
rupts to the mote or (b) there is an explicit signal statement.
Sometimes, the signal statement is located in a system com-
ponent, and hence, it is not visible to the application code.
The conditions of hardware readiness are opaque to applica-
tion’s code as well. As a result, we can only detect implicit
anticipating information with the help of preset semantic
rules found in the system interfaces’ declaration.

We observed that each command in an interface may ac-
company an event from the same interface. For example,
event clock.fired() can only appear after the corresponding
clock is started and event ADC.dataReady() should follow
the command ADC.getData(). Therefore, we scan through
each interface in the system’s code to establish semantic
rules for each event. These semantic rules of a particu-
lar event are considered as activating conditions of that
event. Each event may also have another set of semantic
rules called deactivating conditions, after each of which
the event is no longer expected.

24

After detecting an initial set of anticipating events for
each node in GEvent of einit, estart, each anticipating event’s
GEvent is added to its source with an anticipating edge. The
set of anticipating events for each node is transferred to its
successors in GEvent. The above process is repeated until no
more anticipating edges are detected.

Figure 5 illustrates the GApp of the example application.
As both timers are started within event start (line l1 and l2
in Figure 2), both event Timer1.fired() and Timer2.fired())
are anticipated in event start. Because timers’ events are re-
peating, the anticipating information remains at each node
in GEvents of event Timer1.fired() and event Timer2.fired()
until their deactivation conditions are fulfilled in event stop.
Therefore, event Timer2.fired() is anticipated during the ex-
ecution order of event Timer1.fired() and during itself.

The next step of refining anticipating edges is to establish
a set of valid interrupting points (Ipoints) for each each
anticipating edge. An Ipoints depends on the type of the
incoming event. If the event is a hardware interrupt, the
Ipoints is calculated by analyzing atomic regions in the
outgoing node’s CFG. Otherwise, the event is signaled by
a task in a system’s component so it cannot actually inter-
rupt code’s execution. That event’s Ipoints contains only
the entry and exit points of the outgoing node. For instance,
in Figure 5, Ipoints<task1,T imer2.fired> only consists of the
entry and exit point of task1 because Timer.fired() is imple-
mented by a task.

A GApp expresses all possible events in an application, in-
cluding anticipated events that could occur during the exe-
cution path of other events and tasks. When an anticipated
event is triggered, its task posting units will be interleaved
with the execution chain of existing events. Hence, our rep-
resentation framework provides a mechanism to expand that
edge into a complete execution order for each interrupting
point. To reduce the overhead of the analyzing process,
the expansion is performed only on demand when the user
needs to study a specific edge. Back to Figure 5, the ex-
panded path associating with AEdge<task1,T imer2.fired> at
the exit point of task1 is task1, Timer2.fired(), task2 or
task3 (posted by task1), task3, task4 (from Timer2.fired()).

5. DISCUSSION
We have completed the implementation of the above rep-

resentations. The front end of the representation builder
employs the parser and compiler of TinyDT [8], an Eclipse
plug-in for WSN development. From abstract syntax trees
obtained from TinyDT, our tool constructs the CFGs and
three graphs described above. Preliminary experimental re-
sults on the overhead have been produced and are promising.
We are also developing an analysis to detect patterns in the
configuration code of the application using our graphs to
detect seeded errors.

As our representations provide detailed information about
the application and its environment, they enable testing a
WSN system within its environment in a number of ways.

For instance, a GApp describes all possible events in the ap-
plication, including anticipated events that could occur dur-
ing the execution path of other events and tasks. Analyzing
anticipating edges in the GApp and their sets of interrupting
points can determine a scenario demonstrating interactions
between the application and the environment. Similarly, a
GEvent contains ordering information of task posting units
within a stand-alone event and analyzing the GEvent can

guarantee code coverage of each event. Therefore, using
these representations can help frame code coverage criteria
at different levels and develop the analysis for determining
the coverage needed. Possible criteria for WSNs are based
on the GUI event coverage criteria [9] and propose all-event
coverage, all static-path coverage as well as all possible se-
quence of events coverage. The all-event criterion ensures
that each event is executed at least once during the test-
ing. The all-static path criterion expresses that each path
in the corresponding GEvent will be executed at least once.
The sequence of events criterion is fulfilled when a particular
sequence of events in the GApp is executed. Similar to the
approach in [9], we argue that instead of checking unlimited
length sequences, shorter sequences are sufficient to detect
errors in WSNs as is the case with GUIs.

Furthermore, a complete order of event handlers and tasks
in an application can be integrated through their CFGs to
form an inter-event CFG. The obtained inter-event CFG
contains concrete program execution paths that can facili-
tate structural testing and static analysis technique. A test
case can be developed by specifying a set of inputs lead-
ing to a given execution path in the inter-procedural CFG.
For example, the path denoted by (*) in Figure 5, which
consist of init, start, Timer1.fired(), Timer2.fired(), task4,
task3, task4, stop in that order, leads to the inter-event
CFG with the following execution path {< l1 − l5 >, l8,
< l10 − l11 >,< l20 − l22 >} (code is given in Figure 2).
The path triggers the divided-by-zero exception in line l20
of the code and the test case associating with that path
would reveal an existing bug of the program: variable num-
berOfRead has not been increased before variable readrate2
is calculated. Therefore, when used together with CFGs,
GEvent and GApp can generate execution paths which lead
to test cases and test oracles.

Beside testing, our graphs can also be used for other static
analysis techniques. Being able to trace the impact of each
post statement in the application within and beyond the
border of functions, our GEvent and GPost can detect call
patterns and configuration errors as well [14].

6. RELATED WORK
There have been a few research efforts to provide an in-

termediate representation for analyzing WSNs’ applications
for various purposes. One approach uses different types of
automata to model a WSN application such as hybrid au-
tomata [4] and parallel interpreted automata [12]. Although
this approach succeeds for simulation or model checking
techniques such as life time analysis, automata are not fine-
grained enough to determine the behavior of each individual
statement. Therefore, automata cannot be used for static
analysis needed in testing. Another approach [2] discusses
that recording every state of every single mote in the net-
work because the number of nodes is tremendous. To solve
this problem, Agha [2] proposes using statistic values as val-
ues for properties of a system. Again, this representation
loses details of each individual mote; hence this represen-
tation cannot help static analysis which is the focus of our
representation framework.

7. REFERENCES
[1] Tinyos homepage. http://www.tinyOS.net.

[2] G. Agha. Computational models, programming languages and
algorithms for sensor networks: Towards a paradigm shift in
computer science. sutc, 1:2, 2006.

25

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: a survey. Computer Networks,
38(4):393–422, March 2002.

[4] S. Coleri, M. Ergen, and T. J. Koo. Lifetime analysis of a
sensor network with hybrid automata modelling. In WSNA
’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 98–104, New
York, NY, USA, 2002. ACM Press.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to networked
embedded systems. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design
and implementation, pages 1–11, New York, NY, USA, 2003.
ACM Press.

[6] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson,
D. Estrin, E. Osterweil, and T. Schoellhammer. A system for
simulation, emulation, and deployment of heterogeneous sensor
networks. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages
201–213, New York, NY, USA, 2004. ACM Press.

[7] W. Landi. Undecidability of static analysis. ACM Lett.
Program. Lang. Syst., 1(4):323–337, 1992.

[8] W. P. McCartney and N. Sridhar. Tosdev: a rapid development
environment for tinyos. In SenSys ’06: Proceedings of the 4th
international conference on Embedded networked sensor
systems, pages 387–388, New York, NY, USA, 2006. ACM
Press.

[9] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. In ESEC/FSE-9: Proceedings of the
8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 256–267, New
York, NY, USA, 2001. ACM Press.

[10] S. Park, A. Savvides, and M. B. Srivastava. Sensorsim: a
simulation framework for sensor networks. In MSWIM ’00:
Proceedings of the 3rd ACM international workshop on
Modeling, analysis and simulation of wireless and mobile
systems, pages 104–111, New York, NY, USA, 2000.

[11] J. Regehr. Random testing of interrupt-driven software. In
EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded Software, pages 290–298, New York,
NY, USA, 2005. ACM Press.

[12] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel.
Glonemo: global and accurate formal models for the analysis of
ad-hoc sensor networks. In InterSense ’06: Proceedings of the
first international conference on Integrated internet ad hoc
and sensor networks, page 3, New York, NY, USA, 2006. ACM
Press.

[13] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In VEE ’06: Proceedings of the second
international conference on Virtual Execution Environments,
pages 78–88, New York, NY, USA, 2006. ACM Press.

[14] N. Zhang. Fault localization in NesC program by semantic
analysis. Technical report, University of Virginia, 2007.

26

