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As various smart services are increasingly deployed in modern cities, many unexpected conflicts arise due to

various physical world couplings. Existing solutions for conflict resolution often rely on centralized control to

enforce predetermined and fixed priorities of different services, which is challenging due to the inconsistent

and private objectives of the services. Also, the centralized solutions miss opportunities to more effectively

resolve conflicts according to their spatiotemporal locality of the conflicts. To address this issue, we design

a decentralized negotiation and conflict resolution framework named DeResolver, which allows services to

resolve conflicts by communicating and negotiating with each other to reach a Pareto-optimal agreement

autonomously and efficiently. Our design features a two-step self-supervised learning-based algorithm to

predict acceptable proposals and their rankings of each opponent through the negotiation. Our design is

evaluated with a smart city case study of three services: intelligent traffic light control, pedestrian service,

and environmental control. In this case study, a data-driven evaluation is conducted using a large data set

consisting of the GPS locations of 246 surveillance cameras and an automatic traffic monitoring system with

more than 3 million records per day to extract real-world vehicle routes. The evaluation results show that our

solution achieves much more balanced results, i.e., only increasing the average waiting time of vehicles, the

measurement metric of intelligent traffic light control service, by 6.8% while reducing the weighted sum of air

pollutant emission, measured for environment control service, by 12.1%, and the pedestrian waiting time, the

measurement metric of pedestrian service, by 33.1%, compared to priority-based solution.
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1 INTRODUCTION
The number of smart services has been increasing in modern cities. These services aim to improve

the quality of urban lives, e.g., safety, wellbeing, and environmental quality. Examples of smart

services include intelligent traffic light control [16, 51], air quality control [7], electric taxi schedul-

ing [55, 56], and ambulance management [18], etc. However, city managers are facing more and

more potential conflicts across the growing number of deployed services [26, 31, 41]. For example,

services may have different actions on the same devices due to self-interested objectives. Another

example is that when acting alone, some city services are fine, but when combined they may be

detrimental, e.g., to the environment. Such conflicts have significant impacts on the citizens.

Importantly, how to deal with potential conflicts across services is still under-explored. There exist

several papers on resolving conflicts across smart services [24, 26, 32, 34, 47]. [47] uses a client-server

architecture to choose one conflict resolution considering each application’s specific performance

requirements, e.g., resource consumption, and quality of services. [32] proposes a centralized conflict

resolution for multiple city services by using an operation center to determine which actions are

approved. [24] and [34] resolve conflicts in the smart home by assigning different priorities to smart

applications based on their domains. However, these solutions have their intrinsic limitations: most

of them require abundant knowledge of each service to determine the priority/weight, which is

usually difficult to achieve in practice due to the private implementations of services; the rapid

evolution of services makes keeping the decision center updated for all changes impractical; and it

is hard for the center to understand and encode the complex operating logic of all services.

In this paper, we propose a novel decentralized negotiation and conflict resolution framework

called DeResolver. Unlike the centralized conflict resolutions [24, 32, 34], DeResolver allows the

services to resolve conflicts by communicating and negotiating with each other to automatically

achieve a Pareto-optimal agreement. The decentralized design has several advantages. First, com-

pared with the centralized resolution, the decentralized conflict resolution can ensure the privacy

of service providers because it does not require the service to transmit the private information of

providers, e.g., objectives, service state, and actuator information, and it avoids the single point

failure. Second, the decentralized design targets a new setting with competing services rather

than the collaborative setting studied by the centralized resolutions. Finally, most conflicts have

the spatiotemporal locality. The spatial-temporal locality of conflicts means a conflict may only

influence a local area of the city, and it may repeat multiple times during the upcoming time period

after the first occurrence. Therefore, multiple conflicts may exist simultaneously but they usually

influence different local areas of a city, or exist in different time periods of a day. It is natural and

efficient to use a decentralized way to resolve each conflict independently.

The service negotiation problem provides a unique setting for an autonomous negotiation design.

Services have access to local sensor data but do not know each other’s objectives and utility

functions. The services that compete against a service in a negotiation are called the opponents or

opponent services of this service. We design an autonomous negotiation agent consisting of an

opponent-strategy learning module and a negotiation module. To conduct efficient negotiation, a

service should have some knowledge of its opponent services’ possible future actions. Therefore,
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we utilize machine learning in the negotiation agent to estimate the future actions of opponent

services. There exists the synergy between the two modules, i.e., the learning module is built upon

the self-supervised Bradley-Terry model to provide opponents’ possible ranking of different actions

for the negotiation module, and the negotiation module provides opponents’ real actions as training

labels for the learning module to further enable more efficient learning. Since the learning module

may estimate opponents’ preferences of different actions with errors, we also design a robust

negotiation module under uncertain ranking to improve the negotiation performance. This design

is evaluated with a case study of services from the domain of transportation and environment with

real-world data-driven simulations using the Simulation of Urban MObility.

In summary, the contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose a decentralized negotiation framework,

called DeResolver, for conflict resolution among city services. As service conflicts demonstrate

high spatiotemporal locality in the physical world, the decentralized resolution allows smart

services to mitigate cross-domain conflicts in an efficient and scalable manner.

• We design a two-step self-supervised learning module for estimating an opponent’s rankings of

configurations. The configuration ranking problem is different from state-of-the-art page ranking

algorithms, as it is essential to classify proposals into acceptable and unacceptable sets under

different states of the city besides providing a quantitative ranking estimation.

• We design a smart automated negotiation module to perform automated negotiation and achieve

a Pareto-optimal agreement, which is based on the estimation of how opponent services rank

the configurations. The significance of the two modules are not only their novelty but also their

synergy. The learning module provides the estimation of opponents’ acceptable configurations

ranked by utility for the negotiation module. The negotiation module provides opponents’ real

actions as training labels for the learning module.

• A robust negotiation module is also proposed to handle the estimation errors of how an opponent

service ranks the different configurations. Different from the previous works that assume a service

has complete knowledge of opponents’ preferences [11, 35] or learn a robust policy to conduct

decision making [46], this robust negotiation module optimizes the worst-case performance of a

service when the ranking estimations with errors is used for negotiation.

• Our data-driven evaluation is based on a dataset for vehicles that consists of the GPS locations

of 246 surveillance cameras, and an automatic vehicle capture system with more than 3 million

records per day. The results show that compared to a priority-based solution, our resolution

can achieve a more equitable solution, i.e., only increasing the average waiting time of vehicles,

the measurement metric of intelligent traffic light control service, by 6.8% while reducing the

weighted sum of air pollutant emission, measured for environment control service, by 12.1%, and

the pedestrian waiting time, the measurement metric of pedestrian service, by 33.1%.

2 CONFLICTS ACROSS CITY SERVICES
2.1 Motivating Example
Modern cities have already implemented smart services to enhance the quality of citizens’ lives.

These services may be provided by the different companies or departments to the city government.

For example, the city bike company dispatches bikes around the city to provide the last-mile

transit service [48], the taxi company provides the ride-sharing service [57], and the public safety

department schedules patrols to defend against potential attackers [53]. However, conflicts across

services arise when two services cannot perform actions simultaneously due to undesirable and

harmful effects. In this work, we introduce and use the following example to better illustrate the
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definition and real-world application scenario of conflicts across services, the scope of the problem

that this work addresses, and the system design.

Example 2.1. It shows the inconsistent configurations on traffic lights by three decentralized

services. Intelligent traffic light control service [16, 50]: it configures the traffic lights to minimize

the average traffic delay at the road intersections. This service can be a decentralized service [50]

configuring a traffic light for a intersection independently due to the high computation complexity

of coordinating multiple traffic lights simultaneously. It is in the transportation domain.

Pedestrian service [38]: it sets up the traffic lights that show pedestrian crossing signals to mini-

mize the average pedestrian waiting time. This service implements a controller to configure the traf-

fic lights for pedestrians at a road intersection independently. The reason is the setup of a traffic light

for pedestrians has little influence on the setup of another one at a nearby road intersection due to

the limited walking distance of pedestrians. It is in the transportation domain. Environment control

service [7]: it controls the traffic lights to raise environmental quality, e.g., increasing air quality and

decreasing noise levels, of road segments. It is a decentralized service and in the environment domain.

!"#$$% &$'()*+%

,

-

!

.

!"#$%&!'$()*'+

!"#$%

&'#'

/' /0' 10'
2$34%)"* $3

2$3*5$%%)36 *#7

!)63+% 8)6#*'

,-.+)*#/&

01$/2

!"#$%

!'

97:7'*5)+3;

!75<)"7
=3*7%%)673*;>5+44)";8)6#*;

2$3*5$%;!75<)"7

,3<)5$3?73*;

2$3*5$%;!75<)"7

!73'$5'

Fig. 1. Demonstration of Example

These three services run concurrently to

achieve their respective objectives. However,

potential conflicts may exist among them at

run-time. Three services determine their con-

figurations of the green light interval of the

West-East (W-E) or North-South (N-S) direc-

tions. The configurations of traffic lights for

pedestrians and vehicles should be consistent.

The intelligent traffic light control wants a long

green light duration due to the high waiting

traffic from W-E, whereas the pedestrian ser-

vice wants to configure a short green light in-

terval because of a few pedestrians in the N-S

direction. The environment control service does not desire a long green light duration because

the accumulated vehicles around a hospital would increase the air pollution, nor desire a short

interval due to the increment of noise level from congested vehicles near a school. Therefore, to

meet individual service performance requirements, the conflicts exist among these services.

Example 2.2. Another example is three services desire different amount of traffic on certain road

segments and cause conflicts. Event service: it blocks the lanes nearby the event to reduce traffic

near a city event. Parking service: it navigates the drivers to parking lots near the event. Detour

service: it navigates traffic around a road segment under emergency repairs near the event. A

conflict across the three service occur when these three services decide how much traffic can be

directed to a certain road segment. Coordinated actions are needed to minimize the local congestion.

Based on the examples, we define the conflicts across services as if two or more services have
inconsistent actions on the shared resources due to incompatible individual goals, they have a conflict. If
conflicts are not resolved and managed equitably, they can affects citizens’ daily lives. We note that

such conflicts do not happen very often for well designed smart services, they usually occur because

services do not consider or know each other’s actions when 1) new services and requirements are

deployed, 2) city environment changes, and 3) disruptive and unexpected events happen.

2.2 DeResolver Framework
In this work, we consider the following setting of services that result in the conflicts across

services. Each service is provided by a stakeholder and has the self-interested and private control

objective, which is usually not completely known by the other services. For instance, any service
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(a) Overview of decentralized conflict resolution
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(b) Overview of centralized conflict resolution

Fig. 2. Comparison of centralized and decentralized conflict resolution

in Example 2.1 do not know the exact control models of the other services. The services can access

data from the deployed sensors to check the specific state of the city [29, 36, 37]. Services can

reliably communicate and share information with each other since services managed by different

stakeholders have already communicated with the city center to report the operational data in the

existing city systems.

To resolve the conflicts across services under the above setting, we design a decentralized

negotiation based conflict resolution, DeResolver. Figure 2a shows an overview of DeResolver and it

works in three steps. First, smart services collect the data of the city using deployed sensing devices

to determine the control decisions and send them to the city operation center. After receiving the

control decisions, the operation center uses a conflict detector, e.g., CityGuard [30] to check whether

a conflict exists. If a conflict is detected, the center notifies all the involved services that their

collective control decisions result in a conflict and they should resolve the conflict by DeResolver;

otherwise, the operation center applies the received control decisions.

Second, with DeResolver, the services that result in the conflicts are organized to negotiate an

agreement on the configuration of the shared resources based on a carefully designed multi-agent

negotiation protocol. In each negotiation period, a randomly selected service makes its proposal

of the action (i.e., new control decisions) to the other services. Please refer to Section 4.2.1 for

how to make the proposal. Then each of the other services answers acceptance or rejection for the

proposal and their answers are broadcasted to all the services in the negotiation. Please refer to

Section 4.2.2 for how to make the acceptance or rejection decision. If a proposal is agreed upon by

all the services, they reach an agreement and the negotiation terminates; otherwise, the negotiation

continues until the deadline is reached. Section 3.1 introduces how to define the deadline of the

negotiation based on the application scenario.

Finally, when an agreement is achieved, it is sent to the operation center, which will detect

whether the agreement results in a new conflict considering potential new control decisions from

other services that were not in the previous negotiation process. If not, the operation center applies

the agreement; otherwise, the center notifies all the services resulting in the new conflict that they

need to repeat the second step to resolve the new conflict. If the services do not reach an agreement,

the city operation center will execute the default action on the shared resources, which is unknown

to the services that result in the conflict.

Existing work [32] proposed CityResolver, a centralized resolution for conflicts across services.

Figure 2b shows the overview of it. Services send their requested actions to the city operation center.

Then the center detects whether conflicts exist using CityGuard [30]. If so, the conflict resolver

approves part of requested actions to generate a group of actions without conflicts based on its

objectives, and then apply the approved actions. If no conflict is detected, all requested actions are

applied to the actuators. There are two features of CityResolver. The first one is that it introduces a
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centralized arbitration to resolve the conflicts by predefined trade-offs. The second one is that it

simultaneously addresses all the conflicts using an integer linear programming based method if

these conflicts happen at the same time.

We summarize the reasons for using the decentralized negotiation based solution rather than

the centralized arbitration to address the conflicts across services as follows.

• The key assumption of the centralized conflict resolution is that these services are collaborative.

In contrast, we study a new setting, where services compete with each other to maximize their

own utility. These competing services may not be willing to share their private information,

e.g., internal logic and objectives, with a centralized arbitration.

• Some cities have the distributed services that are operated by the different departments, e.g., the

police, transportation, and environment departments. These services are separated already and

it may not be practical to feed all these distributed services into a centralized site, which costs

economic and other efforts.

• This decentralized approach is significant for conflicts across competing services because it

allows competing services to negotiate in a scalable and reliable fashion, instead of letting a

centralized entity resolve conflicts. In general, it is not necessary to consider many simultaneous

conflicts together in a centralized optimization, which is computationally challenging and re-

source demanding. Because these conflicts may happen in the different local areas of a city and

they do not affect each other.

3 DERESOLVER FRAMEWORK DESIGN
3.1 Formulation of DeResolver
We propose that multiple services that result in a conflict can play a negotiation to resolve this

conflict, which is the main idea of DeResolver. In this section, we provide a general mathematical

formulation of DeResolver, showing how to formulate a negotiation for a conflict across services.

Negotiation agent: A negotiation is organized for resolving a conflict, and it consists of 𝑁

services whose control decisions result in a conflict. For example, if 𝑁 services have inconsistent

configurations of an actuator, these services play a negotiation to resolve the inconsistency. A

negotiation agent represents a service. These 𝑁 services negotiate the issue under discussion with

a time horizon of 𝐻 periods. We assume that every service is honest. Because there exist city

regulations and mechanisms to ensure the city services are honest and guarantee the city service

performance. Meanwhile, the city government has already collected the real-time data of services

and deployed the monitoring systems to detect a variety of possible dangerous actions of services.

Proposal: It is a tentative suggestion about a solution to the issue under discussion. Let 𝑂ℎ
𝑖 be

the proposal that is made by service 𝑖 to the other 𝑁 − 1 services during a negotiation period ℎ. In a

negotiation, the issue under discussion can be a configuration of an actuator for a direct conflict, or

the distribution of a shared common resource, e.g., the upper bound of noise and the air pollutant

emission budget, for an environmental conflict.

Agreement: We define that all the negotiation agents (𝑁 services) achieve an agreement if there

exists a proposal 𝑂ℎ
𝑖 that is accepted by the other 𝑁 − 1 services.

Utility: It represents the benefit that a service 𝑖 can receive by applying a proposal 𝑂ℎ
𝑖′ , denoted

as 𝑟𝑖 (𝑂ℎ
𝑖′). The utility function is defined according to the objective of each service 𝑖 . For example,

this function may represent the number of packages that are delivered on time for package delivery

service, or the inverse value of total vehicle waiting time for intelligent traffic light control service.

Multi-agent negotiation protocol: A key issue in designing a negotiation among multiple

services is to determine a protocol that these services obey. In this work, we set up that the services

conduct a negotiation using the alternating offer protocol.
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Fig. 3. An example of addressing a conflict by multi-agent negotiation

Alternating offer protocol: The main idea is that only a service proposes its solution to the issue

under discussion during a negotiation period and 𝑁 services make the proposals in a circular

order. If a service makes a proposal during period ℎ, it should make another proposal during the

negotiation period ℎ +𝑁 as long as neither an agreement is reached nor the negotiation terminates.

If there exists a negotiation agent that rejects the proposal 𝑂ℎ
𝑖 , the negotiation moves to the period

ℎ + 1, and another service makes its proposal. During the negotiation, any service 𝑖 knows the

negotiation behaviors of the other services, i.e., the proposal made during each period, and how the

service responses to the proposal, i.e., acceptance or rejection. The agents will follow a predefined

order to make proposals. In practice, the city government can determine the order. Alternatively, a

random order can be generated to avoid any agent taking advantage of the order.

The negotiation process terminates if 𝑁 negotiation agents reach an agreement within the 𝐻

time periods, or they cannot find an agreement after 𝐻 time periods. The length of a time period

can be set as a static value, e.g., a second. The maximum number of time periods (𝐻 ) is determined

according to the specific application scenario. How to set 𝐻 will be introduced in Section 3.2, where

we exemplify the formulation of negotiations with the motivating examples of conflicts. If the

services cannot reach an agreement, the device will execute the default configurations that may be

determined by the city managers to avoid the failure.

Figure 3 shows an example of how services address the conflict on configuring a traffic light by

negotiation. There are three services that want to propose actions on a traffic light. Timeline is

divided into fixed-length periods with a default setting if no agreement was reached by a deadline.

In Period 1, service𝐴 proposes the traffic light configuration, and then service 𝐵 (𝐶) accepts (rejects)

it. Therefore, there is not an agreement. In Period 2, 𝐵 proposes an action. Again, no agreement

was reached because 𝐶 rejects it. In Period 3, 𝐶 proposes an action but 𝐴 and 𝐵 reject it. Finally, it

is 𝐴’s turn to make a proposal, and service 𝐴 proposes 15 seconds, which are accepted by the other

two services. An agreement is reached before the deadline.

3.2 Case study
In this part, we show the formulation of the negotiation for addressing the conflict in Example 2.1.

The traffic lights for pedestrian crossing signals or vehicle traffic coexist in a road intersection.

The signals provided by these two types of traffic lights should be consistent to avoid traffic accidents.

Therefore, we assume that there is a traffic light at the intersection of two roads. To simplify the

notation, north, south, west, and east are represented by "N", "S", "W", and "E" respectively, and

"Green" and "Red" are used to describe the green and red light. Since two roads’ traffic cannot pass

the intersection at the same time, there are two states of a traffic light, i.e., (1) Green-WE (Red-NS)

and (2) Red-WE (Green-NS).
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In a real-world scenario, such two states exist alternatively, i.e., 1 → 2 → 1 → ..., meaning the

schedule of a traffic light is a sequence of phases, where a phase represents several consecutive

time slots when a traffic light has the same state. In the first motivating example, each service sets

up the length of each traffic light phase, e.g., the number of seconds of each traffic light phase. To

simplify the problem description, let 𝑡 be the traffic light phase that a traffic light is within, and

services negotiate the configurations of (𝑡 + 1)-th traffic light phase.

Negotiation agent: A negotiation is organized for resolving a conflict, and it consists of 𝑁

services whose control decisions result in a conflict. A negotiation agent represents a service. For

Example 2.1, the negotiation is played by three services (𝑁 = 3). These 𝑁 services negotiate the

issue under discussion within 𝐻 periods.

State: The three services access data from the deployed sensors to check the specific state of

the city that they are interested in. Figure 1 shows the specific sensors that three services use to

collect the data of a city. We list the information that the different sensors can provide as follows:

road surveillance camera: videos of traffic around the road intersections; vehicle loop detector:

vehicles count; air quality sensor: air quality value; noise sensor: noise level; pedestrian crossing

surveillance camera: videos of pedestrians close to the pedestrian crossing. Let 𝑠𝑖,𝑘 (𝑡) be the states
of the city around the traffic light 𝑘 at the beginning of phase 𝑡 that service 𝑖 is interested in, and

we assume the above states around a road intersection are stable during a negotiation. 𝑠𝑖,𝑘 (𝑡) is
defined as follows.

• Intelligent traffic light control service: the state component includes the number of waiting

vehicles, the vehicle arriving rate in each direction, the vehicle throughput of each direction, the

updated waiting time of vehicles, and the states of the traffic light in current phase 𝑡 and next

phase 𝑡 + 1.

• Pedestrian service: the state component includes the number of waiting pedestrians, the pedes-

trian arriving rate, and the pedestrian throughput of each direction, the updated waiting time of

pedestrians, and the state of the traffic light in current phase 𝑡 and next phase 𝑡 + 1.

• Environment control service: the state is defined as the combination of the number of vehicles

on the adjacent road segments, the number of waiting vehicles 𝑉𝑙 ′′ , the vehicle arriving rate and

the throughput of each direction, and the state of the traffic light in current phase 𝑡 and next

phase 𝑡 + 1.

Proposal: The issue under discussion is defined as the configuration of a traffic light. The

proposal is the length of the next traffic light phase. During a phase 𝑡 , three services negotiate the

traffic light configurations for (𝑡 +1)-th phase. Service 𝑖 proposes𝑂ℎ
𝑖,𝑘
(𝑡) ∈ 𝐷 during the negotiation

period ℎ to configure the phase 𝑡 of traffic light 𝑘 . The domain of a traffic light’s phase length is

defined as 𝐷 = {𝑑 | 𝑑 ∈ [𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ] and 𝑑 ∈ Z+}, where 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 correspond to the extreme

values of the phase duration.

Agreement: In this example, the agreement means there exists a proposal, 𝑂ℎ
𝑖,𝑘
(𝑡), of traffic

light 𝑘’s configuration, which is approved by all other services during the negotiation period ℎ.

Utility: Let 𝑟𝑖 (𝑂ℎ
𝑖′,𝑘 (𝑡)) be the immediate utility that service 𝑖 can get if the proposal 𝑂ℎ

𝑖′,𝑘 (𝑡) is
applied to the 𝑡-th traffic light phase. The utility functions are formulated as follows.

• Intelligent traffic light control service: the objective is to minimize the total waiting time of

vehicles around the intersection 𝑘 , where waiting vehicles include taxis, bikes, buses, and private

cars. Let 𝑖 be 1 to represent this service and the immediate utility function is: 𝑟1,𝑘 (𝑂ℎ
𝑖′,𝑘 (𝑡)) =

−∑𝑂ℎ
𝑖′,𝑘 (𝑡 )

𝑡 ′=1

∑
𝑙 ∈𝐼𝑘𝑊1,𝑙 (𝑡 ′). 𝐼𝑘 is the set of approaching lanes of intersection 𝑘 . 𝑡 ′ is a time slot of

phase 𝑡 , and a phase consists of several time slots, e.g., a time slot is one second and there are

five time slots in a phase.𝑊1,𝑙 (𝑡 ′) are the total waiting time of waiting vehicles in approaching
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Fig. 4. Design of a service under DeResolver Framework

lane 𝑙 at time slot 𝑡 ′. The inner sum represents all vehicles’ waiting time by the end of slot 𝑡 ′ and
the outer sum is the sum of all vehicles’ waiting time over the phase 𝑡 . To minimize the waiting

time, additive inverse of total waiting time is used when maximizing the immediate utility.

• Pedestrian service: its objective is similar with that of intelligent traffic light control service,

stated as minimizing the waiting time of pedestrians in a road intersection 𝑘 . Then the utility

𝑟2 (𝑂ℎ
𝑖′,𝑘 (𝑡)) of applying configuration𝑂

ℎ
𝑖′,𝑘 (𝑡) at intersection 𝑘 for pedestrian service is formulated

as: 𝑟2,𝑘 (𝑂ℎ
𝑖′,𝑘 (𝑡)) = −∑𝑂ℎ

𝑖′,𝑘 (𝑡 )
𝑡 ′=1

∑
𝑙 ′∈𝐼 ′

𝑘
𝑊2,𝑙 ′ (𝑡 ′). 𝐼 ′𝑘 denotes the set of pedestrians’ walking directions

of road intersection 𝑘 and𝑊2,𝑙 ′ (𝑡 ′) are the total waiting time of waiting pedestrian in direction 𝑙 ′

at time slot 𝑡 ′. We also maximize the additive inverse.

• Environment control service: this service aims at minimizing the weight sum of environment

quality, e.g., noise level and air pollutant emission in all road segments. For given a time slot 𝑡 ′

during traffic light phase 𝑡 and one road segment 𝑙 ′′, let 𝑓 (𝑉𝑙 ′′ (𝑡 ′)) denote the value of environment

quality, where 𝑉𝑙 ′′ (𝑡 ′) is the number of vehicles on road segment 𝑙 ′′ during time slot 𝑡 ′ that
connects with road intersection 𝑘 . Then the immediate utility of environment control service

is formulated as: 𝑟3,𝑘 (𝑂ℎ
𝑖′,𝑘 (𝑡)) = −∑

𝑙 ′′∈𝐼 ′′
𝑘
𝜔𝑙 ′′ × 𝑓 (𝑉𝑙 ′′ (𝑡 ′)). 𝜔𝑙 ′′ is the weight for road segment 𝑙 ′′

that can be defined by the environment around each road segment, e.g., a road segment has high

weight if there are hospitals around it. 𝐼 ′′
𝑘
is the set of adjacent road segments for intersection 𝑘

and 𝑓 (·) is a function calculating the environment quality for given number of vehicles.

Multi-agent negotiation protocol: If these three services have multiple simultaneous conflicts

on the configurations of 𝑛 traffic lights, then they play 𝑛 negotiations simultaneously, where a

negotiation is organized for resolving a conflict on one traffic light’s configurations. Finally, an

agreement is achieved for each negotiation, and multiple simultaneous configurations are agreed

among these services.

The negotiation process terminates when an agreement is reached or the number of negotiation

periods is over 𝐻 . We use an example to demonstrate how to define 𝐻 in traffic light control.

For instance, the configuration of the green light phase duration of the N-S direction should be

determined before the green traffic light phase of E-W direction ends. Then according to the

starting time of the negotiation and the deadline, the maximum duration of the negotiation is

obtained. 𝐻 is equal to the maximum duration of the negotiation over the length of a time period,

where the denominator can be a static value, e.g., a half seconds. If no agreement is achieved, the

default configurations is applied to traffic light 𝑘 , which are determined by city transportation

authorities. A negotiation may be organized by the previously described alternating offer protocol

or simultaneous offer protocol.
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4 DESIGN OF A SMART SERVICE UNDER DERESOLVER FRAMEWORK
It is essential for a service to optimize its negotiation strategy to maximize its utility decided by

the agreement. We design an automated negotiation agent for each service that determines the

negotiation actions by an opponent strategy learning module and a negotiation module.

Definition 4.1 (Automated Negotiation Problem). Given services with conflicts and the negotiation

protocol formulated in Section 3.1, the problem is how any service 𝑖 determines its action at any

negotiation period ℎ, i.e., accepting or rejecting the proposal from other services, and making its

proposal, to maximize its utility.

Figure 4 shows the design of a service with an automated negotiation agent under the DeResolver

framework. We take the traffic light control as an example. Given the data of a city, the traffic light

control model is used to estimate the action-utility table based on the utility function of service 𝑖 .

There are two columns of each row in the action-utility table, where the first column represents

a possible traffic light configuration (action), and the second column is the long-run utility that

service 𝑖 receives if applying the action to the traffic light. Then service 𝑖 determines its action

at each negotiation period ℎ using the opponent-strategy learning module and the negotiation

module. The first module outputs a sequence of acceptable configurations to each opponent service

𝑖 ′, and this sequence has the ranking information to the negotiation module. The second module

determines the proposals that service 𝑖 make, and the acceptance/rejection to opponent services’

proposals. The negotiation behaviors of the opponent services are used as training labels for the

learning module to improve the learning accuracy and efficiency.

4.1 Opponent-Strategy Learning Module

A 
Self-Supervised 

Model

Step 2: Ranking

A 
Self-Supervised 

Model

Actions Utility 
30s High
10s Med
20s Low

10s
20s
30s

10s
......
100s

Accept 10s
Propose 30s

…..

Propose 30s
Propose 20s

…..

𝐵’s all Possible Actions

Step 1: Filtering

𝐵’s Previous Actions 
& Responses as 

Labels

𝐵’s Acceptable Actions 𝐵’s Actions 
Ranked by Utility

𝐵’s Previous Action 
Order as Labels

Fig. 5. An example of how service A learns B’s action ranked by utility

Service 𝑖 should have some beliefs of its opponent services through the negotiation to maximize its

utility that negotiation result introduces. We propose a two-steps learner for service 𝑖 to estimate

how any opponent service 𝑖 ′ ranks the acceptable configurations. In detail, service 𝑖 needs to learn

𝑁 − 1models, where a model corresponds to an opponent service 𝑖 ′. Figure 5 illustrates how service

𝐴 learns 𝐵’s actions ranked by the utility to 𝐵. The first step is filtering, which takes 𝐵’s all possible

actions as an input and outputs a set of 𝐵’s acceptable actions. The second step is ranking, which

ranks the acceptable actions based on their utility to 𝐵. For step 1, since we do not have the labels of

whether an action is acceptable to 𝐵 for supervised learning, we design a self-supervised model that

uses 𝐵’s previously proposed or accepted actions as training labels. This is based on the intuition

that 𝐵 only proposes or accepts actions that are acceptable to itself. It is very likely that 𝐵 will also

accept these actions in the future. For step 2, due to lacking the labels of how service 𝐵 ranks two

actions, the self-supervised model uses 𝐵’s previous order of proposed actions as ranking labels,

which is based on the intuition that a service proposes an action with higher utility earlier.
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4.1.1 Estimating acceptable configurations. The task in the first step of the learner is to learn a

function 𝑓 1
𝑖′ (state during a period, configuration) ∈ [0, 1] showing the probability that opponent

service 𝑖 ′ accepts configuration 𝑑 ∈ 𝐷 during period ℎ given the state during period ℎ. The first-step

of the learner takes the state during a negotiation period and a configuration as the input. This

function works as a binary classifier to estimate whether a configuration is accepted or rejected by

service 𝑖 ′.
First, we define the state during a negotiation period ℎ, denoted as 𝑛𝑠

1,ℎ
𝑖′ . 𝑃ℎ

𝑖′ = {0, 1}1×|𝐷 |
repre-

sents whether the configurations are accepted or not by service 𝑖 ′ before period ℎ. If configuration
𝑑𝑙 is proposed or accepted by service 𝑖 ′ before period ℎ, 𝑃ℎ

𝑖′,𝑙 = 1; otherwise, it is 0. We define

𝑛𝑠
1,ℎ
𝑖′ = (𝑠𝑖′ (𝑡), 𝑃ℎ𝑖′), which is a concatenation of the state of a city that service 𝑖 ′ takes and the

indicator matrix showing whether configurations are accepted or not.

Second, we discuss how to generate the labeled training data denoted by 𝑈 1

𝑖′ with a form of

<state, configuration, label> for each data sample to learn the binary classifier. Given the records

of a past negotiation, we generate 𝑛𝑠
1,ℎ
𝑖′ based on its definition during each period ℎ. Given 𝑛𝑠

1,ℎ
𝑖′ ,

if a configuration 𝑑 is accepted, i.e., the label 𝑦 is 1, we have a data sample, i.e., < 𝑛𝑠
1,ℎ
𝑖′ , 𝑑, 1 >;

otherwise, the data sample is < 𝑛𝑠
1,ℎ
𝑖′ , 𝑑, 0 >, i.e., the label 𝑦 is 0.

We train 𝑓 1
𝑖′ (state during a period, configuration) using the labeled data to minimize the following

loss function:

L1 = − 1

|𝑈 1

𝑖′ |
∑

<𝑛𝑠
1,ℎ

𝑖′ ,𝑑,𝑦>
𝑦 log(𝑓 1

𝑖′ (𝑛𝑠
1,ℎ
𝑖′ , 𝑑)) + (1 − 𝑦) log(1 − 𝑓 1

𝑖′ (𝑛𝑠
1,ℎ
𝑖′ , 𝑑)) (1)

This cross-entropy loss function is widely used for binary classification problems. This func-

tion calculates a score that summarizes the average difference between the actual and predicted

probability distributions. If the actual classification value is 0, the corresponding loss value is

− log(1 − 𝑓 1
𝑖′ (𝑛𝑠

1,ℎ
𝑖′ , 𝑑)); otherwise, the loss value is − log(𝑓 1

𝑖′ (𝑛𝑠
1,ℎ
𝑖′ , 𝑑)). The optimal cross-entropy

loss value is 0. There are multiple binary classifiers widely used in the related work, e.g., neural

network, K-nearest neighbors and support vector machines. In the evaluation, we set their loss

functions as Equation (1), and then evaluate their performance. The classifier that generates the

best results empirically is used in the data-driven evaluation. The set of acceptable configurations

to an opponent service 𝑖 ′ may change under the different state of the city, e.g., dynamic traffic

volume in each direction, and our training function adapts to such changes since the state of a city

is a part of its input.

4.1.2 Estimating ranking of acceptable configurations. Given the set of acceptable configurations

to service 𝑖 ′, service 𝑖 still needs to estimate how service 𝑖 ′ ranks these estimated acceptable

configurations. An intuition is that the opponent service 𝑖 ′ ranks the configurations based on the

utility that they introduce. The task of the second step of the learner is to learn a function 𝑓 2
𝑖′ (state,

configuration) that ranks the estimated acceptable configurations. We assume that the ranking

function assigns a score 𝑓 2
𝑖′ (·) to each configuration, where a large score represents a high ranking.

The inputs to this learner are the state of the city that service 𝑖 ′ is interested in and a configuration.

To learning the above score function, we first generate our training data including data with

ranking information 𝑈 2

𝑖′ and data without ranking information 𝐿2
𝑖′ of service 𝑖

′
. During any past

negotiation, service 𝑖 ′ may propose multiple configurations. We assume that for any two configura-

tions, service 𝑖 ′ proposes the one with higher utility at first. Suppose a past negotiation is associated

with a stable state of the city, denoted as 𝑛𝑠2
𝑖′ . In a negotiation, if any two configurations 𝑑1 and 𝑑2

are proposed by service 𝑖 ′ during two different periods and 𝑑1 is proposed earlier, we add a data

sample, i.e., < 𝑙1 ≻ 𝑙2 > where 𝑙1 =< 𝑛𝑠
2

𝑖′, 𝑑1 > and 𝑙2 =< 𝑛𝑠
2

𝑖′, 𝑑2 > to𝑈 2

𝑖′ . In the same negotiation, if
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any two configurations 𝑑1 and 𝑑2 are not proposed by service 𝑖 ′, we add a data sample < 𝑙1, 𝑙2 > to

𝐿2
𝑖′ . The ranking information is included in any sample in𝑈 2

𝑖′ . However, it is not contained in 𝐿2
𝑖′ .

We use a semi-supervised learning method to train the function 𝑓 2
𝑖′ (·) by these two datasets. For

the training dataset𝑈 2

𝑖′ , we consider the probability models that assign a probability of < 𝑙1 ≻ 𝑙2 >,
based on the score difference 𝑓 2

𝑖′ (𝑙2) − 𝑓 2𝑖′ (𝑙1).
Bradley-Terry model [22, 45] is widely used to estimate the probability 𝑃 (< 𝑙1 ≻ 𝑙2 >) that

< 𝑙1 ≻ 𝑙2 > is true given a pair of individuals 𝑙1 and 𝑙2. This model associates a score 𝑓 2
𝑖′ (𝑙1) with

each individual configuration, 𝑙1. Then it defines the probability that 𝑙1 is preferred to 𝑙2 as the

logistic function of their score difference: 𝑃 (< 𝑙1 ≻ 𝑙2 >) = 1

1+𝑒 𝑓
2

𝑖′ (𝑙2 )−𝑓
2

𝑖′ (𝑙1 )
. Therefore, the objective

of training dataset𝑈 2

𝑖′ is to maximize the following likelihood function:∑
<𝑙1≻𝑙2>∈𝑈 2

𝑖′
log(𝑃 (< 𝑙1 ≻ 𝑙2 >)) =

∑
<𝑙1≻𝑙2>∈𝑈 2

𝑖′
log

1

1+𝑒 𝑓
2

𝑖′ (𝑙2 )−𝑓
2

𝑖′ (𝑙1 )
(2)

Since ranking information is not included in 𝐿2
𝑖′ , we would like to tie the similarity of config-

urations to the score similarity. Let 𝑟𝑙1,𝑙2 represent the similarity between 𝑙1 and 𝑙2, defined as

𝑟𝑙1,𝑙2 =
|𝑑1−𝑑2 |

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
. Then we would like to penalize the function 𝑓 2

𝑖′ (·) if similar configurations have

quite different scores, formulated as:∑
<𝑙1,𝑙2>∈𝐿2

𝑖′
−𝑟𝑙1,𝑙2 log

(
𝑃 (< 𝑙1 ⊁ 𝑙2 >)𝑃 (< 𝑙2 ⊁ 𝑙1 >)

)
=
∑

<𝑙1,𝑙2>∈𝐿2
𝑖′
−𝑟𝑙1,𝑙2

∗ log
(
(1 − 𝑃 (< 𝑙1 ≻ 𝑙2 >)) ∗ (1 − 𝑃 (< 𝑙2 ≻ 𝑙1 >))

)
=
∑

<𝑙1,𝑙2>∈𝐿2
𝑖′
−𝑙1, 𝑙2 log 0.5

1+𝑐𝑜𝑠ℎ (𝑓 2
𝑖′ (𝑙1)−𝑓

2

𝑖′ (𝑙2))

The intuition of the above equation is that for two configurations without preference information,

the probability function of preference should not show that < 𝑙1 ⊁ 𝑙2 > or < 𝑙2 ⊁ 𝑙1 >. The first

part of the above equation ensures that if there is no preference between 𝑙1 and 𝑙2, the penalty is

minimized when 𝑃 (< 𝑙1 ≻ 𝑙2 >) = 0.5. If 𝑃 (< 𝑙1 ≻ 𝑙2 >) is close to 0 or 1, the penalty is maximized.

Then we apply the Bradley-Terry model to generate the right side.

In summary, we would like to train the function 𝑓 2
𝑖′ (·) to maximize following function with a

negative weight 𝛽 to balance the importance of fitting two datasets:

L2 =
∑

<𝑙1≻𝑙2>∈𝑈 2

𝑖′
log

1

1+𝑒 𝑓
2

𝑖′ (𝑙2 )−𝑓
2

𝑖′ (𝑙1 )
+ 𝛽∑<𝑙1,𝑙2>∈𝐿2

𝑖′
−𝑟𝑙1,𝑙2 log 0.5

1+𝑐𝑜𝑠ℎ (𝑓 2
𝑖′ (𝑙1)−𝑓

2

𝑖′ (𝑙2))
(3)

The trained function 𝑓 2
𝑖′ (·) assigns a score to these estimated acceptable configurations, and then

service 𝑖 estimates how service 𝑖 ′ ranks them. We do not assume that the ranking of configurations

is stable for service 𝑖 ′ since the ranking may change with the state of a city, e.g., dynamic number

of waiting vehicles or pedestrians in each direction. Our learning functions take the dynamic state

of a city as a part of its input, so they can estimate the new ranking of configurations for service 𝑖 ′

when the state of a city changes.

4.2 Negotiation Module
4.2.1 Strategy for Making Proposals. In this part, we introduce our strategy for making proposals

designed for service 𝑖 . This strategy takes the action-utility table, past negotiation behaviors of

current negotiation, and the estimation that how opponent services rank the estimated acceptable

configurations as input to determine the proposal.

A service wants to achieve an agreement to get as much utility as possible by using a strategy to

propose a configuration which not only introduces the highest utility to itself but also is acceptable

to the other services based on the estimation of opponents. If such a configuration does not exist,

the service lowers its lowest acceptable utility to make a proposal, and the amount of utility that is

given up depends on its opponent services’ last two proposals.
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When the learner of opponents is used by service 𝑖 to estimate how service 𝑖 ′ ranks the estimated

acceptable configurations during period ℎ, let 𝐴ℎ
𝑖,𝑖′ denote the output of learner and it is a sequence

of acceptable configurations.

Since service 𝑖’s last proposal is rejected by at least one of other 𝑁 − 1 services, service 𝑖 should

concede its lowest acceptable utility to make its proposal be acceptable to other services. We use

the reactive concession strategy for service 𝑖 to update its lowest acceptable configuration based on

the previous proposals of other 𝑁 − 1 services. Service 𝑖 computes the ranking difference, which

represents how much any opponent service 𝑖 ′ concedes between its last two proposals, denoted as

Δ𝑢ℎ
𝑖,𝑖′ based on the estimation of how service 𝑖 ′ ranks the configurations. The maximum ranking

difference that service 𝑖 can decrease is equal to min1≤𝑖′≤𝑁,𝑖′≠𝑖 Δ𝑢
ℎ
𝑖,𝑖′ . Thus, based on service 𝑖’s

last proposal, maximum ranking decrease, and its action-utility table, service 𝑖 updates its list

of the acceptable configurations during period ℎ, denoted as 𝐴ℎ
𝑖,𝑖 . It is noted that service 𝑖 only

concedes during the negotiation periods when this service makes the proposal. We assume 𝐴ℎ
𝑖,𝑖

only includes the configuration with the highest utility when service 𝑖 makes the first proposal of

current negotiation.

Proposal generation: Since the negotiation may terminate with different agreements, we use the

Pareto-optimal agreement to measure them and the definition is shown as follows:

Definition 4.2 (Pareto-optimal agreement). One agreement 𝑑 is Pareto-optimal if there is no other

agreement 𝑑 ′ such that for utility function 𝑈𝑖 for agent 𝑖 , ∀𝑖 ∈ {1, ..., 𝑁 },𝑈𝑖 (𝑑 ′) ≥ 𝑈𝑖 (𝑑) and
∃ 𝑖,𝑈𝑖 (𝑑 ′) > 𝑈𝑖 (𝑑).

In other words, a Pareto-optimal agreement is able to make any individual service’s performance

better off without making at least one individual service’s performance worse off. There may be

multiple Pareto-optimal agreements of a negotiation, and we do not measure which one is the

best. Service 𝑖 also wants to reach a Pareto-optimal agreement since such a result can maximize its

performance, and it does not make opponents miss any benefit.

During periodℎ, if service 𝑖 makes its first or second proposal, it can choose the configuration with

the highest or (𝑆 +1)-th highest utility respectively, where 𝑆 is the initial concession rate. Otherwise,
it first lowers its lowest acceptable utility using the reactive concession strategy to get the new list of

acceptable configurations,𝐴ℎ
𝑖,𝑖 . Let Iℎ

𝑖 be the set of configurations that exist in all configuration lists

𝐴ℎ
𝑖,𝑖′ (1 ≤ 𝑖 ′ ≤ 𝑁 ). If the set Iℎ

𝑖 is not empty, service 𝑖’s the following configuration during period ℎ:

𝑑 = argmax𝑑∈Iℎ
𝑖

∩ 𝑃𝑒𝑈𝑖 (𝑑), where 𝑃𝑒 is the set of Pareto-optimal agreements calculated by service

𝑖 based on its estimation of other services’ ranking of configurations. Although service 𝑖 does not

know the actual utility functions of opponent services, the estimated ranking of configurations

is enough to compute the set of Pareto-optimal solutions. If 𝐼ℎ𝑖 is empty, meaning there is no

configurations that are acceptable to all services, service 𝑖 proposes the configuration introducing

the lowest acceptable utility since it has already conceded when updating the set of acceptable

configurations, and the proposed configuration is defined as argmin𝑑 in 𝐴ℎ
𝑖,𝑖
𝑈𝑖 (𝑑),

4.2.2 Acceptance Strategy. In this part, we describe the strategy that service 𝑖 uses to determine

acceptance or rejection of a proposal from an opponent service 𝑖 ′ during period ℎ. Our negotiation

agent uses a utility-based condition to make the decisions. Given the proposal from another service

𝑖 ′ during period ℎ denoted by 𝑂ℎ
𝑖′,𝑘 , service 𝑖 first checks whether 𝑂

ℎ
𝑖′,𝑘 is an element of 𝐴ℎ

𝑖,𝑖′ . If not,

service 𝑖 rejects this . Otherwise, this service detects whether 𝑂ℎ
𝑖′,𝑘 can be improved, meaning there

is another configuration 𝑑 which can improve the utility of service 𝑖 and does not decrease the

performance of service 𝑖 ′ according to 𝐴ℎ
𝑖,𝑖′ and the action-utility table of service 𝑖 . If 𝑂ℎ

𝑖′ can be

improved, service 𝑖 should reject it since its utility can be improved while not sacrificing other

services’ performance. Otherwise, it is accepted.
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4.3 Negotiation Agent Design
According to the strategy for making proposals and the acceptance strategy, we summarize the

automated negotiation agent as follows: if it is service 𝑖’s turn to make a proposal during period

ℎ, service 𝑖 will use strategy for making proposals to determine its proposal; otherwise, service 𝑖

decides to accept or reject a proposal from another service using the acceptance strategy.

Theorem 4.1. Consider 𝑁 services in a negotiation, they negotiate to determine a configuration
from the configuration space 𝐷 = {𝑇𝑚𝑖𝑛,𝑇𝑚𝑖𝑛 + 1, · · · ,𝑇𝑚𝑎𝑥 }. If all 𝑁 services use our negotiation
algorithm, and the estimation of acceptable configurations and their ranking to any service 𝑖 is accurate,
the result of our algorithm is guaranteed to reach a Pareto-optimal agreement.

Proof. Suppose there are 𝑁 services playing a negotiation during period 1, 2, · · · , 𝐻 . The period

from 𝑁 (𝑟 − 1) + 1 to 𝑟𝑁 is called round 𝑟 . All services take turns to propose an action in each round

until they reach an agreement. Let 𝐴𝑟
𝑖,𝑖′ be the set of acceptable configurations of service 𝑖

′
that is

estimated by service 𝑖 in round 𝑟 . Specially, 𝐴𝑟
𝑖,𝑖 is service 𝑖’s true acceptable configuration when

𝑖 = 𝑖 ′. According to our algorithm, at any round 𝑟 service 𝑖 first expands its acceptable configuration

𝐴𝑟
𝑖,𝑖 with a lower utility, that is to say,

𝐴𝑟
𝑖,𝑖 = 𝐴

𝑟−1
𝑖,𝑖 ∪ 𝑐𝑟𝑖 , (4)

where 𝑐𝑟𝑖 < 𝑚𝑖𝑛{𝐴𝑟−1
𝑖,𝑖 }. Then it computes 𝐶 =

⋂𝑁
𝑖=1𝐴

𝑟
𝑖,𝑖 .

If𝐶 ≠ ∅, then service 𝑖 selects the candidate introducing the largest utility from𝐶 ∩𝑃𝑒 , where 𝑃𝑒
is the set of Pareto-optimal solutions that are calculated by the estimated ranking of configurations

for other services 𝑖 ′; if 𝐶 = ∅, then 𝑐𝑟𝑖 is service 𝑖’s proposal at round 𝑟 .
Notice that |𝐴𝑟

𝑖,𝑖 | > |𝐴𝑟−1
𝑖,𝑖 | based on (4), also we have |𝐴𝑟

𝑖, 𝑗 | > |𝐴𝑟−1
𝑖, 𝑗 | because all services use our

negotiation algorithm. Therefore, ∃𝑟∀𝑗, |𝐴𝑟
𝑖, 𝑗 | = |𝐷 |. In this case, 𝐶 ≠ ∅, because ∀𝑗, 𝐴𝑟

𝑖, 𝑗 = 𝐷 . In

other words, all services must reach an agreement at round 𝑟 .

Finally, we show that the agreement is a Pareto-optimal solution. Under the assumption that

both the estimation of acceptable configurations and ranking of configurations are accurate, the

proposal determined by argmin𝑑∈𝐴𝑟
𝑖,𝑖
𝑈𝑖 (𝑑) is not accepted by the other 𝑁 − 1 services. The reason

is 𝐶 = ∅. Only the proposal generated by 𝑑 = argmax𝑑∈𝐶 ∩ 𝑃𝑒𝑈𝑖 (𝑑) can be an agreement, and the

agreed proposal is Pareto-optimal since it is an element of the set of Pareto-optimal agreements

according to 𝑑 ∈ 𝐶 ∩ 𝑃𝑒 . □

4.4 Robust Negotiation Module under Uncertain Ranking
As described in Section 4.2, a service uses the estimation of how an opponent service ranks the

different configurations to make proposals and reply to others’ proposals efficiently. However, it

is challenging to predict the ranking accurately [5, 8]. The incorrect estimation of ranking could

mislead the actions of a service, resulting in the sub-optimal agreement or being exploited by

opponent services. For example, if a service 𝑖 incorrectly computes how much an opponent service

𝑖 ′ concedes between the last two proposals due to the incorrect estimation, service 𝑖 may concede a

lot when making the proposal, resulting in the missing of utility. In this part, we design the robust

negotiation module to address the inaccurate estimation of ranking.

Given the list of acceptable configurations for service 𝑖 ′ estimated by service 𝑖 in Section 4.1.1, a

score function 𝑓 2
𝑖′ (·) is used (designed in Section 4.1.2) to rank the different estimated acceptable

configurations. If any two estimated acceptable configurations, 𝑙1 and 𝑙2, have the similar score,

i.e., |𝑓 2
𝑖′ (𝑙1) − 𝑓 2

𝑖′ (𝑙2) | is close to 0 and 𝑃 (< 𝑙1 ≻ 𝑙2 >) is close to 0.5, the possibility of incorrectly

ranking 𝑙1 and 𝑙2 is high. Based on 𝑃 (< 𝑙1 ≻ 𝑙2 >), we define the probability that 𝑙1 is preferred by
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service 𝑖 ′ than 𝑙2 as:

𝑔(𝑙1, 𝑙2) = 2 ∗ |𝑃 (< 𝑙1 ≻ 𝑙2 >) − 0.5| = 2 ∗ |𝑃 (< 𝑙2 ≻ 𝑙1 >) − 0.5| ∈ [0, 1] (5)

It represents the probability that the preference of 𝑙1 and 𝑙2 can be estimated correctly, e.g., if

𝑃 (< 𝑙1 ≻ 𝑙2 >) is close to 0.5, the probability that estimates the pairwise ranking of 𝑙1 and 𝑙2
correctly is close to 0. Based on the pairwise ranking function 𝑓 2

𝑖′ (·) and the set of acceptable

configurations for service 𝑖 ′, we define the set of possible rankings for service 𝑖 ′ estimated by

service 𝑖 , and it is denoted by S𝑖,𝑖′ . For any pair of configurations, 𝑙1 and 𝑙2, if 𝑔(𝑙1, 𝑙2) ≥ 𝛼 , we

say that the estimated preference of 𝑙1 and 𝑙2 has high confidence, and the pairwise ranking is

determined by 𝑓 2
𝑖′ (𝑙1) and 𝑓 2𝑖′ (𝑙2); otherwise, the ranking could be 𝑙1 ≻ 𝑙2 or 𝑙2 ≻ 𝑙1. Then based on the

different pairwise ranking of any two configurations, 𝑙1 and 𝑙2, we can obtain the set of all possible

rankings, denoted as 𝑆𝑖,𝑖′ . For example, there are three configurations 𝑙1, 𝑙2, and 𝑙3. If 𝑔(𝑙1, 𝑙2) ≥ 𝛼 ,
𝑔(𝑙1, 𝑙3) ≥ 𝛼 and 𝑔(𝑙2, 𝑙3) < 𝛼 , the set of all possible rankings is {< 𝑙1, 𝑙2, 𝑙3 >, < 𝑙1, 𝑙3, 𝑙2 >}.

Based on the set of all possible rankings, we change the strategy for making proposals in

Section 4.2 a little bit. When making proposals, since service 𝑖’s last proposal is rejected by at

least an opponent service, it needs to update its lowest acceptable configuration using the reactive

concession strategy, which depends on how much the opponent services concede during the

previous negotiation periods. Let 𝐻 (𝐴ℎ
𝑖,𝑖′,O𝑖′) represent how much the service 𝑖 ′ concedes during

its last two proposals given the estimated ranking of configurations, i.e., 𝐴ℎ
𝑖,𝑖′ . We propose the

robust reactive concession strategy and use the following equation to obtain how much the service

𝑖 concedes: minΔ𝑢ℎ
𝑖,𝑖

max𝐴ℎ
𝑖,𝑖′ ∈𝑆𝑖,𝑖′

|Δ𝑢ℎ𝑖,𝑖 −min1≤𝑖′≤𝑁,𝑖′≠𝑖 𝐻 (𝐴ℎ
𝑖,𝑖′,O𝑖′) |.

The main idea is the ranking difference that service 𝑖 can decrease, i.e., Δ𝑢ℎ𝑖,𝑖 , should be close

to the minimum ranking difference that 𝑁 − 1 opponent services decrease within their previous

proposals, i.e., min1≤𝑖′≤𝑁,𝑖′≠𝑖 𝐻 (𝐴ℎ
𝑖,𝑖′,O𝑖′). Given the set of estimated rankings, service 𝑖 needs to

determine Δ𝑢ℎ𝑖,𝑖 to minimize the worst difference between Δ𝑢ℎ𝑖,𝑖 and min1≤𝑖′≤𝑁,𝑖′≠𝑖 𝐻 (𝐴ℎ
𝑖,𝑖′,O𝑖′).

Making proposals: After updating the lowest acceptable configurations, service 𝑖 has a new set of

acceptable configurations 𝐴ℎ
𝑖,𝑖 . Let Iℎ

𝑖 be the set of configurations that are acceptable to all services.

Since any ranking in 𝑆𝑖,𝑖′ has the same set of acceptable configurations, Iℎ
𝑖 is deterministic. If

Iℎ
𝑖 = ∅, service 𝑖 only proposes the acceptable configuration with the minimum utility to itself,

i.e., min𝑑∈𝐴ℎ
𝑖,𝑖
𝑈𝑖 (𝑑). Given the different estimation of ranking in ∀1 ≤ 𝑖 ′ ≤ 𝑁, 𝑖 ′ ≠ 𝑖, 𝑆𝑖,𝑖′ , there

are the different sets of Pareto-optimal solutions. Each element in Iℎ
𝑖 might be the Pareto-optimal

solution in several combinations of ranking estimations, i.e., < 𝐴ℎ
𝑖,1, ..., 𝐴

ℎ
𝑖,𝑁

>, where 𝐴ℎ
𝑖,𝑖′ ∈ 𝑆𝑖,𝑖′ . If

Iℎ
𝑖 ≠ ∅, service 𝑖 will propose the action that appears as the Pareto-optimal solution in the different

combinations of ranking estimations with the most times.

Acceptance Strategy: Given the proposal from another service 𝑖 ′ during period ℎ denoted by𝑂ℎ
𝑖′,𝑘 ,

service 𝑖 first checks whether𝑂ℎ
𝑖′,𝑘 is acceptable to service 𝑖

′
according to 𝑆𝑖,𝑖′ . If not, service 𝑖 rejects

this. Otherwise, this service detects whether 𝑂ℎ
𝑖′,𝑘 is the action that appears as the Pareto-optimal

solution in the different combinations of ranking estimations with the most times. If not, service 𝑖

should reject since it does not maximize the possibility that a service’s performance can be improved

while not sacrificing other services’ performance. Otherwise, it is accepted.

4.5 Action-utility Table Computation
It is essential for any service 𝑖 to know the utility that different configurations can introduce.

Even without conflicts, each service also needs to compute such a table to choose the optimal

configuration for optimizing the quality of service. The action-utility table computation is beyond

the scope of this study, i.e., addressing the conflicts across services.
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For the traffic light control example, determining optimal control actions has already been well

studied in the previouswork, classified into two categories: conventionalmethods and reinforcement

learning based solutions. Conventional methods [11, 49] configure fixed schedule or changing

rules according to previous knowledge, which are vulnerable to the dynamic traffic condition.

Reinforcement learning based methods [21, 51, 52] take real-time traffic conditions as input, and

aim at selecting the action resulting in the maximum reward. Based on the related work [51], we

design a reinforcement learning based agent to control any traffic light 𝑘 .

The state, action and reward (utility) of a RL agent for three services are defined in Section 3.1

respectively. Given the real-time state, the task of an agent is to find the action (length of the next

traffic light phase) that maximizes the long-term reward, following the Bellman Equation [43]:

𝑈𝑖,𝑘 (𝑠𝑖,𝑘 (𝑡), 𝑎) = 𝑟𝑖 (𝑎) + 𝛾 max𝑈𝑖,𝑘 (𝑠𝑖,𝑘 (𝑡 + 1), 𝑎′). 𝑠𝑡 is the state of the city used by service 𝑖 at the

beginning of traffic light phase 𝑡 . The long-term action reward is the summation of the reward of

the next traffic light phase 𝑡 + 1 and the maximum potential future reward.

5 VALIDATION
5.1 Methodology
The experiments are conducted using SUMO, a simulation platform providing APIs to model traffic

systems including vehicles, pedestrians, environment measurement, and traffic light control. SUMO

can simulate vehicles and pedestrian mobility for given routes and traffic light control policies.

We collect the real-world vehicle mobility data by 246 surveillance cameras in Shenzhen, China

over the time period from 05/01/2017 to 05/20/2017. A record is generated when a vehicle is captured

by the camera, and each record consists of captured time, camera ID, and other information. We also

have the city map to show each road intersection’s GPS data and a table to map each camera ID to

the actual GPS location. The size of the dataset is 55.0 GB. We use five-days data for the experiment

and the remaining data is imported into SUMO for training. We import a 3 𝑘𝑚 × 2 𝑘𝑚 region of

Shenzhen and the corresponding vehicle traffic as the city environment to SUMO, including nine

traffic lights that three services want to control. We also generate pedestrian traffic with the setting

that one person per four seconds or five seconds for the different directions of a intersection. A

traffic light is configured as an integer between 1 and 60, representing the duration of a light phase.

To evaluate the performance of DeResolver, we compare it with four state-of-the-arts centralized

conflict resolution frameworks: (i) a priority-based solution based on [34], it gives a higher priority

to intelligent traffic light control service than the other two services, because the primary goal

of traffic light control is traffic flow optimization. (ii) A weight-based solution based on [32], it

selects the action that maximizes the weighted sum of three services’ utility ratios. The utility ratio

of a service is defined as the ratio between the utility of an action and the maximum utility that

this service can get if no conflict occurs. The weight is determined by city managers according to

their understandings of services. The weights for intelligent, pedestrian and environmental control

services are defined as 1, 2, and 10 respectively. (iii) A round-robin solution [28] that applies the

requested actions from three services by cyclic execution. (iv) A Pareto-efficient solution that

knows the action-utility tables of all services and selects the Pareto-efficient configuration that

maximizes the minimum service utility ratio of all services. This solution ensures that any service

cannot improve its performance without reducing any other services’ performance. Meanwhile, it

provides the max-min fairness for services.

Taking the Example 2.1, we define the metrics to measure three services’ performance. Average

waiting time of a vehicle: for a vehicle, we calculate its waiting time (speed less than 0.1𝑚/𝑠) and
report the average value. Average waiting time of each pedestrian: we calculate the waiting time

of each pedestrian and report the average value. The weighted sum of air pollutant emission per

hour: we assign a weight for different road segments based on the nearby environment, e.g., large
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Fig. 6. Performance of classifying acceptance or
rejection

Intell. Pedestrian Environment0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

SL W. Partial SS SL W. Full

Fig. 7. Performance of learning opponents’ pref-
erence

weight for hospitals and schools, and then report the weighted sum of air pollutant emission of all

road segments. The measurement unit of waiting time is second, and that of environment control

service is kilogram per hour.

5.2 Performance of learner of opponents
First, we describe how we collect the data used to train the learners that are proposed in Section

4.1. We simulate that three services operate to control nine traffic lights by feeding the fifteen-day

traffic data into SUMO, and we set up that they play a negotiation if conflicts exist. During the

negotiation, each service uses the proposed negotiation agent to play the negotiation, and services

also collect the data that is generated from services’ negotiation behaviors. In each period of a

negotiation, a data sample is generated for each service following the process described in the third

paragraph of Section 4.1.1. The data samples collected over all periods of all negotiations, are used

to train the binary classifier. Two datasets, i.e., one with ranking information and the other one

without ranking information, are generated when a negotiation ends with the process described in

the second paragraph of Section 4.1.2. Two datasets are used to train the learner.

Second, we define the estimation accuracy as the main metrics for evaluating the learning based

algorithm. The accuracy of estimating the acceptable or unacceptable configurations to service 𝑖 is

used to measure the performance of the first level of the learner. The accuracy of estimating how

service 𝑖 ranks the acceptable configurations is used to measure the performance of the second

level of the learner. The detailed mathematical description of the estimation accuracy is as follows.

The accuracy of estimating the acceptable or unacceptable configurations to service 𝑖 is used

to measure the performance of the first level of the learner. The metric is defined as: 𝐴𝑐𝑐1𝑖 =∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝑁𝐶𝑖,𝑚,ℎ/

∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝐶𝑖,𝑚,ℎ .𝑀 is the number of negotiations that are organized during

the evaluation. 𝐻𝑚 is the number of periods that last in the negotiation𝑚. 𝑁𝐶𝑖,𝑚,ℎ is the number of

configurations that are correctly classified as acceptable or unacceptable to service 𝑖 in the period

ℎ of𝑚-th negotiation. 𝐶𝑖,𝑚,ℎ is the number of configurations that are classified as acceptable or

unacceptable to service 𝑖 in the period ℎ of 𝑚-th negotiation. The accuracy of estimating how

service 𝑖 ranks the acceptable configurations is used to measure the performance of the second level

of the learner. The metric is defined as: 𝐴𝑐𝑐2𝑖 =
∑𝑀

𝑚=1

∑𝐻𝑚

ℎ=1
𝑁𝑃𝑖,𝑚,ℎ/

∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝑃𝑖,𝑚,ℎ . 𝑁𝑃𝑖,𝑚,ℎ is the

number of pairs of configurations, whose ranking order is estimated correctly in the period ℎ of

𝑚-th negotiation. 𝑃𝑖,𝑚,ℎ is the number of pairs of configurations, whose ranking order is estimated

in the period ℎ of𝑚-th negotiation. The accuracy of a learner shows how often a service correctly

estimates its opponent services’ behaviors, which is useful to conduct negotiation efficiently.

Finally, we report the evaluation results. We measure the performance of five widely used binary

classifiers, and then select the one with the best performance. Support vector machine (SVM): a

classical algorithm to find a hyperplane for classifying the data. Logistic regression (LR) [19]: a
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Table 1. Performances of different conflicts resolutions. (Heavy traffic means the rush hours of one day and
light traffic means non-rush hours of one day. )

Intell. Pedestrian Environment
Light Heavy Light Heavy Light Heavy

Priority-based 161.48 300.56 22.93 33.75 565.20 3085.20

Weight-based 293.74 530.86 18.40 26.17 309.60 1613.88

Round-robin 289.74 518.65 20.05 30.62 334.08 2177.64

DeResolver 172.39 412.59 20.15 31.11 378.00 1890.31

Pareto-efficient 172.61 381.96 20.18 29.01 345.20 1701.72

statistical model estimating the parameters of a logistic model. Random decision tree (RDT) [14]: a

method that constructs multiple trees in randomly selected subspaces of the feature space and uses

the combined predictions of the individual trees as the output. K-nearest neighbors (KNN) [3]: a

type of instance-based learning, where the classification of a data point is the same as the class

most common among its 𝐾 nearest neighbors. In this evaluation, we empirically test the value of

𝐾 , and set 𝐾 as 10 because 𝐾 = 10 has the best results in our tests. Neural network (NN) [12]: it

uses a NN to learn the linear or non-linear combination.

Figure 6 shows the classification accuracy using five different classifiers to estimate whether any

one of three services accepts a configuration or not. It can be observed that the neural network

based learner outperforms all other four solutions with more than 90.0% accuracy for all three

services, which means that more than 90.0% of configurations are correctly classified as acceptable

or unacceptable to an opponent service. The reason is that a neural network can approximate

both linear and non-linear hyperplane to partition the feature space. It is also observed that KNN

also achieves the second best performance with accuracy more than 80.0% since any two close

configurations have a high possibility to receive the same acceptance or rejection decisions. In

conclusion, we use a neural network based classifier to estimate whether configurations can be

accepted by a service.

When measuring the semi-supervised learning algorithm (SS), we design two other methods

for comparison: supervised learning with partial order information (SL W. Partial) and supervised

learning with full order information (SL W. Full). The first method learns the opponent ranking

model only using the collected data with partial order information and aiming at only minimizing

logistic loss function, i.e., Equation (2). The second comparison method assumes that given the

state of the city, the full order information of all configurations is known, and this method conducts

supervised learning to minimize Equation (2). We use TF-Ranking [40] to implement our semi-

supervised learning method, which optimizes the weighted sum of two objectives simultaneously.

Figure 7 shows the estimation accuracy of order between any two configurations by threemethods.

It is observed that our semi-supervised learning method can achieve more than 86.0% accuracy

for estimating the preference of all three services. For pedestrian service, our semi-supervised

learning algorithm increases the estimation accuracy by 17.6% compared with the supervised

learning method with only partial order information. But it decreases the performance by 7.2%

compared with the supervised learning algorithm with full order information. This observation is

normal since our solution takes full use of the distance between two configurations without order

information to penalize generating a large score difference for two close configurations. However,

a dataset with full order provides the most information.

5.3 Performance of DeResolver
5.3.1 Comparison of resolutions to eliminate conflicts. Table 1 shows the performance of three

services when using different solutions to resolve conflicts across them under the light and heavy

traffic. We set up that all three services using our negotiation method under the DeResolver

framework. There are two observations. The first one is priority or weight based resolution can
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improve the performance of one service greatly, meanwhile degrading the other two services’

performance significantly. By comparing priority and round-robin solutions, we can see that

changing the subjective weight on different services could reduce the weighted sum of air pollutant

emission by 40.9% while increasing the average vehicle waiting time by 79.4% with light traffic.

The second one is our solution can achieve close performance compared with the Pareto-efficient

solution. Compared with applying a Pareto-efficient solution which is generated from the actual

action-utility table of three services, DeResolver can achieve close vehicles and pedestrian waiting

time, meanwhile increasing the air pollutant emission by 9.5% with light traffic. Meanwhile, with

heavy traffic, the performance of three services by DeResolver decreases less than 10% compared

with that of three services by Pareto-efficient solution. It is because DeResolver misses the action

which can maintain the performance of two services and improve that of environment control

service due to estimation error.

The action conflicts across services result in a trade-off among these services’ performance when

determining the configurations of shared actuators. To be noted, DeResolver’s goal is to find a

trade-off for all the services’ performance. In some cases, DeResolver cannot guarantee the best

performance of each individual service compared with some other algorithms. However, it does

provide a balanced performance while resolving the conflicts (as shown in Table 1). Different from

the solutions that assign a higher priority or weight to a particular service based on prefixed rules,

DeResolver allows smart services to reach agreements under dynamic city states via negotiation,

introducing a balanced set of actions for all the services. We believe this is an important step to

maintain balanced performances of smart services, especially with an increasing number of services

deployed in smart cities. In the future work, we will continue exploring the fairness when resolving

conflicts among services.
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5.3.2 Module Sensitivity Analysis. In this part, we evaluate the impact of the opponent learning

module and negotiation module on the performance of a service. Firstly, we evaluate whether

learning services’ ranking is useful for improving the performance of one service. We consider

two variations. The first one is DeResolver with post hoc information (Oracle). Suppose a service

knows the acceptable configurations to opponent services and the ranking. The second variation

is DeResolver without opponent prediction. Suppose a service does not learn opponent services’

acceptable configurations and preference of different actions. It just proposes the configurations

from the one with the highest utility to the one with the lowest utility one by one. In this experiment,

we assume that the intelligent traffic light control service uses the variations of our negotiation

method, and the other two services always use the negotiation agent, i.e., DeResolver.
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The results are shown in Figure 8. The main observation is learning the opponent services’

ranking can help the service to get more benefit from the service that does not learn this information.

Compared to the case that there is not any estimation of two opponent services, the average vehicle

waiting time reduces by 58.5% when using DeResolver with opponent prediction. Meanwhile,

DeResolver with opponent prediction has the similar performance with an oracle solution, where

the post hoc analysis is conducted to directly use other services’ utility tables without prediction,

showing the effectiveness of our learning module.

Secondly, we evaluate how the negotiation module affects the performances. We consider four

solutions. The first one is DeResolver without the Pareto-optimal negotiation module. In this

variation, a service always proposes the action that has the lowest acceptable utility to itself. The

second solution is DeResolver. The third solution is DeResolver with a robust negotiation module,

i.e., Section 4.4. The last solution is DeResolver with a selfish negotiation agent. It means when a

service makes a proposal, it only proposes the action that is acceptable to all the services based

on the estimation and also introduces the maximum utility to itself. We set up that the intelligent

traffic light control service uses one of these four solutions for negotiation, and the other two

services always use DeResolver.

The evaluation results are shown in Figure 9. It is observed that if replacing our Pareto-optimal

based negotiation module with a selfish local greedy negotiation module, our Pareto-optimal based

negotiation still slightly outperforms it. The reason is that the opponent services do not concede

and sacrifice their utility for a selfish service. The second observation is that the DeResolver with

a robust negotiation module can improve the performance of the intelligent traffic light control

service by 5.2%. The reason is that when using DeResolver with a robust negotiation module, a

service concedes less to be robust to the ranking error, which avoid the service being exploited.

Table 2. Performance of DeResolver with different setting of
service types

Intell. Pedestrian Environment

Type Perf. Type Perf. Type Perf.

DeResolver 160.58 Dedicated 23.17 Dedicated 397.04

DeResolver 172.39 DeResolver 20.15 DeResolver 378.00

DeResolver 185.68 Selfish 18.23 Selfish 367.93

5.3.3 Performance of DeResolver
with different types of services. We show

the performance of DeResolver when

negotiating with different types of ser-

vices in this part. First of all, we propose

the definitions of service types. Selfish

agent: a selfish negotiation agent is not

willing to concede during the negotia-

tion. In this experiment, we set up that a selfish agent decreases its worst acceptable configuration

ranking by one every two proposing periods. For example, a selfish agent makes an proposal with

ranking 𝑞 at its first proposing period. It will propose another proposal with ranking 𝑞−1 at its third

proposing period. This agent only accepts configurations with ranking no less than 𝑞 at the periods

between its first and third proposing period and still proposals the configuration with ranking 𝑞 in

its second proposing period. Dedicated agent: an agent is willing to reduce its lowest acceptable

configuration ranking by two between its two consecutive proposing periods. DeResolver: the

agent uses the negotiation algorithm designed in this study.

Table 2 shows the performance of DeResolver with different sets of opponent services’ types.

The observation is that the performance of DeResolver is stable with different opponent services’

types, i.e., DeResolver increases or decreases the performance by 6.9% and 7.7% with dedicated and

selfish opponent services, respectively. With dedicated opponent services, DeResolver can take

advantage of learning opponent services’ acceptable configurations and propose the configuration

which is acceptable to all services and introduces the most benefit to itself. When negotiating with

selfish agents, the reactive recession strategy makes sure that the DeResolver agent does not miss

too much utility according to its estimation and observation of opponents.
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Table 3. Performance of DeResolver with robust negotiation

Intell. Pedestrian Environment Average # of periods to

reach an agreementType Perf. Type Perf. Type Perf.

DeResolver 172.39 DeResolver 20.15 DeResolver 378.00 17.56

DeResolver with

robust negotiation

172.45

DeResolver with

robust negotiation

20.08

DeResolver with

robust negotiation

360.78 26.85

DeResolver 185.68 Selfish 18.23 Selfish 367.93 28.15

DeResolver with

robust negotiation

175.69 Selfish 19.47 Selfish 371.54 37.67

5.3.4 Evaluation of DeResolver with robust negotiation module. In this part, we evaluate the

performance of DeResolver with a robust negotiation module under the different settings, which

is shown in Table 3. In the first setting, we compare the performances of three services when

they use DeResolver or DeResolver with robust negotiation. In the second setting, we compare

the performance of intelligent traffic light control when it uses DeResolver or DeResolver with

robust negotiation, while the other two services always use the selfish negotiation agent. The main

observation is that a service can improve its performance using DeResolver with robust negotiation

when it experiences the sub-optimal agreement due to estimation errors or it is exploited by

selfish negotiation agents. For example, in the first setting, the performance of the environment

control service improves by 4.6% and the performance of the intelligent traffic light control service

increases by 5.4% in the second setting. It is also observed that the robust negotiation module

increases the time cost to reach an agreement since the service concedes less to be robust to the

ranking estimation errors. In conclusion, our design of the robust negotiation module can enhance

the performance of a service when using incorrect estimation of opponent services’ ranking of

configurations, while sacrificing the speed of reaching an agreement.

Table 4. Convergence analysis

Service type Average # of periods to

reach an agreementIntell. Pedestrian Environment

Dedicated Dedicated Dedicated 14.00

DeResolver Dedicated Dedicated 16.90

DeResolver DeResolver DeResolver 17.56

DeResolver Selfish Dedicated 22.06

DeResolver Selfish Selfish 28.15

5.3.5 Convergence analysis with
different types of services. In this

part, we show the average number

of periods needed to reach an agree-

ment for three services with differ-

ent sets of service types in Table

4. There are multiple observations.

The first one is that this negotiation

converges quickly when all agents

use our negotiation method, e.g., averagely costing 17.56 periods (0.053 milliseconds on a PC) to

reach an agreement with 60 possible configurations among three agents. The second one is that

DeResolver is willing to concede the lowest acceptable ranking if its opponent services also concede.

The third observation is if all agents use our negotiation method, each agent will concede step by

step in any two consecutive proposing periods which is kind of slower compared with the case that

all opponent services are dedicated agents. The last observation is that the selfish agent increases

the time cost to reach an agreement since DeResolver is not willing to concede when observing

selfish behaviors.

Table 5. Impact of minimum green light phase duration

Minimum green

light phase (second)

Intell. Pedestrian Environment

0 172.39 20.15 378.00

10 180.27 21.05 392.52

20 185.67 23.53 403.11

30 193.28 24.76 426.28

5.3.6 Impact of minimum green light phase
duration. When configuring the traffic light,

high frequency change of direction of green

light may leave insufficient time duration for

passengers and vehicles to pass the intersec-

tion, leading to severe consequences. In this

part, we set up the minimum green light phase
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duration and show the performances of three services in Table 5. The main observation is that

the performances of three services decrease with the increase of the minimum green light phase

duration. The reason is that the increase of the minimum phase duration reduces the action space

of three services, resulting in that the services cannot take the actions with high utility when the

actions violate the requirement.

6 DISCUSSION
Services designed in a decentralized way: A decentralized approach, where a controller is designed

for a local area or an individual actuator, could result in a local optimal solution. However, in the

current city, e.g., City of Newark [1], many services are provided by the different departments,

e.g., the police, transportation, and environment departments, and designed in a decentralized

approach to obtain the control decisions of thousands of actuators simultaneously, e.g., traffic light

control [50] and online dispatch of taxis to current customer bookings [42]. Therefore, using a

decentralized design can reduce the risks of "single point of failure", protect the privacy of service

providers, and reduce the cost of feeding all these distributed services into a centralized site.

Malicious services: In the negotiation, some services can be malicious or semi-honest to disrupt

consensus. But considering a malicious service is out of scope of this paper. It is part of our ongoing

work. The city government has already collected the real-time data of services and deployed the

monitoring systems, which can be utilized to detect the malicious behaviors of services. Once

malicious behaviors of a service are detected, actions will be taken to investigate the specific case

and audit the service provider. We also note that if all services are selfish and semi-honest, it is

possible that they cannot reach an agreement and the default configuration is applied, or they reach

an agreement that is beneficial to a service provider and reduces the utility of other services, which

is not efficient (i.e., not Pareto-optimal). It requires more study on investigating the mechanism

design to incentivize services to be honest.

Safety detection: A requirement of the actions is to ensure the safety of a city, such as the actions

should not increase the noise level dramatically around the school areas. In our decentralized

negotiation based resolution, each individual service can do the safety check at first to make sure

that its proposals or accepted proposals meet the city safety requirements. Then a checker deployed

in the city operation center can check it again to ensure the coexisting actions from multiple

services do not violate the requirements due to the effects of accumulation. We envision that the

distributed safety checker is better. Because the centralized safety checker requires services to do

the negotiation again when the agreed action is not safe and the centralized checker rejects it.

Security and Privacy: Compared with the existing centralized resolutions that require the system

status, actuator information and objectives to approve some actions, our decentralized design

reduces the risk of leaking private information. This is because each service is only required to

share their proposals of actions and answer acceptance or rejection to its opponents’ proposals.

However, we note that security and privacy are very important for this architecture, which still need

to be explored. For example, the communication among services can be attacked in a negotiation.

Specific methods may be helpful, such as secure multiparty computation and zero-trust network.

However, specific designs still need to be investigated.

Implementation of DeResolver: Based on our design, a service should be able to sense the city

state, communicate with other services, and compute the control decisions of actuators. In the

existing cities, various types of sensors have already been deployed to collect the real-time city

data, which is shared with different types of services. In the existing systems, the services can

communicate with the city dashboard and other systems by the interface. The services also have

the capability to compute for the optimal control strategy. However, the negotiation protocol and
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interfaces still need to be regulated and implemented on top of existing infrastructure. We believe

that our design can be applied to existing smart services.

7 RELATEDWORK
We organize the related work into three categories, i.e., resolving conflicts across services, automated

negotiation agent design, and opponent modeling.

Resolving conflicts across services: There exist several papers on resolving conflicts across ser-

vices [24, 26, 32, 34, 47]. [6] blocks the unsafe state of the target application by forcing monitor

code into the app. [32], [24] and [34] resolve conflicts by assigning weight or priority to different

services based on their domain and managers’ understanding of each smart service. [26] suggests

that alternative realizations of users’ expected applications can be selected to avoid the conflicts in

Internet-of-Things. These centralized solutions may experience "single point of failure" and they

require city managers to have abundant knowledge of services [24, 26, 34] for determining the

weight of each service [30, 32, 47]. Whereas, our decentralized negotiation-based solution does not

rely on city managers or a central agent to resolve the conflicts.

Automated negotiation agent design: Multi-agent negotiation has already been widely studied in

game theory [9, 13, 17]. However, they cannot be applied to solve our problem directly due tomaking

impractical assumptions, e.g., agents’ utility functions have some specified properties [20, 27],

agents have complete knowledges of opponents’ preference [11, 35], and there exist mediators

computing agents’ offers [17, 20, 27]. [20] considers finding a Pareto-efficiency solution for multi-

attribute negotiation with the assumption that one mediator applies query learning to find near

Pareto-efficiency solution and each agent’s preference is monotonic. [46] tries to learn the robust

negotiation policy formulti-agent policies, which assumes that an agent has the complete knowledge

of other agents’ objectives. Our work does not rely on these assumptions to conduct negotiation

automatically, which are impractical for smart city services.

Opponent modeling: Modeling opponents is essential to improve the performance of negotiation

results. The closest related work to this study is learning the acceptance strategy or the preference

profile of opponents [4]. To learn the acceptance strategy, existing methods focus on estimating the

reservation values or the acceptance probability of different offers. An approach learns opponents’

reservation value by anticipating opponents’ behaviors with Bayesian learning [44] or non-linear

regression [15]. Several methods are proposed to learn the preference profile. [25] uses Bayesian

learning to determine the opponent types for given negotiation actions and opponent groups. All

these methods make some assumptions of opponents that do not hold in this work or require some

detailed information of opponents. Whereas, our solution does not make such assumptions to

improve the performance of a service under negotiation.

Consensus algorithms: Besides resolving conflicts across smart services by negotiation, there are

also some existing works investigating how to reach the consensus in the multi-agent system [2,

10, 23, 33, 39]. [33] designs a concurrency control and consensus protocol, committing conflicted

transactions in at most two round-trips. [39] proposes a distributed coordination protocol in each

agent to dictate semi-cooperative conflict resolution using Lyapunov-Like barrier functions. [23]

designs a distributed consensus algorithm to jointly detect the collaborative events by edge devices.

[10] studies the finite-time consensus control algorithm for higher-order cooperative multi-agent

systems with a leader-following structure, and [2] also focuses on investigating the fully-distributed

consensus algorithm for multi-agents with arbitrary order. However, these works consider the

setting of cooperative control and determine the actions of the group/team to maximize their

total utility. In this work, we assume that each service wants to maximize its own utility through

negotiation.
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8 CONCLUSION
Conflicts across services directly affect users’ mobility and health in modern cities. To achieve

dynamic resolution, we propose a decentralized negotiation and conflict resolution framework

called DeResolver. Under such a framework, a learning-based solution is designed to guide how a

service negotiates with other services to maximize its utility. Trace-driven simulations show that

our solution achieves much more balanced results, i.e., only increasing the average vehicles’ waiting

time measured for intelligent traffic light control service by 6.8% while reducing the weighted air

pollutant emission measured for environment control service and the pedestrian waiting time

measured for pedestrian service by 12.1% and 33.1%, compared to priority-based solutions.

REFERENCES
[1] 2021. DEPARTMENTS AGENCIES of City of Newark. https://www.newarknj.gov/departments

[2] A. Abdessameud and A. Tayebi. 2018. Distributed consensus algorithms for a class of high-order multi-agent systems

on directed graphs. IEEE Trans. Automat. Control 63, 10 (2018), 3464–3470.
[3] N. S Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician

(1992).

[4] T. Baarslag, M. JC Hendrikx, K. V Hindriks, and C. M Jonker. 2016. Learning about the opponent in automated bilateral

negotiation: a comprehensive survey of opponent modeling techniques. AAMAS (2016).
[5] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. 2007. Learning to rank: from pairwise approach to listwise approach. In

Proceedings of the 24th international conference on Machine learning.
[6] Z B. Celik, G. Tan, and P. D McDaniel. 2019. IoTGuard: Dynamic Enforcement of Security and Safety Policy in

Commodity IoT. In NDSS.
[7] F. V Cespedes, A. M Ciechanover, and M. Eiran. 2018. BreezoMeter: Making Air Pollution Data Actionable. (2018).

[8] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. 2009. Ranking measures and loss functions in learning

to rank. Advances in Neural Information Processing Systems (2009).
[9] R. M. Coehoorn and N. R. Jennings. 2004. Learning on Opponent’s Preferences toMake EffectiveMulti-Issue Negotiation

Trade-Offs. In ICEC ’04 (Delft, The Netherlands). ACM.

[10] H. Du, G. Wen, G. Chen, J. Cao, and F. Alsaadi. 2017. A distributed finite-time consensus algorithm for higher-order

leaderless and leader-following multiagent systems. IEEE Trans. on Systems, Man, and Cybernetics: Systems (2017).
[11] U. Endriss. 2006. Monotonic Concession Protocols for Multilateral Negotiation. In AAMAS ’06. ACM.

[12] J. Friedman, T. Hastie, and R. Tibshirani. 2001. The elements of statistical learning. Vol. 1. Springer series in statistics

New York.

[13] K. Hindriks and D. Tykhonov. 2008. Opponent Modelling in Automated Multi-issue Negotiation Using Bayesian

Learning. In AAMAS.
[14] T. K. Ho. 1995. Random decision forests. In Proceedings of 3rd international conference on document analysis and

recognition. IEEE.
[15] C. Hou. 2004. Predicting agents tactics in automated negotiation. In IEEE/WIC/ACM IAT ’04.
[16] Intel. 2019. Intelligent traffic management system. https://solutionsdirectory.intel.com/solutions-directory/Intelligent_

Traffic_Management_System

[17] T. Ito, H. Hattori, and M. Klein. 2007. Multi-issue Negotiation Protocol for Agents: Exploring Nonlinear Utility Spaces..

In IJCAI.
[18] S. Ji, Y. Zheng, Z. Wang, and T. Li. 2019. A Deep Reinforcement Learning-Enabled Dynamic Redeployment System for

Mobile Ambulances. ACM IMWUT (2019).

[19] D. G Kleinbaum, K Dietz, M Gail, M. Klein, and M. Klein. 2002. Logistic regression.
[20] G. Lai, C. Li, and K. Sycara. 2006. Efficient multi-attribute negotiation with incomplete information. Group Decision

and Negotiation (2006).

[21] L. Li, Y. Lv, and F. Wang. 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica
Sinica (2016).

[22] M. Li, H. Li, and Z. Zhou. 2009. Semi-supervised document retrieval. Information Processing & Management (2009).
[23] S. Li, S. Zhao, P. Yang, P. Andriotis, L. Xu, and Q. Sun. 2019. Distributed consensus algorithm for events detection in

cyber-physical systems. IEEE Internet of Things Journal 6, 2 (2019), 2299–2308.
[24] C. Mike Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang, Z. Pan, Z. Li, and Y. Yu. 2015. SIFT: Building an Internet of

Safe Things. In IPSN ’15. ACM.

[25] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. 2008. Negotiating with bounded rational agents in environments with

incomplete information using an automated agent. Artificial Intelligence 172, 6-7 (2008), 823–851.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.newarknj.gov/departments
https://solutionsdirectory.intel.com/solutions-directory/Intelligent_Traffic_Management_System
https://solutionsdirectory.intel.com/solutions-directory/Intelligent_Traffic_Management_System


DeResolver 1:25

[26] R. Liu, Z. Wang, L. Garcia, and M. Srivastava. 2019. RemedioT: Remedial Actions for Internet-of-Things Conflicts. In

BuildSys ’19. ACM.

[27] Y. Lou and S. Wang. 2016. Approximate representation of the Pareto frontier in multiparty negotiations: Decentralized

methods and privacy preservation. European Journal of Operational Research 254, 3 (2016), 968–976.

[28] S. M Mostafa and H.i Amano. 2020. Dynamic round robin CPU scheduling algorithm based on K-means clustering

technique. Applied Sciences (2020).
[29] M. Ma, S. Preum, M. Ahmed, W. Tärneberg, A. Hendawi, and J. Stankovic. 2019. Data sets, modeling, and decision

making in smart cities: A survey. ACM Transactions on Cyber-Physical Systems (2019).
[30] M. Ma, S. M. Preum, and J. A Stankovic. 2017. Cityguard: A watchdog for safety-aware conflict detection in smart

cities. In IoTDI. ACM.

[31] M. Ma, S M. Preum, W Tarneberg, M. Ahmed, M. Ruiters, and J. Stankovic. 2016. Detection of runtime conflicts among

services in smart cities. In SMARTCOMP.
[32] M. Ma, J. A Stankovic, and L. Feng. 2018. Cityresolver: a decision support system for conflict resolution in smart cities.

In ICCPS ’18.
[33] S. Mu, L. Nelson, W. Lloyd, and J. Li. 2016. Consolidating concurrency control and consensus for commits under

conflicts. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 517–532.
[34] S. Munir and J. A Stankovic. 2014. Depsys: Dependency aware integration of cyber-physical systems for smart homes.

In ICCPS ’14.
[35] J. F Nash Jr. 1950. The bargaining problem. Econometrica: Journal of the Econometric Society (1950), 155–162.

[36] NYC. 2020. NYC Open Data. https://opendata.cityofnewyork.us/

[37] City of Newark. 2020. City of Newark Open Data. http://data.ci.newark.nj.us/

[38] Graz University of Technology. 2019. New traffic light system automatically recognizes pedestrians’ intent to cross the
road. Retrieved Nov 24, 2019 from https://phys.org/news/2019-05-traffic-automatically-pedestrians-intent-road.html

[39] D. Panagou, D. Stipanović, and P. Voulgaris. 2015. Distributed coordination control for multi-robot networks using

Lyapunov-like barrier functions. IEEE Trans. Automat. Control 61, 3 (2015), 617–632.
[40] R. K. Pasumarthi, S. Bruch, X. Wang, C. Li, M. Bendersky, Ma. Najork, J. Pfeifer, N. Golbandi, R. Anil, and S. Wolf. 2019.

TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank. In KDD ’19. ACM.

[41] A. Piscitello, F. Paduano, A. A Nacci, M. D Noferi, D.and Santambrogio, and D. Sciuto. 2015. Danger-system: Exploring

new ways to manage occupants safety in smart building. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).
[42] K. T. Seow, N. H. Dang, and D. Lee. 2010. A Collaborative Multiagent Taxi-Dispatch System. IEEE TASE (2010).

[43] R. S Sutton and A. G Barto. [n.d.]. Reinforcement learning: An introduction.
[44] K. Sycara and D. Zeng. 1997. Benefits of learning in negotiation. In AAAI ’97.
[45] M. Szummer and E. Yilmaz. 2011. Semi-supervised learning to rank with preference regularization. In CIKM ’11. ACM.

[46] Y. Tang. 2019. Towards learning multi-agent negotiations via self-play. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops.

[47] R. M. B. S. Thais, B. R. Linnyer, and A. F. L. Antonio. 2010. How to conciliate conflicting users’ interests for different

collective, ubiquitous and context-aware applications?. In IEEE Local Computer Network Conference. 288–291.
[48] S. Wang, T. He, D. Zhang, Y. Shu, Y. Liu, Y. Gu, C. Liu, H. Lee, and S. H. Son. 2018. BRAVO: Improving the Rebalancing

Operation in Bike Sharing with Rebalancing Range Prediction. ACM IMWUT (2018).

[49] F. V. Webster. 1958. Traffic signal settings. Technical Report.
[50] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu, K. Xu, and Z. Li. 2019. Colight: Learning

network-level cooperation for traffic signal control. In CIKM ’19.
[51] H. Wei, G. Zheng, H. Yao, and Z. Li. 2018. IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic

Light Control. In KDD.
[52] M. Wiering. 2000. Multi-agent reinforcement learning for traffic light control. In ICML’2000. 1151–1158.
[53] H. Yang, S. Tsai, K. Liu, S. Lin, and J. Gao. 2019. Patrol Scheduling Against Adversaries with Varying Attack Durations.

In AAMAS ’19.
[54] Y. Yuan, M. Ma, S. Han, D. Zhang, F. Miao, J. Stankovic, and S. Lin. 2021. DeResolver: a decentralized negotiation and

conflict resolution framework for smart city services. In ACM/IEEE ICCPS ’21.
[55] Y. Yuan, D. Zhang, F. Miao, J. Chen, T. He, and S. Lin. 2019. pˆ 2Charging: Proactive Partial Charging for Electric Taxi

Systems. In ICDCS ’19.
[56] Y. Yuan, Y. Zhao, and S. Lin. 2021. SAC: Solar-Aware E-Taxi Fleet Charging Coordination under Dynamic Passenger

Mobility. In 2021 60th IEEE Conference on Decision and Control (CDC).
[57] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He. 2013. CoRide: Carpool Service with a Win-Win Fare Model for

Large-Scale Taxicab Networks. In SenSys ’13.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://opendata.cityofnewyork.us/
http://data.ci.newark.nj.us/
https://phys.org/news/2019-05-traffic-automatically-pedestrians-intent-road.html

	Abstract
	1 Introduction
	2 Conflicts Across City Services
	2.1 Motivating Example
	2.2 DeResolver Framework

	3 DeResolver Framework Design
	3.1 Formulation of DeResolver
	3.2 blackCase study

	4 Design of a Smart Service under DeResolver Framework
	4.1 Opponent-Strategy Learning Module
	4.2 Negotiation Module
	4.3 Negotiation Agent Design
	4.4 Robust Negotiation Module under Uncertain Ranking
	4.5 blackAction-utility Table Computation

	5 Validation
	5.1 Methodology
	5.2 Performance of learner of opponents
	5.3 Performance of DeResolver

	6 Discussion
	7 Related Work
	8 Conclusion
	References

