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Abstract—An increasing number of monitoring systems have
been developed in smart cities to ensure that a city’s real-
time operations satisfy safety and performance requirements.
However, many existing city requirements are written in English
with missing, inaccurate, or ambiguous information. There is
a high demand for assisting city policy makers in converting
human-specified requirements to machine-understandable formal
specifications for monitoring systems. To tackle this limitation, we
build CitySpec, the first intelligent assistant system for require-
ment specification in smart cities. To create CitySpec, we first
collect over 1,500 real-world city requirements across different
domains from over 100 cities and extract city-specific knowledge
to generate a dataset of city vocabulary with 3,061 words. We also
build a translation model and enhance it through requirement
synthesis and develop a novel online learning framework with
validation under uncertainty. The evaluation results on real-world
city requirements show that CitySpec increases the sentence-level
accuracy of requirement specification from 59.02% to 86.64%,
and has strong adaptability to a new city and a new domain
(e.g., F1 score for requirements in Seattle increases from 77.6%
to 93.75% with online learning).

Index Terms—Requirement Specification, Intelligent Assistant,
Monitoring, Smart City

I. INTRODUCTION

With the increasing demand for safety guarantees in smart
cities, significant research efforts have been spent toward how
to ensure that a city’s real-time operations satisfy safety and
performance requirements [1]. Monitoring systems, such as
SaSTL runtime monitoring [2], CityResolver [3], and STL-
U predictive monitoring [4], have been developed in smart
cities. Figure 1 shows a general framework of monitoring
systems in smart cities. These systems are designed to execute
in city centers and to support decision-making based on the
verification results of real-time sensing data about city-states
(such as traffic and air pollution). If the monitor detects
a requirement violation, the city operators can take actions
to change the states, such as improving air quality, sending
alarms to police, calling an ambulance, etc.

The monitor systems have two important inputs, i.e., the
real-time data streams and formal specified requirements.
Despite that extensive research efforts have been spent toward
improving the expressiveness of specification languages and
efficiency of the monitoring algorithms, the research challenge
of how to convert human-specified requirements to machine-
understandable formal specifications has received only scant
attention. Moreover, our study (see Section II) on over 1,500

Fig. 1. CitySpec in Smart Cities

real-world city requirements across different domains shows
that, first, existing city requirements are often defined with
missing information or ambiguous description, e.g., no loca-
tion information, using words like nearby, or close to. They are
not precise enough to be converted to a formal specification
or monitored in a city directly without clarifications by policy
makers. Secondly, the language difference between English
specified requirements and formalized specifications is signif-
icant. Without expertise in formal languages, it is extremely
difficult or impossible for policy makers to write or convert
their requirements to formal specifications. Therefore, there is
an urgent demand for an intelligent system to support policy
makers for requirement specifications in smart cities.

Despite the prevalence of developing models to translate
natural language to machine languages in various domains,
such as Bash commands [5], Seq2SQL [6], and Python [7], it
is very challenging to develop such an intelligent system for
requirement specification in smart cities for the following rea-
sons. First, unlike the above translation tasks with thousands
or even millions of samples in a dataset, there is barely any
requirement specification data. As a result, traditional language
models are not sufficient to be applied directly. Moreover, the
requirements usually contain city domain-specific descriptions
and patterns that existing pre-trained embeddings like BERT
or GloVE cannot handle effectively. Furthermore, require-
ments from different domains and cities vary significantly and
evolve over time, thus building a system that can adapt to
new domains at runtime is an open research question. Good
adaptability can increase user experience (e.g., policy makers
do not have to clarify new terms repeatedly), while one of the
major challenges is validating and filtering the new knowledge
and avoiding adversarial examples online.

In this paper, we target the above technical challenges,
and describe CitySpec, an intelligent assistant system for



requirement specification in smart cities. To the best of our
knowledge, it is the first specification system helping city
policy makers specify and translate their requirements into
formal specifications automatically. As shown in Figure 1,
CitySpec is designed to bridge the gap between city policy
makers and monitoring systems. It enables policy makers to
define their requirements by detecting missing, inaccurate,
or ambiguous information through an intelligent assistant
interface. To effectively train the translation model using a
small amount of city requirement data, CitySpec extracts
city knowledge and enhances the learning process through
requirement synthesis. CitySpec can easily adapt to a new city
or domain through online learning and validation.

Contributions. We summarize the major contributions of
this paper as follows:

● We collect and annotate over 1,500 real-world city re-
quirements from over 100 cities across different domains.
We extract city-specific knowledge and build a dataset of
city vocabulary with 3,061 words in 5 categories.

● We create an intelligent assistant system for requirement
specification in smart cities. In the system, we build a
translation model and enhance it through requirement
synthesis, and develop a novel online learning framework
with validation under uncertainty.

● We evaluate CitySpec extensively using real-world city
requirements. The evaluation results show that CitySpec
is effective on supporting policy makers accurately writ-
ing and refining their requirements. It increases the sen-
tence level accuracy of requirement specification from
59.02% to 86.64% through city knowledge injection. It
shows strong adaptability (user experience) to a new city
(e.g., F1 score in Seattle from 77.6% to 93.75%) and
a new domain (e.g., F1 score in security domain from
62.93% to 93.95%).

Paper organization: In the rest of the paper, we describe
the motivating study of city requirement specification in Sec-
tion II, provide an overview of CitySpec in Section III, and
present the technical details in Section IV. We then present
the evaluation results in Section V, discuss the related work
in Section VI and draw conclusions in Section VII.

II. MOTIVATING STUDY

In this section, we study real-world city requirements and
their formal specification as motivating examples to discuss the
demand and challenges of developing an intelligent assistant
system for requirement specification in smart cities. We collect
and annotate over 1,500 real-world city requirements across
different domains (e.g., transportation, environment, security,
public safety, indoor environments, etc.) from over 100 cities.
We make the following observations from the analysis of the
requirement dataset.

Existing city requirements are often defined with missing in-
formation or ambiguous description. In [2], the authors define
essential elements for monitoring a city requirement. Within
the 1500 requirements, many requirements have one or more
missing elements. For example, 27.6% of the requirements do

not have location information, 29.1% of the requirements do
not have a proper quantifier, and 90% of the requirements do
not have or only have a default time (e.g., always) defined.
Additionally, requirements often have ambiguous descriptions
that are difficult to be noticed by policy makers. For example,
a location is specified as “nearby” or “close to”. As a result,
it is very difficult or impossible for the monitoring system
to monitor these requirements properly. It indicates a high
demand for an intelligent assistant system to support the policy
makers to refine the requirements.

The language difference between English specified require-
ments and their formal specifications is significant. In Table I,
we give three examples of city requirements in English, their
formal specification in SaSTL, and the Damerau–Levenshtein
Distance (DLD) [8] between each pair of requirements. DLD
measures the edit distance between two sequences. It shows
that natural languages are different from machine-compatible
input languages. Formal specifications usually consist of math-
ematical symbols, which makes the conversion even more
difficult. As shown in Table I, the average DLD from English
requirements to formal specifications is 67, which means that
it requires an average of 67 edits. As a reference, the average
DLD brought by translating these three English requirements
to Latin is 64.67. It indicates that the conversion from English
requirements to formal specifications even requires more edits
than the translation of these requirements from English to
Latin. In general, building a translator from English to Latin
would require millions of samples. However, as an under-
exploited domain, there is a very limited number of well-
defined requirements. Moreover, annotation of formal specifi-
cations requires specialties in formal methods and is extremely
time-consuming. It presents major challenges for building such
a translation model.

III. SYSTEM OVERVIEW

CitySpec is designed to bridge the gap between city policy
makers and monitoring systems. It supports policy makers to
precisely write city requirements in English through an intelli-
gent interface, and then converts them to formal specifications
automatically. An overview of CitySpec is shown in Figure 2.
There are four major components in CitySpec, including an
intelligent assistant Interface to communicate with policy mak-
ers (see Section IV-B), a Requirement Synthesis component to
extract city knowledge and synthesize new requirements to
build the translation model (see Section IV-C), a Translation
Model to convert city requirements to formal specifications
(see Section IV-D), and an Online Learning component to
adapt the system to new knowledge (see Section IV-E).

At runtime (as indicated by the orange arrows in Figure 2),
a city policy maker inputs a requirement in English through
an intelligent assistant interface, which sends the requirements
to the translation model. The translation model converts the
requirements to a formal specification and checks if there
is any missing information or ambiguous description. The
translation model is built with injected city knowledge through
requirement synthesis at the training time and enhanced



TABLE I
COMPARISON BETWEEN ENGLISH REQUIREMENTS AND FORMAL SPECIFICATIONS

ID English Requirement Formal Specification DLD
1 Sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm

per square foot.
EverywhereSliding glass doors Always

[0,+∞)
air infiltration rate ≤

0.3 cfm/foot2
59

2 The operation of a Golf Cart upon a Golf Cart Path shall be restricted to a
maximum speed of 15 miles per hour from 8:00 to 16:00.

EverywhereGolf Cart PathAlways
[8,16]Golf Cart speed < 15 miles/hour 67

3 Up to four vending vehicles may dispense merchandise in any given city block
at any time.

Everywherecity blockAlways
[0,+∞)

vending vehicles ≤ 4 75

Fig. 2. System Overview

through online learning at runtime. Next, based on the returned
results from the translation model, the intelligent interface
communicates with the policy maker to acquire or clarify the
essential information. In this process, the assistant supports
the policy maker to refine the requirement until it is precisely
defined and accepted by the monitor. We present the technical
details in Section IV, and develop a prototype tool of the
CitySpec system and deploy it online.

IV. METHODOLOGY

In this section, we present the major components in
CitySpec (as shown in Figure 2). We first introduce require-
ment specification using Spatial-aggregation Signal Temporal
Logic (SaSTL) [2]. Then we show the design and technical
details of the intelligent assistant interface, requirement syn-
thesis, translation model, and online learning, respectively.

A. Requirement Specification using SaSTL
SaSTL is a powerful formal specification language for

Cyber-Physical Systems. We select it as our specification
language because of its advantages of expressiveness and
monitoring for smart cities. However, CitySpec is general and
can work with other specification languages. SaSTL is defined
on a multi-dimensional spatial-temporal signal as ω ∶ T×L→
{R ∪ {�}}n, where T = R≥0, represents the continuous time
and L is the set of locations. X = {x1,⋯, xn} is denoted by
the set of variables for each location. The spatial domain D is
defined as, D ∶= ([d1, d2], ψ), ψ ∶= ⊺ ∣ p ∣ ¬ ψ ∣ ψ ∨ ψ, where
[d1, d2] defines a spatial interval with d1 < d2 and d1, d2 ∈ R,
and ψ specifies the property over the set of propositions that
must hold in each location.

The syntax of SaSTL is given by

ϕ ∶= x ∼ c ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1UIϕ2 ∣ Aop
D x ∼ c ∣ C

op
D ϕ ∼ c

where x ∈X , ∼∈ {<,≤}, c ∈ R is a constant, I ⊆ R>0 is a real
positive dense time interval, UI is the bounded until temporal
operators from STL. The always (denoted ◻) and eventually
(denoted ◊) temporal operators can be derived the same way
as in STL, where ◊ϕ ≡ true UIϕ, and ◻ϕ ≡ ¬◊¬ϕ. Spatial ag-
gregation operators Aop

D x ∼ c for op ∈ {max,min, sum,avg}
evaluates the aggregated product of traces op(αxD(ω, t, l)) over
a set of locations l ∈ LlD, and counting operators CopD ϕ ∼ c for
op ∈ {max,min, sum,avg} counts the satisfaction of traces
over a set of locations. From counting operators, we derive
the everywhere operator as ⧈Dϕ ≡ Cmin

D ϕ > 0, and somewhere
operator as �Dϕ ≡ Cmax

D ϕ > 0. Please refer to [2] for the
detailed definition and semantics of SaSTL.

B. Interface for Intelligent Assistant
City requirements often have missing or ambiguous infor-

mation, which may be unnoticed by policy makers. It leads
to the demand for human inputs and clarification when con-
verting them into formal specifications. Therefore, we design
an intelligent assistant interface in CitySpec serving as an
intermediary between policy makers and the translation model.
It communicates with policy makers and confirms the final
requirements through an intelligent conversation interface.

To briefly describe the communication process, users first
input a requirement in English, e.g., “due to safety con-
cerns, the number of taxis should be less than 10 between
7 am to 8 am”. CitySpec interface passes the requirement
to the translation model and gets a formal requirement
(always[7,8]number of taxi < 10) with the keywords including,

● entity: the requirement’s main object, e.g., “the number”,
● quantifier: the scope of an entity, e.g., “taxi”,
● location: the location where this requirement is in effect,

which is missing from the above example requirement,



● time: the time period during which this requirement is in
effect, e.g., “between 7 am to 8 am”,

● condition: the specific constraint on the entity, such as an
upper or lower bound of entity, e.g., “10”.

As a result, CitySpec detects that the location information is
missing from the user’s requirement and generates a query for
the user, “what is the location for this requirement?” Next, with
new information typed in by the user (e.g., “within 200 meters
of all the schools”), CitySpec obtains a complete requirement.

The next challenge is how to confirm the formal specifica-
tion with policy makers. Since they do not understand the
formal equation, we further convert it to a template-based
sentence. Therefore, CitySpec presents three formats of this
requirements for users to verify, (1) a template-based require-
ment, e.g., [number] of [taxi] should be [<] [10] [between 7:00
to 8:00] [within 200 meters of all the schools], (2) a SaSTL
formula everywhereschool∧[0,200]always[7,8]number of taxi <
10, and (3) five key fields detected. Users can confirm or
further revise this requirement through the intelligent assistant.

When policy makers have a large number of requirements
to convert, to minimize user labor to input requirements
manually, CitySpec also provides the option for them to input
requirements through a file. The process is similar to where
CitySpec asks users to provide or clarify information until all
the requirements are successfully converted through files.

C. Requirement Synthesis

The amount of city requirement dataset is insufficient to
train a decent translation model in an end-to-end manner.
As we’ve discussed in Section I, it requires extensive do-
main knowledge in both city and formal specifications and
is extremely time-consuming to annotate new requirements.
Furthermore, a majority of the existing city requirements are
qualitatively or imprecisely written, which cannot be added to
the requirement dataset without refinement [2]. To mitigate the
challenge of small data to build a translation model, we design
a novel approach to incorporating city knowledge through
controllable requirement synthesis.

There are two main reasons why converting a city require-
ment to a formal specification is challenging with a small
amount of data. First, the vocabulary of city requirements are
very diverse. For example, requirements from different cities
(e.g., Seattle and New York City) or in different domains
(e.g., transportation and environment) have totally different
vocabulary for entities, locations, and conditions. Second, the
sentence structure (patterns) of requirements vary significantly
when written by different people. It is natural for human beings
to describe the same thing using sentences.

Targeting these two challenges, we first extract city knowl-
edge and build two knowledge datasets, i.e., a vocabulary
set and a pattern set. The vocabulary set includes five keys
of a requirement, i.e., entity, quantifier, location, time and
condition. The pattern set includes requirement sentences
with 5 keywords replaced by their labels. For instance, we
have a requirement, “In all buildings/location, the average
concentration/entity of TVOC/quantifier should be no more

Algorithm 1 Requirement Synthesis
Input: m set of keywords vocabularies {V1, V2 . . . Vm}, Pattern P , synthesis index λ
Output: Set of requirements R

Initialize R as an empty set{}
Let ` = λ ⋅max(∣V1∣, ∣V2∣, . . . , ∣Vm∣)
for i ∈ 1 . . .m do

Initialize Si as an empty array Si = []
while ∣Si∣ < ` do

Create a random permutation of Vi: P = Permutate(Vi)
Concatenate P to Si: Si = Concat(Si, P )

end while
end for
for j ∈ 1 . . . ` do

Combine keywords S1[j], S2[j] . . . Sm[j] with Pattern P to create a require-
ment rj

Add rj to the set of requirements R
end for
return R

than 0.6 mg/m3/condition for every day/time.”, the pattern
extracted is “In #location, the average #entity of #quantifier
should be no more than #condition for #time.”

We extract the knowledge set from city documents besides
requirements so that we are not limited by the rules of
requirements and enrich the knowledge of our model. For
example, we extract 336 patterns and 3061 phrases (530
phrases in entity, 567 phrases in quantifier, 501 phrases in
location, 595 phrases in condition, and 868 phrases in time).

Next, we designed an approach to synthesizing controllable
requirement dataset efficiently. Intuitively, we can go through
all the combinations of keywords and patterns to create the
dataset of requirements, which is infeasible and may cause
the model overfitting to the injected knowledge. In order to
enhance the model’s performance, we need to keep a balance
between the coverage of each keyword and the times of key-
words being seen in the generation. We denote λ as the synthe-
sis index, which indicates the minimum number of times that a
keyword appears in the generated set of requirements. Assum-
ing we have m set of keywords vocabularies {V1, V2 . . . Vm}
and a pattern set as P , we have the total number of synthesized
requirements ` = λ ⋅max(∣V1∣, ∣V2∣, . . . , ∣Vm∣). For each set of
vocabularies Vi, we first create a random permutation of Vi
and repeat it until the total number of phrases reaches `, then
we concatenate them to an array Si. Once we obtain S1, ...Sm,
we combine them with pattern P to generate a requirement
set R. Refer to Algorithm 1 for more details.

D. Translation Model

The inputs of the translation model are requirements, and
the outputs of this module are formal specifications with
token-level classification. We implement the translation model
with three major components, a learning model, knowledge
injection through synthesized requirements, and keyword re-
finement.

To be noted, CitySpec does not build its own translation
model from scratch. Instead, we tackle the limitation of the
traditional language model and improve it for city requirement
translation. Therefore, CitySpec is compatible with different
language models.

In this paper, we implement four popular language models,
which are Vanilla Seq2Seq, Stanford NLP NER, Bidirectional



Fig. 3. Online Learning
Long Short Term Memory (Bi-LSTM) + Conditional Random
Field (CRF) and Bidirectional Encoder Representations from
Transformers (BERT) [9]. We apply our synthesized datasets
with different synthesis indexes to inject city knowledge into
these language models. Then we evaluate the improvement
brought by our requirement synthesis approach by testing the
performance on real-world city requirements. We present the
detailed results and analysis in Section V.

Additionally, we find that time, negation and comparison
are the most tricky elements that affect the accuracy of the
final specification detection. Therefore, we implement another
refinement component in the translation model. In general,
the time domain can be represented in several formats, such
as timestamps, or other formats like yyyy-mm-dd and mm-
dd-yyyy. To mitigate the confusion that various formats might
bring, we apply SUTime [10] when the time entity is not
given by the translation model. pyContextNLP [11] is applied
to analyze whether there is a negation in the input sentence. If
there is any negation, the comparison symbol is reversed. For
instance, if there is a keyword “greater than”, the comparison
symbol is >. However, if the whole phrase is “is not supposed
to be greater than”, and a negation is detected, thus the final
comparison is ≤ instead.

E. Online Learning

In general, the more clarifications are needed from the users,
the worse experience the users will have, especially if users
have to clarify the same information repeatedly. For example,
if a user from a new city inputs a location that the system
fails to detect, the user will be asked to clarify the location
information. The user’s experience will drop if the system
asks him again on the second or third time seeing these
words. However, the deep learning-based translation model
cannot “remember” this information at deployment time. Thus,
the first question is that how can CitySpec learn the new
knowledge online?

Meanwhile, the new information provided by users may also
harm the system if it is an incorrect or adversarial example.
The second question is that how can CitySpec validate the new
knowledge before learning it permanently?

Targeting these two research questions, we design an online
learning module in CitySpec. As shown in Figure 3, it has two
stages, which are short-term learning and long-term learning.
Short-term learning is designed to accommodate the same user
in one session of requirement specification with a temporary
memory. The question-answer pairs are stored temporarily.
When the same occasion occurs, the temporal cache gives

instant answers and avoids more user clarifications. Long-
term learning is designed to adapt the new knowledge to the
model permanently after validating its reliability. The accepted
permanent knowledge is achieved by updating weights via
back-propagation on the extended dataset with both initial data
and the new input-label pairs stored in the temporary cache.

To keep CitySpec away from the adversarial inputs, we de-
velop a Bayesian CNN-based validation module in CitySpec.
The model is to classify the category of a new term with
confidence with uncertainty estimation. We apply dropout
layers during both training and testing to quantify the model
uncertainty [4]. The inputs of the validation model are the
new terms provided by the user, while the outputs are the
corresponding keys among those five key domains with an
uncertainty level. In brief, a new term-key pair is rejected
if (1) the output from the validation function does not align
with the given domain key; (2) the validation function has
low confidence in the output although it might align with the
given domain. In this way, we only accept new city knowledge
validated with high confidence.

V. EVALUATION

In this section, we evaluate our CitySpec system from five
aspects, including (1) comparing different language models
on the initial dataset without synthesizing, (2) analyzing the
effectiveness of the synthesized requirements by enhancing the
models with city knowledge, (3) evaluating the performance of
the online validation model, (4) testing CitySpec’s adaptability
in different cities and domains, and (5) an overall case study.
We use the city requirement dataset described in Section
II. To evaluate the prediction of keywords and mitigate the
influence caused by different lengths requirements, we choose
to use token-level accuracy (token-acc) and sentence-level
accuracy (sent-acc) as our main metrics. The token-level
accuracy aims to count the number of key tokens that are
correctly predicted. The sentence-level accuracy counts the
prediction as correct only when the whole requirement is
correctly translated to a formal specification using SaSTL.
Thus, sentence-level accuracy serves as a very strict criterion
to evaluate the model performance. We also provide the results
using other common metrics including precision, recall, and F-
1 score. The experiments were run on a machine with 2.50GHz
CPU, 32GB memory, and Nvidia GeForce RTX 3080Ti GPU.

A. Performance of language models on the initial dataset

As a baseline of translation model without city knowledge,
we first evaluate the performance of CitySpec using different
language models, including Vanilla Seq2Seq, pretrained Stan-
ford NER Tagger, Bi-LSTM + CRF, and BERT on the initial
dataset. We present the results in Table II.

We make the following observations from the results. First,
the overlap between Stanford Pretrained NER Tagger predic-
tion and vocabulary is only 9 out of 729. The pretrained tagger
tends to give locations in higher granularity. Since this task is
a city-level, more detailed location information is stated in a
lower granularity by providing the street name, building name,



TABLE II
PERFORMANCE OF LANGUAGE MODELS ON THE INITIAL DATASET

Model Token-Acc Sent-Acc F-1 Score Precision Recall
Vanilla Seq2Seq 10.91 ± 0.57 % 1.38 ± 0.49% 24.12 ± 0.24 % 65.58 ± 7.95 % 14.81 ± 1.58 %
BiLSTM + CRF 77.59 ± 0.52 % 60.82 ± 1.22 % 80.46 ± 0.84 % 81.11 ± 1.38 % 79.83 ± 7.24 %

BERT 80.41 ± 0.07 % 59.02 ± 0.42 % 81.43 ± 0.01 % 78.62 ± 0.01 % 84.46 ± 0.01 %

Fig. 4. Performance improvement brought by requirement synthesis

or community name. The location domain in the pretrained
tagger gives more high-level information like city name, state
name, or country name. For example, “34th Ave in Nashville,
the state of Tennessee” is annotated as location in this task,
however, the pretrained NER tagger gives “Tennessee” as
location instead.

Secondly, the testing token-acc from Vanilla Seq2Seq is
10.91% on average. Other metrics also indicate that Vanilla
Seq2Seq has trouble recognizing the patterns in sequential
keyword labeling. The Vanilla Seq2Seq model suffers from
data scarcity and has difficulty recognizing the general patterns
in the training samples due to the small size of the dataset.

Thirdly, the Bi-LSTM + CRF and BERT model achieve
better performance than other models, and BERT models
often outperform other models with lower standard devia-
tion. However, the highest token-level accuracy achieved is
80.41%, which is still not high enough for an accuracy-
prioritized task. A different key may change the requirement
entirely. For example, the “width” of “car windshield” and
the “width” of “car” focus on completely different aspects,
although the keywords “car windshield” and “car” have an
only one-word discrepancy. Meanwhile, the best sentence-
level accuracy achieved is 60.82%, which means that about
40% of the requirements are falsely translated. Assuming the
policy makers fix these requirements through the intelligent
assistant interface, it is time-consuming and reduces the user
experience. Even worse, it may bring safety issues to the
monitoring system without noticing.

In summary, the results indicate that existing language
models are not sufficient to serve as the translation model
for CitySpec directly. There is a high demand for injecting
city knowledge to build the translation model.

B. Requirement Synthesis with City Knowledge

Next, we evaluate CitySpec’s performance with our con-
trollable synthesized requirements. For a fair comparison, we
do not use the requirements in the testing set to synthesize
requirements. We ensure that the trained model has not seen
the requirements in the testing set in either the knowledge
injection or training phases. We apply different synthesis

indexes to test the effects on the prediction performance. We
present the overall results on token-level and sentence-level
accuracy in Figure 4, and F-1 scores on individual keyword in
Figure 5. In the figures, x-axis represents the synthesis index.
When the index equals to “inital”, it shows the results without
synthesis data.

From the results, we find that, for BERT and Bi-LSTM,
there is an overall increase in performance in all token-level
accuracy, sentence-level accuracy, overall F-1 score, and F-1
score on keywords. For example, BiLSTM+CRF’s token-level
accuracy increases from 77.59% to 97% and sentence-level
accuracy increases from 60.82% to 81.3%, BERT’s sentence-
level accuracy increases from 59.02% to 86.64%.

In summary, the results show that injecting city knowledge
with synthesized requirements boosts the translation model
significantly. While improving policy maker’s user experience
with higher accuracy and less clarifications, it also enhances
the safety of the monitoring system potentially.

C. Performance on Online Validation
We evaluate the validation model through simulating four

different testing scenarios: (I) randomly generated malicious
input based on the permutation of letters and symbols; (II) all
street names in Nashville; (III) real city vocabulary generated
from Nashville requirements; (IV) generated float numbers
with different units.

First of all, the accuracy of validation model is very
high. When the uncertainty threshold is set to 0.5, i.e., all
inputs cause an uncertainty higher than 0.5 will be ruled out,
CitySpec gives 100% success rate against scenario I among
2,000 malicious inputs, 91.40% acceptance rate among 2,107
samples in scenario II, 92.12% acceptance rate among 596
samples in scenario III, and 94.51% acceptance rate among
2,040 samples in scenario IV. Additionally, we find that the
validation function easily confuses entity with quantifier if
no further guidance is offered. We look into dataset and
figure out entity and quantifier are confusing to even humans
without any context information. Take the requirement “In
all buildings, the average concentration of Sulfur dioxide
(SO2) should be no more than 0.15 mg/m3 for every day.”
As an example, entity is “concentration” and quantifier is
“Sulfur dioxide (SO2)”. If the requirement is changed to “The
maximum level of the concentration of Sulfur dioxide (SO2)
should be no more than 0.15 mg / m3 for every day.”, then
entity is “maximum level” and quantifier is “concentration”
instead. In addition, terms like “occupancy of a shopping
mall”, “noise level at a shopping mall”, and “the shopping mall
of the commercial district” also introduce confusion between
location, entity and quantifier, since the same token “shopping
mall” can be entity, quantifier or location in certain cases.



Fig. 5. F-1 scores on four keywords

The results show that the validation algorithm can effec-
tively accept new city knowledge, prevent adversarial inputs
and safeguard online learning. Therefore, CitySpec reduces
unnecessary interactions between policy makers and the sys-
tem and increases efficiency.

D. Adaptability to different scenarios

In this section, we analyze CitySpec’s adaptability in dif-
ferent cities and different domains. Different cities have dif-
ferent regulation focuses and their city-specific vocabulary.
For example, in the city of Nashville, location names like
“Music Row”, “Grand Ole Opry” will probably never appear in
any other cities. We select four cities, Seattle, Charlottesville,
Jacksonville, and Changsha, with different sizes and from dif-
ferent countries as case studies. We separate the requirements
of each mentioned city and extract the city-wise vocabulary
based on each city independently. Each of four constructed
pairs consists of: vocabulary I, which is extracted from the
requirements from one city only, and vocabulary II, which
is extracted from the requirements from all the cities but
that specific one city. Injected knowledge is measured using
the number along with the ratio of how much of the unique
vocabulary one city causes. We augment vocabulary II using
5 as the synthesis index and train a model on vocabulary II.
As a result, the trained model is isolated from the vocabulary
information from that one specific city. Afterward, we test
the trained model performance on the generated requirements
using vocabulary I. We pick CitySpec with Bi-LSTM + CRF
and CitySpec with BERT in this scenario. We employ the
validation function to validate all vocab in vocabulary I and
pass the validated ones to vocabulary II. After that, we have
a validated vocabulary including vocabulary II and validated
vocabulary I. The deployed model is fine-tuned based on the
validated vocabulary using few-shot learning.

From the results shown in Table III, we observe that (1)
although CitySpec immigrates to a completely unknown city,
it is still able to provide satisfying performance, e.g., 84.9%
token-acc and 77.6% F-1 score in Seattle, but the sent-
acc tends to be low. (2) With new knowledge injected, the

performance increases significantly, e.g., Sent-Acc for Seattle
increases from 48% to 84.8% with BiLSTM+CRF, and from
46.4% to 80.7% with BERT.

We also explore CitySpec’s adaptability to different topics.
We choose four topics including noise control, indoor air con-
trol, security, and public access. The results also show that (1)
even though CitySpec has not seen vocabulary from a totally
different topic, it still gives a competitive performance; (2)
online learning brings obvious improvements when adaptation
is further applied.

In summary, it indicates the capability of CitySpec in
both city and domain adaptation. It can also adapt to new
requirements evolving overtime. Moreover, with a different set
of domain-specified knowledge, CitySpec can be potentially
applied to other application domains (e.g., healthcare).

E. Case Study

Due to the absence of a real city policy maker, we emulate
the process of using CitySpec by taking the real-world city
requirements and assuming that they are input by policy mak-
ers. Specifically, this case study shows the iteration of com-
munication between CitySpec and the policy maker to clarify
the requirements. We emulate this process 20 times with 100
requirements randomly selected from our datasets each time.
The results show that the average and maximum rounds of
clarification are 0.8 and 4 per requirement, respectively, due
to the missing or ambiguous information. Averagely, 28.35%
of requirements require clarification on location. For example,
“No vendor should vend after midnight.”, CitySpec asks users
to clarify the time range for “after midnight” and the location
defined for this requirement. Overall, CitySpec obtains an
average sentence-level accuracy of 90.60% (with BERT and
synthesize index = 5). The case study further proves the
effectiveness of CitySpec in city requirement specification.

VI. RELATED WORK

Translation Models. Researchers have developed models
to translate the natural language to machine languages in
various domains, such as Bash commands [5], Seq2SQL [6],
and Python codes [7]. These translation models benefit from
enormous datasets. The codex was trained on a 159 GB
dataset that contains over 100 billion tokens. WikiSQL, which
Seq2SQL was trained on, consists of 80,654 pairs of English-
SQL conversions. NL2Bash [5] was trained on approximately
10,000 pairs of natural language tasks and their corresponding
bash commands. As an under-exploited domain, there is a
very limited number of well-defined requirements. Therefore,
existing translation models do not apply to our task. This
paper develops a data synthesis-based approach to build the
translation model.

Data Synthesis. Data synthesis exploits the patterns in study
findings and synthesizes variations based on those patterns.
Data augmentation is a simple application of data synthesis.
Previous augmentation approaches wield tricks like synonym
substitution [12], [13] and blended approaches [14]. In the
smart city scenario, we need new data samples which fit in



TABLE III
ADAPTABILITY ON DIFFERENT CITIES IN TERMS OF TOKEN-LEVEL ACCURACY, SENT-LEVEL ACCURACY, AND OVERALL F-1 SCORE

City Seattle Changsha Charlottesville Jacksonville
Metrics TokenAcc SentAcc F-1 TokenAcc SentAcc F-1 TokenAcc SentAcc F-1 TokenAcc SentAcc F-1

Non-adaptive w/ BiLSTM+CRF 84.91% 48.00% 77.60% 86.61% 61.20% 84.10% 90.00% 65.62% 86.48% 77.32% 35.20% 81.54%
Adapted w/ BiLSTM+CRF 96.05% 84.80% 93.75% 95.27% 83.20% 93.57% 96.82% 89.29% 95.40% 97.35% 88.80% 96.02%

Non-adaptive w/ BERT 80.38% 46.40% 76.80% 86.10% 58.00% 83.87% 93.44% 73.21% 90.46% 90.21% 56.40% 81.60%
Adapted w/ BERT 95.10% 80.70% 90.28% 97.16% 88.40% 96.88% 97.53% 87.05% 94.31% 96.72% 83.20% 92.59%

Knowledge Injected 31 (2.34% ) 23 (1.73%) 53 (4.07%) 22 (1.66%)

TABLE IV
ADAPTABILITY ON DIFFERENT TOPICS IN TERMS OF TOKEN-LEVEL ACCURACY, SENT-LEVEL ACCURACY, AND OVERALL F-1 SCORE

Topic Noise Control Public Access Indoor Air Control Security
Metrics TokenAcc SentAcc F-1 TokenAcc SentAcc F-1 TokenAcc SentAcc F-1 TokenAcc SentAcc F-1

Non-adaptive w/ BiLSTM+CRF 77.82% 41.56% 77.83% 73.99% 44.07% 74.41% 81.51% 46.80% 76.22% 72.11% 28.80% 62.93%
Adapted w/ BiLSTM+CRF 95.82% 90.68% 94.46% 97.68% 74.80% 97.39% 96.58% 80.00% 87.68% 94.39% 94.37% 92.34%

Non-adaptive w/ BERT 84.15% 58.62% 81.05% 83.59% 54.17% 78.93% 78.51% 31.20% 73.88% 79.31% 45.60% 77.50%
Adapted w/ BERT 98.07% 88.31% 92.98% 97.43% 88.75% 95.75% 95.31% 74.40% 93.60% 95.41% 82.80% 93.95%

Knowledge Injected 57 (4.38%) 171 (14.37%) 92 (7.31%) 41 (3.13%)

the smart city context. Therefore, we extract extra knowledge
from smart cities and fully exploit semantic and syntactic pat-
terns instead of applying straightforward tricks like chopping,
rotating, or zooming. This paper is the first work synthesizing
smart-city-specific requirements to the best of our knowledge.

Online Learning. Online machine learning mainly deals
with the situation when data comes available to the machine
learning model sequentially after being deployed. Similar to
continuous learning, online learning aims to give model accu-
mulated knowledge and improve model performance continu-
ously given incoming learning samples [15], [16]. Some of the
existing papers focus on developing sophisticated optimization
algorithms [17] or exploiting the differences between new
and old samples [18]. However, these papers do not have a
mechanism to detect or prevent adversarial samples online.
This paper develops a two-stage online learning process with
online validation against potential malicious inputs.

VII. SUMMARY

This paper builds an intelligent assistant system, CitySpec,
for requirement specification in smart cities. CitySpec bridges
the gaps between city policy makers and the monitoring
systems. It incorporates city knowledge into the requirement
translation model and adapts to new cities and domains
through online validation and learning. The evaluation results
on real-world city requirement datasets show that CitySpec is
able to support policy makers accurately writing and refining
their requirements and outperforms the baseline approaches.
In future work, we plan to have CitySpec used by real city
policy makers, but this is outside the scope of this paper.
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