Abstract—Investigating passenger demand is essential for the
taxicab business. Existing solutions are typically based on dated
and inaccurate offline data collected by manual investigations.
To address this issue, we propose D_{model}, using roving taxicabs as
real-time mobile sensors to (i) infer passenger arriving
moments by interactions of vacant taxicabs, and (ii) infer pas-
senger demand by a customized online training with both
historical and real-time data. Such huge taxicab data (almost
1TB per year) pose a big data challenge. To address this chal-
lenge, D_{model} employs a novel parameter called pickup
pattern (accounts for various real-world logical information,
e.g., bad weather) to increase the inference accuracy. We evaluate
D_{model} with a real-world 450 GB dataset of 14,000
taxicabs, and results show that compared to the ground truth,
D_{model} achieves a 76% accuracy on the demand inference and
outperforms a statistical model by 39%.

I. INTRODUCTION
Understanding and predicting passenger demand are essen-
tial for the taxicab business [1]. With accurate knowledge of
demand, taxicab companies can schedule their fleet and dis-
patch individual taxicabs to minimize idle driving time and
maximize profit. Historically, such demand has been investi-
gated by manual procedures (e.g., creating surveys). However, these manual studies are often dated, incomplete,
and difficult to use in real time. In particular, passenger de-
mand experiences irregular spatio-temporal dynamics due to
real-world phenomena, e.g., bad weather or special events.
To create an accurate demand model we provide a two
part solution. First, we mine a large dataset of historical in-
formation regarding passenger demand and taxicabs trips.
This results in the basis of our method, from which we iden-
tify what aspects should be used to infer specific real-time
demand. In this work, the historical dataset used is from
14,000 taxicabs for 6 months (450 GB) in a Chinese city,
Shenzhen. While this historical model is more accurate than
sample-based surveys, it cannot handle many real-time issues
and thus has major limitations if used alone.
Second, to address the short term, real-time dynamics, we
consider the thousands of roving taxicabs as real-time mobile
sensors and collect current information from them. This is
possible because taxicabs in dense urban areas are equipped
with GPS as location sensors and fare meters as passenger
sensors, and thus their locations and occupancy status can be
periodically uploaded to a dispatching center. These taxicabs
form a real-time “roving sensor network”. The streaming data
used are from a live data feed in the Shenzhen taxicab network
with an average rate of 450 taxicab status records per second.
Admittedly, several systems have proposed to use taxicab
GPS traces to infer passenger demand, but they typically have
two simplifying assumptions [2] [3] [4]: (i) they assume that
the previous demand is given by the picked up passengers, but
overlook the waiting passengers who did not get picked up;
and (ii) they assume that the current demand can be inferred
by the long-term historical demand, but overlook the fact that
the passenger demand is highly dynamic. For example, after a
major concert, due to the high demand, there are few picked
up passengers yet numerous waiting passengers, and further
the average historical demand cannot indicate the suddenly
increased demand due to the concert.

In this paper, to improve these simplifying assumptions, we
propose D_{model}, which observes online hidden contexts to
infer passenger demand based on both historical and real-time
data. The contributions of this paper are as follows.

- We identify taxicab passenger demand with a combined
offline big data analysis and a real-time roving sensor
network, where taxicabs detect passenger counts and ar-
rising moments. It is important to note that taxicab
passenger arriving moments are, in general, unknown.
However, a major contribution of D_{model} is how the
roving sensor network infers them by utilizing taxicabs’
interactions.
- We present a novel parameter, called a pickup pattern,
to quantify taxicab operational similarity (i.e., how soon
a taxicab can pick up a passenger after entering a road
segment at a time slot) among different days using big
data, e.g., 450 GB in Shenzhen. We show that naively
using more data from such a big dataset results in not
only an unnecessarily large workload, but also inaccurate
inferences. A key novelty of D_{model} is to utilize the
real-time pickup pattern to select customized yet compact
training data to increase inference accuracy. This pickup
pattern implicitly accounts for spatio-temporal dynamics
in real-world phenomena, e.g., bad weather.
- We test D_{model} on a 450 GB dataset created by 6
months of status records from 14,000 taxicabs in Shen-
zen. The evaluations show that compared to ground
truth, D_{model} achieves a 76% inference accuracy of
demand in terms of the passenger counts, and
outperforms a statistical model by 30%.

The organization of the paper is as follows. Section II
shows motivations. Section III introduces the sensor net-
works. Sections IV and V describe D_{model}’s design and
evaluation, followed by the related work and the conclusion
in Sections VI and VII.
II. Motivations

In this section, based on empirical data (introduced in Section III) from a real-world taxicab network with 14,000 taxicabs in Shenzhen, we present our motivations to improve upon two legacy assumptions for passenger demand analysis.

A. Assumption on Inference for Previous Demand

Legacy Assumption One: Given a previous time slot, the passenger demand (i.e., total counts of all passengers requiring taxicab services) equals to the number of picked up passengers (i.e., pickup counts) [2] [3] [4].

In this work, we argue that though all passengers get picked up eventually, for a previous time slot the passenger demand should include not only the picked up passengers, but also the waiting passengers who had arrived, but did not get picked up. Thus, the passenger demand should equal the total passenger count (i.e., the pickup passenger count plus the waiting passenger count), instead of the pickup passenger count alone. Figure 1 gives the difference between pickup counts (i.e., the demand in the legacy assumption) and total passenger counts (i.e., the demand in our improved assumption) for Shenzhen area in 5 minute time slots.

![Fig 1: Pickup and Total Counts](image)

We found that the pickup and total passenger counts are usually different especially in the slots during the rush hour. Note that a passenger who arrived at one slot and got picked up at the next slot is individually counted in the two slots, i.e., counted as a waiting passenger in the first slot, and counted as a pickup passenger in the second slot.

The key reason for this legacy assumption is that arriving moments for picked up passengers cannot be obtained by existing infrastructures. Thus, the waiting passenger count of a time slot is unknown. To address this issue, in this paper, we present a novel method based on the interactions of vacant taxicabs to infer the arriving moments, which are used to obtain the waiting passenger counts for a more accurate demand analysis. The details are given in Section III-B2.

B. Assumption on Inference for Current Demand

Legacy Assumption Two: Given a current time slot, the passenger demand can be accurately inferred by the historical average passenger demand for the same slot [4].

For this assumption, we argue that for the same area and time slot, the passenger demand experiences irregular temporal dynamics on different days due to various real-world factors, and cannot be accurately inferred without considering more contexts. Figure 2 gives the passenger demand for the same hourly slot in three different weekdays, which is shown by total passenger counts in different administrative regions of Shenzhen. Suppose we want to infer the passenger demand of Region A and B on Day 3 given in the middle figure, and the historical demand for the same two regions and the same time slot on Days 1 and 2 as given by the left and right figures. If we infer Region A’s demand on Day 3 based on the Region A’s demand on Day 1, we only have a $\frac{279}{285} \approx 98\%$ accuracy; similarly, if we infer Region B’s demand on Day 3 based on the Region B’s demand on Day 2, we only have a $\frac{285}{608} \approx 46.2\%$ accuracy. Thus, this legacy assumption leads to an inaccurate inference.

The key reason for this assumption in the past is lacking an effective parameter to select the related historical data as training data for the inference. Thus, in this paper, to improve upon this assumption, we propose a novel parameter called the pickup pattern to select a customized training dataset for a particular demand inference. For example, based on the pickup pattern, if we find that Region A’s demand on Day 2 is more related to Region A’s demand on Day 3, then we can infer Region A’s demand on Day 3 based on Region A’s demand on Day 2. As a result, we can improve the accuracy for Region A on Day 3 from $\frac{279}{285} \approx 98\%$ to $\frac{279}{285} \approx 98\%$.

Note that the above example only gives a straightforward intuition, and the real inference is more complicated. But we found that finding highly related data (instead of all historical data) for the inference can significantly increase the inference accuracy, and reduce the workload by not having to process the entire taxicab dataset. The details are given in Section IV-B1.
III. THE ROVING SENSOR NETWORK

Recently, taxicab infrastructures in large cities are upgraded with onboard GPS and communication devices and dispatch centers [5]. Built on such infrastructures, a roving sensor network consists of (i) numerous roving taxicabs in the frontend as mobile sensors to detect passengers, and (ii) a dispatching center in the backend to receive sensing records (i.e., taxicab status) to analyze passenger demand. Figure 3 gives a dataset of such sensing records from Shenzhen, the most crowded city in China (17,150 people per square KM). This half-year dataset contains almost 4 billion sensing records with a total size of 450 GB.

<table>
<thead>
<tr>
<th>Sensing Dataset Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Period</td>
</tr>
<tr>
<td>Collection Date</td>
</tr>
<tr>
<td># of Taxicabs</td>
</tr>
<tr>
<td># of Pickup Events</td>
</tr>
<tr>
<td># of Sensing Records</td>
</tr>
<tr>
<td>Data Size</td>
</tr>
</tbody>
</table>

Fig 3: Dataset Summary

A. Detected Events

Based on sensing records, we observe two kinds of events related to passenger demand by tracking taxicabs’ status.

1) Pickup Event: For the same taxicab, if its status turns from “unoccupied” to “occupied” in two consecutive records, then it indicates that this taxicab just picked up a passenger in the location indicated by the corresponding GPS signal, which is associated to a pickup event; similarly, a dropoff event can also be detected. Figure 4 gives a graph representing the corresponding pickup and dropoff events in 245 urban regions in Shenzhen (including the airport, train stations, residential areas, etc) from 7AM to 9AM of a Monday. The size of a vertex indicates the number of events in the region; the color of a vertex indicates one of six districts. We remove links with trips fewer than 30 to make the figure clear.

2) Cruising Event: A cruising event begins with a dropoff event and ends with a pickup event. Figure 5 gives a cruising event where a taxicab first drops off a passenger between l1 and l2, and then cruises from l2 to l3, and finally picks up a new passenger between l3 and l4. By this cruising event, we infer an absence of passengers on segment from l2 to l3 during the time when this taxi cruises this segment.

B. Inferred Phenomena

We study two phenomena inferred by the above two events.

1) Passengers in a Temporal and Spatial Area: Phenomenon 1 in Figure 6 gives a pickup event p1 where a vacant taxicab T1 cruised a particular road segment s1 connecting two intersections and picked up one passenger P1. Thus, we infer that there is only one passenger (i.e., P1) in the dashed temporal and spatial area. This is because if there is another passenger P2, T1 would pick P2 up, which contradicts the fact that T1 picked up P1 in the pickup event p1.

Phenomenon 2 in Figure 6 shows a cruising event where a vacant taxicab T2 cruised the segment s2 and did not pick up any passenger. Based on this observation, we infer that there is no passenger in the dashed temporal and spatial area. This is because if there is a passenger P3, T2 would pick P3 up, which contradicts the fact that T2 did not pick up passengers when it cruised s2. Note that there may be passengers outside the dashed area yet inside the rectangle, since passengers (e.g., Pk) can arrive at a location on segment s2, after vacant taxicabs passed this location.

2) Arriving Moments of Picked Up Passengers: An arriving moment indicates the time when a passenger starts to wait for a taxicab, which can be used to obtain the ground truth of the total passenger counts for a segment during a time slot. Accurately obtaining such arriving moments is almost impossible under current infrastructures. But we present a method to obtain the upper bound of an arriving moment t_upper, i.e., the earliest possible moment of a passenger starting to wait for a taxicab. As in Phenomenon 3 of Figure 6, assuming passengers do not move significantly when waiting for taxicabs, given a pickup event p1 in terms of pickup moment t1 and location l1, we find the latest cruising event where another vacant taxicab Tj passed the same location l1 (shown as the star). Thus, the moment t_upper when Tj passed l1 is the upper bound of the arriving moment of the passenger P1 in the pickup event p1. This is because if the moment that P1 starts to wait for a taxicab is earlier than this bound t_upper, then P1 would be picked up by Tj at t_upper, which contradicts the fact that P1 was picked up by T1 at t1. We use this upper bound as the arrival moment, which leads to a lower bound of the arrival count in the latest slot, enabling a conservative inference. Note that waiting passengers’ arriving moments cannot be inferred until they are picked up. Inferred by such a sensor network, the above phenomena provide abundant information with high resolutions, used by Dmodel to infer the passenger demand shown as follows.

Fig 4: Corresponding Pickup and Dropoff Events

Fig 5: Cruising Events

Fig 6: Inferred Phenomena
IV. Dmodel Design

The Dmodel is a dynamic inference model for generic passenger demand at road segment levels on a hourly basis. Conceptually, for a segment s_j, at the end of a time slot τ_i, Dmodel takes both real-time data uploaded in τ_i and historical data uploaded before τ_i as input, and produces inferred demand in terms of total passenger count for the next slot τ_{i+1}, by summing up two kinds of passengers as follows.

Previous Left-behind Passengers who had arrived at segment s_j before the end of τ_i and yet were not picked up in τ_i. To obtain this count, Dmodel first aggregates real-time pickup events to obtain the pickup count for picked up passengers in τ_i. Next, Dmodel employs a novel parameter called pickup pattern to obtain customized training data to infer the total passenger count (either picked up or not) in τ_i by corresponding pickup counts. Finally, Dmodel obtains the left-behind passenger count by subtracting the pickup count of τ_i from the total passenger count of τ_i.

Future Arriving Passengers who have not arrived yet, but will arrive during τ_{i+1} at segment s_j, i.e., future arrivals. Dmodel infers the future arrivals by maintaining a probability distribution of a passenger arrival rate for every road segment. At the end of a time slot τ_i, based on the pickup count in τ_i, Dmodel first infers the corresponding passenger arrival in τ_i, and then updates the distribution of arrival rates accordingly, and finally infers the future arrival by this updated distribution.

In what follows, we first present demand modeling, and then elaborate how to obtain these two kinds of passengers.

A. Passenger Demand Modeling

Key notations for a slot τ_i and a segment s_j are as follows.

- $P_{\tau_i}^{s_j}$: **Pickup Count**: The total number of picked up passengers during τ_i at s_j.
- $L_{\tau_i}^{s_j}$: **Left-behind Count**: The total number of waiting yet not picked up passengers during τ_i at s_j.
- $A_{\tau_i}^{s_j}$: **Arrival Count**: The total number of arriving passengers during τ_i at s_j.
- $T_{\tau_i}^{s_j}$: **Total Passenger Count**: The total number of passengers who wait for taxicabs during τ_i at s_j.

In the following, we omit all same superscripts for a concise notation. Figure 7 shows examples of the notation. The x-axis is the time, and the y-axis is the space, i.e., segment s_j. A total of three passengers are picked up, indicated by three pickup events p_1, p_2 and p_3, and the arriving events when they start to wait for taxicabs are given by a_1, a_2 and a_3. As a result, for the time slot τ_0, $A_{\tau_0} = 1$, $P_{\tau_0} = 0$, $L_{\tau_0} = 1$, $T_{\tau_0} = 1$; for the time slot τ_1, $A_{\tau_1} = 2$, $P_{\tau_1} = 2$, $L_{\tau_1} = 1$, $T_{\tau_1} = 3$; for the time slot τ_2, $A_{\tau_2} = 0$, $P_{\tau_2} = 1$, $L_{\tau_2} = 0$, $T_{\tau_2} = 1.$

Fig 7: Notation Example

1) Demand Modeling: In Figure 8, we analyze passenger demand as an unobservable state in a Hidden Markov Model.

1. At the end of a time slot τ_i, the key system state that needs to be inferred is the total passenger count $T_{\tau_{i+1}}$ of the next slot τ_{i+1}, which takes the left-behind count L_{τ_i} of τ_i and the arrival count $A_{\tau_{i+1}}$ of τ_{i+1} as two inputs (shown by arrows with solid lines). Thus, we have

$$ T_{\tau_{i+1}} = L_{\tau_i} + A_{\tau_{i+1}}. \quad (1) $$

2. As one input for $T_{\tau_{i+1}}$, the left-behind count L_{τ_i} of τ_i is also one of two outputs (shown by arrows with dashed lines) of the previous system state, i.e., the total passenger count T_{τ_i} of τ_i. The other output of T_{τ_i} is the observable pickup count P_{τ_i} of τ_i. Thus, we have

$$ L_{\tau_i} = T_{\tau_i} - P_{\tau_i}. $$

3. As the other input for $T_{\tau_{i+1}}$, the arrival count $A_{\tau_{i+1}}$ of τ_{i+1} can be inferred by a stochastic process, supposing passengers arrive according to a generic Poisson process.

4. Thus, combining the two equations, we have our key inference equation in Dmodel as follows.

$$ T_{\tau_{i+1}} = (T_{\tau_i} - P_{\tau_i}) + A_{\tau_{i+1}}. \quad (1) $$

2) Inference Overview: As in Figure 9, at the end of every time slot, e.g., current time t_{i+1}, Dmodel infers $T_{\tau_{i+1}}$ for a segment s_j by Eq.(1) using four steps as follows.

Dmodel Inference Overview

1. It *infers* pickup count P_{τ_i} by aggregating pickup events in the latest slot τ_i from real-time data.
2. It *infers* total passenger count T_{τ_i} based on the corresponding pickup count P_{τ_i} and a customized corrective model trained by both historical and real-time data.
3. It *infers* arrival count $A_{\tau_{i+1}}$ for the next time slot τ_{i+1} by a probability distribution D of passenger arrival rate λ at segment s_j, which is periodically maintained through a Bayesian updating based on pickup count P_{τ_i}.
4. It *infers* total passenger count $T_{\tau_{i+1}}$ for the next slot τ_{i+1} with Eq.(1), based on inferred P_{τ_i}, T_{τ_i} and $A_{\tau_{i+1}}$. In the above steps, steps 1) and 4) are straightforward, so we elaborate steps 2) and 3) in Subsections B and C, respectively.

Fig 7: Notation Example

Fig 8: Passenger Demand in a Hidden Markov Model

Fig 9: Dmodel Inference Overview
B. Inferring Total Passenger Count T_{τ_i}

In this subsection, we first introduce our key novelty regarding pickup patterns, and then propose how to infer T_{τ_i}.

1) Pickup Pattern: In this work, we infer the total passenger count by four factors, which include (i) time in terms of a time slot of a day (e.g., slot τ_i), (ii) location in terms of a road segment (e.g., segment s_j), (iii) pickup count in terms of how many passengers have been picked on a segment during a slot, and (iv) pickup pattern in terms of how fast the passengers were picked up, which may include hidden context, e.g., extreme weather or major events. Existing work in the field has considered the first three factors, but the pickup pattern has not been considered by others. In this work, we argue that pickup count is inherently limited by taxicab supply, and cannot provide enough context information to support a good inference. However, our pickup patterns provide extra information about hidden context which increases inference accuracy.

Figure 10 presents the same slot τ_i for two different days with the same pickup count yet with different pickup patterns.

![Fig 10: Pickup Patterns](image)

Fig 10: Pickup Patterns

In Figure 10, the key difference of the same slot τ_i for day d_x and d_y is how long it takes for vacant taxicabs to pick up passengers during τ_i, which is associated to the pickup pattern, i.e., the taxicabs on d_x pick up two passengers very quickly; whereas the taxicabs on d_y cruise for a long time before picking up two passengers. The pickup pattern provides an extra hidden online context, and cannot be replaced by other contexts already used by existing work, i.e., slot τ_i, segment s_j, and pickup count $P_{\tau_i,e_{ds}}$ of a particular day d_z, since in Figure 10, all other contexts are the same, but two slots τ_i on d_x and d_y have different pickup patterns. For example, the hidden online context in the pickup pattern during $\tau_i \in d_x$ may indicate suddenly increased passenger demand due to extreme weather, train arrival or other events, since all taxicabs pick up passengers very quickly. Whereas the pickup pattern for $\tau_i \in d_y$ may indicate a normal scenario without increased demand. Intuitively, though d_x and d_y have same pickup count $P_{\tau_i,e_{ds}} = P_{\tau_i,e_{dy}} = 2$ (may result from limited taxi supply), $\tau_i \in d_x$ shall have a larger total passenger count $T_{\tau_i,e_{dx}}$ than $\tau_i \in d_y$.

To quantify the pickup pattern as a formal parameter, as in Figure 10, we use the area ratio between the dashed temporal and spatial area (i.e., the union of two dashed triangles) and the total temporal and spatial area (i.e., rectangle) as a measuring ratio ρ to show different pickup patterns. The physical meaning of ρ is the ratio between known temporal and spatial inference area detected by taxicabs and the entire inference area. As shown in evaluations, ρ accounts for many real-world scenarios that cannot be captured with pickup counts due to the limited taxicab supply.

2) Customized Online Training: In what follows, we discuss how to infer the total passenger count based on the new online pickup pattern factor and the other three factors.

Given a segment s_j and a slot τ_i, the pickup count P_{τ_i} and the total passenger count T_{τ_i} have a logical relationship: T_{τ_i} is the lower bound of P_{τ_i}, since all picked up passengers are included in the total passenger count. Thus, we quantitatively investigate their relationship. Given the historical dataset, for particular slots and segments, we obtain the ground truth of P_{τ_i}, by aggregated pickup events, and infer the ground truth of T_{τ_i} based on the inference of arriving moments (introduced in Section III-B2), e.g., in Figure 7, after inferring arriving moments (shown by stars), T_{τ_i} is obtained by counting dashed lines linking dots and stars in a slot (e.g., $T_{\tau_i} = 3$). Figure 11 gives the relationship between P and T for 10 randomly selected road segments in five τ_8 slots from 8AM to 9AM during five weekdays. It indicates an approximate linear relationship between P_{τ_8} and T_{τ_8} for the same segment s_j.

Based on the above observation, we propose a customized online training model based on the linear regression. Supposing that (i) we have a historical dataset consisting of the taxicab GPS data for $K - 1$ different days, i.e., d_k to day d_{K-1}, and (ii) the current time is the end of slot τ_i on day d_K. D_{model} infers the total passenger count $T_{\tau_i, e_{dk}}$ as follows.

1) It calculates both pickup count $P_{\tau_i, e_{dk}}$ and the corresponding measuring ratio $\rho_{\tau_i, e_{dk}}$, based on the real-time data about the latest slot $\tau_i \in d_K$.

2) It selects the data of days whose τ_i have similar measuring ratio ρ to $\rho_{\tau_i, e_{dk}}$ as a customized training dataset with M pairs of $(P_{\tau_i, e_{dm}}, T_{\tau_i, e_{dm}})$ where $1 \leq m \leq M$ (one pair for every day).

3) It trains the following model by the M pairs of $(P_{\tau_i, e_{dm}}, T_{\tau_i, e_{dm}})$ to learn $\alpha_{\tau_i, e_{dk}}$ and $\beta_{\tau_i, e_{dk}}$.

$$T_{\tau_i, e_{dm}} = \alpha_{\tau_i, e_{dk}} + \beta_{\tau_i, e_{dk}} \times P_{\tau_i, e_{dm}}.$$ (2)

4) It utilizes $\alpha_{\tau_i, e_{dk}}, \beta_{\tau_i, e_{dk}}$ and pickup count $P_{\tau_i, e_{dk}}$ to obtain total passenger count $T_{\tau_i, e_{dk}}$ with Eq.(2).

A similar measuring ratio $\bar{\rho}$ to $\rho_{\tau_i, e_{dk}}$ is defined by $\bar{\rho} \in [\rho_{\tau_i, e_{dk}} - \Delta \rho, \rho_{\tau_i, e_{dk}} + \Delta \rho]$ where $\Delta \rho$ is a data-driven parameter and carefully evaluated in Section V.

C. Inferring Arrival Count $A_{\tau_{i+1}}$

The D_{model} infers passenger arrivals with a stochastic process where an arrival rate λ of a Poisson Process varies in Brownian motion, which is widely used to model passenger arrival or network packet arrivals [6]. Thus, $A_{\tau_{i+1}} = \lambda_{\tau_{i+1}} \times \lfloor |\tau_{i+1}| \rfloor$. Note that we did not use customized training to infer the arrival count $A_{\tau_{i+1}}$ based on given pickup count P_{τ_i} as in the last subsection, since there is no potentially logical relationship between P_{τ_i} and $A_{\tau_{i+1}}$.
1) **Passenger Arrival Rate Modeling:** The Dmodel maintains a probability distribution D of λ for a segment s_j by discretizing the space of possible λ, and assumes that (i) λ is one of a set of discrete values from 0 to the maximum λ (obtained by the dataset) and (ii) the initial probability for all possible λ are uniformly distributed. Therefore, at the end of the slot τ_i, Dmodel updates D with three steps.

1. **It evolves D to the current time by applying Brownian motion to every possible rate.**
2. **It infers the arrival count A_{τ_i} in τ_i based on observed P_{τ_i}, and calculates probabilities that this arrival count A_{τ_i} is associated to every one of arrival rates as follows.**
 \[
 F(x) \leftarrow D_{old}(\lambda_{\tau_i} = x) \times e^{-x|\tau_i|} \frac{\lambda_{\tau_i}^{|\tau_i|}}{\lambda_{\tau_i}!}.
 \]
3. **It normalizes these probabilities, so they sum to unity.**

$$D_{new}(\lambda_{\tau_i} = x) \leftarrow \frac{F(x)}{\sum_k F(k)}.$$

These three steps constitute Bayesian updating for D. Given D, we infer $\lambda_{\tau_{i+1}}$ with a cautious estimate to bound a risk of overinferring. So, we employ the ωth percentile of D to calculate the inferred $\lambda_{\tau_{i+1}}$, e.g., 40th percentile. In Dmodel, ω is a data driven parameter, and is evaluated in Section V.

A key unresolved question is how to infer the arrival count A_{τ_i} by the pickup count P_{τ_i}, which is introduced as follows.

2) **Inferring Previous Arrival Count A_{τ_i}:** We introduce how to infer A_{τ_i} in Figure 12 where we classify all passengers associated to the total passenger count T_{τ_i} of a slot τ_i into four parts, based on when they arrived and whether they get picked up at the end of slot τ_i. Thus, the sum of passengers in Part 1 and Part 2 is the arrival count A_{τ_i} we try to infer. The sum of passengers in Part 2 and Part 3 is the pickup count P_{τ_i}; the sum of passengers in all four parts is the total passenger count T_{τ_i}; we have already obtained both of them in the previous subsection.

![Fig 12: Inferring Previous Arrival Count A_{τ_i}](image)

We add the following two kinds of passengers to infer A_{τ_i}.

1. **Passengers in Part 1:** Since we have already inferred the total passenger count T_{τ_i} based on P_{τ_i} in Section IV-B, we have the total number of passengers in Part 1 and 4 together, i.e., $T_{\tau_i} - P_{\tau_i}$. Further, since an inference slot (e.g., one hour) is typically longer than a passenger waiting period, the number of passengers in Part 4 is 0. Thus, we have the number of passengers in Part 1 alone.

2. **Passengers in Part 2:** We can differentiate the passengers in Parts 2 and 3 by inferring arriving moments of these picked up passengers in P_{τ_i}, based the method in Section III-B2, and then we obtain the number of passengers in Part 2 alone.

V. **Dmodel Evaluation**

We evaluate Dmodel based on the dataset in Section III. We mainly find two kinds of data errors. (i) Missing Records: a fair amount of sensing records are missing. (ii) Location Errors: GPS coordinates indicate that a taxicab is off the road. Different reasons, e.g., device malfunctions, can lead to such errors. We perform a preprocessing to clean this dataset to rule out taxicabs with more than 10% of errant records.

A. **Evaluation Methodology**

We divide the entire 182 day dataset into two subsets. **Training Dataset:** it contains the data about a particular day, e.g., day d_1, serving as the real-time streaming data in the evaluation. **Training Dataset:** it contains the data about the rest of days, serving as the historical training data. For this particular day d_1, if we use one hour slots, at the end of the first slot, i.e., 01:00, we use Dmodel to infer the total passenger count for the next slot from 01:00 to 02:00, based on both the “real-time” data from 00:00 to 01:00 in the testing dataset, and all data in the historical training data. We let the testing dataset rotate among all 182 days of the data, leading to 182 sets of experiments. The average results are reported.

We compare Dmodel with two models: SDD and Basic. SDD serves as a statistical model and is suitable for the real-world scenario where the real-time data collection is not possible, and we can only use the historical data to infer passenger demand. Basic model first uses a generic offline training to train the entire dataset to obtain parameters (α and β) and then uses the results to perform an online training. The SDD and Basic model perform similarly with Basic except that it uses logical contexts (e.g., extreme weather or events) on the model performance. Dmodel performs similarly with Basic except that it uses logical contexts (e.g., extreme weather or events) in the training dataset to calculate a measuring ratio for a particular slot, and selects the data of slots with similar pickup patterns (shown by measuring ratios) as a customized training dataset to perform an online training as introduced in Section IV-B2.

We process the entire dataset to infer passenger arrival moments with the method in Section III-B2 and thus to infer the ground truth of the total passenger count. We test models with **Inference Accuracy.** It is defined as a ratio equal to $\frac{T - T}{T}$, where T is the inferred total passenger count of a particular model and \hat{T} is the total passenger count obtained from the inferred ground truth. We update the whole dataset for customized training offline on a daily basis, and process the real-time data with a Hadoop cluster with 10 nodes. Thus, in the real-time mode, the processing time is negligible compared to the default two hour slot.

We first test models on 1000 road segments about accuracy with different slot lengths. Then, we show the sensitivity of Dmodel to two key parameters: $\Delta \rho$ and ω used in Sections IV-B2 and IV-C1 to obtain their default values.
B. Inference Accuracy

In this subsection, we compare three models’ inference accuracy in different lengths of slots. We show low level comparisons on 4 particular road segments, and high level comparisons on 1000 road segments. All road segments are randomly selected in the downtown area of Shenzhen.

1) Low Level Comparisons: Figure 13 plots the accuracy of three models on 4 road segments under one hour slots. \textit{Dmodel} has better performance than Basic and SDD, especially at the non-rush hour, \textit{e.g.}, 18:00 to 06:00. Basic outperforms SDD in the early morning, \textit{e.g.}, 00:00 to 06:00, and the late night, \textit{e.g.}, 18:00 to 00:00. SDD has a good accuracy during the morning rush hour, \textit{e.g.}, 08:00 to 12:00, and we believe that this is because during the rush hour, passenger demand is relative stable compared to other time.

\textit{Dmodel} has better performance than SDD and Basic by 39\% and 13\% on average, which results from its customized online training. \textit{Dmodel} has a 76\% accuracy at the 9AM slot, which the default slot for the following experiments.

2) High Level Comparisons: Figure 15 gives the average accuracy on 1000 road segments under one hour slots. The average accuracy of all three models on 1000 road segments is lower than the accuracy we observed in 4 particular road segments. It is because the passenger demand may change dramatically between different segments. But the relative performance between three models is similar to Figure 13.

\textit{Dmodel} has a 76\% accuracy at the 9AM slot, which the default slot for the following experiments.

C. Sensitivity of \textit{Dmodel}

We investigate the sensitivity of \textit{Dmodel} to two parameters \(\Delta \rho \) and \(\omega \) on 1000 road segments under two hour slots.

Figure 16 gives the average accuracy on 1000 segments with different slot lengths. The average accuracy of all models increases with the lengths of slots. SDD outperforms Basic and \textit{Dmodel} when slots are longer than 6 hours. This is because the passenger demand in a longer slot becomes more stable on different days. When the slot becomes longer, \textit{Dmodel} and Basic have the similar performance, because measuring ratios for long slots are mostly equal, and cannot be used by \textit{Dmodel} to differentiate related time slots.
1) $\Delta \rho$ vs. Accuracy: $\Delta \rho$ is used to decide the similarity between measuring ratios as in Section IV-B2. Figure 17 gives effects of $\Delta \rho$ on D_{model}. With the increase of $\Delta \rho$, the accuracy of D_{model} increases first, and then decreases. This is because when $\Delta \rho$ increases, D_{model} finds more slots with similar pickup patterns to effectively train the customized corrective model online. But when $\Delta \rho$ becomes too large, D_{model} has to consider more slots with different pickup patterns, leading to poor performance. The accuracy peaks when $\Delta \rho = 0.2$, which is set as the default value of $\Delta \rho$. If the used $\Delta \rho$ leads to an empty training dataset for D_{model}, $\Delta \rho$ increases until the dataset is not empty.

![Fig 17: $\Delta \rho$ vs. Accuracy](image)

2) ω vs. Accuracy: ω decides the percentile to predict passenger arrival as in Section IV-C1. Figure 18 plots effects of ω on D_{model}. A small ω indicates that D_{model} conservatively predicts arrival rates; whereas a large ω indicates that D_{model} aggressively predicts arrival rates. Either a small or a large ω leads to poor performance. The accuracy peaks when $\omega = 0.4$, which is set as the default value of ω.

![Fig 18: ω vs. Accuracy](image)

VI. RELATED WORK

Several novel systems have been proposed to store large sets of taxicab traces obtained from on-board GPS devices for useful knowledge [7]. For example, some systems are proposed to assist taxicab operators provide better services, e.g., predicting passenger demand [2] [3] [4], detecting anomalous taxicab trips to discover driver fraud [8], and discovering temporal and spatial causal interactions to provide timely and efficient services in certain areas with disequilibrium [9]. In addition to taxicab operators, several systems are proposed for the benefit of passengers or drivers, e.g., allowing taxicab passengers to query the expected duration and fare of a planned trip based on previous trips [10] and estimating city traffic volumes for drivers [11]. Moreover, taxicab GPS records can help beyond the taxicab business: (i) traces consisting of GPS records from experienced taxicab drivers can assist other drivers to improve their driving performance [5]; (ii) GPS records can be used for navigating newer drivers to smart routes based on those of experienced taxicab drivers [12]; (iii) large scale taxicab GPS traces enable us to better understand region functions of cities [13].

However, our model is different from the existing research by its novel inference method based on real-time and historical data from roving sensor networks. Technically, we focus on inferring passenger demand based on a customized online training method utilizing real-time pickup patterns and hidden contexts (e.g., arriving moments) obtained by roving taxicabs, which has not been investigated before.

VII. CONCLUSION

Based on a 450 GB dataset, we design and evaluate a passenger model D_{model} with a 76% inference accuracy. Our effort provides a few valuable insights: (i) the mobile taxicabs can be used as roving sensors to infer passenger demand with high accuracy; (ii) the inference accuracy is highly dependent on locations, time, and logical information; (iii) the length of inference slots has significant impact on the inference accuracy; (iv) a statistical passenger demand model can be enhanced by a generic offline training that takes the waiting passengers into account, but it can be further enhanced by a customized online training for particular real-time situations, shown by our 39% performance gain.

ACKNOWLEDGEMENTS

This work was supported in part by NSF Grants CNS-0845994, CNS-0917097, CNS-1239226, CNS-1239108, CNS-1218718, IIS-1231680, and CNS-1239483.

REFERENCES