Topic 0: Introduction

• What are you supposed to learn from this course and why?

• Readings for this topic: Silberschatz/Galvin/Gagne: Chs. 1 and 2

• Why are operating systems interesting?
 • Combine things:
 • Dynamic behavior:
 • Number of interesting concepts: scheduling, virtual memory ...
 • Concurrent systems: doing things in parallel

• What is “Operating system”? What does it do?
 • Major goals

• Different views
 • Abstract virtual machine
 • Resource manager
 • Magician

• Historical perspective
 • History Phase 1
 • Simple batch monitor
 • Buffering and interrupt handling in OS
 • SPOOLing
 • Multiprogramming
 • History Phase 2
• Time-sharing
• Protection and security
• Networking and distributed/parallel systems

• A few terms
 • Distributed systems
 • Parallel systems
 • Grid/cluster computing systems
 • Real-time systems

• Expectations of OS
 • powerful, simple, extensible, easy to use, robust, inexpensive

• Reality
 • enormous, complex, poorly understood, unreliable

• OS as a coordinator/manager: efficiency and fairness
 • concurrency: notion of process
 • I/O devices: I/O processor and interrupts
 • memory: protection, swapping, relocation, virtual memory
 • file management:
 • networking
 • security: authentication, authorization, access control

• OS-related hardware features
 • interrupts: interrupt vector, masking, enabling/disabling
 • protection -- why necessary?
 • dual-mode operation: examples?
 • I/O protection
 • memory protection
 • CPU protection

• OS design approaches
 • monolithic, layered, kernel-based, virtual machine

• Principle: separation of policy and mechanism.
 • Why important?
 • Examples?