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Environment-driven Communication in Battery-free
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Recent years have witnessed the design and development of several smart devices that are wireless and

battery-less. These devices exploit RFID backscattering-based computation and transmissions. Although sin-

gular devices can operate efficiently, their coexistence needs to be controlled, as they have widely varying

communication requirements, depending on their interaction with the environment. The design of efficient

communication protocols able to dynamically adapt to current device operation is quite a new problem that

the existing work cannot solve well. In this article, we propose a new communication protocol, called ReLEDF,

that dynamically discovers devices in smart buildings and their active and nonactive status and when active

their current communication behavior (through a learning-based mechanism) and schedules transmission

slots (through an Earliest Deadline First– (EDF) based mechanism) adapt to different data transmission re-

quirements. Combining learning and scheduling introduces a tag starvation problem, so we also propose a

new mode-change scheduling approach. Extensive simulations clearly show the benefits of using ReLEDF,

which successfully delivers over 95% of new data samples in a typical smart home scenario with up to 150 het-

erogeneous smart devices, outperforming related solutions. Real experiments are also conducted to demon-

strate the applicability of ReLEDF and to validate the simulations.

CCS Concepts: • Networks → Link-layer protocols; Cyber-physical networks;

Additional Key Words and Phrases: RFID backscattering, battery-free devices, reinforcement learning, EDF

ACM Reference format:

Mauro Piva, Andrea Coletta, Gaia Maselli, and John A. Stankovic. 2021. Environment-driven Communication

in Battery-free Smart Buildings. ACM Trans. Internet Things 2, 2, Article 14 (April 2021), 30 pages.

https://doi.org/10.1145/3448739

1 INTRODUCTION

The recent dramatic rise in production of wireless Internet of Things (IoT) devices, coupled with
the difficulty in disposing exhausted batteries, raises a crucial question: Is it possible to develop IoT
devices that do not require batteries for power? Researchers in the fields of networks and com-
munication have answered this question with backscattering [12]. Recent years have witnessed
the design and development of several wireless and battery-less smart devices that exploit Radio
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Frequency Identification (RFID) backscattering to operate [18]. In RFID technology, a backscat-
ter device harvests RF energy, computes or senses data, and transmits data by reflecting the Radio

Frequency (RF) signal. In practice, any device that operates at a relatively low power budget can
be remotely powered through the backscattering of RF signals; this means it can harvest power
from signals emitted by a dedicated powered device, namely a RFID reader.

Currently, several battery-less IoT devices have been proposed (a battery-less light switch [18], a
battery-less joystick [19], a battery-free RFID camera [23], and a battery-free cell-phone [36]) and
developed (an RF Field detector, a electronic relay, and a magnetic field sensor [9]). However, most
works only present singular devices. Although stand-alone solutions can operate efficiently, their
performance degrade significantly when they share the transmission channel with other devices.
Experiments with three coexisting devices have shown that data delivery is delayed of a factor
2 with respect to the stand-alone counterpart [18]. These results highlight that coexistence of
multiple devices need to be controlled, as they have widely varying communication requirements
(transmission rates, ON/OFF activity, and deadlines).

Let us imagine a smart building, outfitted with a myriad of battery-less sensors and smart de-
vices (e.g., cameras, presence sensors, smoke sensors, light sensors, thermostats, smart meters,
those with real-time user interactions, etc.) that are used to reduce resource consumption and
improve the quality of life. These smart systems will contain many devices with widely varying
communications requirements depending on sensed events, transmission rates, number of bits
per sensing sample, ON/OFF activity, and deadlines. Many of these devices will also have dynam-
ically varying communications requirements based on their current operational mode. In fact, the
nature of the sensor data generation is spontaneous; it is highly dependent on the events in the
environment. Many applications are interested in changes in measured values: They want to ob-
tain new data when the sensed value has changed since the previous sample rather than at the
devices’ current sensing rate. As an example, a temperature sensor has the capability of sensing
the environment every 25 ms, but a significant change in the temperature (for example of at least
1◦C), since the last reading may happen after 1 s in case of a fire or after 1 hour in case of normal
conditions. To choose another example, a joystick may sense no changes for hours (while it is
OFF), and then start sensing new data (while used for playing) at very different rates (from a few
milliseconds to one or more seconds), depending on the game type and the player’s activity. Thus,
the rate at which sensors detect a new value depends on environmental events. In other words,
it is the environment that changes and while the sensors sampling rates are set according to the
Nyquist sampling theorem, to minimize overhead, wireless traffic, and handle large numbers of
devices, it is often necessary to act only when there is a significant change in the sensed value.
Consequently, in a smart building setting, a device should transmit only when it has new/changed

data to send. This is a challenging task when there are many heterogeneous devices that have data
to transmit at the same time. Medium access control (MAC) protocols for RFID-based devices
have to follow a time slotted scheme (i.e., time division mechanism (TDMA)), because they
need to be energized by the reader. However, current TDMA protocols based on random access
(i.e., the tag randomly selects a slot to transmit) perform poorly: collision time is above 50% [15].
A better solution to avoid collisions is to directly poll each device that has a new data sample. But
the reader would have to know when a device has generated new data to query it. Hence, there is
a need for the reader to guess which devices should be queried.

For many devices, especially those interacting with humans, it is also necessary to deliver data
by a deadline. IoT environments will also evolve with devices being added and removed from the
environment, with a need for a zero configuration capability. Consequently, it is a significantly dif-
ficult challenge to design a communication protocol that dynamically discovers (current) environ-
mental patterns, changes in those patterns, and required rate for reading/transmission, for devices
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that are added and taken away over time. In other words there is a need for a communication pro-
tocol that is able to detect, learn and monitor devices’ presence and transmission needs (depending
on events in the environment) and dynamically adapt to current device states and requirements,
including deadline requirements for packet delivery. Meeting deadline requirements are especially
challenging when device requirements dynamically change and new devices activate, which re-
quires schedules for packet delivery to be adjusted. Maintaining performance requirements in the
transition period between the current and new schedule is also very difficult. Further, in these
highly dynamic environments it will not always be possible to meet all performance requirements
so it is necessary to establish solutions with fairness.

Given the resource and computation constraints typical of backscattering-based devices, as well
as the large heterogeneity among devices in a smart home or building, realizing efficient and effec-
tive communication is a big challenge. While there is an incredibly large number of MAC protocols,
to the best of our knowledge the literature presents only a protocol, named APT-MAC [20], that
attempts to learn what devices are in the environment, and what their current communication
requirements are. The idea behind APT-MAC is to adopt a bandit algorithm to learn devices be-
haviour and adapts information collection to such requirements: the system queries the device
that has more likely sensed new data. However, the bandit algorithm provides a limited view on
devices’ behavior: It adapts to changes in the environment without considering the previous his-
tory of changes. This may cause slow protocol adaptation. For quicker reaction to changes in the
environment, we propose a novel MAC protocol for battery free networks, called ReLEDF, which
exploits a Q-learning-based approach coupled with an EDF-based device interrogation mecha-
nism. The use of Q-learning is motivated by its ability to quickly adapt to changes (by considering
previous history of changes), while EDF guarantees time requirements of scheduling packet trans-
missions. The mix of learning and scheduling is an innovative way to schedule the network, which
guarantees high performance, but also adds a novel challenge: how to ensure that all devices meet
deadlines without starvation. We address this issue by proposing a new mode-change scheduling
approach, called Earliest Deadline First with Inherited Jobs (EDF-IJ), which reduces delays
and avoids device starvation in scheduling transmissions. In more detail, the main contributions
of this article are as follows:

• a new dynamic and adaptive MAC protocol, called ReLEDF, able to optimize transmission
slots assignment based on device needs, exploiting the combination of Reinforcement

Learning (RL) techniques and EDF real-time system policies.
• A new computational approach to learning current active devices and their dynamic require-

ments from interaction with the environment, inspired by RL. Our system introduces the
concept of sub-agents (multiple entities that are influenced by actions defined by the same
agent) and allows building/maintaining knowledge to make predictions on the state of mul-
tiple devices inside a network, enabling for a highly dynamic transmission scheduling based
on devices’ behavior.

• A no transition starvation solution for EDF algorithm that is able to avoid starvation of low
priority communicating devices while admitting new devices and changing schedules.

• A new mode-change scheduling approach based on EDF, called , that is able to reduce de-
lays and avoid task starvation by immediately scheduling a new frame while keeping some
information about previously scheduled jobs.

• A new theorem to prove feasibility analysis for EDF-IJ, which formally demonstrates that
the feasibility of this new approach can be verified in constant time.

• A fair loss policy for EDF scheduling that is able to fairly penalize tasks and attain schedule
feasibility when there is overload.
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• A thorough comparative performance evaluation of ReLEDF with APT-MAC [20], TDMA,
and optimal protocols. By means of extensive simulations we show that ReLEDF scales well
as it is able to successfully always deliver over 95% of the packets with negligible delay, and
outperforming state of the art solutions.

• An experimentation on real prototype devices to validate simulation results and show the
applicability of our new protocol through real experiments.

2 RELATED WORK

As this article contains a twofold contribution, i.e., on communication protocols for battery-free
devices and a new mode-change scheduling approach for EDF, we present the related work for
both of these fields.

2.1 Communication Protocols for Battery-free Devices

In this section, we discuss existing solutions to collect data from sensor-augmented RFID tags and
their limitations.

Current solutions consider mainly homogeneous environments, i.e., devices that have the same
transmission needs. The works in References [8, 26] exploit hash functions to send a unique query
to all devices. Many of the devices in the environment will answer sequentially, without the need of
a query for each of them. Different from our system, these protocols can only reduce the number
of empty slots and optimize transmissions, but they are not able to adapt to current tags needs
(e.g., give priority to more demanding devices). Furthermore, as the reader can send only one
query that contains information regarding many successive slots, these protocols are not able to
dynamically adapt to burst data. The work in Reference [17] studies the problem of range query for
sensor-augmented RFID systems, which is to classify the target tags according to the range of tag
information. The goal of this work is to optimize the number of queried ranges, maintaining high
query accuracy, that is quite different from our work, which learns and adapts to device needs. The
work in Reference [25] uses EDF to optimize packet transmission from an energy point of view,
but it does not consider the problem of adapting to different device requirements.

Closest to our work is the APT-MAC protocol [20] that dynamically collects data from sensor
augmented RFID tags. Specifically, APT-MAC exploits the bandit algorithm to select the next de-
vice to query: If the device has a new sample, then the reward is positive; if instead the device does
not have new data since the last reading, then the reward is negative. The main limitation of this
bandit solution is the lack of previous history of changes, because it keeps only one state (i.e., the
current one), and the reward taken under consideration is only the immediate one. Hence, bandit
can be thought of as having a single-state episode, meaning that the algorithm is not able to re-
member past devices behaviours. Every time a device changes behavior, the bandit starts learning
from the beginning.

We finally mention a class of protocols, whose goal is tag identification through a sequential [30]
or a concurrent [14, 38] approach, which can be adapted to gather data from sensor augmented
RFID tags. Specifically, sequential mechanisms can be adapted by storing the sensed value in the
buffer used to store the tag ID (up to 256 bits in total [2]), and transmitting them together during
the identification process. As these mechanisms rely on a slotted random access, they involve idle
and collision slots that significantly delay the data gathering process. Previous studies have shown
that the time wasted in idle and colliding slots is above 50%. Concurrent protocols instead are very
efficient and can be used to periodically report their measurements to the reader [38] but require
the use of signal processing techniques that involve significant computation time, resulting in an
inability to deliver data by a deadline.
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2.2 EDF Mode Change

We now present a number of useful related works for each of the scheduling topics we address in
the article (a new scheduling policy, a new feasibility test, and a policy on how to manage overload
scheduling).

Deadline scheduling has been deeply studied in the literature, for example Reference [32] offers
a prospect of available algorithms in the context of real time systems. Even the issue of dealing
with dynamic tasks received huge attention from the scientific community. The problem has been
divided into two main areas: the first addresses dynamic workloads, in which some of the tasks
to be executed dynamically change, while the second addresses systems with multiple working
modes: in this case a change in the environment drives the system from an operating mode to
another, asking a number of tasks to be deleted or released. In the case of EDF, a recent solution
for transients (i.e., periods of time in which tasks leave and join the schedule), has been presented
in Reference [7], where an online protocol is able to manage the admission control of a dynamic
workload. In Reference [6], a scheduling frame with elastic coefficients related to each task has
been proposed. In this case, the system is able to modify the period of tasks to adapt them to the
transient, but no guarantees on precedent tasks deadlines are given, thus causing packets to be
lost. Another solution, EDF-VD [3] (extended in Reference [21]), is able to manage task arrivals as-
signing shorter and “virtual” deadlines to critical tasks. In Reference [4], a partitioned scheduling
scheme able to re-weight tasks has been proposed, but the article also points out how the proposed
scheme is not capable of providing fairness or real-time guarantees. The main limitations of these
works are in terms of starvation risks (less demanding tasks during mode changes could be ex-
cluded from the schedule) and in terms of fairness (most demanding tasks, in absence of priority,
may completely saturate the communication channel at the expense of less demanding tasks).

In the context of how to deal with mode change the literature presents several solutions [11, 27,
29]. In particular, the work in Reference [29] proposes a protocol for mode change in a preemptive
scheduling environment. In Reference [33] the authors address dynamic mode change in real-time
systems under both EDF and Fixed Priority scheduling policies, but in this work during a mode
change no other task changes are accepted. In a context more related to networking, Reference [34]
investigates the adaptive reservation of resource provisioning for servers using a TDMA approach.
Another proposal presents a protocol for multicore systems scheduling under the assumption that,
in a mode change, only some of the tasks change requirements [24]. While some of these proposals
are able to guarantee absolute deadlines handling mode change in real-time systems, they are
inappropriate for a networking context as they do not consider the same execution priorities, and
they do not allow continuous and independent changes in the tasks set. Even those proposals
more related to networking do not match our problem: The tasks cannot independently change
requirements and there are admission delays or admission control systems. Differently, we attempt
to create a new scheduling policy that is compatible with every already presented TDMA-based
MAC protocol, and instead of refusing new tasks we aim at fairly updating the task set to make it
feasible.

Regarding the feasibility test, it is known that when a new task enters a system, to avoid missing
deadlines, the task has to satisfy an admission test, which typically consists in a feasibility test.
Generally, in a transient situation in which tasks are leaving and entering the system, a feasibility
analysis that does not consider leaving tasks is not safe [6, 37]. Furthermore, in our case we also
want to consider some jobs of the old scheduled frame while producing the new one. In Reference
[10] two feasibility tests for EDF with mode changes have been proposed: The first one considers
a fixed change sequence known a priori, while the second one allows the system to change on a
limited a set of modes. Unfortunately, both these tests are not applicable to EDF-IJ, as they do not
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consider jobs inherited from a number of previous schedules. Another approach to the transient
problem consists in transforming temporally some periodic tasks to aperiodic. While an admission
controller for tasks set composed of both periodic and aperiodic jobs has been proposed in Refer-
ence [1], this transformation has an impact on the whole scheduled frame, while in our proposal
we produce changes only on the initial part of the scheduled frame.

For the management of over scheduling, an interesting approach is presented in Reference [6],
where a resource manager is able to adapt tasks deadlines, depending on an elastic parameter, to
make the task set schedule feasible. This approach, different from our work, does not take into
account fairness between tasks while changing their periods.

3 OVERVIEW AND ASSUMPTIONS

Our goal is to design a protocol that dynamically discovers when devices have new data to send
(different from the previous sampling value) and adapts to their different communication require-
ments. This protocol is practical to use in IoT environments, i.e., devices may dynamically change
their transmission modes by detecting different type of events in the environment. In particular, we
consider the case of battery-free devices [18], realized through sensor-augmented RFID tags, such
as the Moo [40] or the Intel DL WISP [39] tags. These devices are computational RFIDs. Specifi-
cally, we use Moo tags, that are built on the prototype of WISP tags, and feature reprogrammable
microcontrollers, sensors and actuators, nonvolatile memory, and small energy buffers that tem-
porarily store harvested energy for computation [40]. Moo tags also allow for functions extension,
thanks to their general-purpose I/Os, serial buses, and 12-bit analog-to-digital and digital-to-analog
converter ports. The key feature of Moo devices is the energy provisioning: They operate through
RFID backscattering, harvesting power from signals emitted by a dedicated RFID reader, to sense
and communicate data. In particular, the reader emits a continuous wave that is absorbed by devices
to get powered and sense. The devices eventually communicate by reflecting or not the continuous
wave, modulating messages for the reader. For a survey on capabilities and applications of compu-
tational RFIDs, as well as more details on physical layer aspects we point the reader to Reference
[18].

Importantly, these devices present specific peculiarities that significantly limit their communi-
cation ability. Backscatter communication introduces different MAC layer communication mecha-
nisms. In particular, sensor-augmented RFID tags can communicate only with a dedicated device,
i.e., the reader, and cannot practically communicate with each other (the network is single hop).
In addition, they cannot perform carrier sense, nor transmit spontaneously, because they have
no power source on-board. Hence, communication has to be controlled by the reader that has to
query (and hence energize) devices to collect their sensed data. For this reason, we adopt a central-
ized approach to dynamically gather data from sensor-augmented RFID tags, as tags backscatter
the signal received by the reader. In particular, in sensor-augmented RFID systems it is natural
to designate the reader as the master of the communication protocol, a centralized entity that re-
ceives devices packets, and schedule device transmissions. This master also periodically runs an
inventory query to handle devices entering or leaving the area.

Considering the typical characteristics of RFID technology, we make the following assumptions:

• The network has a star topology, with the reader that directly queries all devices. This ap-
proach is reasonable in a smart home, because the reader can be plugged in and the rest
of the home devices (potentially many) have no batteries. It has been studied that the im-
provement achieved on the environment by making devices battery-free is greater than
the cost of powering a continuous operating reader [20]. In case of large areas with multi-
ple or vast rooms we assume that the RFID reader is equipped with multiple antennas, one
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transmitting and one receiving for each room. Each antenna has a transmission range that is
able to reach all devices in the same room. When the reader issues a query, all the transmit-
ting antennas broadcast the query at the same time, reaching all the devices in the home.
When tags receive a query, only the queried tag (whose ID is indicated inside the query
message) backscatters the received signal to send its sensed data to the reader; all the other
tags use the received signal to power on-board sensors and store the sensed data in a lo-
cal buffer. At each query only one device in the home is interrogated. Multiple receiving
antennas may receive its response (e.g., antennas in nearby rooms), eventually producing
redundant information.

• To minimize configuration costs and handle the IoT world we assume that devices freely
enter and leave the system without communicating any information about their type (e.g.,
temperature sensor, TV remote, etc.); they just receive an ID from the system and start op-
erating. The reasons for assuming no prior knowledge of devices are twofold. First, to allow
devices to declare their requirements without specific interaction with the user, the system
should have access to a global up to date database, containing information on all possible
devices, which would be laborious and error prone. Second, the rate at which sensors need
to send data is not necessarily the rate at which they sense the environment. Sensor trans-
mission rate requirements are given by the rate at which they detect a new value (different
from the previous sampling), which depends on environmental events. Consequently, a de-
vice should transmit only when it has new/changed data to send. Thus, knowing the device
sensing rate does not imply knowing the device communication needs that may be un-
predictable. For example a joystick may have different transmission rates depending on its
current use (e.g., on/off moments as well as different video-game requirements and player
activity). For these reasons, we believe that it is simpler and easier to have an automatic and
configuration/management free protocol, such that proposed in this article, that can adapt
to any newly installed or invented device and any environment change/condition.

To achieve environment-driven communication in such a context, the primary issue that we
need to deal with is learning and continuously monitoring environmental patterns and changes
in those patterns, which require specific rates for reading/transmission. As sensor transmission
rate requirements depend on new/changed sensed data, from now on we define transmission rate

as the rate at which a device needs to send data regarding a new event in the environment (again, to
be clear this is not the sensor sampling rate). The second important issue is to schedule channel
access such that data is delivered in time.

We tackle these problems through an innovative MAC protocol that integrates two key com-
ponents: a RL-based mechanism and an EDF real time scheduling policy. We also address the
challenges of mixing learning and scheduling, which guarantees high performance, but also poses
a critical issue on the way to ensure that all devices meet deadlines without starvation.

We propose a new MAC protocol, named ReLEDF, which quickly learns transmission rate re-
quirements of active devices, without having any a priori knowledge on the type of devices, and
properly schedules devices transmissions. The protocol relies on two key components: (1) a RL-
based mechanism that builds and updates the devices behavioral models and (2) a channel access
method based on EDF scheduling, improved to deal with schedule transitions, that maps devices
behavior models into a network frame. Figure 1 presents the overall system. In particular, the
figure shows a smart home with heating, fire alarm, light switches, cameras, joysticks, and a TV
remote as possibly found in a smart home. As possibly multiple users activate any of these de-
vices by using them, the RFID reader detects this and supports the appropriate scheduling and
communications. Later, a home owner may add a smart humidity control for plants, and a home
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Fig. 1. While receiving data samples, the reader learns and builds behavioral models. In particular, the RL

component estimates the current transmission requirement for each device. Then the reader maps transmis-

sion requirements into a communication schedule (frame) through an EDF policy.

security system. Such new devices are automatically handled together with the current devices if
and when they are used. The two components (i.e., RL and EDF) continuously interact and change
upon transmission feedback. In the following we detail the two components.

4 RELEDF: LEARNING DEVICES BEHAVIOR

The first component of our system is the construction of a dynamic behavioral model for each
network device to learn required transmission rates (at the current time and in the near future).
We briefly describe our idea and then present more details.

We want to model device behavior (i.e., the rate at which devices detect new events in the
environment) with a graph, where nodes correspond to transmission rates and edges represent
changes in transmission rate. As the system does not have prior knowledge on device’s type, we
consider several nodes in the graph, corresponding to a reasonable set of possible rate requirements
tr1, tr2, . . . , trn , where tr1 represents the highest rate (for example transmission every 20 ms) and
trn the lowest (for example, once every 2 s).

The lowest transmission rate represents the maximum delay between the generation by a sensor
of a new data sample and the transmission of the corresponding packet to the reader. This means
that also a dormant sensor, e.g., a fire alarm that is rarely enabled, in our set up is queried at least
every 2 s. Notice that, we consider a discrete finite set of transmission requirements to employ
Q-learning algorithms. However, device behavior involves only a subset of the nodes: Devices
typically move through a small subset of transmission rates. As an example, a temperature sensor
mainly remains in a low state in (e.g., trn−2, trn−1) in case of normal conditions, while a joystick
may pass from a stand-by state when it is OFF (e.g., trn state) to a burst transmission state, when
used for playing (e.g., tr1 or tr2 states, depending on user activity and game characteristics).

How do we represent the subset of states modeling a device behavior? We add weights on edges:
The value associated with the edge tri → tr j represents the probability to change rate from tri to
tr j . Our goal is to have for each active device an instance of the graph that at each time truly
represents current device communication behavior. The technique that we use to discover which
state of the graph more likely reflects current device behavior is based on reinforcement learning.

A brief primer on Reinforcement Learning: In RL problems, an agent interacts with the environ-
ment and at each time t , is placed in a certain state s in the set of states S, and takes an action a
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in A. The agent decides the action to perform depending on a policy π (at |st ). The policy, for each
action at and each state st , defines a scalar reward rt and the transition to the next state st+1, with
the help of the state transition probability P (st+1 |st ,at ) and the reward function R (s,a). While run-
ning, the agent tries to reach a terminal state (with the highest reward). However, if the problem
does not contemplate a terminal state, but keeps changing over time, as it is the case addressed by
our article, then the problem is called non-stationary.

In the context of our work, considering a single device, the agent corresponds to the interrogator

or master—the device dedicated to deciding which device to poll for transmission—states represent
device’s transmission rate requirements, actions concern changes of transmission rate, and the re-

ward concerns finding the current rate requirement of the device (corresponding to the real rate
requirement).

As we have multiple devices with heterogeneous rate requirements, and different variations
over time, but only one master, we introduce the figure of sub-agents. A sub-agent receives the rate
change from the agent and changes state. The master performs an action, i.e., selects a device to
query, and the sub-agent changes state (i.e., the master polls a device and updates its transmission
requirement, while the sub-agent transits eventually in a different state).

The set A of actions represents transitions between states. We have two types of actions: manda-

tory actions, in which the sub-agent has to move to another state, and non-mandatory actions, in
which the agent asks the sub-agent to move to another state in a set of states, but sub-agent’s de-
cision depends on the corresponding expected reward (it may happen that it remains in the same
state).

Let us now see how RL can be used to learn and monitor devices’ behaviors. To keep track of
device’s states and actions, we introduce a graph Gdv = {S,E,Wdv }, in which S is the set of states
{si |1 ≤ i ≤ n}, E is the set of directed edges, where ei→j represents a transition from state si to sj ,
andWdv is set of weights labeling edgeswi→j . In our model, a state si corresponds to a transmission
rate tri , an edge ei→j corresponds to the action aj in A, with (i, j ) any couple of nodes in G, and
a weight wi→j is tied to the action of going from state i to state j. While the sets S and E are the
same for all devices,Wdv depends on the specific transmission requirement of each device dv . As
the transmission requirement depends on the specific device behaviour, each device is related to
a different setWdv . We define the reward function as in Equation (1),

R (si ,aj ) = wi→j . (1)

Each time a weightwi→j is updated, we perform a Softmax [35] on the subset of rewards associated
with the set of actions that can be taken from state si , so as to compress the values into the range
of [0,1]. All the values of such a subset after Softmax sum to 1, meaning that the function R (si ,a)
has the property that ∑

∀a∈A
R (scurr ent ,a) = 1. (2)

Periodically, the master performs an inventory phase in which it assigns an ID to each device
to identify it in the communication protocol. This inventory stage supports new devices being
added or removed from the environment. Once the master knows all currently active devices in the
system, it places them in the state with the lowest requirement (i.e., sn ). Then the agent schedules
transmissions in a frame slots. Transmission scheduling is ruled by a EDF-based mechanism that
is explained in Section 5. When a device is polled, it replies with a packet containing the last data

sample and the value of a counter of changes representing the number of new samples generated
since the last query.

When the master receives a packet from a device, it observes the counter of changes. If
counter = 1, then the device has a new data sample since the last query, it means that polling
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frequency is appropriate. In this condition, the master communicates to the corresponding sub-
agent to remain in the current state. If counter = 0 (i.e., the device does not have new data since
the last query) or counter > 1 (i.e., the device has generated multiple new data instances since the
last query), then the sub-agent is scheduling transmissions with too high or too low frequency.
The sub-agent should change state, requiring a different polling frequency. Then the master asks
(in a non-mandatory way) the sub-agent to move to an upper or lower state (i.e., a state with a
higher or a lower frequency).

In case counter=0 then the sub-agent is asked to move to a lower state belonging to a subset
Sallowed ⊂ S of possible states. For example, for a device dv with counter=0 and transmission rate
corresponding to s2, the master asks the sub-agent, in a non-mandatory way, to move to a state
with a lower requirement, e.g., a state in the set Sallowed = {s3, s4, . . . , sn }. Instead, for a device dv
with counter>1 and transmission rate s4, the set of allowed states is Sallowed = {s1, s2, s3}.

Devices can move to a state in Sallowed or remain in the current one. How does a device choose
the next state? The decision is probabilistic. The probability to move to a state si ∈ Sallowed is given
by the reward R (scurr ent ,ai ), where ai is the action of moving to si . The outgoing edge with the
highest reward has the highest probability to be selected. Please note that for each node there is
also a self-loop edge, and the reward associated to this edge is given by the formula in Equation (3),

R (scurr ent ,acurr ent ) =
∑

∀sj ∈(S−Sallowed )

R (scurr ent ,as j ). (3)

To guarantee a wide exploration of states, with probability 1 − ϵ the master selects the next state
based on the reward mechanism, while with probability ϵ (which typically assumes a value around
0.1 [35]) the master randomly selects the next state among the allowed states and the current state.
Thus, our device modeling presents two main properties: (1) it explores the space of the states; (2) it
rapidly moves a device to the most appropriate state, jumping less promising states, guaranteeing
fast reaction to changes.

There is one last point that remains to be addressed: how are rewards updated? The idea is
to repay successful actions—corresponding to edges that bring devices into states in which their
counter remains unitary—and penalize those actions that bring devices in states in which their
counter becomes 0 or greater than 1. To quantify this idea, let us suppose at time t device dv is in
state si and takes action aj (i.e., moves from state si to state sj , following the edge ei→j that has
weightwt

i→j ). After the device performed the action, at time t +m, the weightwt+m
i→j is updated as

in Equation (4),

wt+m
i→j = w

t
i→j + α ∗ return, (4)

where α is a weighting factor and return is the reward corresponding the execution of action aj ,
and has been empirically evaluated as 2 if counter = 1, −0.2 otherwise.

5 RELEDF: SCHEDULING TRANSMISSIONS

We now describe how the reader assigns the transmission channel. Channel access is based on a
TDMA controlled by the reader. Time is divided into frames, and each frame is divided into slots.
All slots have the same length, and the reader signals the beginning of a new slot by sending a
query containing the ID of the device that has to answer next. The reader exploits the feedback
from the learning mechanism to schedule transmissions: The aim is to assign slots to devices based
on their communication requirements, i.e., how frequently they need to transmit data.

An efficient way to coordinate the polling process is through a dynamic real-time scheduling
algorithm, following a single processor approach (we have a single reader controlling the system).
In particular, we adopt a EDF algorithm, as it allows to optimally schedule devices transmissions,
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guaranteeing deadlines (i.e., periods). The idea is to map devices polling to tasks whose deadlines
are based on devices’ communication needs. This means that a device with a high transmission rate
will have a short deadline, while a device with low transmission rate will have a longer deadline.
Tasks are periodic and deadlines may cause a mode change: A joystick may need to be polled
once per second while not in-use (only to check if a player is starting using it) and hundreds of
times per second while in use. Passing from the off state to the in-use state, the joystick causes a
change in the deadline of the related task, requiring a new scheduling and thus requiring a mode
change.

Another aspect to be considered regards the size of data samples. Some devices need to send
only a few bits, others instead need to send a large number of bits. In each slot it is possible to
transmit a limited number of bits, depending on the encoding adopted. When a tag has long data
to transmit to the reader, it segments the information in multiple packets. Thus, in each slot, a
single packet is transmitted. For this reason, the system can be considered as preemptive: Even if a
device needs multiple slots to send its data sample, its assigned slots do not have to be contiguous,
as the reader is able to reassemble the information segmented in different packets.

5.1 Brief Introduction to EDF

We now give a brief introduction to EDF and real time scheduling, while an extensive description
can be found in Reference [32].

EDF is a priority policy for scheduling tasks based on deadlines. A task τi consists in a mini-
mum atomic executable entity of work and is characterized by a worst-case execution timeCi (the
maximum amount of time within which the work has to be accomplished) and a time constraint,
deadline, Pi (the period within which the task has to be performed). Given a set of real-time tasks
T = {τ1, . . . ,τn } to be scheduled, at each time slot EDF will execute the task closest to its dead-
line. In this work a task represents a communication between two devices. To guarantee that each
device will communicate at least once in a certain time, we consider only periodic tasks, i.e., their
instance must execute regularly once per period. Moreover, we set their period equal to their dead-
line Pi . Furthermore, only synchronous tasks are considered, meaning that all their first instances
are released at the same time, commonly considered time zero. Tasks executions are scheduled by
EDF inside a frame, which is a sequence of time slots. In each slot only one task can be executed,
and EDF decides which one. A task can be scheduled multiple times in a frame and each execution
is called job of the task. Each job j is characterized by a release time r j (defined as the point in time
at which the job becomes ready to be executed) and a deadline dj (defined as the point in time by
which the job must be completed).

Table 1 reports the notation used in the rest of the article.
The set TR of rate requirements is defined as {tr1 = 1/20, tr2 = 1/50, tr3 = 1/100, tr4 =

1/200, tr5 = 1/500, tr6 = 1/2,000}, where 1/x means once every x slots. This set has been defined
empirically to include a reasonable set of values. However, other rates may be employed. Regard-
ing the mapping L, please note that at any instant of time the same requirement may represent
the state of multiple devices, while other requirements may not represent any device. A task τi ,
as described in Reference [32], should have a name and a period. In our case there is a one to one
correspondence between devices and tasks. The name of task τi is given by the id associated with
the device dvi and the period of task τi is the current requirement of device dvi .

5.2 Mapping Learned Transmission Rates to Tasks

Each device dvi ∈ DV is linked in L to a specific transmission rate tr j ∈ TR, depending on the de-
vice current behavior. For example at time t1, three devices, DV = {dv1,dv2,dv3}, may be mapped
on the same transmission rate, L = {(dv1 → tr1), (dv2 → tr1), (dv3 → tr1)}. ReLEDF performs an
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Table 1. Notation

Notation Description

MS the master, a device dedicated to poll all other devices in the network

DV set {dv1, dv2, . . . , dvn } of devices that want to communicate with MS

T R set {tr1, tr2, . . . , trm } of rate requirements (i.e., polling frequencies) ordered by the highest to the lowest

L dynamic mapping (dvi ∈ DV → tri ∈ T R ) reflecting the current state of each device

T a set {τ1, τ2, . . . , τn } of current periodic tasks to be scheduled by the master

τi the ith task

j i
k

the k th job of the ith task

r j the release time of the job j

dj the deadline of the job j

M the set of mode changes

m0 system initial mode

mz the zth mode change

tmz the time in which happens the zth mode change

T z set of real-time tasks after the mode change mz

Cz
i

the execution time of the ith task after zth mode change

P z
i

the period/deadline of the ith task after zth mode change

inventory phase at the beginning of each frame so as to detect new devices joining the network.
As the behavior of the devices is not known, they are mapped to a medium transmission rate, i.e.,
tri/2, where i is the cardinality of setTR. Protocol operation will then allow for an eventually more
appropriate transmission rates.

Transmission rates are used to create the related tasks that are scheduled by EDF. A task τi is
defined by a name, that in our case is the device id ; a period Pi ; and an execution time Ci . Each
device dvi ∈ DV , with (dvi → tr j ) ∈ L, has an associated task τi with a unitary execution time

(Ci = 1) and period Pi =
1

tr j
. We consider unitary execution time as each task instance is executed

in a single slot, due to the TDMA approach.
Given a set of tasks, EDF creates a schedule that satisfy all the tasks deadlines. It is demonstrated

that if a feasible schedule exists, then it will be found by EDF [32]. In case one or more devices
change transmission requirements, the related set of task has to change deadlines. Let us sup-
pose that at time t1 the set of devices DV = {dv1,dv2,dv3} has mapping L = {(dv1 → tr1), (dv2 →
tr1), (dv3 → tr1)}, while at time t2, the mapping changes in L = {(dv1 → tr3), (dv2 → tr1), (dv3 →
tr1)}. The devicedv1 could be a presence sensor that at time t1 needs transmission rate correspond-
ing to tr1 because of the presence of many people, while it requires a lower transmission rate, e.g.,
tr3, at time t2 when few people are present in the environment. Then device dv1 causes a mode
change in the system, requiring EDF to produce a new schedule, as presented in Section 5.5.

5.3 Case Study

We show an example that serves as case study throughout the article. Let us consider a set T =
{τ1,τ2,τ3,τ4,τ5,τ6,τ7,τ8} of eight tasks with unitary execution time. For each task τi , EDF generates
a set of jobs, each one identified by ji

k
[r ,d ), where i represents the task, k the job instance, r the

release time, and d the deadline. Figure 2 shows the jobs generated by EDF for each task in T ,
and its corresponding period. Notice that, the jobs are generated according the Least Common

Multiple (LCM) of tasks’ periods, i.e., each task τi has exactly LCM
Pi

number of jobs in each frame.

Figure 3 shows the scheduled frame that is composed of 20 slots according to the LCM. Time slots
in the frame are indicated by ts , where s is the index of the slot. Notice that EDF uses a priority
scheduling policy based on deadlines, i.e., at any time the algorithm will execute the job closest to
its deadline.
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Fig. 2. Jobs generated by EDF.

Fig. 3. Initial schedule.

5.4 EDF Feasibility Analysis

We now present the main techniques to assess scheduling feasibility for a set of tasks T , i.e., to
establish whether it is possible to schedule all tasks such that so as to meet their deadlines. To this
end we first introduce some definitions.

Given a set of real-time tasks T , and an interval of time [t1, t2), we define:

• the process demand, as the computational time units required by the tasks instances (jobs)
in that interval of time: h[t1, t2) =

∑
t2≤rk ,dk ≤t1

Ck .

• the loading factor, as the fraction of the interval needed to execute its jobs: u[t1,t2 ) =
h[t1,t2 )

t2−t1

By means of these definitions it is possible to define the necessary feasibility condition for the
scheduling algorithm. The condition requires that, for any given interval [t1, t2) of the scheduled
frame, the loading factoru[t1,t2 ) is not greater than 1 (i.e., the jobs can be executed within a fraction
of the interval). We recall that for periodic tasks, the frame scheduled by EDF is composed of the
minimum sequence of jobs such that it is possible to create all task instances, with release times
and deadlines. Once the scheduled frame is created, the scheduling sequence continuously repeats.
Thus, to verify the feasibility of a scheduled frame, we introduce the absolute loading factor, which
is defined as the maximum of all possible intervals loading factor: u = sup0≤t1<t2

u[t1,t2 ) .
Each set of real-time tasks is feasibly scheduled by EDF if and only if its absolute loading factoru

is such that u < 1, according to Spuri Theorem [31]. Nevertheless, this feasibility analysis requires
to check all the possible intervals [t1, t2), requiring significant computational complexity. Liu and
Layland [16] propose an optimized condition for feasibility under EDF for synchronous periodic
tasks. Without loss of generality, they consider only the execution time (Ci ) and period (Pi ) of tasks
in T , without having to study each job in each possible period of the scheduled frame.

Corollary 1 (Liu and Layland). Any set of n synchronous periodic tasks with processor utiliza-

tion U = ∑n
i=1

Ci

Pi
is feasibly scheduled by EDF if and only if U ≤ 1.

Corollary (1) can be easily demonstrated as a consequence of Spuri Theorem, the formal proof is
given in Reference [32].
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Fig. 4. Example of a frame that is interrupted, with un-executed tasks to be rescheduled.

5.5 EDF with Mode Changes

Let us now consider the application of EDF in our dynamic environment. During the execution
of a scheduled frame, it may happen that (i) a task changes its period (i.e., a device changes its
transmission requirement), (ii) new tasks enter T (i.e., a new device joins the network), and (iii)
one or more tasks leave T (i.e., devices leaving the network). All these events produce a mode
change that has to be addressed.

EDF adopts one of the following two policies: (1) Wait for the end of the current frame and
then create a new schedule with updated tasks and (2) interrupt the current frame, create a new
schedule and immediately start it. However, both policies are inefficient in our context. The first
one can introduce delays, i.e., a task that has changed its period could wait long time before being
executed as required. For example, if τi changes its period at the beginning of a schedule, from P0

i

to P1
i s.t. P1

i 	 P0
i , then it could wait long before being executed with the new period P1

i , due to
other jobs left in the scheduled frame. The second policy can lead to starvation, i.e., a task may
never be executed. For example, assume that τi is a task placed at the end of the schedule, and
there are some tasks at the beginning of the schedule that continuously change their periods, then
the policy will continuously interrupt the current schedule to create a new one. Thus, as long as
there are changes, τi will be postponed and never executed.

To overcome these limitations we propose a new scheduling approach based on EDF, able to
reduce delays and avoid task starvation.

6 EDF-IJ: A NEW SCHEDULING POLICY

We propose a new scheduling policy, EDF-IJ. The main idea is to immediately interrupt the current
schedule when a mode change happens, and create a new schedule, keeping some information
regarding the un-executed jobs of the interrupted frame. The quick creation of a new schedule
allows fast changes and reduces delays, while the information about the previous one helps to
avoid starvation.

Let M = {m0,m1,m2, . . .} be the set of possible mode changes during the execution, and let
m0 be the initial system mode. In EDF-IJ for any mode change mi , an interrupt is generated, the
current schedule is cut, and consequently a new schedule is produced. Figure 4 shows an example
of a frame that is interrupted, leaving some jobs un-executed; they should be rescheduled. Let tm1

be the time slot in which the first mode changem1 happens (i.e., first cut), and let tm2 the time slot
of the second mode change (i.e., second cut), and so on. We define P0

i as the period of task τi before

the first mode change tm1 , P1
i the period of task τi before tm2 and after tm1 , and so on. For a mode

change z, if the task τi changes its period, then Pz−1
i � Pz

i . Instead, if a task τi does not change

its period, then Pz−1
i = Pz

i . In the new frame all tasks should be scheduled keeping their periods,
except for those that have caused the interrupt (as they have new periods). We also mention that, to
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Fig. 5. Inherited jobs table.

avoid starvation, the policy keeps some information regarding previous un-executed jobs. If these
jobs are not scheduled by taking care of their old deadlines, then it is possible to cause starvation:
Task instances placed at the end of the schedule will never be executed if they are preceded by
jobs of tasks that continuously change their periods). Thus, we introduce the inherited deadlines.
For each task that has not changed its period, the first un-executed instance after the mode change
is inherited in the new schedule and, this instance, will have its deadline equals to the minimum
between the inherited job deadline and the newly generated one. The inherited deadline is equal
to the deadline of the first un-executed job (after the mode change) minus the time at which the
mode change occurred plus 1.

In particular, the inherited deadlines are assigned to any first instance of τi ∈ T s.t. ∃ jij [r j ,dj )
not yet scheduled with dj > tm ≥ r j . Their inherited deadlines are computed using the following
formula:

dj =min(Pj ,dj − (tmz
+ 1)). (5)

Only the first instances of tasks may have inherited deadlines; these jobs represent the inherited
jobs from the previous schedule. For example, let us consider the beginning of a schedule and let us
suppose there exists an instance of the task τi not yet executed at time slot tm1 , the time at which
a task changes its period and generates a cut in the schedule. Let Pi be the task period of τi , with
P0

i = P1
i . Thus, the new schedule will have as first job instance of τi (ji1), i.e., the inherited job, with

a release time 0 and deadline equals to (Pi − (tm1 + 1)). This deadline is the minimum between the
new generated deadline, Pi , and the inherited one, Pi − (tm1 + 1). The next instances of τi in the
new schedule will be normally scheduled according to Pi (i.e., [Pi , 2 · Pi ), [2 · Pi , 3 · Pi ) and so on).

The EDF-IJ scheduling policy is shown in Algorithm 1. Every time a mode change happens,
the current schedule is interrupted and the algorithm provides a new one. Practically, it computes
the job instances for all the tasks; checks the feasibility of the schedule (Section 7) and, in case it
is not feasible, it uses the Distributed Loss resolution algorithm (DL-resolution) algorithm
(Section 8) to solve the overload schedule problem; finally, it computes the scheduled frame by
using a similar EDF policy.

6.1 Example of the New Scheduling Policy

Let us consider the set of tasks T depicted in Figure 2, the schedule of Figure 3, and the occurrence
of a mode changem1 at the end of time slot t12, induced by task τ8, which changed period from 20
to 10. Then, EDF-IJ creates a table (see Figure 5) where

(1) The first column contains the names of tasks in T .
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ALGORITHM 1: EDF-IJ

Input: The current schedule, a set of real-time tasks T , a mode changem
Result: A feasible schedule

1 set T ′ ← T after the mode changem;

2 set J ← jobs set to schedule;

3 for τi ∈ T ′ do

4 if τi � T ∨ Pm
i
� Pm−1

i
then

5 J+ = {ji1[0, Pm
i

), ji2[Pm
i

), 2Pm
i

), . . .};
6 end

7 else

8 if ∃jiz [rz ,dz ) not scheduled s .t . dz > tm > rz then

9 dz =min(Pz ,dz − tm − 1);

10 end

11 else

12 dz = Pz ;

13 end

14 J+ = {ji1[0,dz ), ji2[Pm
i
, 2Pm

i
), . . .};

15 end

16 end

17 if not feasibility(T ′,J );

18 then

19 DL-resolution(T ′,Ld) ;

20 end

21 return EDF(J );

(2) The second column indicates the new period afterm1. In this case, all jobs have the same
period depicted in Figure 2, apart from task τ8, which just changed it.

(3) The third column contains for each task the “inherited deadline.” If a task has an un-
executed job, its “inherited deadline” is given by the deadline of the first un-executed
job of such task (after m1) minus the time at which m1 occurred plus 1 (namely the time
of the slot after the cut, t12+1). Looking at Figure 3, after t12 the jobs we consider are
j14, j

2
4, j

3
3, j

4
2, j

5
2, j

6
1. For example, τ5 has a deadline of 20, m1 occurs at t12, so its inherited

deadline is 20 − (12 + 1) = 7.
(4) The fourth column shows the minimum between the second and the third column. In case

the third column is empty, it considers the second column value.

Now EDF is able to generate the new jobs, as presented in Figure 6. In particular, for the first
instance of each task, the deadline will be the time reported in column “First Job Deadline” in
Figure 5. The new schedule is depicted in Figure 7. Whenever a task changes its periods, and
before starting a new schedule, the policy must assert the feasibility (or un-feasibility) of the new
tasks set T under EDF and, moreover, it must be aware of inherited jobs and deadlines.

7 FEASIBILITY ANALYSIS

The new scheduling policy requires after each mode change a feasibility analysis. As tasks can
change period, it may happen that the new periods do not allow the creation of a feasible schedule.
For example, let T = {τ1,τ2,τ3,τ4} be the task set s.t. all of them have an execution time 1 and a
period P = 4. If τ1 reduces its period 4⇒ 3, thenU = 1

4 +
1
4 +

1
4 +

1
3 =

13
12 > 1, and thus no feasible

schedule exists according to Corollary 1.
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Fig. 6. Jobs generated by EDF after cut0.

Fig. 7. Initial schedule.

Fig. 8. Example in which Corollary 1 is not applicable.

Fig. 9. Example in which Corollary 1 is not applicable.

Furthermore, as presented in Section 6, the new proposed scheduling policy considers also in-
herited deadlines from the previous schedule. Even if these deadlines affect only the first instance
of some tasks they could make the feasibility analysis (Corollary 5) for EDF not applicable in our
case.

7.1 In-applicability of EDF Feasibility Analysis

In Figure 8 and Figure 9 we show an example in which Corollary 1 is not sufficient to provide
schedule feasibility in presence of inherited deadlines. In this example T is composed of four
periodic synchronous tasks: τ1, τ2, τ3, τ4, all of them with a period P = 4 and execution time 1. After
time t0, in which j11 is executed, the task τ1 is excluded from T as it is not required anymore. Notice
that even if a task leaves T it is useful to spawn a mode change and generate a new schedule as it is
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possible to optimize the execution of tasks, especially in relation with the new overload scheduling
policy presented in Section 8. After time t1, in which j21 is executed, the task τ2 changes its period
to a more demanding one (4⇒ 2). Thus, a second mode change (m2) is spawned. The feasibility
analysis, carried out using Corollary 1, shows that the task set T is feasible, asU = 1

4 +
1
4 +

1
2 = 1.

Instead, as the scheduling policy inherits also deadlines from the previous schedule for tasks τ2 and
τ3, jobs j21, j31, and j41 will have the same deadlines equals to time slot t2, and thus the schedule will
be unfeasible. From this example it is possible to conclude that Corollary 1 is not enough to test
the schedule feasibility for our proposal, and hence a new feasibility test for the proposed schedule
policy is needed.

7.2 A New Feasibility Analysis for Inherited Jobs

As mentioned in the previous section, Corollary 1 is not enough to test the schedule feasibility
when a mode change happens and we have some inherited jobs and deadlines. Thus, we first
define the initial process demand and initial loading factor with inherited jobs and we propose a
new feasibility test. We recall that, the job set IJ is composed of all the inherited jobs, i.e., the first
task instances in the new schedule with inherited deadlines.

Definition 2. Given a set of real-time tasks T , a set IJ of inherited jobs, and an interval of time
[0, t1), the initial process demand with inherited jobs is defined as the computational units required,
by the task instances and inherited jobs, in the first interval of time up to t1.

hI J [0, t1) =
∑

τi ∈T s .t .
� j i

k
∈I J

⌊
Ci

Pi

· t1
⌋
+

∑
τi ∈T s .t .

∃ j i
k
∈I J ∧ dj <t1

Ci +max

(
0,

⌊
Ci

Pi

· t1 −Ci

⌋)
. (6)

Equation (6) is composed of two main summations.

• The first summation regards only tasks without instances in I J . For each of these tasks, the
summation returns how many jobs they have with deadlines less than t1. Notice that, the
floor function is used to comply with the equation on process demand, i.e., the fractional
part of the sum argument represents a job that has a release time less than t1 but a deadline
greater than t1.

• The second summation regards only tasks with an instance in I J with deadline less than
t1. Notice that, these instances have always deadlines less or equals than their original
task deadlines, as they are inherited. For each of these tasks, we are counting one job
(Ci ) as the one from I J with inherited deadlines, plus the number of their normal in-
stances in this interval, minus the one inherited. Again, the floor function is used to comply
with the process demand equation. Notice also that, the “minus Ci ” is relevant only when
t1

Pi
≥ 1.

Definition 3. Given a set of real-time tasks T , a set IJ of inherited jobs, and an interval of [0,t1),
the initial loading factor with inherited jobs is defined as the fraction of the interval needed to
execute its jobs plus the inherited ones,

uI J [0, t1) =
hI J [0, t1)

t1
. (7)

In Theorem 4, we propose a new feasibility analysis for sets of real-time tasks plus inherited jobs.

Theorem 4. Each set of real-time tasks T with a set of inherited jobs, I J , is feasibly scheduled by

EDF-I J if and only if:
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• Corollary 1 is verified on T , i.e.,U ≤ 1
• ∀j ∈ I J the loading factor uI J [0,dj ) ≤ 1.

Proof. We prove that our Theorem satisfies the necessary feasibility condition for scheduling
real-time tasks (Spuri Theorem 5.4). The first condition guarantees that, in absence of inherited jobs
IJ, all the intervals [t1, t2) of the schedule have a loading factor u[t1,t2) ≤ 1, as direct consequence
of Corollary 1 and Theorem 5.4. This is a necessary condition for the feasibility test also with
inherited jobs. However, the inherited jobs could still overload some intervals and make the first
condition not sufficient. In particular, they can overload only intervals of the form [0,dj ), where
j ∈ I J : As they can be only the first instances of tasks and, according to the definition of inherited
deadlines, they can only be anticipated respect to the normal execution, they can overload only
the intervals at the beginning of the schedule, up to their inherited deadlines. Therefore, we show
that the second condition can check only these intervals to complete the feasibility analysis for
inherited jobs. In particular:

• It is not necessary to check any interval [ti ,dj ), i > 0, because if there exists an overload in
[ti ,dj ), then also [0,dj ) must be overloaded: As we are working with periodic synchronous
tasks, i.e., they start together at time 0, by Theorem 3.14 in Reference [32] it is not possible
to have an idle time slot before an overload, thus any overload must involve also the slot 0.

• It is not necessary to check any interval [0,dj − i ), 0 < i < dj , because an overload on it can
be caused only by a job not in I J , which would be already revealed by Corollary 1, or by
another job in I J with deadline different from dj , which would be revealed by our feasibility
analysis.

In summary, the first theorem condition guarantees that, for all couples [dj , tk ), s.t. k > d∧j ∈ I J ,
the loading factor will be less than 1, as the inherited jobs will not affect them; the second condition
of the feasibility analysis guarantees that the loading factor in the intervals [0,dj ), where j ∈ I J ,
will be less than 1, by definition of initial loading factor with inherited jobs, Equation (7). �

7.3 Example of Application of the Feasibility Test on an EDF-IJ Schedule

Let us take again T = {τ1,τ2,τ3,τ4}, all with the same period 4 and execution time 1. An example
is depicted in Figures 8 and 9. At time t0, I J is empty. In this case, the EDF-IJ policy works ex-
actly as EDF , as no instance should be “anticipated.” The feasibility test is performed, following
theorem 7.2, in the following way:

(1) Verify Corollary 1 on T . This job is easy performed, and returns that: U = 1
4 +

1
4 +

1
4 +

1
4 = 1.

(2) As I J is empty, no further actions are required.

A feasible schedule generated from T is shown in Figure 9, indicated as “First schedule.” After
t = 0, task τ1 leaves T : A mode change (m1) interrupts the current schedule. T 1 = {τ2,τ3,τ4} and in
this case I J = {j21[0, 3), j31[0, 3), j41[0, 3)}. As before, a feasibility test is required. The first condition

of the test is easily verified as U = 1
4 +

1
4 +

1
4 =

3
4 ≤ 1. In this case, as I J is not empty, we should

also verify that, for each deadline dj , j ∈ I J , uI J [0,dj ) ≤ 1, as shown in Equation (8). Notice that
all tasks in T 1 have an inherited job in I J ,

uI J [t0, t3) =
1 +max

(
0,
⌊

3
4 − 1

⌋ )
+ 1 +max

(
0,
⌊

3
4 − 1

⌋ )
+ 1 +max

(
0,
⌊

3
4 − 1

⌋ )
3

≤ 1. (8)

As both conditions are verified, there exists a schedule on T 1 that is feasible, and this schedule
is presented in Figure 9 indicated with m1. After t1, task τ2 changes its period, from 4 to 2. A new
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mode change (m2) happens, T 1 is updated becoming T 2 and a new schedule should be created. As
before, the feasibility test onT 2 is performed. The first condition is verified, asU = 1

2 +
1
4 +

1
4 = 1.

As demonstrated in Section 7.1 this test is not enough to guarantee the feasibility of the schedule
with inherited jobs. Now I J = {j31[0, 2), j41[0, 2)}. Notice also that as task τ2 changed period, now

two jobs are generated: j21[0, 2) and j22[2, 4). The second condition of the feasibility test must now
be executed on current deadlines dj , j ∈ I J , as shown in Equation (9),

uI J [0, t2) =

2
2 + 1 +max

(
0,
⌊

2
4 − 1

⌋ )
+ 1 +max

(
0,
⌊

2
4 − 1

⌋ )
2

=
3

2
> 1. (9)

As uI J [0, t2) is bigger than 1, the feasibility test indicates that does not exist a schedule feasible
under EDF. Effectively, as shown in Figures 8 and 9, in m2 at t3 both τ3 and τ4 instances have a
deadline of 2, and must be executed, but there is space just for one job. This condition introduces
an overload scheduling problem.

8 A NEW OVERLOAD SCHEDULING POLICY

The literature proposes the following solutions to handle the overload scheduling condition [32]:

(1) Best effort - each new task is added to T , even if the schedule is not feasible: Only tasks
with shorter deadlines are executed.

(2) Admission control scheme - if the new task makes T not feasible, then the new task is
refused.

(3) Robust scheme - when a new task enters the set T , some tasks are removed from T until
it becomes feasible depending on another policy different from EDF (e.g., priority policy).

These solutions perform well for real-time systems. In case of overload, they attempt to carry
out as much as possible critical jobs and dismiss those with higher period (according to the first
approach), the new ones in the second approach, or those with lowest priorities (according to some
priority policy). Instead, in a networking context, these solutions may have severe drawbacks,
bringing to an unfair channel allocation, in which some devices never communicate. While for
safety critical jobs missing a deadline is not acceptable, for IoT systems such as a smart home would
be preferable to miss a deadline rather than never communicate (missing a deadline introduces
delay and data loss but does not compromise the system).

To solve this issue, we propose a new overload scheduling policy that accepts any change in
the task set T , and, if the new schedule is not feasible, then it fairly rules the task periods to
re-establish the feasibility without removing any task. As overload scheduling often arises when
some tasks require to be executed more frequently, (i.e., require shorter periods but there are no
enough free slots), the policy stretches the tasks periods to resolve the overload. When applied in
a network context, such policy makes possible to communicate with all the devices.

Notice that each task period is closely related to the bandwidth allocated to the corresponding
device. If a task has period Pi , then the associated device can transmit up to 1

Pi
rate, thus, as the

task period increases the available bandwidth for the device decreases as well, causing data loss.
In particular, if an algorithm for overload scheduling increases each period by 1, meaning that
each task will miss its deadline by at most one slot, then the subsequent data loss could be unfair.
For example, given two tasks τ1 and τ2, with periods P1 = 2 and P2 = 7, which are supposed to
be increased by 1 unit, the data loss of τ1 will be around 33% while data loss of τ2 will be around
13%. To overcome this problem the increment of tasks periods is done according to the possible
data loss. Thus, our proposal increases periods while it guarantees a fair distributed loss among
tasks. Notice that, the execution time of tasks cannot be reduced to resolve an overload scheduling,

ACM Transactions on Internet of Things, Vol. 2, No. 2, Article 14. Publication date: April 2021.



Environment-driven Communication in Battery-free Smart Buildings 14:21

because it is the minimum amount of time required to have a complete and meaningful execution
of a task.

8.1 DL-resolution Algorithm

The overload scheduling policy is implemented in the DL-resolution, shown in Algorithm 2, which
takes in input a set of tasksT and a parameter Ld , and, until the set of tasks is not feasible, increases
the periods of some tasks. Only the periods of those tasks that maintain their data loss below a
predefined threshold, namely lossThreshold, are increased. This threshold is updated at each main
iteration by means of the input parameter Ld , which controls the fairness of the algorithm and its
applicability in network context. By setting Ld to a small enough value it is possible to iteratively
increase the tasks periods such that the tasks lose the same percentage of data. However, by setting
Ld to 1, it is possible to increase all the tasks periods by 1, such that all of them may fairly miss
deadlines by one slot, regardless the potential data loss in a network context.

ALGORITHM 2: DL-resolution

Input: A set of real-time tasks T and a loss data step Ld ∈ (0, 1]

Result: A feasible set of real-time tasks T
1 Set T ′ ← T ;

2 Map IP ← {i : 0}0≤i< |T | ;
3 float lossThreshold← 0;

4 while T ′ is not schedulable do

5 lossThreshold += Ld ;

6 for τi ∈ T do

7 P ′i ← IP[i] + 1;

8 expectedLoss = 1 − Pi

P ′i
;

9 if expectedLoss ≤ lossThreshold then

10 IP[i] += 1;

11 T ′.update (τi , P
′
i );

12 end

13 end

14 end

15 T ← T ′;

In summary, the proposed overload scheduling policy allows always scheduling all input tasks
by increasing their periods, and, by means of the input parameter Ld , which controls the data loss
threshold, it is possible to apply either a data loss fair policy, or a fair deadline miss policy.

9 RELEDF ALGORITHM

The ReLEDF algorithm combines the learning mechanism with the EDF-based scheduling and de-
vice polling. The main idea is that the master keeps polling devices until a change happens in de-
vices transmission requirements. Each time a device is polled, its state in the behavioral graphG is
updated depending on its counter value. After such update, if the device remains in the same state,
then the master keeps polling following the same schedule. Otherwise, the device model changes
state allowing for a new transmission rate, and a new schedule has to be generated. The generation
of a new schedule requires the creation of the transition schedule and, in case of overscheduling,
the application of the distributed loss algorithm. After defining and executing the transition sched-
ule, the master generates a schedule from L by following the standard EDF policy. The pseudocode
presenting the most significant steps is given in Algorithm 3.
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ALGORITHM 3: ReLEDF Algorithm

note: Variables names refers to Section 5 and Section 9

1 Master MS; Set DV; Schedule Scurrent; Map L; DV = MS.obtainDevices();

2 for dv ∈ DV do

3 L.add(dv,new DevModel())

4 end

5 Scurrent = MS.schedule(L);

6 Bool changes;

7 while true do

8 queriedDevice,ChangesCounter = MS.query();

9 changes = L[queriedDevice].update(ChangesCounter);

10 if changes then

11 Set IJ = MS.getStarvJobs();

12 overSched, Scurrent = MS.schedule(L,IJ);

13 while overSched do

14 distributeLoss(L);

15 overSched, Scurrent = MS.schedule(L,IJ);

16 end

17 end

18 end

At the beginning, the algorithm declares the master MS, the set of devices DV , the running
schedule Scurrent, and the mapping L. Then the algorithm, through the MS.obtainDevices method,
starts collecting the IDs of connected devices, assigned through a preliminary inventory process.
For each device, the master creates the corresponding sub-agent, to which will be assigned the low-
est transmission rate state (hence the first frame will have slots equally assigned to each device).
After setup, the algorithm generates a new schedule (MS.schedule(L)) and starts polling active de-
vices, through the MS.query method. For each poll, the algorithm asks the sub-agent corresponding
to the polled device to update its state, depending on the device counter value. If the sub-agent re-
mains in the current state, then the algorithm polls the next device in the schedule. If the sub-agent
changes state, then the algorithm creates a new schedule following the Transition without Starva-

tion Scheduling, described in Section 6. The method MS.getStarvTasks returns, for each device, the
first unexecuted task instance in the schedule, if there exists. If the schedule that is generated by
the updated L is feasible, then the algorithm updates Scurrent and starts polling. Otherwise, it ap-
plies the Distribute Loss policy, described in Section 8, until it does not reach a feasible schedule.
In the pseudocode we present only the most important instructions, omitting operations like the
rescheduling after a “Transition without Starvation Schedule.”

10 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our protocol ReLEDF through both simulations and
experiments. First, we evaluate the effectiveness of the proposed EDF-IJ scheduling, comparing it
with EDF and evaluating also the overload scheduling approach against other solutions. Then, we
evaluate the overall proposed protocol, namely ReLEDF, in different settings. Finally, we present
the results of real experiments.

10.1 Scenarios

Evaluated scenarios represent a typical smart home, involving a variable number of heteroge-
neous smart devices (e.g., temperature, presence, remotes and cameras). As shown in Table 2,
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Table 2. Scenarios Descriptions: Each Scenario Includes a Different

Number of Sensors of Different Types

Experiments Simulations
����������Sensor

Case
E1 E2 E3 E4 S1 S2 S3 S4 S5 S6 S7 S8

Environmental 2 4 10 12 37 35 34 32 32 32 80 120
Remote 1 2 3 4 2 3 3 4 4 4 8 18
JoyStick 1 1 2 3 1 2 3 4 4 4 8 8
Camera 0 1 1 1 0 0 0 0 1 2 4 4
Total 4 8 16 20 40 40 40 40 41 42 100 150

experimental scenarios include 4 to 20 devices (scenarios E1 to E4), so as to increase scenario
complexity. E1 represents a single room with a light sensor, a temperature sensor, a simple TV
remote and a joystick. E2 represents a two-room apartment, with a light sensor and a temperature
sensor per room, two TV remotes, one joystick, and one security camera outside the door. E3
and E4 represent two larger apartments, with three or four rooms and multiple sensors for each
room. Simulations consider even more complex scenarios, including 40 to 150 (scenarios S1 to S8)
heterogeneous devices. We remark that the value 40 has been used also in Reference [20].

Devices are simulated through Markov chains, as described in Reference [20]. Devices have
a set of states (representing possible transmission rates of devices), and a set of transitions be-
tween states, where transition probabilities reflect the device probabilities of producing new
data (e.g., sense a new value). If a device changes state, then a new packet is generated and
sent to the destination device. Let us consider the case of a temperature sensor, which gener-
ates a new data sample each time a significant change in the temperature is supposed to be
sensed. We imagine that the temperature changes on average 4 times per hour (this value can
be set as preferred), therefore the probability to change state should encode around 4 changes
per hour. The traffic generator flips a made-up coin every 10ms and decides whether to re-
main in the same state, expressing no change in sensed data, or to change state, sending the
new temperature packet. Thus the probability to pass from a value X to a value Y is defined as
P (chanдe ) = 4/(3600 ∗ 100), where the value 3, 600 ∗ 100 is the number of flips per hour. More
complex devices, which present multiple outgoing edges from the same state, follow a simi-
lar logic. However, transitions between states are more frequent. Consider the case of devices
that interact with the user, such as TV remotes or joysticks. They have variable behavior, as
they produce traffic burst when they are used but remain almost inactive when they are not
used.

10.2 Metrics

We measure the following metrics:

• Data Delay, defined as the time between the generation of a new packet on a device and
its collection by the master. In case a tag reads new data multiple times before being polled,
the data delay is measured since the first undelivered data collection.

• Packet Delivery Ratio, calculated as the number of packets containing new samples that
are received by the master over the total amount of new samples packets generated by all
devices.

• Fairness, intended as the Jain’s fairness index [13] calculated on the Packet Delivery Ratio.
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Fig. 10. Data delay comparison

among EDF, EDF with interrup-

tion (EDF-SR), and EDF-IJ.

Fig. 11. Packet delivery ratio

comparison among EDF, EDF

with interruption (EDF-SR), and

EDF-IJ.

Fig. 12. Fairness comparison

among EDF, EDF with interrup-

tion (EDF-SR), and EDF-IJ.

10.3 EDF vs. EDF-IJ: Simulation Results

10.3.1 EDF-IJ Effectiveness. We now present simulation results on the effectiveness of EDF-IJ.
For comparison we consider two versions of EDF. The first one is based on a pure implementation
of EDF, where in case of changes in the task set, the new schedule is issued only at the end of the
current frame. The second one creates a new schedule at each task change, without considering
any information regarding the interrupted schedule jobs. We indicate this second version of EDF
as EDF-SR.

Figure 10 shows the results for data delay in a typical smart home scenario (about 40 smart
devices), including a cameras continuously streaming data (scenario S5). EDF-SR and EDF-IJ are
comparable, resulting around 65% faster than EDF. This is because EDF is not very reactive to
changes, and it is slower to schedule a new frame with respect to the other two approaches.
Increasing the number of cameras that continuously stream data (scenario S6) requires massive
access to the communication channel, and introduces a significant number of overload scheduling
events. In this case EDF-IJ is more efficient than EDF-SR. The superiority of EDF-IJ becomes more
evident when looking at packet delivery ratio (see Figure 11) and fairness (see Figure 12): Not
only does EDF-IJ guarantee high delivery ratio in both cases (above 97%), but it also results more
fair (0.99) than the other policies (0.98 and 0.92 respectively for EDF and EDF-SR in Case S6).
Thus, our first set of results clearly show the benefits of EDF-IJ.

10.3.2 Resiliency to Overload Scheduling. We now investigate the resiliency to overload
scheduling of DL-resolution (it equally distributes loss of data), against common approaches. As
explained in Section 8 there are three approaches to address overload scheduling: Best Effort,
Admission control, and a Robust scheme. For comparison we consider the first two (Best Effort,
Admission control), because the third one is not applicable to our context, as we do not have a
priority list. The goal of the evaluation is to investigate the impact of DL-resolution of protocol
performance in terms of data delay, data loss and fairness (we are interested in communicating
with all the devices in an optimal but fair way) than the baselines.

Results are depicted in Figures 13, 14, and 15. For all metrics DL-resolution performs signif-
icantly better than the other two approaches, increasing its effectiveness in the more complex
scenario. S6 represents a “saturation scenario,” as the number of cameras continuously stream-
ing data introduces a significant number of overload scheduling events. DL-resolution not only
makes device communication faster (in S6 it takes on average only 28 ms, while the delay for the
Admission Control is nearly 300 ms), but also reduces data loss (0.04 against 0.21 and 0.71 of Ad-
mission Control and Best Effort in S6). In any case, DL-resolution results in more fairness then the
other two approaches (see Figure 15), as it achieves always 0.99 of fairness independently of the
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Fig. 13. Data delay of three

mode-change approaches under

EDF.

Fig. 14. Packet delivery ratio of

three mode-change approaches

under EDF.

Fig. 15. Fairness of three mode-

change approaches under EDF.

Fig. 16. First activation of a joystick. Fig. 17. Second activation of a joystick.

scenario. Thus this second set of results clearly show the benefits of using our DL-resolution to
handle overload scheduling.

10.4 ReLEDF: Simulation Evaluation

We now turn to a thorough simulation evaluation of ReLEDF. We compare our protocol with APT-
MAC [20], which is the closest to our work. To the best of our knowledge APT-MAC is the only
solution so far proposed to address communication for battery-free devices. We also compare to
the optimum and TDMA. The optimal solution, called OPT, is abstract as it always knows the best
action to perform (i.e., which device to query next to avoid any data loss). TDMA is a baseline strat-
egy that assigns slots in a round-robin TDMA schedule. For workloads we consider again typical
smart-home scenarios, involving around 40 heterogeneous smart devices (temperature, presence,
remote, joystick, camera) [20]. However to investigate scalability we consider also bigger net-
works (up to N = 150 devices). Furthermore, we consider a wide range of possible uses of devices
(S1 to S8). We have performed actual experiments with real-devices. The simulations use param-
eter values such as frame rates of the cameras that match these real devices. The simulations are
also validated by these experiments. Further, Table 2 shows for each of the seven simulations how
many environmental, remotes, joysticks and cameras are simulated. We also chose to simulate 40
devices to represent a reasonable current generation smart home and 150 devices to demonstrate
scaling for larger buildings. Complexity increases from S1 to case S8 as the number of burst devices
increases.

10.4.1 Learning Time. The evaluation first looks at the effectiveness of our learning compo-
nents, studying how fast ReLEDF learns and reacts to device behavior. Figure 16 shows the results
on the time taken by ReLEDF to learn the required transmission rate for a joystick since it is
switched on. For simplicity we indicate the relative time on the graph, meaning that the joystick
activation occurs at relative time 0. When the joystick is activated for the first time, it takes the
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Fig. 18. Packet delay for 40 devices by

varying types of devices.

Fig. 19. Packet Delivery Ratio by vary-

ing types of devices.

learning components a bit more than 1 s to understand that the joystick is on, and around 4.5 s to
learn its communication requirement (i.e., tr6), that is a reasonable time at system start up. At the
second activation instead the system achieves the proper requirement much faster, as it takes only
0.5 s to reach state tr6, that is short enough for practical usage (see Figure 17). Thus our first results
clearly show the benefits of using a RL-based approach, which quickly learns devices behavior.

10.4.2 System Efficiency. The second set of simulations investigates system efficiency. In terms
of speed, Figure 18 shows data delay for a variable number of devices. Our ReLEDF outperforms
APT-MAC taking only from 26.87 ms (case 1) to 39.8 ms (case 8), to deliver a new data sample,
resulting respectively 2 and over 3.5 times faster than APT-MAC in cases 1 and 8. ReLEDF is very
close to the OPT data delivery, performing only from 2.3 times slower in case 7 to 3.9 times in case
2. This performance trend is confirmed also when looking at the packet delivery ratio. As shown in
Figure 19, ReLEDF delivers 99% of newly generated packets independently of the simulated case,
being very close to the OPT that achieve always 100%, while APT-MAC loses 5% of new data in case
4 and up to 53% in case 8. APT-MAC clearly suffers the presence of cameras in the environment
(cases 5 to 8). TDMA loses more than 50% of new sample data, successfully delivering only 9.92%
of new data in case 8 and around 45% in the other cases. Increasing the number of devices (up to
150) does not have a significant impact on ReLEDF performance. Packet delay remains close to the
optimum, reducing up to 6 times with respect to APT-MAC. In case of 150 devices, ReLEDF spends
only 52 ms to deliver new data, against 316 ms for APT-MAC. Packet delivery ratio also remains
high, resulting over 95% for up to 150 devices. In contrast, APT-MAC packet delivery ratio drops
to only 47% in the case of 150 devices, while it is below to 10% for TDMA. Thus ReLEDF has almost
optimal efficiency in assigning channel access to heterogeneous devices. We point out that these
results are important in that they show that even ReLEDF’s centralized solution is quite scalable.

10.5 ReLEDF: Experimental Evaluation

The goals of our experiments are twofold: (i) to investigate the real applicability of ReLEDF and (ii)
compare performance of ReLEDF with that of baseline TDMA and state-of-the-art protocols like
APT-MAC [20]. To this end we implemented ReLEDF, APT-MAC, TDMA, and OPT on prototype
devices and run experiments. Before presenting experimental results we give a brief description
of our testbed.

10.5.1 Testbed. Figure 20 shows our testbed, which is composed of (i) an USRP RFID reader,
running RFID Gen2 Reader protocol developed by Buettner [5], and equipped with two 860-
to 910-MHz antennas; and (ii) four smart devices—a temperature sensor, a presence sensor, a
remote, a joystick—realized leveraging sensor augmented RFID Moo tags (see Figure 21) [40]. Moo

ACM Transactions on Internet of Things, Vol. 2, No. 2, Article 14. Publication date: April 2021.



Environment-driven Communication in Battery-free Smart Buildings 14:27

Fig. 20. Testbed: four Moo Tags, two 860-910 MHz

antennas, a USRP Reader and two Flex 900 daughter-

board.

Fig. 21. A joystick and an environmental

sensor.

Fig. 22. Experimental Packet delay by

varying MAC protocol.

Fig. 23. Experimental Packet Delivery

Ratio by varying MAC protocol.

platforms are equipped with an ultra low power MSP processor, a temperature sensor and a series
of input peripheries, like buttons and joysticks, and are powered only by the energy harvested from
the RFID reader. The communication protocols (ReLEDF, APT-MAC, TDMA, and OPT) have been
implemented introducing new primitives to the EPC Gen 2 [2], which is the standard protocol for
RFID identification. EPC issues frames of slots, whose length has been empirically estimated, ob-
serving the effect of communication errors or inferences (all packets are validated through a cyclic
redundancy check). During experiments we noticed that the packet error rate changes depending
on the slot length: with 6-ms slots, the system reaches a 18.9% of packet error rate, with 15 ms a
8.1% while with 25 ms gets lower than 2%. Although slots of reduced size have high packet error
rates, the redundancy introduced by multiple queries makes ReLEDF work better with reduced
size slots, reaching an optimum at 6 ms per slots. For this reason we fixed the slot length at 6 ms.

Each Moo tag emulates multiple smart devices so that we can perform experiments with a num-
ber of devices ranging from 4 to 20. Specifically, we use the traffic generators defined for the
simulation environment to emulate the different devices. The Moo tags transmit data according to
device models. In this way we can collect data on different environments, e.g., with 4, 8, 16, or 20
smart devices.

10.5.2 Results. We evaluated Data Delay and Packet Delivery Ratio while changing the number
and the type of connected devices (see E1 to E4 scenarios in Table 2). Results are averaged over
100 repetitions.

Figure 22 shows that all protocols are very fast in delivering data, taking less than 40 ms in
scenario E1, when there are few burst devices (only one remote and one joystick). Introducing a
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Fig. 24. Data Delay comparison among

MAC protocols (Optimum, ReLEDF,

APT-MAC, TDMA) by varying the

number of devices both in terms of

Simulation and Experiments.

Fig. 25. Packet Delivery Ratio compar-

ison among MAC protocols (Optimum,

ReLEDF, APT-MAC, TDMA) by varying

the number of devices both in terms of

Simulation and Experiments.

camera and increasing the number of burst devices (1 joystick and 2 remotes in E2, and 2 joysticks
and 3 remotes in E3) ReLEDF and APT-MAC keep low the data delay (below 25 ms), while TDMA
results more than 4 times slower, taking on average 110 ms to deliver data in E3. The advantage of
using ReLEDF becomes evident when the number of burst devices further increases (i.e., 1 camera,
3 joysticks and 4 remotes in scenario E4), as it takes ReLEDF on average only 39 ms to deliver data.
Indeed, this time is only one third of the time taken by APT-MAC in the same scenario. The good
performance of ReLEDF is confirmed by results on packet delivery ratio (see Figure 23), as it is
able to deliver above 97% of new data, independently of the scenario. Thus ReLEDF is practical for
smart homes.

10.5.3 Validation. We validated our simulations with experiments in the following way. We
simulate the experimented scenarios, i.e., E1 to E4. Figure 24 shows the data delay for the four
protocols. It is clear that the two evaluation techniques show comparable results, as simulation
produces results that deviate by about only 4.7%, independently of the scenario. Please note that
the experimental results of Figure 24 are the same as Figure 22. This outcome is confirmed by
Figure 25, where performance difference between experiments and simulations in packet delivery
ratio is below 4.8%.

10.5.4 Energy Evaluation. We now evaluate the energy impact of ReLEDF. As the whole pro-
tocol runs on the reader, the protocol does not have any effect on the energy consumption of
battery-free devices. Hence we estimate the energy consumption of the reader, which is a wired-
powered device. We measured the energy consumed by our reader, and quantified its consumption
in a year, that is very low. The reader employed in the experimentation has a power consumption
of around 1.3 A at 6 V, for around 8 W. Publicly available data specify that the maximum cost for
energy in the USA is less than 20 cent per KW/h. Given these data, we can estimate the system con-
sumption in around 70 KW/h per year, for a total of less than 20$ per year, that is very low. We also
notice that, from an environment-friendly point of view, the reader represents the most convenient
solution, as we don’t have any waste of batteries, nor any pollution impact on the environment.
Finally we notice that as stated in Reference [28] RFID technology should be deployed as part of a
building’s physical infrastructure, just like running water, lights, and heat. Hence, exploiting such
readers, our proposed devices can work with the emitted energy, without requiring batteries, or
other sources of energy. Hence, it is true that our system requires a continuously operating RFID
reader but any smart environment involves the deployment of an RFID reader [22].
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11 CONCLUSIONS

In this article, we developed ReLEDF, a new communication protocol that enables the coexistence
of multiple battery-free smart devices in the same smart building or home. ReLEDF is able to learn
and monitor the current and dynamic behavior (depending on changes in the environment that
involves what devices are currently being used and what their current communication require-
ments are) of a variety of battery-free devices, and properly coordinate channel access, so as to
satisfy heterogeneous device requirements. Our protocol exploits RL to build and update behav-
ioral device models that represent device communication needs based on events detected in the
environment, and a channel access method based on EDF scheduling, but modified to deal with
schedule transitions. The mix of learning and scheduling is an innovative way to schedule the net-
work, which guarantees high performance, and ensures that all devices meet deadlines without
starvation. For this reason we propose a new mode-change scheduling approach (EDF-IJ), which
reduces delays and avoids devices starvation in scheduling transmissions. Our simulation results
show the benefits of using ReLEDF: It outperforms state-of-the-art solutions both in data collec-
tion efficiency and effectiveness, allowing to a high number of smart devices to communicate with
an almost optimal packet delivery ratio. Finally, real experiments demonstrate the applicability of
our protocol. The overall value of the solution is to support many IoT devices in a smart space
without needing batteries.
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