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Abstract

Multi-label text classification (MLTC) tasks
in the medical domain often face the long-
tail label distribution problem. Prior works
have explored hierarchical label structures to
find relevant information for few-shot classes,
but mostly neglected to incorporate external
knowledge from medical guidelines. This
paper presents DKEC, Domain Knowledge
Enhanced Classification for diagnosis predic-
tion with two innovations: (1) automated con-
struction of heterogeneous knowledge graphs
from external sources to capture semantic rela-
tions among diverse medical entities, (2) incor-
porating the heterogeneous knowledge graphs
in few-shot classification using a label-wise at-
tention mechanism. We construct DKEC using
three online medical knowledge sources and
evaluate it on a real-world Emergency Medical
Services (EMS) dataset and a public electronic
health record (EHR) dataset. Results show that
DKEC outperforms the state-of-the-art label-
wise attention networks and transformer mod-
els of different sizes, particularly for the few-
shot classes. More importantly, it helps the
smaller language models achieve comparable
performance to large language models.

1 Introduction

Automated diagnosis prediction (Ma et al., 2017)
is the challenging task of classifying different dis-
eases based on a patient’s EHR for applications
such as treatment recommendation (e.g., selecting
EMS protocols (Shu et al., 2019; Jin et al., 2023;
Weerasinghe et al., 2024)) or medical billing (e.g.,
assigning ICD-9 codes) (O’malley et al., 2005).

Diagnosis prediction based on the free-text med-
ical notes is known as multi-label text classifica-
tion (MLTC) (Liu et al., 2017), which is the task
of assigning the most relevant labels to a text in-
stance. MLTC is more complex than the traditional
multi-class text classification because the number

of possible label combinations grows exponentially
with the number of classes (Chen et al., 2017). An-
other challenge in diagnosis prediction is the im-
balanced distribution of diagnoses as some medi-
cal conditions happen more frequently than others,
causing a long-tail data distribution. For example,
the total number of chest pain-related reports in a
real-world EMS dataset is ten times more than over-
dose/poisoning reports (Kim et al., 2021). Training
on such imbalanced datasets, also called "power-
law datasets" (Rubin et al., 2012), introduces bias
in model predictions towards head label classes
while ignoring the few-shot or tail classes.

Most existing diagnosis prediction solu-
tions (Rasmy et al., 2021; Lee et al., 2020)
are task-agnostic and rely on integrating biomedi-
cal domain knowledge with transformer models
in the pre-training stage. For example, CORe-
BERT (van Aken et al., 2021b) uses clinical
outcome pre-training to learn relations among
symptoms, risk factors and clinical outcomes by
incorporating Wikipedia and PubMed knowledge
bases. Recent pre-trained large language models
(LLMs) (Yang et al., 2022a; Luo et al., 2022;
Bolton et al., 2024) have demonstrated superior
performance by leveraging large external clinical
corpora and huge number of parameters. How-
ever, these models only incorporate uncurated
knowledge in pre-training, neglect task-specific
knowledge and label relations, and are costly
to fine-tune and deploy on resource-constrained
devices (Jin et al., 2023; Weerasinghe et al., 2024).

To solve the class-imbalance problem in MLTC,
the convolutional attention network and its vari-
ants (Kim, 2014; Li and Yu, 2020; Liu et al., 2021)
were proposed to extract meaningful document rep-
resentations that cover different ranges of clinical
text. Other works (Rios and Kavuluru, 2018; Wang
et al., 2022) integrated hierarchical information by
graph convolutional neural networks to select label-



Models Encoder Attention Mechanism Knowledge Integration Knowledge Source Datasets
(van Aken et al., 2021b) BERT Self-Attention Pre-training Wikipedia, PubMed MIMIC-III

(Yang et al., 2022b) MegatronBERT Self-Attention Pre-training Wikipedia, PubMed MIMIC-III
(Bolton et al., 2024) GPT2 Self-Attention Pre-training PubMed MedMCQA

(Mullenbach et al., 2018) CNN Label-wise Attention MIMIC-III
(Rios and Kavuluru, 2018) CNN Label-wise Attention ICD-9 hierarchy graph ICD-9 description MIMIC-III

(Li and Yu, 2020) Multi-filter residual CNN Label-wise Attention MIMIC-III
(Zhou et al., 2021) Multi-filter CNN Shared Interactive Attention MIMIC-III

DKEC (Ours) Multi-filter CNN, Transformers Label-wise Attention Heterogeneous graph Wikipedia, MayoClinic, ODEMSA MIMIC-III & EMS

Table 1: Summary of previous works on diagnosis prediction.

relevant features. Some follow-up studies (Lu et al.,
2020; Cao et al., 2020; Zhou et al., 2021) have also
proposed to incorporate label co-occurrence graphs,
along with hierarchical structures to capture label
concurrent and mutual exclusive relations for ICD-
9 code classification. However, most of these works
neglected the potential benefits of incorporating ex-
pert knowledge from medical guidelines. External
domain knowledge can provide additional informa-
tion for training with few-shot labels to compensate
for data scarcity and model size or be applied as
constraints in training based on label relations.

This paper presents DKEC (Figure 1), a knowl-
edge and data-driven approach to class-imbalanced
MLTC by (i) automated extraction of label-specific
semantic relations from online sources and (ii) in-
tegrating them as heterogeneous knowledge graphs
with different encoders using a label-wise attention
mechanism. Our contributions are as follows:

• We develop a method for automated construc-
tion of heterogeneous knowledge graphs from
online sources (e.g., Wikipedia, MayoClinic,
ODEMSA) that accurately captures seman-
tic relations among diverse medical entities
(e.g., symptoms and diseases, diseases and
treatments), by medical entity extraction us-
ing chain-of-thought prompting with GPT-4
and UMLS medical concept normalization.

• We design a heterogeneous label-wise atten-
tion mechanism based on graph transformers
that captures the diagnosis co-occurrence rela-
tions based on relevant medical entities in the
knowledge graph and is combined with differ-
ent encoders (e.g., Multi-filter CNN, BERT)
to improve multi-label classification.

• We conduct extensive experiments to evalu-
ate DKEC by applying it to language mod-
els of varying sizes using a real-world EMS
dataset (Kim et al., 2021) and the MIMIC-III
dataset (Johnson et al., 2016). Results show
that DKEC outperforms state-of-the-art by
3.7% and 2.1% in overall top-K recall for the

EMS and MIMIC-III datasets, respectively,
and enhances small language model perfor-
mance in few-shot classes by 10.5% and 6%.

2 Related Work

Pre-trained Transformers for Diagnosis Pre-
diction One avenue explored in prior work is
focused on large-scale pre-training from clini-
cal admissions, discharge summaries, and other
biomedical texts, such as BioBERT (Lee et al.,
2020), COReBERT (van Aken et al., 2021a) and
GatorTron (Yang et al., 2022a) (Table 1). Recently,
it has been shown that pre-trained LLMs, including
BioGPT (Luo et al., 2022) and BioMedLM (Bolton
et al., 2024), can outperform general-purpose mod-
els and compete with expert-designed, domain-
specific model architectures. Unlike these works,
which focus on integrating external knowledge cor-
pora for task-agnostic pre-training, we aim to incor-
porate task-specific knowledge and disease-related
relations during the fine-tuning stage.

Label-wise Attention Networks Another line of
research has focused on developing attention mech-
anisms to select the most relevant clinical segments
for each label (see Table 1). CAML (Mullenbach
et al., 2018) was the first that proposed to inte-
grate the semantic meanings of the labels by as-
signing label-wise attention weights to medical text.
In (Rios and Kavuluru, 2018; Vu et al., 2020), the
hierarchical structure of labels was modeled and
further concatenated into text features for classi-
fication. Recent studies have proposed different
modules, including multiple graph aggregation (Lu
et al., 2020), interactive shared representation net-
work (Zhou et al., 2021), and hyperbolic and co-
graph representation learning module (Cao et al.,
2020) to capture label co-occurrence along with la-
bel hierarchy for ICD code classification. However,
these works ignore the domain knowledge from
other sources (e.g., medical guidelines), which can
provide additional information for training with
rare classes and compensate for data scarcity. Also,
most of them only focused on ICD coding us-
ing convolutional neural networks (CNNs) in the
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Figure 1: DKEC Pipeline includes three main modules: a text branch to derive text embeddings, a graph branch to
derive updated diagnosis embeddings, and a HLA module to derive label-attentive document embeddings.

MIMIC-III dataset and showed low performance
for diagnosis prediction (Mullenbach et al., 2018).

Biomedical Knowledge Graph Construction
Knowledge graphs provide an efficient way to or-
ganize and access the expanding biomedical knowl-
edge. Most existing works (Harnoune et al., 2021;
Xu et al., 2020) utilize BERT models to construct
biomedical knowledge graphs through named en-
tity recognition and relation extraction. However,
BERT is limited by its capacity to process only
a fixed number of tokens and is trained for pre-
determined named-entity classes, making it unsuit-
able for long biomedical literature with an open set
of named-entities. Recent research (Agrawal et al.,
2022; Arsenyan et al., 2023; Goel et al., 2023; Hu
et al., 2024) shows that LLMs possess excellent
zero-shot information extraction capabilities, thus
can be suitable for constructing knowledge graphs.

3 Heterogeneous Knowledge Graph
Construction

Our goal is to construct a heterogeneous knowl-
edge graph G, which for every disease diagnosis
code Dk in a set of Diagnosis Codes D : {Dk}Lk=1

(L is the total number of diseases), represents
the corresponding sets of medical concepts such
as Signs and Symptoms S : {Sk}

|S|
k=1, Treatments

T : {Tk}
|T |
k=1 and Hierarchy : {Hk}

|H|
k=1 that have

semantic relations with Dk. As shown in Figure 1,
the heterogeneous graph of medical concepts is
constructed as G = (N,E), with N as the set
of nodes and E as the set of edges. There are
four different types of nodes in the graph, diag-
nosis codes D, signs and symptoms S, treatment
T , and hierarchy H , and three types of bidirec-

tional edges, has/indicates
←→
EDS between D and S,

suggests/administers
←→
EDT between D and T , and

children/parent
←→
EDH between D and H . For exam-

ple, the “Injury - Crush Syndrome” diagnosis code
Di is connected to the signs and symptom “mus-
cle mass” Sj using an edge of type “has/indicates”
←→
EDS . "Injury – Head" (Dj) and Di are the children

of (
←→
EDH ) node "Adult Trauma Emergencies".

Next, we present a systematic method for auto-
mated extraction of disease-relevant medical enti-
ties from external knowledge sources and mapping
them into normalized concepts for unique repre-
sentation in the graph. For every diagnosis code
in a training dataset, we extract the relevant symp-
toms and treatments for the disease textual descrip-
tions in online sources and generate the triplets
< Dk, relation, Tk/Sk >. The hierarchy informa-
tion is given by the label coding in each dataset.

3.1 Medical Entity Extraction

Online knowledge bases (KBs) are heterogeneous
and contain different information on diseases, so
we utilize multiple KBs for medical entity extrac-
tion (see Figure 2). For a disease diagnosis code
Dk, we use the textual description of the disease
as the search term to query the KBs. This is done
using API calls for KBs with readily available API
endpoints and a WebDriver for those without APIs.
We then extract the content from the first page of
the search results and identify the symptoms and
treatments from the text. We evaluated different
medical entity extraction methods and used prompt-
ing gpt-4-1106-preview (Achiam et al., 2023) via
one-shot chain-of-thought (one-shot CoT) (Wei
et al., 2022) as it showed the best performance (see
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Figure 2: Knowledge Graph Construction

Sections 5.2 and 6.1). As shown in Figure 2, one-
shot CoT prompts decompose the task into three
sub-tasks and ask GPT-4 to think step by step:
Token Classification asks GPT-4 to label each to-
ken in the text by symptom, treatment or none.
Span Detection is the task to locate the minimal
span representation of a medical phrase, which is
necessary for symptoms like "shortness of breath."
This can also help to refine the extracted medi-
cal entities better by removing irrelevant modifiers.
These two steps are important to prevent GPT-4
from rephrasing medical entities or hallucinations.
Relation Extraction asks GPT-4 to check if the
extracted medical phrases from the text are related
to the disease to avoid scenarios like negation.

3.2 Medical Entity Representation

For the unique representation of nodes in the graph,
we first do medical concept normalization. We use
the Unified Medical Language System (UMLS)
REST API (Bodenreider, 2004) to map the ex-
tracted entities presented in different semantic vari-
ations to normalized medical concepts. For in-
stance, the entities "fever", "high temperature", and
"burning up" can all be mapped to the same UMLS
concept "Fever" with Concept Unique Identifier
(CUI) C0015967. Specifically, we define semantic
type sets for symptoms and treatments (Agrawal
et al., 2022; Parwez et al., 2018) and for each entity
take the first returned normalized concept with the
right semantic type from the API (Appendix A.1).

Then, we generate an initial node embedding for
each node in the graph by applying a pre-trained
BERT model to the node’s textual description (see
Figure 1) and summing up hidden states in the last
four layers for the trade-off between memory and
performance (Kenton and Toutanova, 2019).

4 Knowledge-Enhanced Classification

Figure 1 shows the overall DKEC pipeline, con-
sisting of (i) a text branch that extracts features
from the input EHR notes using a long document
encoder (ii) a graph branch that takes the heteroge-
neous knowledge graph G as input and incorporates
it for label co-occurrence extraction and multi-label
classification via a Heterogeneous Label-wise At-
tention (HLA) mechanism.

4.1 Long Document Encoder

Given that our input is the long text Doc in EHR
notes, we need models that can handle temporal
sequences and medical terminologies for feature
extraction. Prior work (Ji et al., 2022) shows CNNs
have superior performance on clinical document
classification and pre-trained transformers are lim-
ited to encoding a maximum sequence length of
512. To make a fair comparison, we apply DKEC
to different state-of-the-art encoders, including
multi-filter CNNs and pre-trained transformers.

For multi-filter CNN, similar to work (Zhou et al.,
2021), we first map the words in the input text into
the low-dimensional word embedding space, then
concatenate the convolutional representation from
kernel set with different sizes to generate docu-
ment features EDoc. For BERT models, similar to
work (Ji et al., 2021), we chunk the long document
into shorter texts and concatenate all the chunked
text features from the hidden states in the last layer
of the BERT to generate document features EDoc.

4.2 Heterogeneous Label-wise Attention

We use the heterogeneous graph transformer
(HGT) (Hu et al., 2020) as the graph model and add
another linear layer on the top of HGT’s output to
derive final embeddings for all the labels (diagnosis



nodes). The input of HGT is the initial node em-
beddings and the medical concept relations, and the
output is the updated node embeddings, from which
we only use the updated diagnosis embeddings for
HLA construction. In the feed-forward phase of the
HGT model, a diagnosis node Dk aggregates infor-
mation from neighboring medical concept nodes
Sk, Tk by giving different weights to update itself
as D⋆

k. We denote the set of updated diagnosis
embeddings from HGT as D⋆ : {D⋆

k}
L
k=1,

D⋆ = Linear(HGT(G)) (1)

where D⋆ ∈ RL×δ is the label representation
which incorporates knowledge from diverse medi-
cal entities and captures co-occurrence relations in
diagnosis codes and δ is a hyper-parameter indicat-
ing the dimension of hidden states. We then design
an HLA to combine knowledge from each label
representation D⋆

k ∈ D⋆ with text representation
Et, by having the labels assign different weights
for each token in the document representation. The
label-wise attention vector is constructed as:

aDoc,k = softmax(tanh(W0EDoc + b0)D
⋆
k) (2)

ADoc = [aDoc,1 · · ·aDoc,k · · ·aDoc,L]
T (3)

where W0 and b0 are respectively the weight and
bias of a linear layer to match the size of hidden
dimensions in the document representation with the
size of label representation and aDoc,k ∈ RSeq×n

measures how much weight the kth label assigns to
each token in document Doc. Finally, we combine
all attention vectors aDoc,k of a document Doc for
all L labels to have ADoc ∈ RL×(Seq×n), then the
label-wise text representation Eattn

Doc ∈ RL×δ is
generated as follows,

Eattn
Doc = ADocEDoc (4)

which measures how informative medical text t is
for different labels.

4.3 Classification

The classification layer aims to find the most rel-
evant label ŷt to the input document Doc. We
add another pooling layer for the features obtained
from HLA (Eattn

Doc ) before the linear layer to reduce
memory usage. The final prediction based on prob-
abilities for each class ŷDoc ∈ RL is achieved after
the linear layer:

ŷDoc = Linear(Pooling(Eattn
Doc )) (5)

The binary cross-entropy loss is applied to measure
the distance between each predicted label ŷDoc and
ground-truth yDoc.

L = −
|Doc|∑
Doc=1

L∑
l=1

(yDoc,l log(ŷDoc,l)+

(1− yDoc,l) log(1− ŷDoc,l))

(6)

5 Experiments

We conduct extensive experiments to evaluate
DKEC by applying it to different baseline language
models and comparing its performance to state-of-
the-art (SOTA) diagnosis prediction methods. In
our experiments, we aim to answer three research
questions:
RQ1: Can DKEC improve MLTC performance for
class-imbalanced datasets?
RQ2: How does DKEC perform when applied to
language models with varying sizes?
RQ3: How does DKEC perform with scaling label
sizes?

5.1 Datasets

We used two datasets: a real-world EMS dataset,
which is a collection of 4,417 pre-hospital elec-
tronic Patient Care Reports (ePCR) annotated with
EMS protocol labels, and the benchmark EHR
dataset, MIMIC-III (Johnson et al., 2016), which
is annotated with ICD-9 diagnosis codes. Both
datasets contain textual descriptions of diagnoses,
treatment protocols, interventions, and patients’
medical histories. Following the pre-processing
steps in (Kim et al., 2021), we extract the rele-
vant information from 4,417 ePCRs in the EMS
dataset. We use scikit-multilearn (Szymański and
Kajdanowicz, 2017) to create 70:30 train/test splits
for the EMS dataset and use 10% of the train set
for validation. Following the method in (Mullen-
bach et al., 2018), we split the train, validation,
and test sets from MIMIC-III, but we only consider
a subset of 3,737 (out of 6,668) ICD-9 diagnosis
codes as labels, since knowledge was available for
only 3,737 of the codes on the Wikipedia and Mayo
Clinic websites. We separate the labels into three
categories based on their frequencies in the dataset:
head labels (H) with more than 1,000 samples,
middle labels (M) with 10 to 100 samples, and tail
labels (T) with fewer than 10 samples (few-shot
cases). Table 3 shows statistics of the datasets.



Wikipedia (50 ICD-9 codes) Mayo Clinic (50 ICD-9 codes) ODEMSA (43 EMS protocols)
wo/w NORM Symptom Treatment Symptom Treatment Symptom Treatment

MetaMap 47.62 / 51.53 34.66 / 41.95 44.83 / 49.12 41.82 / 46.44 41.34 / 43.61 39.20 / 41.95
cTAKES 48.74 / 52.58 36.01 / 43.35 42.60 / 46.67 39.67 / 45.35 38.02 / 42.47 48.96 / 52.31
ScispaCy 52.79 / 55.57 41.73 / 49.71 46.54 / 50.43 45.94 / 50.89 44.39 / 47.69 35.88 / 38.82

zero-shot GPT-4 51.99 / 58.77 17.93 / 32.13 52.98 / 63.37 26.16 / 36.48 76.07 / 79.72 10.17 / 23.50
one-shot CoT GPT-4 84.63 / 86.57 85.70 / 89.12 82.03 / 86.72 90.43 / 93.90 86.96 / 91.01 86.48 / 88.92

Table 2: Comparison with baselines on three knowledge bases. wo/w NORM means the micro F1-scores are
measured before/after medical entity normalization. The best results are highlighted in bold.

Nl

Dataset Ntrain Nval Ntest H M T
EMS 2787 314 1316 10 21 12

MIMIC-III 47413 1627 3363 494 1038 2205

Table 3: Dataset statistics, Ntrain: number of training
instances, Nval: number of validation instances, Ntest:
number of test instances, Nl: number of labels in total.

5.2 Knowledge Bases

We constructed two separate heterogeneous graphs
for capturing the domain knowledge for ICD-9
diagnosis codes in MIMIC III and protocols in
the EMS dataset. For ICD-9 diagnosis codes,
Wikipedia and Mayo Clinic web contents are
scraped. For EMS protocols, we use symptom
and procedure sections from official EMS guide-
lines, which are available on the Old Dominion
EMS Alliance (ODEMSA) website 1. Statistics of
two knowledge graphs are in Appendix A.2. To
evaluate the accuracy of different methods for con-
structing knowledge graphs, we evenly sampled
50 codes from head, middle, and tail classes and
manually annotated symptoms and treatments from
Wikipedia and Mayo Clinic website contents for
ICD-9 diagnosis codes. For EMS protocols, we
manually annotated all 43 protocols in ODEMSA
documents. The extracted web contents, ground
truth annotations, and knowledge graphs are here 2.

Both rule-based and ML-based methods are used
as the medical entity extraction baselines, includ-
ing MetaMap (Aronson, 2001), cTAKES (Savova
et al., 2010), ScispaCy (Neumann et al., 2019). The
prompt templates for zero-shot and one-shot CoT
and baseline model configurations are shown in
Appendix A.3. micro F1-score for entity extraction
is reported. We count an extracted medical entity
as correct if it exactly matches the ground truth.

5.3 Metrics and Parameter Settings

We report the micro F1 (miF ) and macro F1
(maF ) scores with a fixed threshold of 0.5. miF
is heavily influenced by frequent diagnosis codes

1https://odemsa.net/
2https://github.com/UVA-DSA/DKEC

and thus can be used to evaluate the performance
of the head/middle classes. maF weighs the F1
achieved on each label equally and is used to eval-
uate the performance for the tail classes. Ranking-
based metrics (Chalkidis et al., 2019, 2020) recall
at k (R@K) and precision at k (P@K), which do
not require a specific threshold, are also reported.
P@K is important as it measures the proportion of
relevant diagnosis codes suggested in top-k recom-
mendations by the model. R@K is important for
medical professionals when they consider the most
probable diagnoses for treatments. As the average
number of labels per instance in MIMIC-III is 8.0
and EMS is 1.2, we set K as 8 and 1, respectively.

To reduce noise, we did a pre-processing step to
remove punctuations and stopwords. We trained
each model 5 times, each time with a different ran-
dom initialization seed. We report the mean ±
standard deviation of results with the best parame-
ters. The hidden state size and number of attention
heads in graph models are set as 256 and 8, respec-
tively. We use Adam optimizer and regularization
with a weight decay of 1e-5 and a dropout rate of
0.2. For training the baselines, we use their best
parameter settings. We developed all models by Py-
Torch (Paszke et al., 2019) and Huggingface (Wolf
et al., 2019). All experiments were run on NVIDIA
GPU A100 (more details are in Appendix A.4).

5.4 Baselines

We evaluate DKEC in comparison to the following
SOTA networks for diagnosis prediction:
Pre-trained Transformers: BERT models
including TinyClinicalBERT(15M), Distil-
BioBERT(66M) (Rohanian et al., 2023), CORe-
BERT(110M) and LLMs like GatorTron(325M)
and BioMedLM(2.7B) are pre-trained on external
biomedical knowledge for clinical NLP tasks.
Label-wise Attention Networks: The following
baselines were selected due to their superior
performance and code availability (Ji et al., 2022):
CAML: The convolutional attention network for
multi-label classification (Mullenbach et al., 2018)



Head Labels Middle Labels Tail Labels Overall
P@1 R@1 P@1 R@1 P@1 R@1 miF maF P@1 R@1

E
M

S

CAML 78.6±1.3 77.7±1.3 33.0±0.5 32.6±0.6 22.7±4.5 22.7±4.5 63.7±1.2 22.4±1.3 65.0±1.6 63.5±1.5

ZAGCNN 83.0±1.0 82.0±1.0 47.0±1.0 46.2±0.7 37.9±7.7 37.9±7.7 64.8±1.1 28.3±2.0 69.6±0.7 68.1±0.6

MultiResCNN 84.3±0.2 83.2±0.2 35.6±1.8 35.0±2.0 25.0±2.3 25.0±2.3 65.8±0.2 26.1±0.5 67.9±0.3 66.3±0.3

ISD 81.7±0.9 80.8±0.9 44.2±0.4 43.2±0.5 29.5±2.3 29.5±2.3 67.1±1.2 26.1±0.1 68.0±1.3 66.5±1.2

GatorTron 89.4±0.5 88.4±0.5 66.0±0.4 64.7±0.7 57.1±2.2 57.1±2.2 75.5±0.6 35.4±1.9 77.3±0.6 75.4±0.6

BioMedLM 89.3±0.3 88.2±0.3 71.3±0.7 70.1±0.6 47.6±4.3 47.6±4.3 76.9±0.7 43.1±1.7 78.4±0.6 76.6±0.6

DKEC-M-CNN 85.2±0.7 83.0±0.7 53.2±1.3 52.7±1.1 45.1±2.1 45.1±2.1 68.6±0.4 32.4±0.6 72.4±0.4 71.7±0.6

DKEC-GatorTron 91.8±0.1 90.7±0.1 72.4±0.4 71.3±0.4 67.6±2.3 67.6±2.3 79.5±0.5 51.1±1.5 82.2±0.5 80.3±0.6

P@8 R@8 P@8 R@8 P@8 R@8 miF maF P@8 R@8

M
IM

IC
-I

II

CAML 54.8±0.5 57.5±0.6 5.5±0.4 28.4±2.3 0.7±0.1 4.8±0.5 51.5±0.7 4.3±0.5 54.4±0.5 50.3±0.5

ZAGCNN 55.3±0.2 58.0±0.2 6.6±0.1 34.4±0.7 1.8±0.1 11.7±0.8 52.1±0.4 4.0±0.3 55.2±0.2 51.2±0.3

MultiResCNN 56.5±0.3 59.4±0.2 8.2±0.5 42.3±2.8 1.2±0.1 7.5±0.9 55.6±0.3 6.0±0.6 56.6±0.2 52.7±0.2

ISD 51.8±0.5 53.8±0.5 6.1±0.2 31.7±1.2 1.9±0.2 12.6±0.9 46.8±1.3 2.8±0.2 51.6±0.5 47.5±0.5

GatorTron 50.4±0.2 53.4±0.2 6.5±0.2 33.8±1.1 2.0±0.3 12.7±1.4 45.4±0.4 2.7±0.3 50.3±0.2 47.1±0.2

BioMedLM 50.5±0.1 53.4±0.1 6.1±0.1 31.3±1.2 2.0±0.1 13.2±1.1 46.6±0.3 3.7±0.5 50.2±0.1 47.2±0.2

DKEC-M-CNN 58.6±0.2 61.5±0.2 9.6±0.1 49.2±0.8 2.9±0.1 19.2±0.9 55.0±0.3 4.9±0.2 58.9±0.2 54.8±0.2

DKEC-GatorTron 56.8±0.4 59.8±0.2 8.5±0.1 44.7±0.7 3.1±0.2 19.1±1.1 53.0±0.4 5.7±0.3 56.9±0.4 53.2±0.3

Table 4: Comparison with SOTA on EMS and MIMIC-III (RQ1). The best and runner-up results are in bold and
underlined.

learns attention distribution for each label.
ZAGCNN: Zeroshot attentive GCNN (Rios and
Kavuluru, 2018) integrates hierarchical structure of
ICD codes by graph CNNs to select label-relevant
features for ICD classification.
MultiResCNN: Multi-Filter Residual CNN (Li
and Yu, 2020) utilizes a multi-filter convolutional
layer to capture n-gram patterns and a residual
mechanism to enlarge the receptive field.
ISD: Interactive shared representation network
with self-distillation (Zhou et al., 2021) models
connections among labels and their co-occurrence.

6 Experimental Results

6.1 Knowledge Graph Quality Evaluation

As shown in Table 2, one-shot CoT GPT-4 outper-
forms other baselines in medical entity extraction
consistently by a considerable margin. Zero-shot
GPT-4 has better performance in extracting symp-
toms than treatments. In our detailed manual eval-
uations, we observed that zero-shot GPT-4 usually
outputs the whole sentence containing a medical
entity or rephrases the medical entities during ex-
traction (see the example in Appendix A.3). With
token classification and span detection in one-shot
CoT GPT-4 we avoid this problem.

6.2 Class Imbalance Analysis

Table 4 shows the performance of DKEC when
applied to Multi-filter CNN (DKEC-M-CNN)
and GatorTron (DKEC-GatorTron) vs. SOTA
on EMS and MIMIC-III datasets. For all the
head/middle/tail classes, DKEC outperforms all
the baselines. Several observations are highlighted:

DKEC alleviates the class imbalance problem. As
shown in Table 4, improvement is most evident
on the tail labels. DKEC achieves 10.5% and 6%
increase in top-k recall on EMS and MIMIC-III
datasets, respectively, compared with runner-up
SOTA. On the middle labels, the improvement is
still considerable. Compared with runner-up SOTA,
DKEC achieves a 6.9% improvement in top-k re-
call on MIMIC-III. In the head labels where there
are sufficient samples, the improvement is rela-
tively small (∼2%). Overall, DKEC maintains a
comparable performance to baselines for the head
labels while achieving better performance for mid-
dle and tail labels, which narrows down the perfor-
mance gap regardless of data distribution (RQ1).
We also do an error analysis to understand where
and why DKEC underperforms in Appendix 8.

We also observe that transformer models in general
achieve a lower performance compared to CNN
models on the MIMIC-III dataset, but outperform
them on the EMS dataset. This may be due to the
different characteristics of the datasets. The EMS
dataset contains fewer training samples and labels
per sample, while the MIMIC-III notes are longer
and each contain a larger number of labels. One
hypothesis is that pre-trained transformers perform
better on shorter notes and with fewer training sam-
ples, which can be further studied in future work.

6.3 Model Size vs. Performance

LLMs have great few-shot abilities but they are
costly to train and deploy on resource-constrained
devices (Jin et al., 2023; Weerasinghe et al., 2024).
So, we apply DKEC to transformers of varying
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Figure 3: DKEC with different sizes of pre-trained trans-
formers (RQ2).

sizes, including LLMs, to answer RQ2.

Performance of DKEC-based models increase less
as model size grows. Our results show that DKEC
is model-agnostic and can be applied to different
model architectures and sizes from 15M to 2.7B.
However, as shown in Figure 3(a) and 3(b), DKEC
has more improvement on small language models
than LLMs. For example, when applying DEKC,
there is a 18.8% improvement in maF over Tiny-
ClinicalBERT (15M), while there is only a 9.5%
improvement over BioMedLM (2.7B) on the EMS
dataset. This might be because LLMs are pre-
trained on extensive medical corpora and can han-
dle longer texts, thus show better few-shot abili-
ties. DKEC enables smaller language models to
achieve comparable performance to LLMs. As
shown in Figures 3(a) and 3(b), in both datasets,
GatorTron (325M) with DKEC outperforms base-
line BioMedLM (2.7B) in both miF and maF .
This indicates the benefit of DKEC in enabling
less costly deployment of small language models
in real-world applications.

6.4 Label Size vs. Performance
To understand the effect of label size on the perfor-
mance of DKEC (RQ3), we conduct experiments
on subsets of MIMIC-III dataset with varying label
sizes, including 1.0k, 3.7k, and 6.7k labels. The
knowledge from online sources are fully available
for subsets with 1.0k and 3.7k labels, while par-
tially available for the full dataset with 6.7k labels.

As shown in Figure 4, with 6.7k labels, DKEC-M-
CNN has similar performance to the best SOTA
only with partial knowledge. However, on datasets
with 3.7k and 1.0k labels (with full knowledge),
DKEC-M-CNN outperforms the best SOTA Mul-
tiResCNN by 2∼4% with some memory cost dur-
ing inference (∼200MB). With the increase in the
number of labels, the MLTC performance gen-
erally drops, but DKEC helps maintain perfor-
mance, particularly when external knowledge is
available for all the labels. More results on com-

Figure 4: Performance on subsets of MIMIC-III dataset
with varying label sizes (RQ3). Subsets with 1.0k and
3.7k labels have full knowledge, and 6.7k has partial
knowledge.

parison of DKEC with SOTA with 6.7k and 1.0k
labels are available in Appendix A.5.

6.5 Ablation Study
To investigate the effectiveness of DKEC, we con-
duct an ablation study on the effect of different
encoders and label-wise attention mechanisms us-
ing MIMIC-III dataset, as shown in Table 5.
Effectiveness of DKEC: For both encoders, incor-
porating DKEC leads to better performance com-
pared to only using label hierarchy which is the
SOTA label-wise attention mechanism.
Effectiveness of External Knowledge: When ap-
plying DKEC to M-CNN without hierarchical label
relations, performance shows minimal fluctuations.
This suggests that incorporating label-specific se-
mantic relations from external knowledge sources
is the main driver of performance improvements.

Encoder Label-wise Attention miF maF P@8 R@8
1-CNN Label hierarchy⋆ 52.1 4.0 55.2 51.2
1-CNN DKEC 54.8 4.2 57.5 53.3

GatorTron Label hierarchy 46.6 3.2 50.7 47.5
GatorTron DKEC 53.0 5.7 56.9 53.2
M-CNN DKEC 55.0 4.9 58.9 54.8
M-CNN DKEC w/o hierarhcy 55.2 4.9 58.6 54.5

Table 5: Ablation study using MIMIC-III dataset. “1/M-
CNN” are the single/multi-filter CNN. 1-CNN with La-
bel hierarchy⋆ represents the SOTA ZAGCNN.

7 Conclusion

This paper proposes a domain knowledge-enhanced
multi-label text classification method for diagnosis
prediction. We present an approach for automatic
knowledge graph construction from online sources
based on medical entity extraction using chain-of-
thought prompting with GPT-4. We also introduce
a heterogeneous label-wise attention mechanism
that incorporates relations among diverse medical
entities in the knowledge graph to capture label-
related text features for classification. We evalu-
ated our methods on two real-world datasets. Ex-
periments show the accuracy of knowledge graph
construction based on three knowledge bases and



improved performance over several SOTA meth-
ods. We also demonstrated the applicability of our
approach to different language models sizes and its
scalability to large number of labels.

Limitations

Firstly, we only construct the heterogeneous graphs
using two KBs, Wikipedia and Mayo Clinic. This
leads to extracting relevant domain knowledge
for only a subset of 3,737 diagnosis codes in the
MIMIC-III dataset. Larger KBs might be needed to
build more complete knowledge graphs. We do not
use UMLS as a knowledge base because UMLS
interface does not provide direct heterogeneous re-
lations between “disease” and “sign or symptoms”
(subset of Finding) and “disease” and “treatments”,
which are required for constructing the heteroge-
neous graphs in this work. Besides, constructing
knowledge graphs by UMLS might require exten-
sive manual effort.

Secondly, we manually annotated 50 ICD9 diag-
nosis codes to illustrate the accuracy of different
methods for medical entity extraction. The accu-
racy of the full knowledge graph would require a
considerable amount of human effort.

Lastly, although DKEC performs better than SOTA,
more efforts are needed to improve the prediction
accuracy of rare diagnosis codes. Given the current
SOTA prediction accuracy, particularly for ICD-9
codes in the MIMIC-III dataset, the predictions by
DKEC and other baselines studied in this paper
should be only used as a reference by healthcare
workers and not as a final decision for treatment of
the patients in the real world. Further human evalu-
ation of diagnosis prediction models and feedback
from medical experts with extensive knowledge of
diseases and patient conditions are needed. Large-
scale human evaluation and understanding of how
the top-k recall and precision results translate to
human trust in the system requires more research
efforts, which are beyond the scope of this paper.
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A Appendix

A.1 UMLS Normalization

We call UMLS API to get top10 ranked medical
concepts for a medical entity, and return the first
result with a relevant semantic type from our pre-
defined set of semantic types for symptoms and
treatments. The algorithm is as follows,

Algorithm 1 Medical Entity Normalization

Input: Pre-defined Semantic Set S, kth medical
entity ek, UMLS API

Output: Normalized Concept enormk

1: r10k=1 = UMLS(ek) ▷ rk includes normalized
concept, CUI, semantic types and etc.

2: for k ← 1 to 10 do
3: if Semantic type of rk in S then
4: enormk = normalized concept of rk
5: return enormk

6: end if
7: end for
8: return null

We provide the relevant semantic type set for medi-
cal concept normalization.
For Signs and Symptoms, the relevant seman-
tic types are "Sign or Symptom (sosy)", "Dis-
ease or Syndrome (dsyn)", "Mental or Behav-
ioral Dysfunction (mobd)", "Neoplastic Process
(neop)", "Anatomical Abnormality (anab)", "Find-
ing (fndg)", "Pathologic Function (patf)", "Congen-
ital Abnormality (cgab)", and "Injury or Poisoning
(inpo)."

For Treatment, they are "Therapeutic or Preventive
Procedure (topp)", "Antibiotic (antb)", "Clinical
Drug (clnd)", "Vitamin (vita)", "Organic Chemi-
cal (orch)", and "Amino Acid, Peptide, or Protein
(aapp)", "Pharmacologic Substance (phsu)", "Lab-
oratory Procedure (lbpr)", and "Diagnostic Proce-
dure (diap)."

A.2 Knowledge Graph Statistics

The detailed statistics of knowledge graph built
for MIMIC-III (3737 labels) and EMS (43 labels)
datasets are shown in Table 6. Wikipedia con-
tributes most of unique nodes and edges to the

union graph (WoU), and Mayo Clinic website com-
plements some other unique nodes (MoU).

A.3 Medical Entity Extraction Model
Configurations

We used the following configurations for MetaMap,
cTAKES, ScispaCy and GPT-4.

For MetaMap, we use the Python wrapper
pymetamap3 to perform named entity recognition.
The hyperparameters in pymetamap are the seman-
tic types defined in Appendix A.1. For cTAKES,
we used the DefaultFastPipeline.piper configura-
tion and then filtered for "textsem: SignSymptom-
Mention". For SciSpacy, we used the Python in-
terface of the model en_core_sci_scibert4 to
extract entities and filter by the semantic types de-
fined in Appendix A.1.

For zero-shot GPT-4 and one-shot CoT GPT-4, we
provide one example of prompting and its response.
Zero-shot GPT-4: The zero-shot GPT-4 some-
times outputs the whole sentence containing the
symptoms or treatments or rephrases them, as
shown in the example below.

PROMPT: Given a biomedical text, extract
the symptoms and treatments for the disease.
The symptom includes signs and symptoms
of the disease. The treatment includes med-
ications and procedures used to cure the dis-
ease. Remove the dosage of medications.
Return your result in latex format as fol-
lows,
```
\begin{SYMPTOM}
\item{Symptom_1}
...
\item{Symptom_n}
\end{SYMPTOM}
\begin{TREATMENT}
\item{Treatment_1}
...
\item{Treatment_n}
\end{TREATMENT}
```
[...]
RESPONSE:
```
\begin{SYMPTOM}

3https://github.com/AnthonyMRios/pymetamap
4https://allenai.github.io/scispacy/



Dataset MIMIC-III EMS

Knowledge Graph Wikipedia W Mayo Clinic M Combined ODEMSA(WoU) (MoU) W ∪M W ∩M (IoU)
Total Nodes 19275 (0.93) 3672 (0.18) 20835 2112 (0.10) 497

Disease Nodes 3666 (0.98) 320 (0.09) 3737 249 (0.07) 43
Sign and Symptom Nodes 7900 (0.90) 1800 (0.20) 8805 895 (0.10) 310

Treatment Nodes 7709 (0.93) 1552 (0.19) 8293 968 (0.12) 144
Sign and Symptom Edges 37273 (0.92) 3738 (0.09) 40566 445 (0.01) 610

Treatment Edges 42267 (0.94) 3068 (0.07) 44785 550 (0.01) 328

Table 6: Knowledge Graph Statistics. WoU = |W |
|W∪M | ; MoU = |M |

|W∪M | ; IoU = |W∩M |
|W∪M | .

\item{Watery diarrhea three or more
times a day for more than one day}
\item{Mild belly cramping and
tenderness}
[...]
\item{Toxic megacolon}
\item{Sepsis}
\end{SYMPTOM}
\begin{TREATMENT}
\item{Antibiotics}
\item Vancomycin (Firvanq Kit)
\item Fidaxomicin (Dificid)
\item Metronidazole (Flagyl),
used in combination with vancomycin
for severe infection
[...]
\item Probiotics - being researched
for treatment or prevention, not
confirmed for effectiveness outside
of studies
\end{TREATMENT}
```

One-shot CoT GPT-4

PROMPT: Given a biomedical text, extract
the symptoms and treatments for the disease.
Follow the four steps in the following ex-
ample to generate the results. Pay attention
to the requirements in every steps. Return
your result in latex format.
```
\begin{SYMPTOM}
\item{Symptom_1}
...
\item{Symptom_n}
\end{SYMPTOM}
\begin{TREATMENT}
\item{Treatment_1}
...
\item{Treatment_n}

\end{TREATMENT}
```
Here is one example: the disease is Emphy-
sema
TEXT: Early symptoms include cough,
wheezing, shortness of breath. Other
symptoms may include anxiety, depression.
Give antibotics if having bacterial infection.
Lung transplantation is an option if having
severe lung damage. Do not use antibotic
medications like Metronidazole (Flagyl)

Response: Let’s think step by step,
Step1: label the tokens one by one "symp-
tom", "treatment" or "none", The “symp-
tom” event type includes signs and symp-
toms. The “treatment” event type includes
medicine and clinical procedures. The
"none" event type indicates the token does
not belong to "symptom" and "treatment".
-Early: none
[...]
-Flagyl: treatment
Step2: Refine symptoms and treatments
from Step 1 by following criteria,
1.concatenate symptom/treatments spans
2.remove extra irrelevant words in symp-
toms and treatments
-cough: symptom
-wheezing: symptom
-shortness of breath: symptom
-anxiety: symptom
-depression: symptom
-antibotics: treatment
-Lung transplantation: treatment
-Metronidazole: treatment
-Flagyl: treatment
Step3: identify the relation [positive,
negative] between extracted symp-
toms/treatments from Step 2 with the
disease according to the provided content.



Positive means extracted phrase is the symp-
tom of the disease/treatment improve the
disease, negative means extracted phrase
is not a symptom of the disease/treatment
worsen the disease.
-cough: positive
-wheezing: positive
-shortness of breath: positive
-anxiety: positive
-depression: positive
-antibotics: positive
-Lung transplantation: positive
-Metronidazole: negative
-Flagyl: negative
Step 4: take symptoms/treatments with pos-
itive relations with disease from Step 3 and
reorganize the result as latex format. Do not
include explanation, conditions from Step 3
in your results.
```
\begin{SYMPTOM}
\item{cough}
\item{wheezing}
\item{shortness of breath}
\item{anxiety}
\item{depression}
\end{SYMPTOM}
\begin{TREATMENT}
\item{antibotics}
\item{Lung transplantation}
\end{TREATMENT}
```
Now is the real task: the disease is {title}
TEXT: [...]
Response: Let’s think step by step

RESPONSE:

A.4 Training Implementation Details

For all models, we use the same early stopping
criteria, namely, if the R − Precision@K does
not increase for more than 1e-3 for 10 times, the
training is stopped. During the testing, we select
the the epoch model that has the best performance.
We set the maximum epoch as 200 for CNN-based
models. For pre-trained transformers, we set the
maximum as 30. This is because pre-trained trans-
formers usually need less epochs to converge while
CNN is trained from scratch.

In graph node initialization, we use Blue-

BERT (Peng et al., 2019) to generate the embed-
ding for DKEC-M-CNN. For pre-trained transform-
ers, we directly use themselves to generate the ini-
tial node embeddings. For EMS dataset, we set the
HGT layer in graph model as 1 while in MIMIC3
dataset we set the HGT layer as 2. The five random
seeds we used are 0, 1, 42, 1234, 3407.

For pre-trained transformers, max-pooling is used
before the classification, but for DKEC-M-CNN
models, sum-pooling is used instead. Experiments
show sum-pooling works best for DKEC-M-CNN,
and max-pooling works best for pre-trained trans-
formers. One disadvantage of max-pooling is that
it will consume more computation resources than
sum-pooling, especially for datasets that have huge
amounts of labels. However, there is no clear ev-
idence on which pooling mechanism is optimal.
One recommendation is to choose the pooling
mechanism based on the data and the need for cod-
ing practice. For BioMedLM(2.7B), the FSDP and
BFloat16 are applied to speed up training. The last
token embedding is used as the document feature
for classification.

A.5 Performance on MIMIC-III with
different label sizes

As shown in Table 7, we show the performance
on MIMIC-III-6668 (all ICD-9 diagnosis codes),
and MIMIC-III-1000 (sampled ICD-9 diagnosis
codes). Note that For MIMIC-III-6668, only partial
labels have domain knowledge while for MIMIC-
III-1000, all labels have domain knowledge. And
we run all models on the random seed of 3407. All
the other settings are the same with as reported in
implementation details A.4.

On MIMIC-III-6668 where partial knowledge is
available, DKEC-M-CNN has similar overall per-
formance with the best SOTA, with tiny improve-
ment on the tail labels and tiny decrease on the
middle labels. On MIMIC-III-1000 where every la-
bel has external knowledge (partial knowledge),
DKEC-M-CNN outperforms the best SOTA in
overall performance and significantly improves the
performance in the middle and tail labels.

A.6 Error Analysis
To investigate where DKEC underperforms, we
do an error analysis by selecting the best model
for each dataset (DKEC-M-CNN for MIMIC-III
dataset, and DKEC-GatorTron for EMS dataset)
and calculate the FP/FN on head/middle/tail labels.



Head Labels Middle Labels Tail Labels Overall
P@6 R@6 P@6 R@6 P@6 R@6 miF maF P@6 R@6

M
IM

IC
-I

II
-1

00
0

CAML 56.1 58.2 6.8 35.8 2.9 17.7 56.0 8.3 55.8 55.1
ZAGCNN 56.4 58.9 7.4 38.8 2.1 12.8 55.9 9.0 56.2 55.7

MultiResCNN 57.2 59.9 9.1 47.6 2.6 15.7 59.4 11.5 57.1 56.8
ISD 54.5 56.2 6.9 36.2 2.0 11.8 54.6 6.9 54.2 53.2

GatorTron 52.6 54.9 8.4 43.8 3.8 22.6 50.9 6.1 52.4 51.9
BioMedLM 54.3 57.1 8.9 46.7 5.4 32.4 53.4 7.9 54.3 54.3

DKEC-M-CNN 60.2 62.9 11.4 59.2 4.6 27.5 61.5 12.2 60.2 59.9
DKEC-GatorTron 57.6 60.5 11.5 60.1 6.5 39.2 57.7 13.9 57.7 57.8

P@12 R@12 P@12 R@12 P@12 R@12 miF maF P@12 R@12

M
IM

IC
-I

II
-6

66
8

CAML 51.3 55.9 4.7 28.1 0.5 4.0 46.4 3.6 51.2 48.2
ZAGCNN 51.3 55.9 6.1 36.0 1.4 12.1 47.6 3.9 51.5 48.8

MultiResCNN 53.2 58.1 7.6 44.9 1.1 9.3 51.4 6.2 53.8 51.0
ISD 46.3 50.2 5.2 31.0 1.6 13.9 39.0 2.5 46.0 43.5

GatorTron 43.4 47.9 5.1 30.8 1.2 9.3 37.1 1.8 43.6 41.8
BioMedLM 44.3 48.9 4.9 29.1 1.2 9.7 39.2 2.4 44.4 42.7

DKEC-M-CNN 53.5 58.3 6.9 41.2 1.8 16.4 48.7 4.5 53.9 50.9
DKEC-GatorTron 51.7 56.9 6.8 41.0 1.9 15.3 46.4 4.3 52.1 49.8

Table 7: Comparison with SOTA on MIMIC-III-1000 and MIMIC-III-6668 datasets. The best result is highlighted
in bold, and the runner-up is underlined.

Datasets Head Mid Tail
FP FN FP FN FP FN

EMS 199 128 107 124 4 18
MIMIC-III 4167 15110 131 2796 1 608

Table 8: Numbers of FPs, FNs in head/middle/tail labels

As shown in 8, the number of FNs is much larger
than FPs (FN > FP). This indicates that our model
is very conservative in decision-making when there
are fewer training samples. Further research is
needed to alleviate the data imbalance problem.

By manually checking some examples (50 / 253) of
model mis-predictions for the EMS dataset, we find
two main reasons for the errors. First, as shown
in Figure 5, DKEC model is vulnerable to spu-
rious relations and have no causal reasoning
ability to differentiate the main sign/symptoms for
a disease from the secondary ones. It shows the
model’s inability to analyze the causation between
signs/symptoms and diagnosis and just makes de-
cision based on non-relevant words. Future work
can focus on debiasing and causal reasoning for
improving diagnosis prediction.
Secondly, DKEC is not effective in distinguishing
similar labels, for example, As shown in Figure 6,
in an EHR narrative “difficulty breathing” and “up-
per respiratory infection” symptoms are mentioned
and the ground truth is “medical - respiratory dis-
tress/asthma/copd/croup/reactive airway” but the
model mispredicted it as “airway - failed”. Both
of the labels are respiratory system-related prob-
lems and confuse the model in decision-making.
Similar observations can be found in the case of
"childbirth" and "pre-term labor".

Example 1:
ePCR: ...started to have abdominal cramp-
ing and vomiting. The patient vomited
twice... Abdomen) Soft with abdominal
pain to the lower quadrants. 10 out 10
cramping pain...
True Label: “medical - abdominal pain”
Prediction: “medical - nausea/vomiting”,
"medical - abdominal pain"

Example 2:
ePCR: ...The patient appeared to be work-
ing hard to breath with fast rate. C: Diffi-
culty Breathing. H: The patient states that
he was late for dialysis yesterday and they
did not take enough fluid off ...The patient
denied any history of CHF, however did say
he is diabetic...
True Label: "airway - failed"
Prediction: "airway - failed", "medical -
diabetic - hyperglycemia"

Figure 5: Spurious relation examples. Label-related
keywords are in red, and spurious words are in blue.

Example 1:
ePCR: ...The patient was in moderate dis-
tress with difficulty breathing. The patient
appeared to be anxious, and was breathing
at fast rate. C: shortness of breath...
True Label: "medical - respiratory dis-
tress/asthma/copd/croup/reactive airway"
Prediction: "airway - failed",
"medical - respiratory dis-



tress/asthma/copd/croup/reactive airway"

Example 2:
ePCR: ...Pt was told that she was having
miscarriage. At the time, pt was months
pregnant. Pt stated that tonight the bleeding
got significantly worse and that she has been
passing large clots...
True Label: "ob/gyn - child-
birth/labor/delivery"
Prediction: "ob/gyn - pre-term labor"

Figure 6: Similar label examples
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