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How can the advantages of formal methods be 

brought to emerging smart cities? We discuss several 

core challenges and our recent efforts as the first 

step toward developing novel formal methods to 

ensure safety and performance in smart cities. 

The prevalence of the Internet of Things and 
cyberphysical systems (CPSs) has enabled the 
emergence of smart cities around the world, 
where a vast amount of sensing data and smart 

services are utilized to improve citizens’ safety, well-
ness, and quality of life.1,2 Various smart city opera-
tion control centers (for example, Microsoft’s CityNext, 
IBM’s Rio de Janeiro Operations Center, and Cisco’s 
Smart+Connected Operations Center) have been devel-
oped to support decision making in smart cities based 

on real-time sensing data about city states (such as traf-
fic and air pollution). 

While significant research efforts have been spent 
toward building smarter services, sensors, and infra-
structures in cities, the research challenge of how to 
ensure that a city’s real-time operations satisfy safety and 
performance requirements has received only scant atten-
tion. Failure to check such requirements can lead to con-
flicts among smart services or even catastrophic conse-
quences.3–5 This article discusses several core challenges 
in developing novel formal methods for ensuring safety 
and performance in smart cities. Specifically, we focus on 
addressing three key research questions.
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First, how should we monitor whe-
ther city states satisfy a wide range 
of city requirements at runtime? If 
a requirement violation is detected 
by the monitor, the city operators 
and smart service providers can take 
actions to change the states, such as 
improving traffic performance, reject-
ing unsafe actions, sending alarms to 
police, and so on. The key challenges 
of developing such a monitor include 
how to use an expressive formal lan-
guage to specify smart city require-
ments so that they can be understood 
by machines and developing ways 
to efficiently monitor requirements 
that may involve multiple sensor data 
streams (for example, some require-
ments are concerned with thousands 
of sensors in a smart city). 

Second, how can we predict a city’s 
future states and check if the prediction 

satisfies city requirements? With this 
capability, city operators may take 
actions in advance to prevent such pre-
dicted future requirement violations. 
A key challenge of predictive monitor-
ing is how to account for the inherent 
uncertainty (for example, due to sen-
sor and environmental noise, unex-
pected events, accidents, and human 
behaviors) in smart cities.

Third, as deep learning techniques 
are increasingly used in smart city 

applications, how do we guarantee that 
the results will satisfy city require-
ments? For example, recurrent neu-
ral networks (RNNs) have made great 
achievements for sequential prediction 
tasks in cities [for example, forecast-
ing the air quality index (AQI)]. Can we 
enforce that the learned sequence pre-
dictions must satisfy certain desired 
properties in smart cities? In the fol-
lowing sections, we elaborate on these 
research questions and present our 
solutions and insights to help lay a foun-
dation for ensuring safety and perfor-
mance in smart cities.

RUNTIME MONITORING OF 
SPATIAL–TEMPORAL CITY 
REQUIREMENTS
We collected and analyzed more than 
1,000 real-world city requirements from 
multiple cities (for example, extracted 

from city regulations, standards, codes, 
and laws) in different domains, includ-
ing transportation, energy, environ-
ment, emergency, and public safety. 
Table 1 shows some example require-
ments. We found that most city require-
ments highlight spatial [for example, 
the distance from points of interest 
(PoIs)] and temporal constraints (such 
as real-time deadlines): for example, 
“The average noise level within 1 mi of 
schools should be fewer than 50 dB.” 

Existing formal specification lan-
guages, such as signal temporal logic 
(STL) and its extensions [such as sig-
nal spatiotemporal logic (SSTL), spa-
tial-temporal logic, and spatial tem-
poral reach and escape logic (STREL)]6 
can be used only to express a subset of 
city requirements. However, they are 
not expressive enough to specify the 
aggregation requirements (such as “the 
average noise level”) and counting (for 
example, “on 90% of the roads”) of sig-
nals in the spatial domain, which are 
commonly used in city requirements.

To address this limitation, we pro-
posed a novel spatial aggregation STL 
(SaSTL),7 which extends STL with log-
ical operators for spatial aggregation 
and counting. SaSTL can be used to 
specify the PoIs, physical distance, 
spatial relations of the PoIs and sen-
sors, aggregation of the signals over 
locations, degree/percentage of sat-
isfaction, and temporal elements in a 
very flexible spatial–temporal scale. 
The results of comparing the coverage 
of different formal specification lan-
guages for expressing 1,000 real-world 
city requirements show that SaSTL 
has a much higher coverage expres-
siveness (95%) than STL (18.4%), SSTL 
(43.1%), or STREL (43.1%).

We developed a framework for the 
runtime monitoring of smart city 
requirements expressed in SaSTL. Fig-
ure 1 shows an overview of the frame-
work. We envision that such a frame-
work would operate in a smart city’s 
central control center where sensor 
data about city states across various 
locations are available in real time. 
The framework can monitor different 
city data streams (such as noise level 
and traffic volume) over the spatial 
and temporal domains at the runtime 
and check them against a set of city 
requirements formalized in SaSTL.

AS DEEP LEARNING TECHNIQUES ARE 
INCREASINGLY USED IN SMART CITY 

APPLICATIONS, HOW DO WE GUARANTEE 
THAT THE RESULTS WILL SATISFY CITY 

REQUIREMENTS?
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Such runtime monitoring results 
can then be used to support smart cit-
ies’ decision making. The framework 
is based on our novel and efficient 
monitoring algorithms for SaSTL. In 
particular, we developed two meth-
ods to speed up the monitoring per-
formance: 1) dynamically prioritiz-
ing the monitoring based on the cost 
functions assigned to the nodes of the 
syntax tree and 2) parallelizing the 
monitoring of spatial operators among 
multiple locations and/or sensors.

Ba sed on ou r Sa ST L mon itor-
i n g framework, we implemented a 
user-friendly tool to support the deci-
sion making of different stakeholders 
in smart cities. The tool allows users 

(for example, city decision makers or 
citizens) without any formal method 

 background to  specify city requirements 
and monitor city performance easily. 
Figure  2 shows the tool’s user interface 
and the four steps of using the tool: 

1. selecting the monitoring area 
and PoIs (in the blue box)

2. setting up the city data sources
3. specifying the city require-

ments with structured lan-
guage, which are automatically 

WE DEVELOPED A FRAMEWORK FOR THE 
RUNTIME MONITORING OF SMART CITY 
REQUIREMENTS EXPRESSED IN SASTL.

TABLE 1. An example of city requirements from different domains.7

Domain Example

Transportation There is a   limit   for   vehicle idling   to   1 min   adjacent to   any      school, pre-K to 12th grade,  public or private,  
in the    City of New York.

The engine, power, and exhaust mechanism of each motor vehicle shall be equipped, adjusted, and operated to   prevent   the 
escape of a trail of   visible fumes or smoke   for   more than    10 consecutive seconds.

  Sightseeing buses   are   prohibited   from using   all     bus lanes   between the hours of    7:00 and 10:00 a.m.   on   weekdays.

Energy The   system   is operated to   maintain   a   zone   temperature   down   to 55 °F or   up to   85 °F.

The   total     leakage   shall be   less than or equal   to 4 ft3/  min  /   100 ft2    of   conditioned floor area.

Environment LA Sec. 111.03   minimum     ambient noise level   table is used:   zones M2 and M3   —   day:  65 dB(A);  
  night: 65 dB(A). 

The   total amount   of   HCHO emissions   should be   less than   0.1 mg/m3   within an hour,  and the   total amount   of PM10 
emissions should be   less than   0.15 mg/m3   within 24 hours.

Emergency New York City authorized   emergency vehicles   may   disregard  four primary rules regarding  
traffic.

  At least   one   ambulance   should be equipped   per   30,000 population (counted   by area  ) to obtain the shortest radius and 
fastest response time.

Public safety    Security staff   shall visit   at least once     per week   in   public schools.

Key elements:   temporal,    spatial,    aggregation,    entity,    condition, and    comparison.
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translated into formal SaSTL 
properties 

4. runtime monitoring using 
SaSTL algorithms, with the 
results displayed. 

We evaluated the SaSTL monitor-
ing tool using three real smart city 
scenarios (New York and Chicago 
from the United States as well as Aar-
hus from Denmark) with large-scale 
real sensing data (for example, up to 
10,000 sensors used in one require-
ment). The results show that the SaSTL 
monitor has the potential to help iden-
tify safety violations and support city 
managers and citizens in making deci-
sions. In our simulated experiments, 
the SaSTL monitor can help improve 
the city’s performance with a signif-
icant reduction of computation time 
compared with previous approaches.

We envision this tool can be used 
by different stakeholders in smart 
cit ies, including but not limited to 
the following:

 › City managers and decision mak-
ers: In the city operating center, 
with city data collected in real 
time, the tool is able to help city 
managers and decision makers 
to monitor the data at runtime. 
It also helps the city center 
detect conflicts and provides 
support for decision makers by 
showing the tradeoffs of satis-
faction degrees among potential 
solutions.

 › City planners: City planners, either 
from the government to make 
long-term policies or from a com-
pany to make a short-term event 
plan, are able to use the tool to 
verify the past city data with their 
requirements and make prepara-
tions to prevent violations. FI
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 › Service designers: Smart services 
are designed by different stake-
holders, including the govern-
ment, companies, and private 
parties, and often they are not 
aware of all of the other smart 
services. However, with the 
monitor, they can test the influ-
ence of their services and adjust 
them to better serve the city. 

 › Everyday citizens: The tool can 
also provide a service to every-
day citizens. People without any 
technical background are able to 
specify their own requirements 
and check them with the data 
to find out in which areas of the 
city and period of the day their 
requirements are satisfied so 
they can make daily plans. For 
example, a citizen can specify 
an environmental requirement 
with his/her preferred AQI and 

traffic conditions, check the 
city data with the requirements, 
and make up traveling agenda 
accordingly.

We are currently working with project 
partners to deploy the tool in the City 
of Newark, New Jersey, to demonstrate 
its impact via real-world applications.

PREDICTIVE MONITORING 
FOR SMART CITIES
Deep learning techniques have been 
increasingly applied to predict smart 
city states (for example, air quality 
forecasting). However, previous works 
mostly focus only on generating predic-
tions and rarely account for the uncer-
tainty inherent in smart cities (such 
as sensing and environmental noise, 
unexpected events, and accidents). 

We tackle this challenge by developing 
an STL with uncertainty (STL-U)-based 

predictive monitoring approach8 for 
CPSs, including smart cities. The pre-
dictive monitoring framework interacts 
with a smart city control center to contin-
uously predict future city states and moni-
tor if predictions satisfy city require-
ments. If it forecasts a potential city 
requirement violation in a future state, 
it would support the decision system in 
a control center to choose actions (for 
example, issuing alarms or controlling 
traffic signals) to prevent such a require-
ment violation. Specifically, our predic-
tive monitoring approach advances the 
state of the art from the following two 
aspects: monitoring and prediction.

Monitoring
STL and its extensions have been applied 
for monitoring smart city requirements. 
However, existing methods mostly focus 
on monitoring a single multivariable 
signal and cannot be directly applied 

FIGURE 2. The (a) steps and (b) user interface of the SaSTL monitoring tool for smart cities. (Source: Ma et al.7)

Step 1: Select
Monitoring

City and Pols

Step 2: Set Up City
Data Interface

Step 3: Specify City
Safety Requirements

Step 4: Runtime
Monitoring

(a) (b)



FORMAL METHODS IN CYBERPHYSICAL SYSTEMS

44 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

for monitoring the Bayesian sequential 
predictions. To address this challenge, 
we formalized the notion of a flowpipe 
signal to characterize the prediction 
outputs of Bayesian deep learning and 
developed a new logic, named STL-U, for 
reasoning about the correctness of flow-
pipe signals. 

STL-U can be used to specify city 
requirements with uncertainty, such 
as “With a 90% confidence level, the 
predicted AQI in the next 10 h should 
always be below 100.” We also devel-
oped algorithms for computing the con-
fidence level that guarantees an STL-U 
property is satisfied by the given flow-
pipe signals. Such results can provide 
smart city decision makers with mean-
ingful confidence guarantees about the 
predictions of city future states satisfy-
ing the city requirements.

Prediction
Various machine learning and statis-
tical analysis techniques (for example, 
neural networks and autoregressive 
integrated moving average) have been 
popularly applied to predict the future 
states of CPSs across different applica-
tion domains. RNN-based sequential 
prediction has been popularly applied 
to smart cities. However, existing 
results mostly use deterministic RNNs, 

which generate a single sequence of 
predictions and do not capture the 
uncertainty in smart cities. 

Recent advances, such as Bayesian 
deep learning techniques, can adapt 
the prediction output stochastically as 
a sequence of posterior probability dis-
tributions over a finite discrete time 
domain. However, existing methods 
often use the loss functions of deep 
learning models (such as the mean 
square error, negative log likelihood, 
and Kullback–Leibler divergence) as 
the only metrics for the uncertainty 
estimation, which tend to overesti-
mate or underestimate the uncer-
tainty level. Furthermore, these met-
rics treat the uncertainty estimation 
of each individual value in a predicted 
sequence separately and, thus, lack an 
integrated view about the uncertainty 
of sequential predictions. 

To address this challenge, we devel-
oped novel logic-based criteria to mea-
sure uncertainty that are sufficiently 
general to be applied to any sequential 
prediction models. Our approach uses 
these logic-calibrated uncertainty 
measurements to select and tune the 
uncertainty estimation schema in 
deep learning models.

Figure 3 shows an overview of the 
STL-U-based predictive monitoring 

approach. It first takes a city’s his-
torical states (for example, the AQI in 
the past 5 h) as inputs and returns the 
city’s future states (such as the pre-
dicted AQI in next 2 h) via an RNN-
based Bayesian sequential prediction 
model. The predicted future states are 
represented by a sequence of distribu-
tions. At each predicted time point, it 
shows a range of the potential values 
under a given confidence level. Then, 
the STL-U monitor takes the predicted 
states and formalized city require-
ments as inputs and returns the pro-
jected verification results over the 
future time interval.

At training time (the flow marked 
by the orange dashed lines in Fig-
ure  3), our predictive monitoring 
approach conducts model selection 
and tuning using STL-U criteria to 
obtain a well-calibrated uncertainty 
estimation schema for the RNN-based 
Bayesian sequential prediction. Intu-
itively, the satisfaction degree of the 
predicted sequence (that is, the pre-
dicted future states) should be same 
as the satisfaction degree of the tar-
get sequence (that is, the ground truth 
values). STL-U criteria are designed to 
measure the loss based on the moni-
toring results and, thus, evaluate the 
quality of the uncertainty estimation 

FIGURE 3. The predictive monitoring for smart cities. (Source: Ma et al.8) 
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schema. In this way, the uncertainty 
estimation schema with the smallest 
STL-U loss is selected.

At runtime (the flow marked by the 
blue lines in Figure 3), our approach out-
puts the current and future monitoring 
results to support the smart city control 
center. As a real-time operational sce-
nario, our approach runs as a continu-
ous iterative process. For example, for 
the predictive monitoring of the AQI in 
a smart city, at time t, our approach first 
predicts the AQI for the future 3 h from 
time t and monitors if the predictions 
satisfy the city requirements; after a cer-
tain period d (for example, 30 min), our 
approach predicts the AQI for the future 
3 h from t + d and checks if the new pre-
dictions satisfy the requirements. In this 
way, the STL-U-based predictive moni-
toring framework provides the continu-
ous predictive monitoring of city states 
for smart city decision makers.

We evaluated the performance of 
our approach using real city data sets 
and simulations. The results show that 
our approach significantly improves the 
simulated city’s safety and performance, 

and the use of STL-U logic-based criteria 
leads to improved uncertainty calibra-
tion in various Bayesian deep learning 
models. For example, Figure 4 compares 
F1 scores on the accuracy of the require-
ments verification (that is, if the pre-
dicted flowpipe satisfies/violates the 
requirement when the target sequence 
satisfies/violates the requirement) 
using three RNNs trained by different 
loss functions. The results show that all 
STL-U criteria (Lsat and Lcf) outperform 
the accuracy-based criterion (Lacc and 
Lht) significantly.

The STL-U predictive monitoring 
approach demonstrates the feasibil-
ity of integrating formal methods and 
Bayesian deep learning for the predic-
tive monitoring of safety and perfor-
mance requirements in smart cities. In 
addition, the proposed STL-U criteria 
can be applied for the uncertainty esti-
mation in a wide range of deep learning 
applications. Compared with traditional 
uncertainty estimation methods,9 the 
proposed logic-based solution can lead 
to better uncertainty calibration for 
sequential prediction tasks.

FORMAL LOGIC-ENFORCED 
DEEP LEARNING FOR 
SMART CITIES
RNNs have made great achievements 
for sequential prediction tasks. In prac-
tice, the target sequence values often 
follow certain model properties or pat-
terns (for example, reasonable ranges 
for a variable, how consecutive changes 
in variables are realistic, how resource 
constraints limit values for variables, 
temporal correlations among multi-
ple variables, the existence of an event 
within a certain time, unusual cases 
with no or a very limited amount of 
data available in the training set, and so 
on). However, RNNs cannot guarantee 
that their learned distributions satisfy 
these properties. 

It is even more challenging for the 
prediction of large-scale and complex 
CPSs, such as smart cities. Failure to 
produce outcomes that meet these 
properties will result in inaccurate and 
even meaningless results. To address 
this challenge, we developed a novel 
formal logic-enforced deep learn-
ing framework, named STL-enforced 

FIGURE 4. A comparison of F1 scores on the consistence of verification between predicted flowpipes and target sequences using dif-
ferent RNN-based prediction models with different loss functions for (a) air quality and (b) traffic volume. acc: accuracy; sat: satisfaction; 
ht: heteroscedastic; cf: confidence. (Source: Ma et al.8; used with permission.) 
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multivariate RNN (STLnet).10 It guides 
the RNN learning process with aux-
iliary knowledge of model properties 
and produces a more robust model for 
improved future predictions.

Figure 5 shows an overview of the 
STLnet framework, which is built with 
a teacher and student network. The 
teacher network is equipped with an 
STL trace generator, which incorporates 
the formalized model properties into 
the learning process. The main idea is 
that whenever the student network fails 
to predict a trace (sequence) that fol-
lows the model properties, the teacher 
network generates a trace that is close 
to the trace returned by the student net-
work and satisfies the model properties 
simultaneously. The student network 
then updates its parameters by learning 
from both the target trace and outcome 
of the teacher network.

In the training phase, the goal is to 
teach STLnet to learn from the “correct” 
traces, which includes three major steps:

 › Step 1: The student network 
construction starts with the 
basic student network, that is, a 
general multivariate RNN. 

 › Step 2: The teacher network 
construction generates a 
trace that satisfies the model 
properties expressed in STL 
and has the shortest distance 
to the original prediction. 
Table 2 shows some example 
model properties for smart city 
applications. 

 › Step 3: Back propagation with a 
loss function is designed with 
two parts to guide the student 
network to balance between 
emulating the teacher’s output 
and predicting the target trace. 

The network is trained iteratively by rep-
eating Steps 2 and 3 until con vergence.

In the testing phase, we can use either 
the distilled student or teacher network 
after a final projection. Our results show 

that both models substantially improve 
over the base network that is trained 
without STL-specified properties. In 
practice, the teacher network can guar-
antee the satisfaction of model proper-
ties, while the student network is more 
lightweight and efficient.

We evaluated the performance of 
STLnet using large-scale, real-world city 
data that include 1.3 million instances 
of six pollutants (that is, PM2.5, PM10, 
CO, SO2, NO2, and O3) collected from 130 
locations in Beijing every hour between 
1 May 2014 and 30 April 2015. To build 
the LSTM network, we regard one pol-
lutant from one location as one variable 
and concatenate all variables from the 
same time unit. 

Next, we specify important model 
properties, including reasonable ran-
ges, consecutive changes, correlations 
among different pollutants and loca-
tions, and so on. Figure 6 shows the 
comparison results (with respect to the 
root-mean-square error and satisfaction 

FIGURE 5. The STLnet. (Source: Ma et al.10) 
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rate of model properties), which indi-
cate that STLnet improves the accu-
racy and robustness of RNNs in a real-
world CPS application, especially in 
cases of noisy/missing sensing data, and 
long-term prediction.

The proposed STLnet is broadly 
applicable to various sequential pre-
d ict ion t a s k s b e yond s m a r t c it-
ies. This work shows the promise of  

le v e r a g i n g f o r m a l  m e t h o d s  t o 
enhance the robustness and reli-
ability of deep learning. 

W hile tremendous progress 
has been made in advancing 
formal methods for CPSs, 

the research area of formal methods 
for smart cities is still in its infancy. 

In this article, we presented our recent 
efforts as the first step in developing 
novel formal methods to guarantee 
safety and performance in smart cit-
ies. There are many open research 
problems in this exciting new area 
that need further study: 

 › improving the scalability of 
formal methods for the runtime 

TABLE 2. Examples of model properties and their corresponding logic formulas.10

Property type Example STL formula

Reasonable range The traffic volume on a road can never exceed the road capacity. ☐[0,24] (x1 < α1) ∧ …∧ ☐[0,24] (xn < αn)

Consecutive changes The number of people in a shopping mall should not increase or decrease 
by more than 1,000 in 10 min if the number of exits fewer than 5.

y < 5 → ☐[0,10] (Δx < 1,000)

Resource constraint The total energy distributed to all buildings should be less than e. ☐[0,24] sum (x1,…xn) < e

Variable and temporal 
correlation

For two consecutive intersections on a one-way-direction road, if there 
are 10 cars passing intersection A, then there should be at least 10 cars 
passing intersection B within the next 5 min.

(x1 > 10 → ◊[0,5] (x2 > 10)) ∧ …∧  
(xn > 10 → ◊[0,5] (xn + 1 > 10))

Existence They should be at least one patrol car around a school every day. ◊[0,24]  x1 ≥ 1 ∧ …∧ ◊[0,24] xn ≥ 1

Unusual cases If there is a concert on Friday, the number of people in the nearby 
shopping mall will increase by at least 200 within 2 h.

xEvent = True ∧ xDay = Fri → ◊[0,2]  
Δx > 200.

FIGURE 6. A comparison of the root-mean-square error (RMSE) and satisfaction rate among the LSTM, STLnet-p (the student network), 
and STLnet-q (the teacher network): the prediction lengths of the (a) RMSE and (b) satisfaction rate as well as the missing data percent-
ages of the (c) RMSE and (d) satisfaction rate. (Source: Ma et al.10; used with permission.) 
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monitoring of smart city states, 
which involve large-scale sens-
ing data from hundreds of thou-
sands of geographically sparsely 
distributed sensors

 › making the use of tools and 
solutions easier for city stake-
holders without a background 
knowledge of formal methods 

 › applying formal methods (for 
example, model-based devel-
opment) to support the devel-
opment of smart services and 
integration in smart cities

 › leveraging formal methods (such 
as robustness certification) to 
create reliable deep learning 
models for smart cities

 › developing formal methods to 
measure and validate social-
aware fairness, accountability, 
transparency, and tradeoffs in 
smart cities. 
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