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Abstract Road-network data compression or simplification reduces the size of the
network to occupy less storage with the aim to fit small form-factor routing devices,
mobile devices, or embedded systems. Simplification (a) reduces the storage cost
of memory and disks, and (b) reduces the I/O and communication overhead. There
are several road network compression techniques proposed in the literature. These
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techniques are evaluated by their compression ratios. However, none of these tech-
niques takes into consideration the possibility that the generated compressed data can
be used directly in Map-matching operation which is an essential component for all
location-aware services. Map-matching matches a measured latitude and longitude of
an object to an edge in the road network graph. In this paper, we propose a novel sim-
plification technique, named COMA, that (1) significantly reduces the size of a given
road network graph, (2) achieves high map-matching quality on the simplified graph,
and (3) enables the generated compressed road network graph to be used directly in
map-matching and location-based applications without a need to decompress it be-
forehand. COMA smartly deletes those nodes and edges that will not affect the graph
connectivity nor causing much of ambiguity in the map-matching of objects’ loca-
tion. COMA employs a controllable parameter; termed a conflict factor C, whereby
location aware services can trade the compression gain with map-matching accuracy
at varying granularity. We show that the time complexity of our COMA algorithm
is O(|N |log|N |). Intensive experimental evaluation based on a real implementation
and data demonstrates that COMA can achieve about a 75% compression-ratio while
preserving high map-matching quality.

Road Network, Simplification, Compression, Spatial, Location, Performance,
Accuracy, Efficiency, Scalability.
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1 Introduction

Extensive availability of GPS-enabled devices has increased the need for routing and
navigation services. The storage, processing, and transmission of road-network data
are the biggest performance issues facing such services and is an important data man-
agement challenge. A road-network map, road map for short, is represented as a graph
structure with a set of nodes, edges and edges weights, i.e., travel distance or time.
To provide a navigation service, the user’s location, as measured by a GPS device, is
continuously map-matched to an edge in the graph. This edge represents the current
road segment that the mobile user is believed to be travelling on.

Map-matching links an object location, i.e., latitude and longitude coordinates,
to the corresponding edge in the underlying road map [28]. Map-matching is crucial
for location aware services that answer queries based on the current [9, 22] and/or
future objects’ location [10,11,14]. Traditionally, map-matching is performed on the
original (i.e., non-compressed) road network data. For example, an in-car GPS device
stores the digital map of the commuted area, i.e., city, state or country, such that the
car location can be mapped correctly to a road segment in this map. However, there
are several situations and application scenarios where a simplified version of the road
network data is required.

Map compression or simplification enables small size devices, e.g., smart
watches, to carry the road map for large areas. The words compression and simplifica-
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tion are used interchangeably throughout the paper to mean converting the underlying
road network to a simplified graph.

More specifically, compact representations of road map data are triggered by the
need to: (a) reduce the cost of storage devices, e.g., Solid State Drives (SSD), (b)
reduce the I/O overheads, and (c) cut down the communication cost and battery con-
sumption in the case that the road map is stored on the server side and is transmitted
to the client side over the network. As forecasted by ABIresearch [31], the smart
watches market is expected to range from 30 to 50 million watches per year. This
expectation shows the importance of having a compact version of the road map that
fits into tiny GPS-enabled devices such as smart watches.

Motivated by the above reasons, road-network simplification becomes an essen-
tial goal for spatial database researchers. In fact, there are several compression tech-
niques proposed in the literature [1, 15, 17, 30, 34]. These techniques strive for a high
compression ratio as its major performance measure. However, none of these tech-
niques focus on the quality of map-matching on the generated simplified data. More-
over, the compressed map generated by some of these techniques cannot be used
directly to perform map-matching without an initial phase of decompression to re-
store the original form of the map. This initial phase leads to high CPU power wasted
in decompression of the compressed map and, hence, increases battery consumption.
Furthermore, in some lossy compression techniques, the compressed version of the
road-map is not an equivalent representation of the original one. Some of the map
details are lost during the compression process. The quality of lossy compression
techniques are evaluated based on visual similarity or dissimilarity between the gen-
erated map (after compression) and the original version of the map (that is before
compression). While visual similarity is a valid measure of performance in some ap-
plications, we set our performance measure to be the quality of map-matching using
the compressed version of the map. Losing some critical information such as the exact
locations of specific nodes (e.g., intersections and highway exits) leads to low accu-
racy in the map-matching results, which, in turn, affects the quality of location based
services negatively. In this paper, we draw the attention of the spatial database com-
munity to the importance of road network compression while preserving the quality
of map-matching and hence the location-based service.

We present a novel road network graph simplification technique, named COMA,
that can significantly reduce the size of a given road-network graph without losing
any critical information that might prevent map-matching process on the compacted
road-network map. COMA users are mainly the developers of location-aware systems
who need to include light wight version of a road network graph in their mobile appli-
cations. One of the COMA’s merits is that spatial operations such as Map-matching
can be performed directly on the compressed data without the need to decompress
the data beforehand. Also, the underlying map-matching algorithm does not need to
be changed to work on the simplified graph. In addition, COMA can achieve high
compression ratios in areas where the map matcher is not confused by deformations
in the map appearance that result from the lossy nature of the proposed technique.
Furthermore, a tuning parameter, named the conflict factor, is introduced to control
the behavior of the technique and trades the compression ratio for the quality (details)
of the compressed map.Moreover, a rigid analysis on the computational cost of the
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COMA algorithm is provided. Finally, an extensive experimental study is conducted
using real data sets of road maps and GPS trajectories to evaluate the performance of
the proposed technique in various settings.

In this article, we are improving the preliminary version of compression (simpli-
fication) framework, COMA, [12, 13]. Here, the proposed simplification framework
is extended by: (a) speeding up the map simplification algorithm by pruning needless
calculations, (b) describing the system architecture and its main data structures, (c)
providing the pseudo code for the simplification algorithm with detailed explanation
along with step-by-step illustrative example, (d) studying the effect of the conflict fac-
tor as controlling parameter on both the compression gain and map-matching quality
over the compact data, and (e) conducting an extensive experimental evaluation and
comparison with the competitive work.

The main idea of our proposed compression technique is to selectively get rid
of as many nodes as possible from the original road network. Such selective node
removal also ensures that the affected edges will not cause a conflict with other nearby
edges when we do map-matching for object location. A distance threshold parameter,
termed conflict factor C, determines the ratio of the distance between the original
node and the closest conflict edge to the distance between the to-be-added edge (after
removing a node) and the closest conflict edge. In this way setting the conflict factor
controls the compression ratio while preserving the accuracy of map-matching on the
compressed map data. The larger the value of C, the more compressed is the map, and
lesser the accuracy of map-matching.

The rest of this paper is organized as follows. Section 2 highlights related work.
Section 3 provides a formal definition of the problem. The system model is described
in Section 4. The compression technique is described in Section 5. While Section 6
gives an illustrative example. Section 7 provides the cost analysis and more pruning
decisions. The experimental evaluation that is based on real road network data is
given in Section 8. Finally, Section 9 concludes the paper.

2 Related Work

In this section, we overview related work in both map matching and road network
compression

2.1 Map Matching

Matching an individual GPS point in the object’s path to its nearest edge in the road
map does not provide adequate accuracy. Due to the noisy nature of GPS signals,
the nearest edge to the measured GPS point may not be the actual edge the object
is travelling on. Consequently, map-matching on a point-by-point basis, where each
point is map-matched individually and independently of other points, usually results
in a disconnected path. In this resultant path, the moving object appears to be jumping
across network edges that are not connected at all. Map matching techniques take
into consideration several geometric and probabilistic factors to enhance the map
matching accuracy.
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In addition to the proximity of a GPS point to an edge in the graph, White et
al. [33] present several map matching algorithms that take into consideration the
similarity of the object’s heading information to the angle of the road. They have
also enhanced the proposed map matching algorithm by considering the connectivity
constraints of the road map. Greenfeld [7] proposes a geometric approach for map
matching that assesses similarity between the object’s path and the road segments us-
ing distance and orientation. The Frechet distance has been used to match a curve in
the object’s path to the corresponding road segments [4, 8]. Kim et al. [19] consider
the distance of a GPS point to an edge, the similarity of the path to the road geometry
and the continuity of the path.

Some techniques tackle the map matching problem probabilistically as a Hidden
Markov Model (HMM) problem, where the object transitions from one road segment
to another according to a transition probability matrix. HMM-based approaches factor
the connectivity of the road segments into the transition probability matrix, consider
multiple path hypotheses simultaneously, and choose the path with the maximum
likelihood. For example, Lamb and Thiebaux [21] applies a Kalman filter followed
by a HMM. Krumm et al. [20] use a HMM to balance the measurement noise and path
probabilities. HMM proved to be efficient under low sampling rates and sparse data
sets [26]. The ACM SIGSPATIAL organized a programming contest, the SIGSPA-
TIAL Cup 2012, and invited participants to come up with efficient map matching
algorithms. Around thirty map matching submissions were evaluated against accu-
racy and speed and the result is documented in [3]. In this paper, we utilize one of the
winning algorithms [23] to evaluate the accuracy of map matching on both the orig-
inal and compressed road network graphs. For a literature review on map matching,
the reader is referred to [28].

2.2 Road Network Compression

In this section, we overview road network compression techniques and we refer the
reader to [18] for additional details. We categorize compression techniques in two
main groups: (1) lossless compression and (2) lossy compression techniques. In loss-
less compression, every single data element is recovered when the given compressed
map is decompressed back to its original format. Lossless compression is very impor-
tant in terms of preserving the topological properties of a map. Alternatively, in lossy
compression, certain spatial data is lost permanently as a result of the compression.
Lossy compression is acceptable, or even desired, in cases where not all object details
are required to perform the spatiotemporal operation in question.

Zongyu [34] proposes a lossless compression technique that navigates through the
given road map based on its topology to build a prediction model. This model predicts
the next to-be-visited node based on the already visited nodes. This compression
scheme encodes a node using less number of bits than originally required. Suh et
al. [15] propose another lossless approach that utilizes combinatorial optimization
and data mining techniques to compress the road network nodes as well as the road
shapes.
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Fig. 1 Decompression By Predicting The Original Nodes

Lossy compression techniques, in general, discover similar chunks of data, create
dictionaries on frequently referenced data chunks, and then refer to items in these dic-
tionaries to encode the data. The higher the redundancy in the input data is, the higher
the compression ratio is. Shashi et al. [30] propose a dictionary based compression
technique, where the dictionary entries represent frequent shapes of line segments on
the map. During data compression, line segments of similar shapes are extracted and
represented by a single representative line segment. This representative line segment
is inserted into the dictionary. Upon data decompression, the dictionary is looked up
and decompression is done by reverting each line segment back to its representative
line segment from the dictionary.

The reference line approach is another lossy compression approach that is pro-
posed in [1, 5]. The basic steps of the algorithm can be described as follows:

(1) For each polyline in the original map space, a reference line is identified, (usu-
ally produced from connecting the two ends of the polyline). (2) The coordinates of
that reference line along with its angle from the original coordinate system is used to
apply an affine transformation to the points on that polyline. (3) The delta distances
in the vertical direction between the intermediate points on the polyline and the ref-
erence line in the new coordinate system are bounded by a predefined error threshold
e. The selected reference line should keep these deltas within e, otherwise, a more
representative reference line is selected. (4) In the aggressive mode of the reference
line approach [1], which achieves higher compression ratio, but less accurate decom-
pression, the original coordinate values of the two ends of the line are stored, along
with the number of intermediate points and the error tolerance e.

At the decompression phase, the algorithm runs two equations to predict the in-
termediate points of the original curve. The first to restore points closest to the left
side of the reference line and the second for the points closest to the right end point
of the line. Initially, the two ends of the reference line are leveraged to recover the
first point nearest to the left side, e.g., predicting coordinates of n3 using n1 and n2 in
Figure 1(a). Then, the two most recent restored points, (from left and right), are used
to predict the next point, e.g., restoring n4 using n3 and n2 in Figure 1(b).

In the less aggressive solution [5], (less lossy and less compression ratio), the
algorithm stores delta vectors between each intermediate point coordinates and the
origin of the reference line, in addition to the two ends of the reference line them-
selves.
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Map generalization is a process of reducing the complexity of the map without
hampering the topological and structural features [25]. Generalization operators in-
clude simplification and smoothing. One of the most known line generalization and
simplification technique is the Douglas-Peucker algorithm [6].

Shin Ting et al. [32] utilize an improved Douglas-Peucker algorithm to avoid
self-intersections for any specified tolerance. Saalfeld [29] uses a convex hull to ef-
ficiently detect and correct the topological inconsistencies of the polyline with itself
and with other polyline characteristics. Ali et al. [17] propose a hybrid aggregation
and compression technique and integrate it with the query processing pipeline of a
road network database.

Although the aforementioned compression techniques can achieve considerable
levels of compression, however, none of them considers the quality of using the com-
pressed road network version to perform spatial operations, e.g., map-matching.

Our work here differentiates itself from the existing work in that our road net-
work compression (simplification) algorithm takes into consideration the accuracy of
performing map-matching operation on the produced simplified road network graph.

3 Problem Definition

In this paper, we address the road network compression problem such that the output
is sensitive to the quality of the map-matching operation. In this section, we give a
formal definition of the problem and describe the input and output of the proposed
compression algorithm (Section 3.1). Then, we describe the input and output of a
typical map-matching algorithm (Section 3.2). Note that this paper proposes a novel
algorithm to generate a compressed road map that is usable by any map-matching
technique. Hence, the choice of the map matcher is orthogonal to the proposed com-
pression algorithm. We also define two measures of performance, the compression
ratio CR and the map-matching accuracy.

3.1 Road network compression (simplification)

Consider a road network graph G(N,E), such that:

– N , is a set of nodes, where each node ni(lat, lon) ∈ N is defined by its latitude
(lat) and longitude (lon), and

– E, is a set of edges, where each edge es,e(ns, ne, wse) ∈ E is defined by a start
node ns, an end node ne, and a weight wse that refers to the cost of traversing
this edge, e.g., distance or travel time.

We assume that the given road network graph G is directed, where the travel
direction over edge e is from the edge’s start node to the end node (and is represented
as e : ns → ne). An undirected edge means that this edge is bi-directional (and is
represented as e : n1 ↔ n2). For example, an undirected edge e that connects nodes
n1 and n2 will be converted into two edges with the same weight, one edge e1,2 from
n1 to n2 and another edge e2,1 from n2 to n1.
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The following definitions formalize the problem and introduce several concepts
that are used throughout the rest of the paper:

Road network compression (simplification) generates a simplified version of
the road network graph G

′
(N

′
, E

′
) such that N

′ ⊂ N and |E′ | < |E|.
Victimized node. A victimized node is a node nv such that nv ∈N and nv /∈N

′
.

Bridge edge. if nv is a victimized node that is connected to nodes ni and nj by
edges ei,v ∈ E and ev,j ∈ E, respectively, ∃ a bridge edge ei,j(ni, nj , wij) ∈ E

′
to

reconnect ni and nj such that wij = wiv + wvj .
The definitions above implies that the compression (simplification) problem gen-

erates a simplified graph G
′

such that the number of nodes is reduced by victimizing
several nodes from the original graph G. Consequently, the nodes in the resultant
graph G

′
is a subset of the nodes in the original graph G (as described in Defini-

tion 3.1). If two nodes ni and nj are connected through an intermediate node nv that
is victimized during the simplification process (Definition 3.1), ni and nj are recon-
nected through a bridge edge to maintain the connectivity of the compressed graph
(Definition 3.1). Hence, eliminating a victim node nv also simplifies two adjacent
edges into one edge, the bridge edge. Note that as more adjacent nodes are victim-
ized, one bridge edge can represent multiple consequent edges. The weight of the
bridge edge becomes the sum of the weights of the edges it represents. By replac-
ing multiple consequent edges by a single bridge edge, the number of edges in G

′

becomes less than the number of edges in G as indicated by |E′ | < |E| in Defini-
tion 3.1. Surely, not all nodes will be victimized. Certain types of nodes are never
considered for victimization such as nodes with large number of connected edges,
and nodes that have all output edges (focal start nodes) or all input edges (focal end
nodes).

Compression Ratio. CR = 1− |N ′ |/|N |

We define the compression ratio as the reduction in the number of nodes in the
generated graph relative to the original graph. Other compression ratio measures may
also consider the reduction in the number of edges. In our algorithm, the reduction in
the total number of edges is linearly correlated with the reduction in the number of
nodes. Hence, we consider the reduction in the number of nodes as our compression
ratio measure.

3.2 Map-matching over compressed graphs

An object trajectory Traj is a chronologically ordered set of object’s time-stamped
locations. Each time-stamped location is in the form of (object-id, time-stamp, lat-
itude, longitude). A map-matched trajectory appends an edge id e to each object’s
location to denote the road segment (or the edge in the graph) the object is believed
to be travelling on at that timestamp. To assess the performance of map-matching
using a compressed road graph G

′
relative to the original graph G, the object’s tra-

jectory is map-matched using both graphs.
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Fig. 2 The COMA framework consists of a map based UI, compression and map-matching modules, and
a spatial-index each acting in sync with user or system specified conflict factor parameters to facilitate
compression with map-matching for object trajectories.

Accurate map-match. If an object location is map-matched to an edge e using
the road network graph G and is map-matched to an edge e

′
using the compressed

version of the road network graph G
′
, an accurate match is declared if e = e

′
or e

′

is a bridge edge that encompasses e as one of its compressed underlying edges.

After determining the accurate map match, we define the accuracy of map-
matching given a road network compression technique as the percentage of accu-
rate map matches relative to the entire trajectory length normalized by the number of
corresponding merged edges.

Map-matching accuracy under compression.

Accuracy =
T∑

i=1

accurate(Traji)
|Traji|∗m , where accurate (Traji) is the number of accu-

rately map-matched locations in the trajectory Traji, m is the number of correspond-
ing merged edges per the bridge edge e

′
and |Traji| is the number of all locations in

the the trajectory Traji.

4 System Model

The overall COMA framework and its two main components, namely the Compres-
sion Module, and the Map-Matching Module are shown in Figure 2. Users interact
with the system through its map-based web interface to submit compression and map-
matching requests, and also to set the system settings. As mentioned earlier, COMA
users are mainly developers. They can specify areas on the map to be compressed
before being employed in their applications.

Once the COMA framework receives a compression request it sends it to the
compression module which runs on the selected area on the map. The R-tree spatial
index is augmented inside COMA to accelerate the retrieval of those parts of the road
map that intersect with the given area of interest, Figure 3. If the user selects to test
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Fig. 3 Indexing Road Network Using R-Tree Structure in COMA

Algorithm 1 COMA: Road Network Compression For Map-Matching

Input: Road Network Graph G(N,E),
Conflict Factor Threshold C
1: #Original Nodes← Count(N )
2: for each node n ∈ N do
3: /* Step 1: Select Candidate Victim Node*/

4: if Select Candidate Victim(G, n) then
5: Ein ← set of input edges to n

6: Eout ← set of output edge from n

7: /* Step 2: Check Conflict Edges*/

8: Check Conflict(G, n, Ein, Eout, C)
9: /* Step 3: Victimize Chosen Node*/

10: Delete And Merge(G, n, Ein, Eout)
11: end if
12: end for
13: #Compressed Nodes← Count(N )
14: CR = 1- #Compressed Nodes

#Original Nodes
// Compression Ratio

15: Return G, CR

the map-matching accuracy on the produced compact graph, the system launches
the map-matching module which in turns accesses the spatial index to retrieve the
collocated set of objects’ trajectories and tries to match them to their corresponding
roads and compare the matching correctness against the already known results.

5 The Compression/Simplification Module

In this section, we describe our proposed COMA technique for road network compres-
sion for map-matching. We start by briefing the main idea of the proposed technique,
then we go through the algorithm details, and finally, we give an example to further
illustrate the steps of the algorithm.

Main Idea. The main idea of the proposed COMA technique is to reduce the
number of nodes and edges in the given road network graph such that the deletion
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of a node/edge does not cause map-matching ambiguity. Here, we need emphasis
that the employed map-matching algorithm in this work relies solely on the distance
between the object location and the nearby edges. However, there are many other
map-matching algorithms that rely on other factors (e.g., angles, direction etc.). As
described in Section 3, multiple edges are simplified and represented by a single
bridge edge. A smart simplification algorithm optimizes for a minimal amount of
false positives and false negatives. On one side, we make sure that the to-be-added
bridge edge is closer to the to-be-deleted victim node (and its edges) than any other
existing edge in the vicinity. Hence, the object that is travelling on the to-be-deleted
edge can still be map-matched correctly to the bridge edge with no ambiguity or
confusion with other edges. Consequently, we avoid false negatives, where the object
is not map-matched to the bridge edge while it is supposed to. On another side, we
make sure that the to-be-added bridge edge has no edges that are closer than the
to-be-deleted edges. Hence, an object travelling on a nearby edge is not mistakenly
map-matched to the bridge edge. Consequently, we avoid false positives, where the
object is map-matched to the bridge edge while it is travelling on a different edge.

In other words, to decide whether a node nv qualifies for victimization or not,
COMA examines the newly formed bridge edge ei,j(ni, nj), (resulting from con-
necting the two far ends, ni and nj of the input and output edges of nv). If (1) the
bridge edge is closer to the in-hand node nv than any other edge in the vicinity and (2)
if the to-be-deleted edges are the closest to the bridge edge, the node nv is victimized
and the new bridge edge replaces the edges of nv in the graph.

To control the behavior of the compression algorithm, we define a tuning param-
eter, called the conflict factor threshold C. The conflict factor of a candidate victim
node nv is the distance from the this node nv to the to-be-added bridging edge rel-
ative to the distance from nv to the nearest edge in the vicinity. If the conflict factor
of node nv is below the specified conflict factor threshold C, the victimization may
take place. Otherwise, the victimization stops and no compression is achieved at that
node. By leveraging C, we can control the trade-off between the compression ratio
and the map-matching quality. The higher C is, the higher the compression ratio we
get, and the less the quality of map-matching, and vise versa.

Algorithm. The pseudo code of the proposed compression technique is given in
Algorithm 1. The algorithm takes as input the original road network graph G, and the
conflict factor C. As output, the algorithm returns the compressed version of the road
network graph, and the compression ratio. The algorithm has three main steps that
are described as follows.

Step 1: Select Candidate Victim Node. The compression process starts from
any arbitrary node in the underlying road network graph, (Line 3). Once we pick a
node, the algorithm examines the ability to delete (or victimize) this node from the
given road network graph, (i.e., whole graph or specific region). Yet, the algorithm
applies some checks to make sure that the deletion of this node is safe from a graph
connectivity perspective. This is done by calling the Select Candidate Victim(G, n)
function which considers the in-hand candidate node n as a valid victim for deletion
when any of the following conditions is valid.
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Algorithm 2 Check Conflict Function

Input: Road Network Graph G(N,E,W ), Node nv , InEdges Ein, OutEdges Eout, Conflict Factor C

1: for each edge ein ∈ Ein do
2: for each edge eout ∈ Eout do
3: econflict ← Find nearest edge to nv where econflict is not connected to nv

4: ebridge ← Create new edge by connecting the far ends of ein and eout

5: if Distance(nv , ebridge) / Distance(nv , econflict) < C then
6: nmid ← Get midpoint of ebridge
7: enewConflict ← Find nearest edge to nmid where enewConflict is not connected to nv

8: if enewConflict = econflict OR Distance(nv , ebridge) / Distance(nv , enewConflict) <
C then

9: Mark < nv , ein, eout > as eligible victims

10: end if
11: end if
12: end for
13: end for
14: Return

(1) Intermediate node. n is an intermediate node if it is connected to only two
different nodes, e.g., ni, and nj and ni 6= n 6= nj , and satisfies one of the following
two cases.

– Case1: Intermediate node of a one-directional path. n has one input edge com-
ing from ni, and an output edge going to nj , i.e., ni → n→ nj . For example, n2

in Figure 4(a) is an intermediate node in the one-directional path from n1 to n3.
– Case2: Intermediate node of a bi-directional path. the two nodes ni, and nj

are connected to n via bi-directional edges, i.e., ni ↔ n ↔ nj . For example, n5

in Figure 4(a) is an intermediate node in the bi-directional path from n4 to n6.

(2) Fan in/out node. n is a fan in or fan out node if it is connected to more
than two other nodes with one-directional edge, and there is only one input edge and
all the remaining edges are output edges (e.g., n7 in Figure 4(a) is a fan-out node).
Alternatively, there is only one output edge and all the remaining edges are input
edges.

Intermediate nodes (both one-directional and bi-directional cases) are appealing
for compression. Intermediate nodes can be victimized with minimal impact on the
graph connectivity by simply bridging the victim node, i.e., connecting the nodes
before and after the victim node by a bridge edge. Also, the fan-out nodes are bridged
by connecting the start node of the input edge to the end nodes of all output edges
directly. An example is detailed later in this section.

After we discuss the various cases where a node is considered for victimization,
we highlight cases where a node is never considered for victimization.

– Cornerstone node. A cornerstone node has edges that either all input edges or
all output edges, e.g., node n1 in Figure 4(a). The deletion of such a node breaks
the connectivity and/or directional flow of the graph.
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(a) Given Road Network (b) Deletion of n2 (c) Deletion of n3

(d) Attempt n4 and Delete n5 (e) Deletion of n7
(f) Deletion of n8

(g) Deletion of n13 (h) Attempt n12 and Delete n10(i) Compressed Road Network

Fig. 4 Illustrative Example of The Proposed Compression Technique

Algorithm 3 Delete And Merge Function

Input: Road Network Graph G(N,E,W ), Node n, InEdges Ein, OutEdges Eout

1: if All combinations of {< ein, eout >} ∈ {Ein × Eout} are marked for deletion then
2: for each < ein, eout > ∈ {Ein × Eout} do
3: W (ebridge) = W (ein) +W (eout)

4: Add ebridge to G

5: end for
6: Delete n from G

7: Delete ein and eout from G

8: end if
9: Return

– Highly-connected node. If a node n has multiple input edges and multiple output
edges, e.g., node n6 in Figure 4(a), the consequences of deleting this node will
produce a large number of bridge edges to cover all connectivity possibilities. For
example, if a node has x number of input edges and y number of output edges
(i.e., a total of x + y edges), deleting this node will result in x × y number of
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edges to reconnect all broken connection between the input edge sources and the
output edge destinations.

– Variable-directionality node. If a node n has a mix of one-directional and bi-
directional edges, e.g., node n4 in Figure 4(a), the consequences of deleting this
node will produce parts of the graph that violate the directional flow of the graph,
i.e., the path between n3 and n5 is half one-directional and half bi-directional.

We deliberately exclude cornerstone, Highly-connected, and variable-
directionality nodes from being victimization candidates in the algorithm.

Step 2: Check Conflict Edges. For a selected candidate node n, our objective
is to victimize this node and to replace each of its connected pairs of input/output
edges < ein, eout > with a single new bridge edge ebridge that links the two far
ends of that pair. However, before we victimize the node n, we check if the to-be-
added bridge edge has enough distance away from nearby edges. This step makes
sure that this compression is safe from a map-matching perspective. The pseudo code
for the check conflict function is given in Algorithm 2. The conflict check has two
phases. The first phase of the conflict check considers the edges that are close to the
candidate victim node n while the second phase considers edges that are close to the
to-be-added ebridge.

In the first phase, it finds out the closest edge econflict to the in-hand node n,
(Line 3 in Algorithm 2). After that, we create a new edge ebridge by linking the
start node of the input edge ein and the end node of the output edge eout of the
under processing pair of edges < ein, eout > around n,(Line 4). Next, (Lines 5 to 11
in Algorithm 2), we get the ratio between the distance from n to the bridge edge
ebridge, and the distance from n to the conflict edge econflict. If this ratio is less than
the controllable parameter C, the conflict factor threshold, ebridge is far from nearby
conflicting edges and, hence, may substitute the edge pair < ein, eout > and avoid
false negatives (as described above).

To avoid false positives and further map-matching conflicts, the second phase of
the conflict check considers all edges in the vicinity of ebridge. Among these edges,
we find out the edge with the minimum perpendicular distance to the midpoint of
ebridge and we call it enewConflict. If enewConflict refers the same edge of econflict,
we conclude that the closest edge to the to-be-added edge ebridge is the same the
closest edge to the to-be-deleted node n. Hence, we mark the pair < ein, eout > as
safe to be deleted and replaced by the new edge ebridge. if enewConflict 6= econflict,
we check how much enewConflict is of conflict relative to neighboring edges based
on the specified conflict factor threshold C. If the conflict of enewConflict is less than
C, we mark the pair < ein, eout > as safe for deletion. Otherwise, we do not victimize
the node or any of its edge and we move on to the following node in the graph.

Step 3: Victimize Node. The objective of this step is to perform two things, (1)
deleting the victim node and its connected edges, and (2) adding the new bridge
edge(s) to the graph. This is accomplished by calling the Delete And Merge func-
tion, Algorithm 3. Initially, this function makes sure that all combinations of edge
pairs < ein, eout > in the set of input edges Ein and output edges Eout have passed
the conflict check done in step 2. If this is the case, the algorithm proceeds by com-
puting the weight for each new edge ebridge by summing up the weights of its cor-
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responding edge-pair < ein, eout >. Finally, ebridge is inserted to the graph and the
node n is eliminated. Consequently, the deletion of n triggers the elimination of its
linked in and out edges from the graph.

At the end, after we visit all nodes and edges in the original graph, the algorithm
computes the compression ratio to indicate how many nodes have been successfully
removed from the graph based on the selected conflict factor threshold C.

6 An illustrative example

Here, an illustrative example is used to explain how COMA is working. Figure 4
gives an example to show the steps of the proposed compression algorithm. In this
example, the original road network consists of 13 nodes and 15 edges (Figure 4(a)).
Also, the conflict factor C is set to 0.5.

The compression process can start from any node in the given graph. We arbi-
trarily start from node n1. Unfortunately, we find that n1 has no input edges and two
output edges, e1 and e6. Hence, n1 is a cornerstone node and is not a candidate node
for victimization, thus, we skip to the next node n2. Because node n2 has exactly one
input edge e1, and one output edge e2 (i.e., an intermediate node), n2 is marked as
a candidate victim and there is a possibility that it will be deleted from the graph.
Yet, we have to check the conflict between the new bridge edge (i.e., e(n1, n3) that
connects the two far end nodes of edges going to or going out of n2) and the set of
nearby edges. To do so, we define a circular region centered at the node in-hand n2

and its radius is equal to the length of the longest edge connected to n2, as shown in
Figure 4(b). We get a set of edges in the vicinity that intersect with this region. Then
we find out the conflicting edge, that is the closest edge to n2 among these vicinity
edges, e7 in this case. Next, we compute the conflict factor as the value of the distance
from n2 to bridge edge e(n1,n3) divided by the distance from n2 to the conflicting
edge e7, then, we compare this conflict factor value to the conflict factor threshold C.
Obviously, this ratio is less than C. Since e7 is also the closest edge to the midpoint
of e(n1,n3), n2 passes the two phases of the conflict check. Therefore, n2 is deleted
from the original graph, and its two connected edges, e1 and e2, are replaced by one
new edge e(n1,n3). The weight of e(n1,n3) is equal to the sum of weights on e1 and
e2.

We continue the compression by moving on to n3. In Figure 4(c) we successfully
victimize n3 after passing the two phases of the conflict check. Note that e7 is the
closest to the midpoint of the new edge e(n1,n4) and e8 is the closest to n3 itself. In
the first phase of the conflict check, the conflict factor is computed as the distance
from n3 to e(n1,n4) divided by the distance from n3 to e8. In the second phase, the
conflict factor is computed as the distance from n3 to e(n1,n4) divided by the distance
from n3 to e7.

Our attempt to delete n4 fails because one of the two connected edges is a bi-
directional edge (e4) and the other one is one-directional (e3). This means n4 is
a variable-directionality node and is, hence, not a candidate for victimization. The
deletion of n5 is smoothly completed as the nearest conflict edge e9 is much far-
ther than the new edge e(n4,n6) (Figure 4(d)). Deletion of the node n7 is a com-
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pound step (Figure 4(e)). As n7 has one input edge and three output edges (i.e., a fan
out edge), the deletion process acts as if there are three copies of n7, one for each
< input, output > pair of edges, i.e., < e6, e7 >, < e6, e10 >, < e6, e14 >. We
delete n7 from the three pairs and replace each pair of < input, output > edges by a
newly added bridge edge. Thus, n7 is deleted along with its connected edges e6, e7,
e14, e10. Then, we inserted three new bridge edges, e19, e20, e21 (Figure 4(f)).

The algorithm proceeds to delete the node n8. As seen in Figure 4(f), the closest
edge to n8 is e20, while the closest edge to the midpoint of the new edge e(n1,n9) is
e17. Hence, we apply two conflict checks one after the success of the other. The first
check is for the distance from n8 to e(n1,n9) divided by the distance from n8 to e20,
and the other one is for the distance from n8 to e(n1,n9 divided by the distance from
n8 to e17. Fortunately, both ratios are less than C, therefore, n8 is eliminated from the
graph followed by the removal of n9 in another straightforward step. This sequence
of node victimization resulted in connecting n1 and n6 through the added edge e23
(Figure 4(g)).

The processing of n13 is similar to what we did previously with n8, as shown
in Figure 4(h). Then, our attempt to get rid of n12 fails because the conflict check
with edge e23 fails. Finally, we are able to victimize n10 leaving the compressed
version of the road network graph with 5 nodes out of the 13 nodes in the original
one, Figure 4(i).

7 Cost Analysis And Design Decision

7.1 Cost Analysis

We start this section by listing the two main graph properties Road Network Graphs
(RN graphs):

1. Road network graphs are very sparse graphs since the number of in- and out-edges
of any vertex are at most 5

2. Road network graphs are also simply directed almost planar since they usually
contain very few bridges and tunnels. It is well known that any planar graph has
at most 3|N | − 6 edges so that any planar graph are (3, 6)− sparse graph.

Notation:

1. |N |: Number of nodes in the road network graph
2. |E|: Number of edges in the road network graph

We now proceed to prove the following two lemmas.
Lemma 3: The average-case complexity of the COMA algorithm is

O(|N | log |N |)
Proof :
In algorithm 1, Road Network Compression for Map Matching, the for loop in

line 2 iterates over the total number of nodes |N | in the RN graph and therefore, it
generates a growth factor of |N |.
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In algorithm 2, Check Conflict Function, the two for loops in lines 1 and 2, each
generate a constant factor k, related to the number of in-and out-edges of each node,
but since, by assumption, the RN graph is sparse, then the value of k is� than the
number of nodes |N |. The find neatest edge to n function in line 3 of the algorithm
is currently implemented using an R-tree algorithm space partitioning index which
has an average complexity [27] of O(|N | log |N |), we conclude that the the average-
complexity of the COMA algorithm is O(|N | log |N |) as claimed.

Lemma 4: The worst-case complexity of the COMA algorithm is O(|N |2)
Proof : Since the worst-case complexity of the R-tree query implementing our

find nearest neighbor algorithm is known to grow linearly with the number of nodes
|N |, and since the for loop implemented in algorithm 1, iterates over all |N |, we
can directly conclude that the worst-case complexity of the COMA algorithm is of
O(|N |2).

7.2 Design Decisions

In this section, two pruning rules are proposed to efficiently accelerate the COMA
algorithm by getting red of unnecessary computations.

Lemma 1; Connected end nodes pruning: if the node n is a candidate for vic-
timization and the end nodes of the input/output edges < ein, eout > are connected
to each other, then n can not be victimized.

Proof : if n is a candidate for victimization and the end nodes of its input/output
edges are connected via another direct edge, then the to-be-added bridge edge will
not be the closest edge to the to-be-deleted victim node, n. Additionally, the conflict
factor of n will be at least 1. As a result, the deletion n will cause map-matching
ambiguity and hence it will increase false negative. Consequently, the deletion of n
will be failed.
For example, the n11 in Figure 4(i) is a candidate for victimization because it has one
input edge e25, and one output edge e12 but the edge e24 connects the two end nodes
n1 and n12, respectively. Thus, the removal of n11 is rejected.

Lemma 2; straight line pruning: if the node n is candidate for victimization and
the angle between its connected pairs of input/output edges < ein, eout > is 180◦

then victimize n without checking the conflict factor.
Proof : if n is candidate for victimization and the angle between its connected

pairs of input/output edges < ein, eout > is 180◦ then n is located at the new bridge
edge ebridge and the distance between n and ebridge equals 0. Consequently, The
conflict factor of n is zero.
For example, n3 in Figure 4(a) is a candidate for victimization and n3 is located at
the bridge edge, e(n2, n4). Therefore, n3 should be removed from the compressed
map without computing its conflict factor.

8 Experimental Evaluation

In this section, we evaluate the performance of our proposed COMA technique for
compressing road networks while preserving the map-matching quality. We begin by



18 Abdeltawab Hendawi et al.

describing the environment of the experiments. Then, we describe the competitive
compression technique against which we compare the COMA technique. Next, we
examine the effect of the conflict factor C on the compression ratio we can obtain as
well as the performance measurements, i.e., CPU time and memory overhead. After
that, we study the effect of different areas of the underlying graph on the behavior
of the COMA technique. Finally, we test the map-matching quality of the resultant
compressed graph.

8.1 Experimental Setup

In all experiments of this evaluation, we use real road network graph of Washington
State, USA.

For the accuracy evaluation for the map-matching operation, we use real data sets
for cars trajectories around the area of Seattle [2, 16]. In addition, we employ the
Minnesota traffic generator [24] to generate larger sets of synthetic moving objects
on the Washington road network.

All experiments are based on an actual implementation of the COMA and the
Douglas-Peucker [6] as a competitive technique, Section 8.2. All the components are
implemented in C# inside visual studio 2013 with .net framework.

All evaluations are conducted on a PC with Intel Xeon E5-1607 v2 processor and
32GB RAM, and running Windows 7.

8.2 Competitive Technique

We use the Douglas-Peucker [6] algorithm as the competitive technique to our pro-
posed COMA technique. Douglas-Peucker is original introduced to reduce the num-
ber of points required to represent a given polyline. The reason for choosing this
technique to compare with is that it can shrink the size of the road network graph,
(when given as a set of polylines), at the same time, the produced compact graph
still can be leveraged directly to perform map-matching operations. To make a fair
comparison, we use the conflict factor C as the distance threshold that is required by
the Douglas-Peucker to guide its compression process. Here, we compute C as the
ratio between, the distance from a given ployline, (to-be-compressed edge(s) in the
underlying road map), to the to-be-produced simplified edge, divided by the distance
from that polyline to the nearest other conflict edge.

The main idea of the Passby algorithm is to consider the road intersections as
the flag points at which the map-matching process focuses more. Once an object’s
trajectory passes by an intersection, the algorithm finds out those edges around this
intersection and select the one that are closer to more GPS points in the underlying
trajectory. To achieve this, the algorithm takes two successive GPS points, the current
point pcurrent and its previous point pprevious, and computes a number of measure-
ments for each nearby edge. It measures the projected distance between the edge and
each of the two points and also the angle between the line connecting pprevious and
pcurrent, and the edge line. The GPS points will be linked to the edge with optimal
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measurements. In our map-matching test, we run the Passby algorithm on a set of
objects trajectories Traj for both the original road network graph G and the com-
pressed version G

′
. Then we measure how close the map-matching quality on the

compact version to the original one.

8.3 Evaluation of Compression Gain

In this set of experiments, we examine the amount of compression we achieve using
the proposed COMA technique. Also, we compare the results versus the ones we get
from the Douglas-Peucker technique.

Effect of The Conflict Factor Initially, we study the influence of using different
values for the conflict factor C on the compression ratio we can gain. We run both
algorithms on the whole Washington graph. As given in Figure 5(a), we vary C from
0.1 to 0.9 on the x-axis and we measure the compression ratio we obtain on the y-axis.
Obviously, the COMA technique achieves high compression ratio that starts at about
60% when C is 0.1 and keeps increasing until it reaches about 75% at C is 0.9. On the
other side, the Douglas-Peucker achieves about 12% compression ratio at C = 0.1 and
38% at C = 0.9. These results prove that COMA outperforms the Douglas-Peucker in
terms of compression ratio. It is also observed that both techniques achieve higher
compression with larger C values, and vice versa.

Effect of The Area Type To examine how the COMA compression results are
affected by the surrounding nature around the given road network graph, we select
six different regions to represent area types around forests, down-town, high-way,
lake, seaside, and rural.

Figure 9 compares the COMA compression ratio versus the Douglas-Peucker for
each of the previously mentioned area types. Clearly, the percentage of size reduction
is influenced by the type of the neighbourhood of the given road map.

For example, in the forest areas, COMA can achieve at least 64% and up to 81%
compression ratio at C equals 0.1 and 0.9 respectively. Also, in down-town, the gain
we get by COMA drops down to 50% at C = 0.1 and to 69% at C = 0.9.

In all areas, COMA defeats Douglas-Peucker by large difference. The reason be-
hind this variability in the obtained compression ratio is that the area type defines the
shape of the road network graph. For example, roads in down-town have more inter-
sections, branching, and higher density, (i.e., number of nodes per unit of area), than
the highways, forest, and lakes. In turns, it is easier to delete nodes from the graph of
forest area than the one for down-town area.

Effect of Node Degree Here, the degree of a node is the average number of edges
connected to this node. The overall trend of COMA in Figure 7(a) is to decrease the
compression ratio when the node degree increases. Basically, that is because, the
larger the degree the more conflict edges we might find, and consequently the less the
ability to delete nodes from the original graph.

Effect of Road Network Density We use the number of nodes divided by the
size of the area as an indicator of how dense the given road network graph in different
areas in Washington. For example, 73K means there are 73,000 nodes per mile square,
i.e., lat/long degree, of the road network in this area. For the same reason mentioned
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Fig. 5 Effect of Conflict Factor on COMA VS Douglas-Peucker
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Fig. 7 Effect of The Node Degree on COMA

with the node degree, the compression we gain by COMA goes down when road
network density goes up, Figure 8(a).

8.4 Efficiency Evaluation

Figures 5(b), and 5(c) studies the efficiency of both techniques for the whole Wash-
ington State graph. This gives the average cost estimates for both CPU and memory
overhead. Except for the first value for COMA in Figure 9(c), it seems that both tech-
niques have a steady trend in terms of CPU and memory costs. However, COMA
is a CPU friendly technique whereas Douglas-Peucker is clearly a memory friendly
technique.

Figures, 10 and 11 give the results of studying the efficiency behavior of the two
techniques with different area types. As shown in the former figure, COMA signif-
icantly reduces the CPU time required to compress a road graph compared to the
Douglas-Peucker. We can also notice the influence of the area type on the average
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CPU cost. For example, COMA costs about 2.8ms at C = 0.1 to process the graph of
down-town area, Figure 10(d), while it costs less than half millisecond for lakes at
the same C, Figure 10(c). Douglas-Peucker has similar trend of reacting to area type
effect, but, with much higher CPU costs, 8.6ms and 1.92ms respectively.

From the memory overhead efficiency perspective, COMA is the loser here. The
reason for these efficiency patterns is that COMA converts the given road network
graph into extended version where intermediate nodes are converted into regular
nodes and edges. This step can not be done for the Douglas-Peucker, as it needs a
long polyline. By doing so, COMA occupies more memory. Moreover, COMA pro-
cesses node by node without visiting the same node twice which is not the case for
recursive visiting in the Douglas-Peucker. Thus, COMA is more CPU friendly.

When we examine the effect of node degree, Figure 7(b,c), and road network
density, Figure 8(b,c), on the COMA efficiency measurements, we find that it costs
more CPU with larger degrees and density and vice versa for memory overheads.
The reason is that larger degree/density means more checks for edges conflict which
means more CPU time. This also means the same data structures can serve more
nodes per unit which decreases the total memory overhead.

8.5 Testing The Map-Matching Quality

In this set of experiments, we examine the accuracy of correctly map-matching lo-
cations of moving objects trajectories on the compact road network graph, Defini-
tion 3.2 and 3.2. As mentioned earlier, we use sets of real and synthetic moving
objects trajectories distributed over the road network graph of Washington, USA.

As given in Figure 5(a), COMA achieves acceptable accurate map-matching that
ranges from 49.9% at C = 0.1 with about 58% as compression ratio, Figure 5(a),
to about 35.8% at C = 0.9 with compression ratio around 75%. On the other side,
Douglas-Peucker barely achieves 20.0% at C = 0.9 with compression ratio = 27.3%
and its maximum accuracy comes at 27.4% when C = 0.1 with very low compression
ratio = 11.7%.

In Figure 5(b), we check the effect of using different levels of trajectory sparse-
ness on the map-matching quality. We vary the trajectory sampling from one point
every 1 second to one point every 20 seconds. Generally, Douglas-Peucker is not
sensitive to the trajectory sparseness, while COMA is negatively affected by sparse
sampling rate. The reason is that COMA produces short edges, i.e., without interme-
diate nodes, which is not the case for Douglas-Peucker. Thus, skipping few seconds
might jump the matching to the next edge and this does not give the Passby algo-
rithm [23], a sufficient number of consecutive points on each single edge to do the
right map-matching.

Figure 5(c) studies the effect of trajectory length on the map-matching accuracy.
Both techniques have deceasing trend in the accuracy with longer trajectories. How-
ever, COMA loses less than 14% from its accuracy at length = 1min to 52% at length
= 20min, while Douglas-Peucker drops from 33.6% to 12.3% at length =1min and
20min respectively. A possible reason for that the Passby algorithm uses few trajec-
tory points at the two ends of the vicinity edges to make map-matching decision.
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Fig. 8 Effect of The Road Network Density on COMA
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Fig. 9 Effect of Area Type on Compression Ratio

Once an edge is chosen, all points in-between those two ends will automatically be
matched to that edge. If the decision is wrong, that will have larger negative effect
on Douglas-Peucker accuracy than COMA because the former produce longer edges,
have intermediate nodes.

Though in most cases COMA achieves an acceptable map-matching accuracy,
For example, in forest area, Figure 8.5(e), the map-matching accuracy for COMA
goes down from 47.11% to 30.38% at C = 0.1 and 0.9 respectively. One reason for
this is the nature of the forest environment, e.g., high dense trees, that badly affects
the GPS accuracy. Hence, objects locations suffer from wider range of uncertain, yet,
it is harder to be map-matched correctly to its correct edge.

8.6 Experiments Summary

The conducted experiments prove the promises of COMA from three main perspec-
tives. (1) From the compression achievements perspective, it can perform up to 75%
compression ratio. (2) From the efficiency perspective, it is much faster than the
Douglas-Peucker, as the main competitive technique. However, the later is more
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Fig. 10 Effect of Area Type on Efficiency (CPU Time)
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Fig. 11 Effect of Area Type on Efficiency (Memory Overhead)

memory friendly than COMA. (3) From the map-matching accuracy perspective,
COMA can be directed to get good accuracy, (i.e., by trying different C values),and in
general its accuracy does not go below 30% compared to 4% for the Douglas-Peucker
technique.
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Fig. 12 Effect of Area Type on Map-Matching Accuracy

9 Conclusion

In this paper, we highlight the importance of compressed road network maps from
storage and communication perspective. With the proliferation of mobile, hand-held
and embedded devices, the reduction in sizes of road maps becomes a metric that
drives cost. While road network compression has been an active research problem,
compression techniques aimed at high compression ratios regardless of the opera-
tions that are expected to be performed on the compressed version of the road map
are the next generation of challenges that need to be addressed. We advance the state
of the art along one such aspect: a compression technique to generate road network
graphs that are consumable by the map-matching operations. Our proposed technique
achieves high compression-ratios that reach up to 75% of the size of the original road
network data while obtaining an acceptable map-matching accuracy. Experimental
studies validate extensively the utility of our approach compared to existing tech-
niques and are easily adaptable to existing device form-factors, the main aim of our
work.
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