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Abstract—This paper provides a polynomial time heuristic for
the real-time communication scheduling problem in multi-hop
wireless sensor networks. Wireless networks add a new dimension
to the real-time communication problem because of interference:
a transmission cannot be scheduled on a radio link if another
transmission is scheduled on any interfering link. The problem
being NP-hard in nature, we propose a novel heuristic that comes
into two parts: (1) a scheduler that uses a topological analysis
of the network to anticipate the effects of radio interference
in order to improve scheduling prioritization, (2) an iterative
route update scheme that pushes apart interfering streams and
spreads them out over the network to reduce interference and
improve schedulability while meeting the deadline requirements.
The whole algorithm runs in polynomial time of O(N3d), where
N and d are the number of streams and maximum deadline
respectively. We use a simulation-based study to demonstrate
that this algorithm produces near-optimal schedules for approx-
imately 10 packet streams in a 100 node network, where the
optimal schedule can be computed. We also show that the overall
algorithm is able to schedule as much as 47% more steams than
simple heuristics that takes only deadline or interference into
account. Of this improvement, 4% − 26% contribution comes
from the iterative route update scheme.

I. INTRODUCTION

Real-time communication is important for many industrial
control applications such as process control and manufacturing
automation: sensors, actuators, and controllers that are dis-
tributed throughout the industrial environment must be able to
transfer information by a given deadline. Most industrial con-
trol applications rely on wired communication networks, such
as those specified by the fieldbus standards like PROFIBUS [1]
and CAN [2]. However, cabling is expensive, and can cost as
much as $2000 per foot in highly controlled environments
such as nuclear power plants [3]. Cabling systems do not
scale easily to large geographic areas, and can be difficult
to modify after initial deployment. Furthermore, cabling is
vulnerable to the chemicals, vibrations, and moving mechan-
ical parts that are present in industrial environments, which
can reduce reliability and increase maintenance costs. Wireless
communication is a cheaper and more scalable alternative to
wired communication, and recent advancements in channel
coding, spread spectrum, dynamic multi-hop routing, and cog-
nitive radios [4] are making wireless communication increas-
ingly robust to channel noise and environmental interference.
However, real-time communication scheduling in multi-hop
wireless networks is different than wired networks due to

interference, which adds a new constraint to the scheduling
problem: a transmission cannot be scheduled on a radio link
if another transmission is scheduled on any interfering link.

This paper provides an analysis of and heuristic for the real-
time communication scheduling problem in multi-hop WSN.
We formally define the problem based on a general model
of industrial control applications, in terms of a connectivity
graph, an interference matrix, and a set of periodic packet
streams with fixed source and destination. The descriptions
of the streams and deadlines are usually known in such
industrial plants since these are built and run for a long time
to perform a specific task. After deploying our system, we can
also experimentally measure and model the interference under
such known and controlled operating conditions. However,
like most scheduling problems, the problem is NP-hard in
nature, and even after properly modeling the workload and
interference, the problem of creating a schedule for large
number of real-time packet streams is challenging since no
optimum algorithm are practical for it.

Our algorithm is practical for use during the design and
analysis phase of WSN deployment. The idea is to estimate
the supply of time slots for a stream based on its deadline,
period, and hop count, and estimate the demand of that
stream based on its spatial overlap with other streams. Streams
are then prioritized based on their demand relative to their
supply. In essence, this heuristic uses a topological analysis to
anticipate the effects of radio interference in order to improve
the prioritization of streams. Routes taken by the streams are
also important since this relates to the amount of interference
among transmission links. To address this issue we provide a
route update heuristic that is applied iteratively in a lock-step
fashion with the scheduling algorithm. This whole algorithm
runs in polynomial time of O(N3d), where N and d are the
number of streams and maximum deadline respectively.

We use a simulation-based study to demonstrate that this
supply and demand-based heuristic along with the route up-
date algorithm is able to schedule as much as 47% more
steams than heuristics that use only supply or demand. The
route update scheme contributes a 4% − 26% increase in
the schedulability. We also show that this heuristic produces
near-optimal schedules for approximately 10 packet streams
in a 100 node network which is comparable in size to many
existing fieldbus standards that currently supports a maximum



of 64-128 devices.
The contributions of the paper include:
(1) A novel analysis of simultaneously scheduling multiple

real-time streams in a multi-hop WSN, while taking interfer-
ence into account.

(2) A heuristic-based offline scheduling algorithm that pri-
oritized the streams based on the supply and demand of time
slots and anticipates which streams are likely to meet the
deadline and which are not.

(3) An iterative route update rule that selects the streams
with excess supply of time slots and pushes them apart from
other interfering streams to reduce interference and increase
schedulability while meeting deadlines.

II. BACKGROUND AND PROBLEM DEFINITION

A. Models and Terminology

Network Model: The communication graph is a directed
graph G = (V,E), where V = {v1, .., vn} is the set of nodes
having a single radio interface and E is the set of possible
links. Every node vi has a transmission range ti. The necessary
condition for vj to receive a message from vi is di,j ≤ ti,
where di,j is the Euclidean distance between vi and vj . This
means that not all sensor nodes vj within the range of vi has to
form a link. Some links may not belong to E due to physical
reasons like barrier or radio irregularities.

Link Model: A link between vi and vj is denoted by li,j .
We assume successful link transmission in each time slot. To
make this assumption practical we argue that the unsuccessful
link transmission can be guarded against in a number of ways.
For example, allowing multiple tries within the same time slot,
using coding in upper layers, allowing multiple different paths
between end nodes, assigning multiple time slots instead of
just one slot, avoiding bad links altogether and so on. We also
argue that real-time traffic inherently bear some redundancy
and so some packet losses are easily absorbed. Any violation
of this assumption may cause some packet losses but would
never cause incorrect schedules.

Interference Model: To model the interference, we use a
Boolean matrix I of the form: I(li,j , la,b) = 1, if li,j has
interference from la,b and 0, otherwise. This matrix is capable
of capturing various interference models such as hop based,
range based, protocol model or thresholded SINR model [5].
For practical purpose this matrix can be estimated empirically,
especially in an industrial process control plant where nodes
are stationary and the environment is not open and the inter-
ference pattern is mostly deterministic. Such protocols exists
in literature that are capable of detecting radio interference in
WSN [6]. Moreover, to make this assumption true in practice,
we can be more conservative. For example, choosing a conser-
vative threshold in SINR model may ensures us interference
free communication for the cost of less throughput [5]. But as
long as the streams make their deadlines, we are not concerned
about the throughput.

Stream: A stream σ is a 4- tuple, σ = (s, d, p, dl) where
s, d ∈ V denote the source and the destination nodes, p
denotes the period or interval when s fires and dl denotes

Figure 1. An example with two streams: 1 → 2 → 3 and 4 → 5 (left) and
the schedule (right) is shown. Links 3 and 4 being non-interfering, they are
scheduled in the same time slot T3. Both the streams meet the deadline of 4.

the deadline of the packet relative to the instant when s
fires. Period p is greater than or equal to dl. A stream
instance is a stream with a start time st and specified by
σ = (s, d, p, dl, st). Because the periods of the streams are
not equal, the scheduling table must schedule more instances
of smaller streams than larger ones. Start time of consecutive
two instances of a stream are p time units apart. The set of all
stream instances is denoted by Σ. Hereafter, we use both the
terms stream and stream instances to mean stream instances.

Routing Scheme: A routing scheme, π = {πi} is a set of
routes. Under a given routing scheme, each stream σi has a
fixed route πi.

Schedule: A schedule is an assignment of links into time
slots [T1, Tmax]. Since the streams are periodic, the value
of Tmax = LCM(p1, p2, ..., p|Σ|) and we schedule Tmax/pi
instances of the i-th stream within Tmax. The kth instance
has the starting time T1+(k−1)p. A valid schedule is one that
does not violate the precedence of the links, deadline and
interference constraints of any stream instance. An optimum
schedule is one that is valid and schedules the maximum
number of stream instances.

Schedulability: Schedulability is our performance metric.
It has two forms. The first form is used when the workload
is small and the optimum solution is computable within a
reasonable time. The second one quantifies the performance
of an algorithm when the optimum solution is not feasible to
compute.

Sop =
No. of streams scheduled

No. of streams in optimal scheduling
(1)

Sst =
No. of streams scheduled

Total streams
(2)

Deadline Tightness: Deadline tightness is a measure of how
tight the deadline is with respect to the average number of hops
of all streams. This metric helps us to generate workloads with
similar deadline constraint in different sizes of networks.

B. The Stream Scheduling Problem

An instance of the scheduling problem ρ is defined as a
4 tuple, ρ = (G,Σ, π, I), where G is the communication
graph, Σ is the set of stream instances, π is the routing
scheme, and I is the interference matrix. Given ρ, our goal
is to schedule the transmission links in such a way that
all σ ∈ Σ meet the deadlines while avoiding interference
I . Figure 1 shows an example of scheduling problem and
its solution. The communication graph has |V | = 6 and
E = {1, 2, 3, 4, 5}. There are two streams: the first one follows
the path 1 → 2 → 3 and the second one follows the path
4 → 5. Interference matrix is such that links 1, 2, 4, and 5
interfere with one another. In this example, the period and



deadline of both the streams is 4. A schedule is shown on
right.

To expose the nature of the problem, we make an analogy.
If we assume a circular communication and interference
range and assume that they are identical for any individual
sensor, any single hop transmission can be thought of as a
cylinder in spatial-temporal space with the transmission time
as the cylinder height and interference range as the cylinder
radius. An end-to-end transmission can then be pictured as
a series of cylinders with the number of cylinders equals to
the number of communication hops. By transforming end-to-
end transmission into a geometric description, the original
constraints of the problem are endowed with new meaning:
the interference constraint implies that no two cylinders can
overlap; the communication range constraint means that two
adjacent cylinders cannot be far away from each other in the
spatial plane; the deadline constraint means that the final cylin-
der should not exceed a given height; the precedence constraint
means that cylinders can only be piled upwards. To schedule
multiple streams now equals to be packing required cylinders
in limited height, which can be interpreted to constrained
cylinder-packing problem, a well-known NP-Hard problem.

III. IAA SCHEDULING AND ROUTING

We at first discuss three scheduling heuristics: the first one
is based on deadline, the second one is based on interference
and the third one is our scheduling algorithm that combines
these two. We then present our route update scheme that is
applied after the scheduling is done to improve the workload
for the next round of scheduling. We call the combination of
these scheduling and routing heuristics the IAA Algorithm.

A. Laxity Heuristic

Laxity is a variable indicating how many time slots delay
(waiting) a stream can tolerate during its remaining down-
stream transmissions. As we are incrementally building the
schedule starting from time zero, the laxities of the streams
are dynamically changing in this creation of the schedule as
we proceed. Laxity of a partially scheduled stream at time slot
t is defined as:

laxity(t) = start+ dl − est(t)− δ × distπ(x, d)

Here est(t) stands for the earliest time slot (at and after t)
where a link can be scheduled without interference, δ is the
average transmission delay and distπ(x, d) is the remaining
hops. The concept of est is motivated by the classic real-time
scheduling works in [7] [8]. Based on this, the definition
of laxity is used in [9] to perform a real-time schedulability
analysis which is the baseline that we compare our algorithm
with. At any point of scheduling, the less the laxity of a stream
the more its urgency is and if ever the laxity becomes negative,
there is no way to schedule the rest of the stream anymore.
The strength of this heuristic is that it is directly related to
the remaining deadline of the stream and its performance is
very good when streams have large deadlines. The addition of
est in the formula of laxity improves its accuracy in choosing

the right stream since by doing so it considers not only the
remaining time and distance, but also other streams’ behavior.
One limitation of laxity is that it does not consider possible
downstream (future) interference of current stream with other
ones. Also the performance of the laxity heuristic is very
poor when the deadline is very tight or streams are critically
interfering with each other.

B. Spatial Overlap Heuristic

Given a routing scheme, streams may use the same link or
links within the interference range creating spatial overlap. The
more the overlap is the harder the workload is to schedule. We
define downstream spatial overlap or simply spatial overlap
as the number of different links of other streams a stream
interferes with. While counting, we only consider those links
that are yet to be scheduled. Now a scheduling algorithm
might be designed that is based only on the downstream
spatial overlap. The intuition behind this is that the stream
that has the least downstream overlap causes less harm to
other streams. Hence, scheduling such streams first would be
a good idea. Alternatively, streams showing a large amount of
downstream spatial overlap, if scheduled, is going to block
many time slots that might be assigned to other streams.
Filtering out such streams is therefore a good idea as well.
Like laxity, downstream spatial overlap is also a dynamic
heuristic. A stream with a high value of initial spatial overlap
might become one with much less downstream spatial overlap
as the algorithm proceeds and schedules all other links that
were vulnerable to this in the beginning. The strength of this
heuristic is that under very tight deadlines or high spatial
overlap it performs better than the laxity heuristic. But its
limitation is that, it does not consider deadline and so performs
poorly when the deadline is loose and overlap is minimal.

C. Anticipatory Scheduling Heuristic

The idea behind anticipatory scheduling is to anticipate
which streams are most likely to make their deadlines and
which are not, based on the estimated supply and demand of
time slots in the future. By future we mean the later iterations
of our scheduling algorithm. Both the heuristics described
earlier, laxity based and overlap based, inherently does some
form of anticipation. For example, the laxity heuristic tries
to give more priority to those streams whose deadlines are
near. It delays decisions about the streams with larger laxity
and filters out streams with negative laxity as they are going
to miss the deadline anyway. On the other hand, the spatial
overlap heuristic hypothesizes that streams having less spatial
overlap with others are more likely to get through. It delays the
decisions about the streams that have more overlaps with oth-
ers and in the end, if not all streams are scheduled, it leaves out
streams that were critically criss-crossed with other streams.
Our proposed algorithm fuses both these heuristics, shapes
their anticipatory natures and overcomes their limitations to
yield a much better schedulability.

Laxity of a stream is the number of excess time slots after
scheduling all the remaining links. These are the slots that



Algorithm 1 : IAAScheduler(Σ, π, I)
1: Failed← ϕ,Marked← ϕ, Schedule← ϕ
2: while Σ ̸= ϕ do
3: for i← 1 to |Σ| do
4: (Di, Si)← IAAV alues(σi, Schedule, I)
5: if Si < 0 then
6: Failed← Failed ∪ {σi}
7: Σ← Σ− {σi}
8: else if Si > Di then
9: Marked←Marked ∪ {σi}

10: Σ← Σ− {σi}
11: else
12: hi ← Di

Si+ϵ
13: end if
14: end for
15: σ ← Stream with the lowest h.
16: Schedule← Schedule next hop of σ at earliest slot.
17: Σ← Σ− {σ}, if this is the last link of σ.
18: end while
19: for i← 1 to |Marked| do
20: Schedule← Schedule rest of the marked stream
21: end for
22: Laxity ← Si values of all streams.
23: return (Schedule, Laxity)

Algorithm 2 : IAARouting(G, Σ, Laxity)
1: Σ← Sort Σ in increasing order of Laxity
2: for i← 1 to |Σ| do
3: l← |πi|+ Laxityi
4: πi ← Min cost path of σi in G with length ≤ l
5: G← Increase weight of all nodes on πi in G by ϵ
6: end for
7: return π

it can offer to other interfering links. Laxity can be thought
of as the future supply of time slots. Spatial overlap on the
other hand is the count of links that are potential candidates
for those slots and can be thought of as the future demand
of slots. Now there are two cases: (1) supply > demand: It
implies that the stream is going to meet the deadline, and (2)
supply < demand: It implies that the stream will miss the
deadline. But the catch is that, while laxity equals the supply
of slots available to other streams, downstream spatial overlap
is not in general equal to the demand. This is because, at one
extreme, the deadline of all other interfering streams might
be far away so that the actual demand for slots is zero, and
at the other extreme all other interfering links might interfere
with one another making the demand for slots as high as the
total count of interfering links. Let us call these two cases:
min demand and max demand respectively. We now have
three scenarios: (1) supply > max demand: The stream
will surely make its deadline. This stream is now marked
and taken out of consideration till the end. Slot Assignment
is done sequentially (avoiding interference) after all streams

are either scheduled or failed or marked, (2) supply < min
demand: The stream missed the deadline. It failed, (3) min
demand < supply < max demand: Scheduler chooses the
stream with lowest value of max demand

supply and schedules its
next hop at the earliest possible time slot. The rationale behind
choosing the stream with minimum value of demand

supply is that
it gives more priority to those streams that have either less
downstream spatial overlap (demand) or more laxity (supply)
or both. By this combination of laxity heuristic along with
downstream spatial overlap, we can anticipate which stream
is more likely to make the deadline. This heuristic also enables
early detection of deadline misses and successes and by doing
so it reduces the complexity and size of the search space.

D. Route Update Algorithm

In our algorithm, although we have kept the scheduling and
routing separate, these two are influenced and guided by each
other. Scheduling is always done over a fixed routing scheme.
If some streams do not get scheduled, based on the result of
scheduling we adjust the routing scheme. This adjustment is
guided by the laxities of all the streams. The intuition is that,
streams that are fully scheduled, but still have good laxity,
might be re-routed and still be able to make the deadline. The
more the laxity, the longer a path it can take. In this way,
streams spread out in a less congested part of the network and
make the workload better for the next scheduling phase.

In our implementation, we start with the shortest paths for
all the streams. After the scheduling is done, we order the
streams based on their laxities at that moment. We then take
the stream with the smallest laxity, route it through the shortest
cost path and increase the weight of all the nodes on that path
by a small amount. The same thing is done with all the streams
in the order of their laxities. In this way, a stream avoids those
paths that are already taken by previous ones and takes a less
congested and probably a longer path. It may happen that by
taking a longer path a stream becomes unschedulable. To avoid
this situation, we restrict that the increase in path length be
less than the laxity.

E. Complexity

We assume that N , L, K, and d denote the number of
streams, links, maximum path length and maximum deadline,
respectively. The for loop from line 3 in Algorithm 1 schedules
at least 1 link at each iteration, the while loop at line 2
runs O(L). For computation at line 4, we pre-calculate Di

values and store them in a lookup table in O(N2K2). Table
entry stores the value of downstream overlap between σi

and σj . Calculation of Di and Si then takes O(N) and
O(Ld), respectively. Line 15 and 16 runs in O(N) +O(Ld).
Line 19 runs in O(NLd). So the overall complexity is
O(N2L+NL2d+N2K2). Assuming L is O(N), it becomes
O(N3d). The route update procedure shown in Algorithm
2 sorts the streams into increasing order of laxities and re-
routes their paths as described earlier. The complexity of this
procedure is O(NlgN)+O(N)× [O(N2)+O(L)]. Assuming
L is O(N), it becomes O(N3). We apply these two algorithms
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(a) For small number of streams we compare
IAA and laxity heuristic with optimum scheduling.
Schedulability of the laxity heuristics drops sharply,
but IAA’s performance is steady and near optimum.
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(b) For large number of streams we compare the
number of streams scheduled by IAA and laxity
heuristics. IAA always schedules more streams than
laxity heuristic.

Figure 2. Schedulability of IAA is always better than the laxity heuristic.
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with the optimum scheduling. IAA is near optimum
unless the deadline is severely tight.
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(b) For large number of streams, we count the num-
ber of streams scheduled by IAA. Even in high loads
with tight deadlines, we see a good schedulability.

Figure 3. Effect of varying expected deadline on IAA’s performance.

in lock step for 10 iterations. The overall complexity of IAA
is thus O(N3d).

IV. EXPERIMENTAL SETUP

All algorithms are programmed in Matlab and run in a
machine with 1.7GHz Pentium 4 CPU and 2GB memory. The
performance metric is schedulability (Section II-A). To get a
data point, we run an algorithm on 50 test samples and take
the arithmetic mean. The 95% confidence interval for mean is
within ±1.05%. A random problem instance is characterized
by a set of network configurations and workload properties, i.e.
it defines network topology, communication and interference
range, streams with sources, destinations, periods, and dead-
lines. Different streams’ deadlines (and periods) either follow
Poisson distribution or we use the ‘deadline tightness’. Illegal
values such as zero are discarded. To demonstrate the relative
performance of the algorithms, we assume a square grid
network topology with unit distance between two horizontal
and vertical adjacent nodes. For the sake of simplicity, we
assume a range based interference model and regulate that
every sensor’s radio range is 1.2 and its interference range
is 2.5, and so two horizontal or vertical adjacent nodes can
communicate while the diagonal two cannot. But we are not
constrained by the choice of the model as long as it can be
expressed in the form discussed in Section II-A.

V. RESULTS

Figure 2 shows the relative performance of IAA heuristic
and laxity heuristic. Laxity heuristic is taken as a baseline
since like most heuristic based scheduling algorithms it uses
the deadline as the key element whereas in our case, besides
deadlines, we consider other issues of hop counts, spatial over-
laps, and a supply and demand based anticipatory knowledge.
We applied route updates for 10 iterations, starting from the
shortest routes for all streams. The laxity heuristic is also
applied on these updated workloads and its best performance
is taken. Figure 2(a) shows the schedulability of these two
heuristics with respect to optimum scheduling. The number
of streams are limited to 10 so that we have an optimum
solution to compare with. The expected deadline and period
in this experiment is 20. We see that there is a sharp decline
in the schedulability of the laxity based heuristic as the
number of stream increases. But the IAA heuristic always
performs better than the laxity based heuristic. The average
relative performance of IAA with an optimum schedule for
this workload is as high as 98.03%. For 10 streams, IAA is
47% closer to the optimum than the laxity heuristic is. Note
that the Y -axis is not the percentage of streams scheduled,
rather it shows how close they are to an optimum scheduling.
Figure 2(b) shows the schedulability in term of fraction of the
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(a) 5x5 grid, 40 streams: The laxity heuristic per-
forms severely poor in a small grid. The overlap
heuristic maintains a steady performance in this case.
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(b) 10x10 grid, 40 streams: The laxity heuristic
performs poor under tighter deadlines, but as deadline
looses it catches up with the overlap heuristic.

Figure 4. The laxity heuristic is more sensitive to deadline tightness than the overlap heuristic.
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(a) Deadline tightness of 3, 40 streams: The laxity
heuristic lags behind the overlap heuristic. But it
shows an upward trend as grid size increases.
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(b) Deadline tightness of 4, 40 streams: The laxity
heuristic is better than the overlap heuristic in larger
grids. But it suffers when the grid size is smaller.

Figure 5. The laxity is better when we have larger grids (less overlaps) and loose deadlines.

total streams scheduled for large number of streams. Expected
deadline is kept at 40 for all cases so that the curve shows the
trend in change of schedulability with increasing streams and
increasing tightness of deadline. We see that, with the increase
of the number of streams, the schedulability decreases for both.
But IAA always retains its superiority over the laxity heuristic.
Under high load of 50 streams, the IAA algorithm schedules
35% more streams than the laxity heuristic.

VI. ANALYSIS

A. Effect of Expected Deadline

Figure 3(a) shows the schedulability of IAA with respect to
an optimum scheduling for different deadlines. The purpose
of this experiment is to demonstrate that IAA is not sensitive
to the tightness of deadline unless the deadline is severely
tight. For example, the top three lines of this figure stands
for expected deadline values of 25, 20, and 15, respectively.
Schedulability of IAA in these cases are almost similar to
the optimum. In some cases, e.g. for 10 streams, we see
some performance degradation of IAA, but still we get ap-
proximately 95% schedulability. A deadline of 10 is a case
when IAA fails to perform well. The reason is that according
to the supply and demand principle of IAA, deadline being
too tight the supply of remaining time slots is way too small
than the demand of slots afterwords. The priorities of all the
streams becomes excessively high and IAA fails to pick the

right stream to schedule. Figure 3(b) shows the trend in change
in schedulability of IAA against both the number of streams
and deadlines. The number of streams scheduled decreases
with decreasing deadline or increasing number of streams. It
is expected that for the same deadline, the more the number
of streams the harder it is to schedule them. Streams in these
cases are highly interfering with each other and thus the
demand for time slots increases relative to supply of time slots.
A similar effect is seen when deadlines are decreased for the
same number of streams.

B. Performance Gain from the Combination of Laxity and
Spatial Overlap Heuristic

Figure 4 and Figure 5 compare the schedulability of IAA
with its two major components: the laxity and the spatial
overlap heuristics. To demonstrate the relative performance
of these two components and show the combined effect, we
perform two sets of experiments. First, we vary the deadline
tightness while keeping the grid size fixed and second, we
vary the grid size while keeping the deadline tightness fixed.
In these experiments, we do not apply the routing update so
that we can demonstrate the performance gain of IAA from
the combination of the two components only.

In Figure 4, we vary the deadline tightness from very tight
(tightness of 3) to loose enough (tightness of 5) value in
increments of 0.5. We keep the number of streams fixed at
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(a) Random workload: As streams are already
spread out all over the grid, performance improve-
ment due to route update is small.
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(b) Workload with same initial route: The schedu-
lability of IAA is significantly improved by re-
routing the streams.
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(c) Streams having the same route at the begin-
ning, spread out all over the grid after 10 iterations
of route updates.

Figure 6. Effect of applying route update on IAA.

40. The workload is random as before and the routing scheme
is the shortest path for all streams and the average path length
is 7.56 hops. We see that the laxity heuristic performs the
worst (almost zero) when the workload is highly congested
with lots of streams in a small sized grid (Figure 4(a)). This
is because, the laxity heuristic does not consider downstream
overlap and depends mainly on deadline which is kept similar
for all streams. The spatial overlap heuristic being aware
of overlaps, schedules at least some streams that have less
overlap with others. In a larger sized grid (Figure 4(b)), the
laxity heuristic shows an upward trend in schedulability with a
decrease in deadline tightness. It performs bad (only 6%) when
the deadline is very tight (value of 3). This is because, when
all the streams have similarly tighter deadline and their hop
counts are also not so different, laxity fails to prioritize them
correctly. In this case, it switches priority very fast among
streams, schedules many links, but in the end fails to get many
streams scheduled. Spatial overlap in those cases is a better
estimate of priority as it does not depend on deadline and
maintains a steady performance (avg. 18%). When deadlines
are loose, the laxity heuristic schedules more links from
the same stream before the priority changes and eventually
schedules more streams than it does with tighter deadline case.
The IAA algorithm performs better than both the two since
in the case of tighter deadlines, it gains performance from
downstream spatial overlap and when deadlines are not so
tight a combination of laxity and downstream spatial overlap
direct its choices to get more streams scheduled.

In Figure 5, we vary the amount of overlap among the
streams to see its effect on laxity and spatial overlap. We do
so by varying the size of the grid from 5 × 5 to 15 × 15
while keeping the number of streams fixed at 40. We see that
when the deadline is tighter (Figure 5(a)) or when the grid
size is smaller (in Figure 5(b)), the spatial overlap heuristic is
dominating over the laxity heuristic. This is already evident
from our previous discussion of Figure 4. Although, laxity
lags behind the spatial overlap heuristic in these cases, we see
that as the grid size increases it catches up with the spatial
overlap heuristic. This is because, although the deadline here is
similarly tight for all the streams, in a larger grid, the average
path length of the streams being larger, streams get more

breathing space in terms of deadline (recall that the deadline
tightness is defined in terms of the average path length of all
the streams). In smaller grids with fixed deadline tightness, we
get smaller deadlines for all streams, making the scheduling
job harder for laxity heuristic.

Using our supply and demand analogy we comment that the
spatial overlap heuristic always gives high priority to streams
that are less demanding. It does not account for the future
supply of time slots. On the other hand, the laxity heuristic
gives high priority to the streams for which the future supply
is less. It does not account for the future demand of time
slots. IAA makes a balance between the supply and demand
and gives high priority to the stream for which is the ratio
between the future demand and the future supply of time slots
is smaller. In this way, IAA is far more accurate in picking the
suitable stream for scheduling than only laxity or only spatial
overlap based heuristics.

C. Performance gain from route update

A further increase in schedulability is achieved by updating
the routes iteratively. Figure 6 shows the relative performance
of IAA with and without the application of route updating.
In Figure 6(a), workloads are generated randomly and ini-
tial routes are the shortest paths from source to destination
nodes. We measure the schedulability with this initial routing
scheme and then apply route update rule for 10 iterations
and measure the schedulability again. We see a 4% − 7%
increase in schedulability when routes are updated using our
algorithm. This small increase in schedulability may seem not
so significant, but we argue that for large number of streams
we do not have optimum schedule at hand, so any increase
in schedulability that takes us closer to the optimum is thus
important. The reason of such a gain is that for the same
workload, a change in routes brings changes in both the spatial
overlap and laxity. Our routing update algorithm iteratively
searches for the routing scheme that lowers the spatial overlap
while keeping the laxity as good as possible. In this way we
get a better workload at later iterations and hence the increase
in performance. The gain from our route update algorithm
largely depends on the initial workload. When the workload
is random and streams spread all over the grid, a change in



routes may not be beneficial. But when the initial routing
is such that most streams follow the same route or highly
interfering routes, it is indeed possible to gain much better
improvement in schedulability by changing the routes. To see
the power of route update algorithm we apply it to special
kind of workload where all the streams start from the same
source (at (0, 0)) and end at the same destination (at (9, 9))
in a 10 × 10 grid. We measure the schedulability of IAA
on this workload before and after route update and get the
result shown in Figure 6(b). We see a 10%− 26% increase in
schedulability with route updates this time. Figure 6(c) shows
changed routes after 10 iterations. We see that updating the
routes iteratively has guided the streams to spread out nicely
all over the grid, making the workload suitable for IAA to
schedule better.

VII. RELATED WORKS

There are a number of scheduling algorithms for stream
transmission. Previous performance analysis [10] shows that
DSR [11] outperforms other ID-based protocols in terms of
packet delivery ratio, but it does not consider time constraints.
RAP [12] uses a velocity monotonic algorithm that takes
into account both time and distance and outperforms DSR
in terms of end-to-end deadline miss ratio, but is suitable for
streams having a single sink and no guarantee is provided
to individual streams. Also, RAP needs support from MAC
layer. SPEED [13] maintains a desired delivery speed across
the sensor network by a combination of feedback control
and non-deterministic geographic forwarding. It outperforms
AODF [14], GF [15], and DSR in terms of end-to-end deadline
miss ratio. But it is not suitable for arbitrary streams; rather it
supports streams having a single source or single destination.

RI-EDF [16] is a MAC layer protocol that provides a real-
time guarantee by utilizing the rules of EDF to derive a
network schedule. But in this work the network has to be fully
linked, i.e. every node is within transmission range of every
other node. Another MAC layer protocol, as described in [17],
provides soft real-time and bandwidth guarantees by avoiding
packet collisions. It uses multiple channels which may not be
possible for all sensors. And also this protocol assumes that
the wireless link is not affected by jamming or EMI which
means that the only way a transmission can fail is because of
interference from other streams.

Abdelzaher et. al. [18] proposed a sufficient condition for
the schedulability of real-time streams on a wireless sensor
network. This work provides important insight into the limita-
tions of achieving guaranteed delays in WSN. In our work we
provide an actual scheduling heuristic that creates schedules
for every link in the WSN. [19] provides timeliness guarantees
to multi-hop streams by explicitly avoiding collisions and
scheduling messages based on per-hop timeliness constraints
in real-time robotic sensor applications. But it is not suitable
for large scale networks. Another transmission scheduling
algorithm is presented in [20] that performs better than TDMA
based protocols in terms of both real-time performance and
throughput. But this algorithm is mainly for scheduling queries

from the base station and their responses. So there is a single
destination for the streams here.

VIII. CONCLUSIONS

In this paper we presented a heuristic based static offline
scheduling algorithm for periodic real-time streams in WSN.
Our algorithm is practical for use during the design and
analysis phase of WSN deployment. In environments like in-
dustrial process control plants, we can measure the interference
pattern, identify the workload and then use our algorithm to
produce a schedule to provide real-time guarantees. Existing
fieldbus standards (e.g. PROFIBUS, CAN) that supports a
maximum of 64 − 128 devices can be replaced with WSN
devices and our algorithm can be used to generate near-optimal
schedule for them. In order to support very large networks with
thousands of devices, a hierarchical scheduling approach may
be applied which we consider in our future work.
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