
AALO: Activity recognition in smart homes using
Active Learning in the presence of Overlapped

activities
Enamul Hoque & John Stankovic

Department of Computer Science
UVA Center for Wireless Health, University of Virginia

Charlottesville, VA, USA
Email: {enamulhoque1, stankovic}@cs.virginia.edu

Abstract—We present AALO: a novel Activity recognition
system for single person smart homes using Active Learning
in the presence of Overlapped activities. AALO applies data
mining techniques to cluster in-home sensor firings so that each
cluster represents instances of the same activity. Users only need
to label each cluster as an activity as opposed to labeling all
instances of all activities. Once the clusters are associated to
their corresponding activities, our system can recognize future
activities. To improve the activity recognition accuracy, our
system preprocesses raw sensor data by identifying overlapping
activities. The evaluation of activity recognition performance
on a 26-day dataset shows that compared to Naive Bayesian
(NB), Hidden Markov Model (HMM), and Hidden Semi Markov
Model (HSMM) based activity recognition systems, our average
time slice error (24.15%) is much lower than NB (53.04%), and
similar to HMM (29.97%) and HSMM (26.29%). Thus, our active
learning based approach performs as good as the state of the art
supervised techniques (HMM and HSMM).

I. INTRODUCTION

Due to increasing number of elderly people and single
households living alone, wide-spread deployment of sensors
has become prominent in home environments for detecting
medical emergencies and assessing behavioral changes. In
such smart homes, living spaces and objects used for daily
activities are instrumented with passive sensors. When a
resident moves from one room to another or uses different
objects that have attached sensors, a series of sensor firings
with corresponding timestamps are generated that allow us to
automatically detect which activity the resident is currently
performing, its duration and what objects are used for this
activity. Accurate detection and summarization of these daily
activities are essential for many remote home healthcare
applications such as assessing behavioral rhythms ([21], [5]),
monitoring cognitive decline ([9]). In this work, our focus is on
unobtrusive long-term monitoring of daily activities of single
person homes on a daily basis.

However, existing activity recognition algorithms suffer
from many practical problems. Many of them ([20], [3], [17],
[19], [24]) are based on supervised learning where the training
data needs ground truth i.e., accurate labeling of all activities.
To ensure high accuracy, the classifiers need to be trained with
long traces of data that may range from months to years.

However, collecting ground truth for such a long period is
difficult. Either the resident has to keep record of all the
activities which is not convenient or we need to use cameras
and label each activity manually which may not be practical.
There are some existing unsupervised activity recognition
algorithms that do not need ground truth ([13], [16], [4]). They
either require to mine activity models from web definitions
or depend on domain knowledge about activities and the
environment (e.g., which objects are used during an activity).
Such systems may not be generalized to wide variety of home
environments and deployments.

In this paper, we approach this problem with the insight that
different daily activities are performed in different rooms, each
of them triggers a different set of sensors to fire and is often
performed during similar time periods of day. Therefore, we
divide the sensor firings into room-level occupancy episodes
(segmentation), and then for each room, we find the group of
sensors that are frequently fired together (mining) in similar
times with similar durations (clustering). Our hypothesis is
that each such group represents a daily activity and if we
can automatically detect these groups from the raw sensor
firings, users can just label each group as an activity so that
all the instances of this group can be automatically labeled.
Our approach is a type of active learning; a learning technique
where the system chooses the subset of training data that needs
to be labeled by users ([14]). We use unsupervised clustering
to find the clusters representing daily activities and users need
to label each cluster as one activity.

However, one practical problem that needs to be addressed
is overlapping activities. For example, people may leave the
kitchen in the middle of cooking to do something else and
come back again to finish cooking. Here, one activity spans
multiple occupancy episodes. Alternatively, people may cook
and have a drink at the same time while in the kitchen. Here,
multiple activities occur in the same occupancy episode.

In this paper, we present a novel Activity recognition system
for a single person home using Active Learning considering
Overlapped activities (AALO). Our main contributions are:

1) A novel framework for training activity recognition
systems that includes segmentation, mining and clustering of



low level sensor events. To improve accuracy, our system
preprocesses raw sensor data by identifying overlapping ac-
tivities across multiple occupancy episodes. Users only need
to label each cluster as one activity after training which ensures
feasibility of long term training. We evaluate this contribution
with a real world dataset ([20]) consisting of 26 days of data.
After our system generates the clusters, we label each cluster
as an activity and compare these labels with the labeled ground
truth for each instance of each activity. Using our system, the
user only needs to label 19 clusters after training as opposed
to labeling 291 activity instances over the 26 days.

2) An activity recognition system based on active learn-
ing that automatically recognizes new room-level occupancy
episodes as members of one of the clusters (i.e., activities) con-
structed during training. Comparison of the activity recogni-
tion performance of our system with state of the art supervised
activity recognition systems including Naive Bayesian (NB),
Hidden Markov Model (HMM), and Hidden Semi Markov
Model (HSMM) based solutions using the same 26-day dataset
shows that the average of time slice error over all activities
for our system (24.15%) is much lower than NB (53.04%),
and almost similar to HMM (29.97%) and HSMM (26.29%).

II. RELATED WORK

Recognizing daily activities in complex home settings using
in-home sensors is a well-researched problem. We consider
the existing solutions that use simple sensors that detect
movements of the resident from one room to another (i.e.,
motion sensors in the doorway) or changes in state of objects
and devices (i.e., contact sensors). Kasteren et al. use temporal
probabilistic models in [20] to recognize activities from sensor
readings. In this work, authors divide time series data into
time slices of constant-length and label the activity for each
slice. They use the sensor firings of each time slice to build
probabilistic models (naive Bayes, hidden markov models
and conditional random fields). However, defining a constant
length time slice for all activities may not be practical. They
also do not consider duration of activities.

Later in [19], the same authors use hidden semi markov
models that consider duration of an activity to improve accu-
racy of activity recognition. Zhang et al. [23] also use activity
durations for recognizing them. Tapia et al. apply a naive
Bayes classifier in [17] for activity recognition. They propose
to learn different time slice durations for different activities
from the training data and use these durations for building
models for different activities. Logan et al. use both naive
Bayes and C4.5 decision tree models for activity recognition
in [11]. Recent works ([8], [10]) have focused on recognizing
concurrent and inter–leaved daily activities.

One common problem associated with all the works dis-
cussed so far is that they require accurate labeling of activities
(either by the resident or by manual annotation after viewing
the data) during training which may be difficult to obtain for
a long period. As an alternative, Kasteren et al. present a
technique in [18] to use the ground truth collected in one house
to train activity recognition systems in other houses. However,

details of activities may vary significantly from person to
person and from home to home in which case this technique
may not perform well.

Barger et al. present an unsupervised technique in [2] that
clusters the sensor firings using mixture models. Each cluster
has distinct time of occurrence, duration and rate of sensor
firings. However, it does not consider the group of sensors
being fired for clustering. Zheng et al. [24] also use clustering
by a self-adaptive neural network to summarize the timing of
sensor firings for each activity. Gu et al. [7] present an un-
supervised approach for activity recognition based on object-
use fingerprints to recognize daily activities without human
labeling. This is done by first mining a set of object terms for
each activity class from the web, and then mining contrast
patterns among object terms based on emerging patterns.
Similarly, Emmanuel et al. [16] extract activity models from
text corpora such as the web and uses them to automatically
produce labeled segmentations of activity data.

Philipose et al. present another similar approach in [13] to
learn activity models from the web. However, the list of objects
used for different activities may not be always extracted from
web and mapping them to the actual deployed sensors is also
complicated. Dimitrov et al. [4] propose another unsupervised
activity recognition approach that utilizes background domain
knowledge about user activities and environment such as
which objects are used for an activity. Unfortunately, such
background knowledge may not be available. Also, none of the
unsupervised solutions mentioned so far address overlapping
activities which may degrade the performance.

As a compromise between the supervised and unsupervised
techniques, there have been previous work that require only a
subset of training data to be labeled by users so that annota-
tion effort is reduced. Stikic et al. [15] apply multi-instance
learning for activity recognition from sparsely labeled data.
Users are prompted after a predefined time interval (which is
varied from 10 to 180 minutes) for labeling some activities.
Therefore, users need to provide feedback multiple times in a
day as opposed to our approach of labeling the clusters offline
after training. Wu et al. [22] present a semi-automatic lifelog
summarization system for elderly care. Similarly, Longstaff et
al. [12] use active learning for activity recognition. However,
both these systems require the users to always carry cell
phones (having embedded sensors e.g., acclerometer, GPS,
microphone) which may not be comfortable.

III. FRAMEWORK FOR TRAINING

Fig. 1 shows the block diagram of our training framework
for the activity recognition system. The input I to the system
is a sequence of pairs of the form (si, ti) where si ε S (S
is the set of all sensors deployed in a home) represents a
sensor firing at time ti. The set of sensors S may include
passive infrared (PIR) to detect motion in a specific area, reed
switches to measure open-close states of doors and cupboards,
pressure mats to measure sitting on a couch or lying in bed,
float sensors to measure the toilet being flushed; temperature
sensors to measure the use of the stove or shower. We assume



Input Data 
(<timestamp, sensor_firing> 

pairs) 

Segmentation into 
Occupancy Episodes 

Itemset Mining on the 
Occupancy Episodes 

Filtering Frequent Itemsets 
Output the Clusters 

(Each cluster represents a 
particular activity) 

Clustering the Instances of 
each Frequent Itemset 

 

Fig. 1: Block Diagram of the Training Framework

that each sensor is associated with only one room r ε R (R
is the set of all rooms in a home) and this information is
available to our system. I consists of all the sensor firings
and their corresponding timestamps during the entire training
period. Now we describe the different steps of our framework.

A. Segmentation into Occupancy Episodes

Most activities of daily living have spatial regularity. For
example, we cook in the kitchen and sleep in the bedroom.
Therefore, the first step of our training algorithm is to segment
consecutive sensor firings based on which room the sensors are
in. Algorithm 1 shows the pseudo code of the segmentation
algorithm. The output of this algorithm is a set of room
occupancy episodes of the form (roomID, entranceT ime,
duration, usedSensors). When calculating the duration of
an occupancy episode at line 9 of this algorithm, we consider
the time interval between the last and first sensor firings of that
room during that episode. Alternatively, we could consider the
time interval between the first sensor firing in the next room
and the first sensor firing of the previous room as the duration
of the last occupancy episode of the previous room. We did not
choose this option, because based on the floor plan of different
homes and sensor deployment, sometimes it may happen that
in between being in these two rooms, the resident was in a
room where there are no sensors. Therefore, choosing this
option would lead us to infer that the resident was in the last
room for the entire period.

Algorithm 1 Segmentation Algorithm
1: {Input: I , a sequence of pairs of the form (si, ti)}
2: {Output: E, a set of room occupancy episodes of the form

(roomIDi, entranceT imei, durationi, usedSensorsi)}
3: E = [];
4: previous room = room[s1];
5: for each <si, ti> in I do
6: if room[si] 6= previous room then
7: new segment.room ID = previous room;
8: {new segment.entranceTime = start time of the last occupancy

episode;}
9: {new segment.duration = duration of the last occupancy episode;}

10: {new segment.usedSensors = sensors fired during the last occupancy
episode;}

11: E.add(new segment);
12: previous room = room[si];
13: else
14: {keep track of which sensors are used during this occupancy episode}
15: end if
16: end for

Our hypothesis is that if we find some segments that have
similar sensor uses, start times and durations over the course
of the entire training period, then such segments represent

one daily activity. However, one practical problem against this
hypothesis arises from the fact that people may not always
start and finish an activity within the same occupancy episode.
For example, people may get up in the middle of sleeping,
visit the toilet and then come back to sleep again. Similarly,
in the middle of cooking, people may leave the kitchen to
do something else and come back again to finish cooking.
In such cases, one instance of an activity can expand across
multiple occupancy episodes. Each of these episodes may
not have the start times or durations or set of used sensors
that are representative of the actual activity. Accordingly,
the corresponding instances of that activity would remain
undetected. Here we discuss our solution to solve this problem
which is generic and can be applied to any home deployment.

1) Successive Occupancy Episode Merging: To address this
practical problem, we construct a new occupancy episode by
merging two occupancy episodes in the same room that are
separated by less than a time interval threshold. For each room,
we define a time interval threshold as the normal time interval
between two successive visits to the same room. To calculate
this threshold for each room, we enumerate time intervals
between all the successive visits to that room during the entire
training period and calculate the first and third quartiles (Q1

and Q3, defined as the 25th and 75th percentiles). We set
the time interval threshold of this room as (Q1 − h), which
represents the lower outer fence of a corresponding box plot (h
= 3 × (Q3 − Q1)). Any value less than the lower outer fence
is an extreme outlier. We use this technique, because during
such occurrences of overlapping activities, the time interval
between successive room visits are expected to be shorter than
usual and also such occurrences do not occur too frequently.
However, if such occurrences are frequent i.e., the resident
frequently leaves a room while performing a specific activity
in that room, in that case the time interval will no longer be
less than the calculated time interval threshold. Accordingly,
no new occupancy episodes will be considered. In such cases,
that particular activity is usually done in two episodes and
each episode will be individually clustered.

For two successive occupancy episodes in a room
r, (entranceT imei, durationi, usedSensorsi) and
(entranceT imej , durationj , usedSensorsj) (j > i), if we
find that the time interval between them (entranceT imej
− entranceT imei − durationi) is less than r’s time
interval threshold, then by merging them we create a new
occupancy episode with start time entranceT imei, duration
entranceT imej + durationj − entranceT imei, and set
of used sensors usedSensorsi ∪ usedSensorsj . We do
not delete the two smaller episodes, as each of them may
represent one activity by itself. If the merged episode or the
smaller episodes do not represent any activity, the clustering
step would ignore them.

B. Itemset Mining on Occupancy Episodes

Specific activities of daily living are performed using spe-
cific sensors (i.e., objects). For each room r, there are a
set of occupancy episodes of the form (r, entranceT imei,



durationi, usedSensorsi), where i = 1, 2, ... ... ..., Number
of Occupancy Episodes in r. In this step, from each of these
tuples we only use usedSensorsi which is of the form {sij}
(sij ε S). The temporal characteristics of these tuples are used
in the next step. We apply frequent itemset mining ([1]) on
usedSensorsi of all occupancy episodes of room r where
each sensor sij is an item and the group of sensors fired
in each occupancy episode {sij} is a transaction. The goal
of the itemset mining is to find the groups of sensors (i.e.,
items) that are frequently fired together (i.e., occur together in
transactions); they are called frequent itemsets. Our hypothesis
is that each frequent itemset represents an activity.

We use a state of the art itemset mining algorithm Apriori
([1]). For each room r, we run Apriori separately with {sij}
as input (i = 1, 2, ... ... ..., Number of Occupancy Episodes in
r). As output, we get the set of frequent itemsets {FIk} ,(k =
1, 2, ... ... ... Number of Frequent Itemsets for r), where each
FIk is a set of sensor firings (i.e., items) of the form {skl}
(l = 1, 2, ... ... ..., Number of Sensors in Frequent Itemset
FIk). An itemset is considered to be frequent if the number
of different occupancy episodes (i.e., transactions) in which
the itemset occurs is more than a threshold number of days.
In the Apriori algorithm, this threshold is called the support
threshold which we specify before running the algorithm.

After getting the output, for each frequent itemset FIk,
we find the occupancy episodes in room r where FIk oc-
curs and we construct the set of tuples {(startT imekm,
durationkm)}, m = 1, 2, ... ... ..., Number of Occupancy
Episodes where FIk occurs. Here, startT imekm is the ear-
liest timestamp when any sensor skl ε FIk fires during
occupancy episode m. Suppose, endT imekm is the latest
timestamp when any sensor skl ε FIk fires during occupancy
episode m. durationkm is defined as the difference between
endT imekm and startT imekm. Each frequent itemset along
with thus constructed set of tuples are used in the next step
for filtering significant frequent itemsets.

C. Filtering Frequent Itemsets

One disadvantage of Apriori is that it produces redundant
itemsets. To remove redundant itemsets, we could have used
an itemset mining algorithm that produces a set of maximal
frequent itemsets. A set of maximal frequent itemsets FI
has the property that it does not have any pair of itemsets
FI1, F I2 ε FI (FI1 6= FI2) such that FI1 ⊂ FI2 or vice
versa. However, in daily activities, it may be normal that FI1
is a subset of FI2, but FI1 occurs by itself (when FI2 does
not occur) during significant number of occupancy episodes.
Suppose, for a room (‘kitchen’), two frequent itemsets are {s1,
s2, s3, s4} (represents the activity ‘prepare breakfast’) and {s1,
s3} (represents the activity ‘prepare coffee’). Here, {s1, s3} is
a subset of {s1, s2, s3, s4}, therefore each occupancy episode
where s1, s2, s3, and s4 fire , s1 and s3 also fire i.e, whenever
the user prepares breakfast, he also prepares coffee. However,
in this room (i.e., ‘kitchen’), there may be such occupancy
episodes where only s1 and s3 fire i.e., the user may also
prepare coffee at other times of the day. If such instances are

more than the support threshold, then both {s1, s2, s3, s4}
and {s1, s3} should be included in the set of frequent itemsets
so that we can identify both these activities separately. We do
not use an itemset mining algorithm that produces a set of
maximal frequent itemsets, because it would have deleted {s1,
s3}. Alternatively, we define and reduce redundant itemsets in
the following way.

As stated earlier, we represent an instance insk of a frequent
itemset FIi by the tuple (startT imeik, durationik) (k = 1,
2, ... ... ..., Number of Occupancy Episodes where FIi occurs).
An instance insp = (startT imeip, durationip) temporally
covers another instance insq = (startT imeiq , durationiq)
if startT imeip ≤ startT imeiq and (startT imeip +
durationip) ≥ (startT imeiq + durationiq). For each in-
stance insk of a frequent itemset FIi, we consider the instance
insk as covered by another frequent itemset FIj , if FIi ⊂ FIj
and FIj has an instance that temporally covers insk. For each
frequent itemset FIi of a room, we remove all its instances that
are covered by instances of other frequent itemsets of the same
room. After removing covered instances, if total number of
remaining instances of FIi is less than the support threshold,
we define FIi as a redundant frequent itemset and delete it.

Note that, in the set of frequent itemsets we have constructed
thus far, for a room, there can be two instances of two different
frequent itemsets that may belong to the same occupancy
episode. For example, it may be the case that on some days,
the user is cooking dinner and at the same time doing laundry
in the washing machine in the same occupancy episode. If
there are many other days, when the user does not do these
two activities during the same occupancy episode, then we will
have two different frequent itemsets, one consisting of sensors
related to cooking, and the other related to sensors related to
washing machine. Some instances of these two will belong
to same occupancy episodes. In this way, we can differentiate
and identify overlapping activities in the same room. However,
if the user always does two activities in the same room, then
our system will not be able to differentiate between two such
activities and will generate one frequent itemset.

D. Clustering Instances of Each Frequent Itemset

As we hypothesized earlier, each frequent itemset represents
one activity. However, there may be multiple activities that use
the same set of sensors (e.g., prepare breakfast and prepare
dinner). To differentiate among such activities, we need to
consider the times of day when the group of sensors are used
and also the durations. Therefore, in this step, we cluster the
instances of each frequent itemset based on their temporal
characteristics i.e., start times and durations.

We use the DBSCAN clustering algorithm ([6]) which is a
density based clustering algorithm. For each frequent itemset
FIi of a room, we run DBSCAN separately on the set of
tuples {(startT imeik, durationik)} (k = 1, 2, ... ... ...,
Number of not Covered Instances FIi has). We normalize each
attribute of each tuple before clustering. The major advantage
of DBSCAN is that we do not need to specify how many
clusters there are. This is important, because we do not know



how many different activities a resident performs in different
rooms. DBSCAN automatically calculates the neighborhood
radius of each cluster.

Note that, there may be some frequent itemsets for which
some instances are not part of any clusters. During training,
we do not consider such instances as part of any activity and
ignore them as outliers. After training, when our system is
used for activity recognition, we report such instances (that
are not within the neighborhood radius of any cluster; details
in Section IV) as irregular / anomalous behavior. Also, there
may be some frequent itemsets for which DBSCAN does not
produce any significant cluster. For such frequent itemsets, we
try to cluster them again based on durations of each instance
only. This is because, there are activities that do not have any
regularity about which time of day they occur. However, they
may have similar durations (e.g., the user can take a drink at
any time of day; the duration of this activity should be similar).
Finally, if there is any such frequent itemset for which even
clustering based on durations does not produce any significant
cluster, we remove that frequent itemset.

After the clustering, for each room, we get one or more
clusters each of which represents a particular event that
happens in that room, uses same set of objects, may or may
not start in similar times and last for similar durations. We
consider each of these events (represented by each cluster) as
an activity.

E. Output

The output is the set of all clusters constructed
by applying DBSCAN on all frequent itemsets of
all rooms separately. Each cluster Ci is represented
by the tuple (Used Sensorsi, Mean Start T imei,
Mean Durationi, Neighborhood Radiusi,
Probable Labeli). Mean Start T ime may be null
for some clusters. The labeling is done by the resident of
the home after looking at the other attributes of the cluster.
Once a cluster is labeled by the user, all the instances of that
cluster are automatically labeled as that activity. In this way,
users need to label only a small number of clusters instead of
labeling all the instances of all the activities.

IV. ACTIVITY RECOGNITION

Once the clusters are labeled as specific activities by users,
our system can recognize future occupancy episodes as activi-
ties. During activity recognition, we construct room occupancy
episodes from raw sensor firings as described in the previous
section. As each room occupancy episode e is created, we take
it’s set of used sensors ue and find the set of clusters {Cj}
such that Used Sensorsj ⊂ ue (j ε { 1, 2, 3, ... ... ..., Number
of Clusters }). There can be multiple such clusters. Because,
the user may do multiple activities in the same occupancy
episode or, even with the same set of used sensors, there may
be multiple activities based on the temporal characteristics.

For each {Ck} ⊂ {Cj} (j, k ε { 1, 2, 3, ... ... ...,
Number of Clusters }) such that all the clusters in {Ck} have
the same Used Sensors = ul (ul ⊂ ue), we construct the

tuple (startT imeel, durationel). Here, startT imeel is the
earliest timestamp when any sensor se ε ul fires during occu-
pancy episode e. Suppose, endT imeel is the latest timestamp
when any sensor se ε ul fires during occupancy episode e.
durationel is defined as the difference between endT imeel
and startT imeel. From the set of clusters {Ck}, we find the
cluster that is temporally nearest to the tuple (startT imeel,
durationel) and also has the tuple within its neighborhood
radius. We assign the episode (startT imeel, durationel) the
activity label of that cluster. If we do not find any such cluster,
then we report this episode as an irregular one.

The cluster Ci ε {Ck} is temporally nearest to the tuple
(startT imeel, durationel) if (startT imei, durationi) is the
nearest point from (startT imeel, durationel). This helps in
differentiating among activities that trigger the same set of
sensor firings, but are done in different times of day or last for
different durations. Note that, multiple activities can take place
in the occupancy episode in a room, and we accommodate
such scenarios by assigning activity labels to each episode of
{(startT imeel, durationel)}.

V. EVALUATION

A. Dataset

Sensor Location Symbol Sensor Location Symbol
Microwave a Dishwasher h
Bathroom Door b Toilet Flush i
Toilet Door c Freezer j
Cups Cupboard d Pans Cupboard k
Fridge e Washing machine l
Plates Cupboard f Groceries Cupboard m
Frontdoor g Bedroom Door n

TABLE I: List of Sensors in the Dataset

We use a publicly available dataset ([20]), in which a
wireless sensor network was used in a single–resident home to
observe the resident’s behavior and annotation was done by the
resident using a bluetooth headset. We use this dataset, because
it has 26 days of data which no other publicly available
dataset has and also because it has a variety of sensors in
different rooms. The list of sensors and their correspond-
ing symbols are shown in Table I. The dataset contains a
total of 16 activities. They are: ‘Sleep’, ‘Eating’, ‘Prepare
Breakfast’, ‘Prepare Dinner’, ‘Get Drink’, ‘Get Snack’, ‘Load
Dishwasher’, ‘Unload Dishwasher’, ‘Load Washing machine’,
‘Unload Washing machine’, ‘Store Groceries’, ‘Use Toilet’,
‘Take Shower’, ‘Brush Teeth’, ‘Leave House’, and ‘Receive
Guest’. Two of these activities (‘Eating’ and ‘Store Groceries’)
have only one occurrence in the 26 days, so we do not consider
these two activities. There are four rooms: Bedroom, Kitchen,
Toilet, and Shower. We consider out of home as another room
named Outside where the only sensor is the ‘Frontdoor’ sensor.
All the sensors are binary sensors that include reed switches
to measure open-close states of doors and cupboards, and float
sensors to measure the toilet being flushed.

B. Clustering Accuracy

To show the accuracy of clustering, we train our system with
26 days of data. Accordingly, for each room, we get a number



Room Num.
of

Clus-
-ters

Bedroom 1
Toilet 4

Shower 1
Kitchen 12
Outside 1

TABLE II: Num-
ber of Clusters for
Each Room

Activity Num.
of

Instan-
-ces

Sleep 24
Prepare Breakfast 20

Prepare Dinner 9
Get Drink 20
Get Snack 12

Load / Unload Dishwasher 9
Load / Unload Washing Machine 7

Use Toilet 114
Take Shower 23
Brush Teeth 16
Leave House 34

Receive Guest 3

TABLE III: Instances per Activity

of clusters (shown in Table II) each of which corresponds to an
activity that is performed in the room. From this table we see
that there are a total of 19 clusters. Users only need to label
these 19 clusters as activities after we generate the clusters.
If we use any supervised learning system, then user has to
manually label all instances of all activities (291 in total as
shown in Table III). In this way, our system ensures feasibility
of long term training. Note that, each cluster contains a number
of instances of the activity it represents; as a threshold in
DBSCAN, we set the minimum number of instances in each
cluster to 15% of the total number of days in the dataset
(i.e., four days). Also, in the itemset mining algorithm we
set the support threshold as 15% of the total number of days.
These thresholds ensure that each candidate cluster has to have
activity instances in at least four different days.

Table IV shows the set of clusters generated for Kitchen.
We label each cluster by ourselves, based on the sensors,
time of day and duration of each cluster. From this table, we
see that some activities have multiple clusters. Cluster 2 and
3 have the same sets of sensors, but they are differentiated
based on their temporal characteristics. Similar is the case with
Cluster 5 and 8. Some of the clusters (7, 10, 11 and 12) do
not have any temporal regularity in start times; however, the
durations of their instances are similar. Note that, some of the
activities are overlapped within the same occupancy episode
(e.g., ‘load / unload dishwasher’ is sometimes overlapped with
either ‘prepare breakfast’ or ‘prepare dinner’). Our system can
still identify ‘load / unload dishwasher’ as a separate activity.

Now, we evaluate the improvement in training due to our
techniques of merging successive occupancy episodes that
belong to the same activity. Firstly, we train on the raw data;
we refer to it as Normal Clustering. Secondly, in the raw data,
we merge successive occupancy episodes that belong to the
same activity, and then perform mining and clustering on the
changed data; we refer to it as Clustering after Successive
Occupancy Episodes Merging (SOEM). Fig. 2 shows the
performance of training under these two configurations for
the activity ‘Sleep’. The x-axis shows day of month and the
y-axis shows the durations (in hours) of the sleeping episodes
as detected by the clustering methods and also as recorded by
the resident in the ground truth.

From Fig. 2, we see that for Normal Clustering, many
instances of the ‘Sleep’ activity are not included in the ‘Sleep’

Cl. Used Mean Std. Mean Std. Probable
ID Sensors Start Start Duration Dur. Label

Time Time
(HH:MM) (Min.) (Min.) (Min.)

1 {e, f, m} 9:25 70 1.76 1.65 prep.
breakfast

2 {a, e, j} 9:12 65 6.59 3.78 prep.
breakfast

3 {a, e, j} 18:50 45 30.24 9.25 prep. dinner
4 {d, f, m} 19:20 60 40.38 17.84 prep. dinner
5 {j, m} 19:30 40 20.65 5.62 prep. dinner
6 {f, k} 19:25 45 10.54 3.29 prep. dinner
7 {d, e} 3.98 2.57 get drink
8 {j, m} 21:54 90 1.71 1.28 get snack
9 {a, f} 20:12 150 2.31 0.75 get snack
10 {l} 4.23 2.39 use

wash. mach.
11 {f, h} 4.25 1.5 use

dishwasher
12 {h, k} 4.76 2.45 use

dishwasher

TABLE IV: Set of Clusters for Kitchen

0 

2 

4 

6 

8 

10 

12 

2 5 6 7 8 10 11 13 14 15 16 17 18 19 20 21 25 26 27 28 29 

D
u

ra
ti

o
n

 o
f 

 S
le

ep
in

g 
Ep

is
o

d
es

 
(H

o
u

rs
) 

Day of Month 

Ground Truth 

Normal Clustering 

Clustering after Successive 
Occupancy Episodes Merging 
(SOEM) 

Fig. 2: Comparison of different instances of the cluster cor-
responding to ‘Sleep’ with the actual instances of ‘Sleep’ as
recorded in the ground truth.

cluster (2nd, 6th, 7th, 8th, and 25th) as indicated by durations
of zero for the corresponding nights. However, Clustering
after Successive Occupancy Episodes Merging (SOEM) shows
that merging successive occupancy episodes in the Bedroom
improves the performance; four of the five missing instances
of ‘Sleep’ are included in the ‘Sleep’ cluster. This is because
during some nights, the resident goes to the toilet in the middle
of sleep and comes back and sleeps again. If we do not
combine the occupancy episodes before and after this toilet
visit, then the individual episodes do not have the start time
or duration characteristics of ‘Sleep’.

TSEa =
Total durations of a that remain undetected

Da

(1)

Due to lack of space, we do not discuss each activity in
detail. For each activity a ε A (A is the set of all activities),
time slice error TSEa is defined in Equation 1. Here, Da

represents sum of durations of all the instances of activity
a in the dataset. Fig. 3 shows the TSEa for each activity
a. We do not show the training error for the activity ‘Brush
Teeth’, because there were no sensors to recognize this activity.
From this figure, we see that due to merging successive
occupancy episodes, time slice errors improve only for the
activities ‘Sleep’ and ‘Prepare Dinner’. The reason is that in
our dataset, only these two activities have large durations and
other activities are overlapped only with them.

The results presented in this subsection show that AALO



0 

10 

20 

30 

40 

50 

60 

70 
Tr

ai
ni

ng
 T

im
e 

Sl
ic

e 
Er

ro
r (

%
) 

Activity 

Training Time Slice Error for Different Activities 

Normal Clustering 

Clustering after Successive 
Occupancy Episodes 
Merging (SOEM) 

Fig. 3: Training time slice error for each activity.

groups different activities of daily living that have spatial and
temporal regularity, and trigger similar group of sensors to fire
under different clusters. Moreover, by considering the practical
problem of temporally overlapped activities in different rooms,
AALO improves the performance of clustering. Also, by
including set of sensors used as a feature for clustering, AALO
can differentiate among activities that have similar temporal
and spatial regularity, but use different objects.

C. Evaluation of Activity Recognition Accuracy

To evaluate the activity recognition performance of AALO,
we perform leave one day out cross-validation on the 26 days
of data in the dataset. The metric for comparison is time slice
error TSEa for each activity as defined in Equation 1. We
take the average of the time slice errors from cross-validation.
During each step of cross-validation, we train our system with
25 days of data which generates a set of clusters; then we use
the trained system on the remaining day to label its room
occupancy episodes as instances of the clusters as described
in Section IV. Thus we get the activity labels and we compare
them with the ground truth to calculate the time slice error.

Table V shows the confusion matrix for all activities (per-
centage values). The values represent average over all runs in
cross-validation. There are two extra columns in the matrix:
‘Idle’ and ‘Irregular’. ‘Irregular’ corresponds to the cases when
a frequent itemset is not within the neighborhood radius of
any cluster. This may happen when an activity happens in
an unusual time or for an unusual duration (compared to the
corresponding training set). ‘Idle’ corresponds to the cases
when our system infers that no activity is going on.

As we can see from Table V, many time slices of some
activities are mistakenly predicted as ‘Idle’. One reason for
this is that we classify sub-periods of occupancy episodes (the
duration for which a subset of sensors fire) as activities as
opposed to classifying the whole occupancy episode as one
activity. Also, in some time slices, according to the ground
truth user starts an activity. However, corresponding sensors
start to fire after some time slices.

We compare the performance of AALO with Naive
Bayesian (NB), Hidden Markov Model (HMM) and Hidden
Semi Markov Model (HSMM) classifiers presented in [20],
[19] where the authors divide raw sensor data into fixed length
time slots and classify each slot based on the sensors fired
within that slot. We set the time slot length of their system

0 

20 

40 

60 

80 

100 

Ti
m

e 
Sl

ice
 E

rr
or

 (%
) 

Activity 

NB 

HMM 

HSMM 

Our System 

Fig. 4: Comparison of Time Slice Error for Activity Recogni-
tion among different classifiers.

to 60 seconds. They convert the raw sensor data to different
formats; we compare with the ‘last’ format where once a
sensor fires, it is considered to be firing until a different sensor
fires. We choose this format, because it gives the highest
accuracy for their system. There is another format named
‘changepoint + last’ which gives higher accuracy, but that
code is not publicly available. Fig. 4 shows comparison of
the average time slice error of our system with them.

For some activities (‘Leave House’, ‘Take Shower’,
‘Sleep’), some instances take place in unusual times (e.g., the
resident leaves house in midnight, or takes a shower in the
evening, or goes to sleep at 3 AM ); such instances occur rarely
in the entire dataset. Therefore, our system considers these
instances as outliers which makes the time slice error higher
for these activities. NB, HMM and HSMM perform well for
these activities, because they only depend on a single sensor
and these algorithms take decisions based on those particular
sensor firings ignoring temporal characteristics. NB performs
much worse than others, because it classifies each time slot
independently without considering the previous activity or
durations of the current / previous activity.

Overall, Fig. 4 shows that the average of time slice errors
over all activities for our system (24.15%) is much lower
than NB (53.04%), and almost similar to HMM (29.97%)
and HSMM (26.29%). In spite of being an active learning
based approach, our system performs as good as the state of
the art supervised activity recognition systems. None of these
supervised techniques take time of day into account during
activity recognition. If they are implemented in a way that
time of day is also considered, then their performance should
further improve. For example, there would be fewer errors due
to confusion between ‘prepare breakfast‘ and ‘prepare dinner’.
In that case AALO may perform slightly worse. However,
AALO has the benefit of using significantly fewer number of
user-labeled activity instances in the training set.

VI. DISCUSSION AND LIMITATIONS

We have evaluated our system only on one dataset. However,
our techniques can be generalized to be applied to any dataset
from a single person multiple room home. The occupancy
threshold value used in the preprocessing step is automati-
cally calculated from the training data for each dataset. The
support threshold used in the itemset mining algorithm and the
threshold for DBSCAN algorithm are set to be 15% for this



Leave Use Take Sleep Prepare Prepare Get Get Washing Dish Idle Irregular
House Toilet Shower Breakfast Dinner Snack Drink Machine washer

Leave House 89.9 0 0 0 0 0 0 0 0 0 0 10.1
Use Toilet 0 70.3 0 0 0 0 0 0 0 0 14.2 15.5
Take Shower 0 0 77.5 0 0 0 0 0 0 0 4.2 18.3
Sleep 0 0 0 98.7 0 0 0 0 0 0 0 1.3
Prepare Breakfast 0 0 0 0 64.5 0 4.2 6.3 0 5.8 10.4 8.8
Prepare Dinner 0 0 0 0 0 69.8 2.4 2.9 0.5 1.3 13.5 9.6
Get Snack 0 0 0 0 0 10 74.3 4.6 0 0 0 11.1
Get Drink 0 0 0 0 11.1 9.4 5.2 74.3 0 0 0 0
Washing Machine 0 0 0 0 0 10 0 0 70.4 0 0 19.6
Dishwasher 0 0 0 0 4.6 20.5 0 5.5 0 69.4 0 0

TABLE V: Confusion Matrix for all activities (percentage values). The rows represent actual activities and columns represent
the predicted activities. An entry in row x and column y represents percentage of time activity x was recognized as activity y.

dataset which ensures that out of the 26 days in the dataset,
a cluster has to have instances in at least 4 days for it to be
considered as regular behavior. These thresholds should be set
according to the size of the dataset; if we have only 7 days of
data then threshold set to 15% would mean that a cluster can
even contain an activity with only one occurrence which is
not ideal. Because our system utilizes the regularity in human
behavior, it is more suitable for large datasets.

Our system works for single person homes. We plan to
extend our system for multi person homes in the future. It
will be straightforward if each sensor firing is associated
with the corresponding user who triggers it. If such data
association is not possible, we can use the variation in temporal
characteristics of how different users perform an activity.
Another limitation is that the segmentation step assumes that
there are multiple rooms in the home and will not work if
there is only one room. In such cases we need to design
new techniques for segmentation. Also, as results show many
activity instances are considered as irregular. However, the user
may start to do an activity in a different way after the training.
Therefore, we will develop ways to incorporate new trends in
behavior by periodically re-training the system.

VII. CONCLUSION

AALO ensures ease of use in practical deployments, be-
cause it does not need ground truth for all instances of all
activities during training. We address overlapping activities
in two ways: 1) in the preprocessing step, we identify if
an activity consists of multiple occupancy episodes with
another activity overlapped in between them; and 2) in the
itemset mining step, we identify multiple activities temporally
overlapped in the same occupancy episode. The performance
of our system is as good as the state of the art supervised
activity recognition systems (HMM, HSMM).

VIII. ACKNOWLEDGEMENTS

This research was funded, in part, by NSF grants IIS–
0931972 and EECS–1035303.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in VLDB, 1994.

[2] T. S. Barger, D. E. Brown, and M. Alwan, “Health-status monitoring
through analysis of behavioral patterns,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A, vol. 35, no. 1, 2005.

[3] M. Buettner, R. Prasad, M. Philipose, and D. Wetherall, “Recognizing
daily activities with rfid-based sensors,” in UbiComp, 2009.

[4] T. Dimitrov, J. Pauli, and E. Naroska, “Unsupervised recognition of
adls,” in SETN, 2010.

[5] D. Elbert, H. Storf, M. Eisenbarth, O. Ünalan, and M. Schmitt, “An
approach for detecting deviations in daily routine for long-term behavior
analysis,” in PervasiveHealth, 2011.

[6] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in KDD,
1996.

[7] T. Gu, S. Chen, X. Tao, and J. Lu, “An unsupervised approach to activity
recognition and segmentation based on object-use fingerprints,” Data
Knowl. Eng., vol. 69, no. 6, 2010.

[8] T. Gu, Z. Wu, X. Tao, H. K. Pung, and J. Lu, “epsicar: An emerging
patterns based approach to sequential, interleaved and concurrent activity
recognition,” in PerCom, 2009.

[9] M. R. Hodges, N. L. Kirsch, M. W. Newman, and M. E. Pollack, “Auto-
matic assessment of cognitive impairment through electronic observation
of object usage,” in Pervasive, 2010.

[10] D. H. Hu and Q. Yang, “Cigar: concurrent and interleaving goal and
activity recognition,” in AAAI, 2008.

[11] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille, “A
long-term evaluation of sensing modalities for activity recognition,” in
UbiComp, 2007.

[12] B. Longstaff, S. Reddy, and D. Estrin, “Improving activity classifica-
tion for health applications on mobile devices using active and semi-
supervised learning,” in PervasiveHealth, 2010.

[13] M. Philipose, K. P. Fishkin, D. Fox, H. Kautz, D. Patterson, and
M. Perkowitz, “Guide: Towards understanding daily life via auto-
identification and statistical analysis,” in Ubihealth, 2003.

[14] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report, 2009.

[15] M. Stikic and B. Schiele, “Activity recognition from sparsely labeled
data using multi-instance learning,” in LoCA, 2009.

[16] E. M. Tapia, T. Choudhury, and M. Philipose, “Building reliable activity
models using hierarchical shrinkage and mined ontology,” in Pervasive,
2006.

[17] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the
home using simple and ubiquitous sensors,” in Pervasive, 2004.

[18] T. van Kasteren, G. Englebienne, and B. Kröse, “Transferring knowledge
of activity recognition across sensor networks,” in Pervasive, 2010.

[19] T. van Kasteren, G. Englebienne, and B. Krose, “Activity recognition
using semi-markov models on real world smart home datasets,” J.
Ambient Intell. Smart Environ., vol. 2, no. 3, 2010.

[20] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate
activity recognition in a home setting,” in UbiComp, 2008.

[21] G. Virone, “Assessing everyday life behavioral rhythms for the older
generation,” Pervasive and Mobile Computing, vol. 5, no. 1, 2009.

[22] P. Wu, H. Peng, J. Zhu, and Y. Zhang, “Senscare: Semi-automatic
activity summarization system for elderly care,” in MobiCASE, 2011.

[23] S. Zhang, S. McClean, B. Scotney, P. Chaurasia, and C. Nugent, “Using
duration to learn activities of daily living in a smart home environment,”
in PervasiveHealth, 2010.

[24] H. Zheng, H. Wang, and N. Black, “Human activity detection in smart
home environment with self- adaptive neural networks,” in ICNSC, 2008.


	Introduction
	Related Work
	Framework For Training
	Segmentation into Occupancy Episodes
	Successive Occupancy Episode Merging

	Itemset Mining on Occupancy Episodes
	Filtering Frequent Itemsets
	Clustering Instances of Each Frequent Itemset
	Output

	Activity Recognition
	Evaluation
	Dataset
	Clustering Accuracy
	Evaluation of Activity Recognition Accuracy

	Discussion and Limitations
	Conclusion
	Acknowledgements
	References

