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Abstract— This paper presents a cognitive assistant system
for emergency medical services (EMS) that can serve as a rescue
robot or virtual assistant, helping with improving situational
awareness of the first responders through automated collection
and analysis of data from the incident scene and providing
suggestions to them. The proposed system relies on a Behavior
Tree (BT) framework that combines the knowledge of EMS
protocol guidelines with speech recognition, natural language
processing, and machine learning methods to (i) extract critical
information from responders’ conversations and verbalized
observations, (ii) infer the incident context, and (iii) decide on
safe and effective response interventions to perform. We use a
data-set of 8302 real EMS call records from an urban, high
volume regional ambulance agency in the U.S. to evaluate the
responsiveness and cognitive ability of the system and assess
the safety of the suggestions provided to the responders. The
experimental results show that the developed cognitive assistant
achieves an average top-3 accuracy of 89% in selecting the
correct EMS protocols and an average F1-score of 71% in
suggesting the protocol specific interventions while providing
transparency and evidence for the suggestions.

I. INTRODUCTION

First responders such as EMS personnel and firefighters
need to initially assess and control the situation at the
accident scene and provide both basic and advanced life
support to the victims prior to transporting them to a hospital.
However, filtering, processing, and recording information
with different levels of importance and confidence requires a
significant amount of responders’ cognitive effort that could
otherwise be utilized for emergency response.

Previous research [1], [2], [3] proposed use of assis-
tive technologies to improve first responders’ situational
awareness and decision making. Examples include using
wearable assistive agents for trauma documentation and
management [2], [4], developing portable communication
frameworks for coordinating multiple agents (e.g., medical
and communication devices, EMS vehicles) in distributed
emergency response [5], [3], simulating dynamic interac-
tions between different human agents and potential digital
agents in a hospital emergency environment using state-
machine based models [6], information visualization agents
that present information gathered based on predicted intent
and recent observations from the emergency scene [7],
and robot-assisted medical reach-back in situations such
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as urban search and rescue [8]. However, to the best of
our knowledge, none of the existing research focuses on
dynamically recommending situation-aware interventions for
real-time emergency response decision support.

This paper presents a cognitive assistant system that ana-
lyzes speech data from the responders’ communications and
observations at the scene, to infer the incident context, and
suggest on the best response actions or interventions to per-
form based on standard EMS protocols. The proposed system
can serve as a rescue robot or virtual assistant, interacting
with a team of responders before, during, and after arrival
to incident scene or during EMS training exercises. In this
paper, we focus on developing the perception and cognition
capabilities for such a robot. There are several challenges in
design of a cognitive assistant for EMS:

• Emergency medical responders make decisions and pro-
vide interventions based on their training and knowl-
edge of local EMS protocols. These protocols are de-
veloped and approved by a physician medical director
to standardize medical care for all the responders and
thus achieve excellent, consistent pre-hospital care for
patients. To assist responders in their tasks, a cognitive
assistant system needs to be trained with the same
knowledge and have the ability to process the infor-
mation from the scene and make decisions in real-time.

• Despite limited availability of pre-collected EMS sce-
nario datasets, most of this data is not properly labeled
according to the EMS guidelines. Significant amount
of manual effort and domain expertise are needed for
labeling such data.

• At an incident scene, the speech data might be noisy
or missing critical information needed for inference,
which might affect the quality of decision making and
intervention suggestion by the cognitive assistant.

• Many of the EMS protocol specific interventions are
safety critical in nature (e.g., Fentanyl in pain man-
agement protocols or endotracheal intubation in res-
piratory distress protocols) and might cause serious
consequences for the patient if mistakenly suggested by
the system and performed by the responder.

To address these challenges, this paper adopts a Behavior
Tree (BT) framework for real-time retrieval of the critical
information from the scene and inference of the correct EMS
protocol specific interventions based on the retrieved infor-
mation. The main contributions of the proposed framework
can be summarized as follows:

• We develop a weakly supervised method for selection



of the most appropriate EMS protocols based on the
situations inferred from the scene and the knowledge
of the EMS protocol guidelines. Our evaluation using a
subset of 3657 labeled EMS records indicate that this
method achieves an average top-3 accuracy of 89%.

• We present two kinds of methods for suggesting the
most effective interventions by the cognitive assistant: a
weakly supervised knowledge-driven method based on
developing executable behavioral models of the EMS
protocols using BTs and a supervised data-driven ML
method based on learning models from historical EMS
data. Our results show that ML and BT methods achieve
comparable accuracy in predicting correct interventions.
However, the BT method provides more transparency
and evidence for the suggested interventions and does
not rely on the availability of labeled data.

• We develop a method to assign confidence scores for the
protocol and intervention suggestions made by the BT
model to reduce the risk of performing safety-critical
interventions and prevent harm to patients. When con-
sidering the potential risk of performing incorrect in-
terventions by responders, suggestions provided by the
BT model on average have at least 22% lower risk com-
pared to the best performing supervised ML models.

II. PROBLEM FORMULATION

Our goal is to design a cognitive assistant system that can
infer critical information about the situations at the accident
scene, including physical status and medical history of the
patients, from responders’ conversations and verbalized ob-
servations. This information are represented in the form of
medical or EMS semantic concepts and are mapped into the
standard EMS protocols to provide suggestions on the best
interventions to perform. For example, the opioid overdose
protocol (Figure 1b) indicates when the first responders
observe that a patient is suffering from hypoxemia (i.e.,
patient’s SpO2 level is lower than the normal range), they
need to provide supplemental oxygen to the patient.

Formally, we consider a set of standard emergency medical
service protocols P . For each protocol Pi, we use a set of
critical concepts (e.g., signs, symptoms, and medical history
of patient) to model the conditions for which the protocol
should be selected by the first responder to manage the
emergency situation. We define C as the set of all the
concepts describing the protocol set P . We define I as the set
of all possible interventions recommended by the protocols in
P . At any time t, we assume all the information verbalized
by the first responder so far are included in a segment of
speech data denoted as St. Then, we can summarize the
problem as follows. At an arbitrary time t, the cognitive
assistant needs to find the appropriate subset Ij in the
intervention set I based on the knowledge of Pi in the EMS
protocol set P according to a subset of C extracted from the
speech data St. To solve this problem, we divide it into three
consecutive sub-tasks:

(i) Extract a subset of C to represent the situation for an
arbitrary time t from the speech data St;

(ii) Rank the EMS protocols in P and find a subset of
EMS protocol Pi in P whose usage scenario is closest to
what is described by the speech data St;

(iii) Find the intervention subset Ij

III. APPROACH

We propose a BT framework for implementing the natural
language processing and cognitive inference by the cognitive
assistant as illustrated in Figure 1a. Figure 1b shows an
example of Overdose Opioid protocol sub-tree in the BT.
The details are presented below.

A. Overall BT Framework

Behavior Trees are a mathematical model of plan exe-
cution used in robotics and intelligent agents, which first
emerged from video game industry. Recent work has shown
the potential of BTs as a flexible and interpretable data
structure for representing medical processes and clinical
practice guidelines in AI systems [9]. BTs can model the
behavior of an intelligent agent as a directed rooted tree,
presenting each sub-task as a leaf, and combine them into
behaviors through nodes in a specific order [10]. A BT
root generates a signal, called tick, periodically following
a frequency F. Every node receiving the tick from its parent,
starts execution and returns its status on achieving its goal as
success or failure. There are two types of execution nodes:
Action nodes that return success upon completion of certain
action and Condition nodes that return success if a specific
condition is met [11].

We choose BTs as an executable behavioral modeling
framework for the proposed cognitive assistant due to its
modularity, high responsiveness, and the ability to learn and
adapt using reinforcement learning. As shown in Figure 1a,
in every tick, the sequential node ”Root” ticks the execution
of the different nodes of the cognitive assistance pipeline, to
perform conversion of text from speech, gathering important
concepts from the text, transforming the concepts into vector
space, protocol selection, and protocol execution/intervention
suggestion. The protocol execution and intervention sugges-
tion is implemented as a parallel node with multiple children,
concurrently executing multiple applicable protocols. Every
protocol node is a sequential node, which sequentially ticks
the condition and action nodes, respectively, implementing
the conditions to satisfy for executing the protocol and the
sub-tree of the protocol logic as defined by the EMS pro-
tocols. The details of the BT nodes implementing different
components of the cognitive assistant are provided next.

B. Speech to Text Conversion

The purpose of this component is transferring the input
speech data St from first responder to text T . We apply the
Google Speech API to perform speech to text conversion
on the audio streams collected from the accident scene. Our
previous experiments have shown that Google Speech API
provides the best results among other state-of-the-art speech
recognition tools [12]. As shown in Figure 1a, at every
tick of the behavior tree, first the sub-task Speech to Text



(a) (b)
Fig. 1: (a) Overall BT framework, (b) Opioid Overdose Protocol Action Subtree

Conversion is executed to get the generated text from the
incoming audio stream. Then the collected text is passed
to the following components via a blackboard, a typical
component in BTs to store and transport data between the
sub-trees and nodes. Upon completion of these steps, the
Speech to Text Conversion sub-task will return success to its
parent node.

C. Information Extraction

After retrieving text from the speech recognition compo-
nent, the collected text is fed into the Information Extraction
component. In this component, input text T is represented by
a concept set E, which is a subset of the whole concept set
C, and consequently essential information for EMS can be
extracted, including patient’s physical condition and medical
history, situations of the accident scene, and treatments
performed by the first responders. The information extraction
process consists of the following four steps.

1) UMLS Concept Extraction: At this step, we apply
MetaMap, a widely used tool for mapping biomedical text
into the concepts in the Unified Medical Language System
(UMLS) Metathesaurus [13]. Using MetaMap we extract the
biomedical concepts from the text along with their negation
condition, semantic type, and position information. Every
single concept is assigned with a unique identifier in the
UMLS, called Clinical Unique Identifier (CUI).

2) Concept Filtering: Our previous analysis on MetaMap,
showed that not all of the extracted concepts are useful for
EMS decision support [1]. Thus, we compiled a set of EMS
protocol specific concepts that are required by the EMS
protocols or are frequently used by the medical responders.
Each concept was then extended to an additional set of terms
that share the same or similar meaning with the original
concept and these terms are mapped into unique UMLS
CUIs. The list of CUIs was generated by sending the original
text as queries to UMLS online API and selecting the 25 most
related CUIs (i.e., top 25 ranked in order of relevance). At
the concept filtering stage, this extended list of CUIs (C) is
used to filter the results from MetaMap and keep the concepts
most relevant to the EMS protocols.

3) Value Retrieval: Next, additional information related
to the concepts are extracted from the text, e.g., for the
extracted concept pulse rate, the value of pulse rate is also
extracted. For retrieving the corresponding numeric values
of specific concepts such as vitals (e.g., pulse rate, blood

pressure, SpO2) we find the closest number to the concept
as their value via regular expression matching. We directly
use the preferred names as the value of the abstract concepts
(e.g. history of symptoms, quality of pain, past illness).

4) Confidence Assignment: We assign a confidence score
to the extracted concepts from text to indicate the notion of
uncertainty in our detected evidence from the scene due to
non-perfect quality of speech recognition and concept extrac-
tion components. For confidence calculation and assignment,
we multiply (i) the confidence score for the recognized
words by the Google Speech API [14] and (ii) the similarity
score provided by the MetaMap API indicating the level
of confidence in mapping between the input text fragment
and the UMLS concepts [13]. By combining these two
different confidence scores, we can have a score representing
the overall confidence in the information collected from
the conversations of emergency responders at the scene.
Incorporating other factors contributing to uncertainty and
lack of confidence (e.g., missing information, noisy speech)
is the subject of future work.

The collected concept set E is modeled as a dictionary
with each element defined using the following unified format:

(Ci : Pi,t, Vi,t, Ti,t, Conf(Ci, t), t)

where Ci refers to the ith concept in the dictionary, which
also serves as a key in the dictionary; Pi,t is a boolean
variable representing the presence or absence of Ci in the text
at tick t; Vi,t is a number representing the value of Ci at tick
t; Ti,t is the normalized original trigger text of Ci at tick t,
and Conf(Ci, t) indicates the confidence of the concept Ci

at tick t. Assuming the text from which the concept Ci was
detected has a speech-to-text confidence score ConfG(Ci)

provided by Google Speech API and its CUI detected by
MetaMap has a similarity score mmScore(Ci), we calculate
the confidence score Conf(Ci) for every Ci in C as follows:

Conf(Ci) = ConfG(Ci) ·mmScore(Ci) (1)

An example piece of text along with the corresponding
dictionary elements extracted by the Information Extraction
phase are shown in Figure 3a. For example, the occurrence
of the term GCS in the input text and its low value (i.e.,
3) trigger the concept decreased mental status which is
identified with a confidence score of 1000 by our information
extraction module at tick 5.



D. Vectorizer

Once we get the concept set E representing the input
text by EMS related concepts, similar to text vectorization,
we can transfer the concept set E as a vector VT , whose
size equals the length of the concept set C and values
are the confidence scores Conf(Ci, t) for each extracted
concept Ci in E. Each item in the input text vector indicates
if the concept has appeared in the input text and how
much confidence we have for its mapping (mapping textual
contents to concepts). Thus, if any concept Ci is detected
at tick t, the corresponding item in the text vector will be
encoded with a value of Conf(Ci, t).

We also use a set of vectors VP to represent the concepts
related to signs and symptoms that are required for the
execution of a specific EMS protocol. Each protocol in
protocol set P is represented as a vector VPi

, whose size
also equals the length of the concept set C but values are
assigned with different weights based on the importance of
these concepts in selecting the protocol. These weights are
assigned by real first responders participating in our project.
Formally, these two vectors can be represented as follows:

~VT = {Conf(Ci)|∀Ci ∈ C} (2)

~VPi
={Weight(Cj)|∀Cj ∈ C

∧Weight(Cj) = Softmax(Priij )

∧ Priij ∈ {0, 1, 2, 3}}
(3)

where Prij is a priority score assigned based on the
relevance between the protocol Pi and concept Cj (with 3
representing most relevance and 0 representing no relevance).
We apply softmax function to normalize these scores into
weights and make them add up to 1.

E. Protocol Selection

Given the input text vector VT , representing the infor-
mation gathered from the scene at tick t and the protocol
vector set VP , representing the required concepts (conditions,
signs and symptoms) for executing a specific EMS protocol,
we take a weakly supervised approach to determine the
relevance between the current situation at the scene and each
EMS protocol in P by calculating the similarity between
their vectors. For this, cosine similarity, as a commonly
used metric in information retrieval and question answering
systems is used. Thus, the similarity or relevance between the
text ( ~VT ) and protocol ( ~VPi ) vectors is calculated as follows:

Si =
~VT · ~VPi

‖VT ‖ · ‖VPi
‖

(4)

After calculating the cosine similarity between a given text
vector and all the protocol vectors in our library of EMS
protocols, we rank the protocols based on their similarity
to the input text and select the ones with highest scores as
the appropriate protocols to be executed by the cognitive
assistant system. If multiple protocols have a high relevance
score, an ordered list of candidate protocols will be selected
and used for the feedback generation. We assign the cosine

similarity index calculated for each protocol as a confidence
score for its selection and normalize the confidence scores
such that the sum of all scores in the final list is equal
to 1. For a subset of protocols from P , called Candidate,
containing top N protocols based on their cosine similarity
scores, the normalized confidence score of each candidate
protocol, Conf(Pi), is calculated as follows:

Conf(Pi) =

{
Si∑
Sj
, ∀Pj ∈ Candidate

0, otherwise
(5)

This normalization of the confidence scores provides a
frame of reference to the responders for comparing the scores
and potentially considering the protocols with the higher
scores. It also enables confidence propagation and assign-
ment to the interventions suggested by the BT framework.

F. Protocol Execution - Intervention Suggestion

Typically, each EMS protocol describes some specific
rules to perform interventions in an emergency scene. The
conditions in these rules are signs, symptoms and medical
history of the patient, that are extracted and represented as
concepts in the previous components (see example in Figure
1b). So, we model the execution logic for each EMS protocol
as a separate sub-tree in the BT whose children implement
the conditions to be checked and actions or interventions to
be taken as part of the protocol. All of the protocol nodes
are connected to a parallel parent node, which enables all the
selected candidate protocols to be executed concurrently at
the same time and suggest most relevant interventions with
the highest confidence score to the responder. Due to the
modularity of the BTs structure, the set of EMS protocols
can be easily replaced or extended by merely replacing or
adding to the sub-trees under the parent node.

There is an obvious risk to execute protocols concur-
rently in this system. In most cases, extra protocols will
be executed, and consequently, inappropriate or even safety-
critical feedback might be suggested to the responder. To
avoid such risks, we have extended the BT framework with
a new capability for assigning confidence values to the
nodes and propagating them through the execution path on
the BT. This enables us to provide a confidence for each
final feedback generated by the selected protocols and let
the responder consider different interventions with different
confidence levels. When calculating the propagation of the
confidence scores on the paths of the BT, we assume that the
appearance of the concepts in the protocols are independent
events from each other and they are also independent from
the event that a protocol is selected. Thus, we assign a
confidence score to every final feedback node (leaf action or
intervention node in the protocol subtree) by multiplication
of confidence scores assigned to previous nodes in the path
to that node, including the concepts and conditions observed
in the input text and the the protocols selected. Figure 2
shows an example of the propagation of confidence scores
from a selected protocol and an observed concept in text
into an action node on the BT. Finally, The interventions
with a confidence score of less than 0.1 are filtered out from



the final list of suggestions presented to the responder. As
a result of applying the above-mentioned mechanism, the
safety-critical and potentially incorrect interventions tend to
have lower confidence scores. Because:

(i) The initial confidence assigned to each protocol is based
on the similarity between the text vector and protocol vec-
tors, which means the interventions within the less relevant
protocols will be assigned with lower confidence scores.

(ii) Even if an irrelevant protocol is selected by the model,
some of the interventions suggested by these protocols are
less likely to be suggested because the relevant observations
are not extracted from the scene and required conditions for
those interventions are almost impossible to be satisfied. For
example, if chest pain protocol is triggered in a abdominal
pain case, ”STEMI” is less likely to appear in this case and
corresponding interventions will not be suggested.

(iii) In EMS protocols, the safety-critical
medications/interventions typically have more
conditions/prerequisites to be satisfied and some of
them can only be performed when other less safety-critical
interventions were not effective (e.g., Fentanyl will only be
administered when pain persists after giving Nitroglycerin
in Chest Pain protocol). Thus, these interventions tend to
have lower confidence scores and more likely to be filtered
by the confidence threshold.

Fig. 2: Confidence propagation in a protocol action sub-tree

IV. EVALUATION

Two sets of experiments were performed to evaluate the
BT framework. First, we assessed the accuracy of selected
protocols by the automated protocol selection procedure.
Second, we executed the top three selected candidate pro-
tocols in parallel on the BT framework and compared the
suggested interventions by the system with the actual inter-
ventions performed by the first responders as logged in the
data. We also compared the performance of BT framework
with supervised ML methods trained on historical EMS data.

A. Experimental Setup

For these two experiments, we considered 8 commonly
used EMS protocols from a regional set of protocol guide-
lines and a dataset of 8302 pre-hospital call sheets from a
regional ambulance authority (RAA). The information inside
these reports are originally organized into several categories
including the type of the call, priority of the dispatch, chief
complaint from the patient, first and second impressions from

the first responders, vital signs recorded in the emergency
scenes, interventions taken by the first responders, outcome
after the interventions and the narratives describing the
emergency situations. Narratives and vital signs were fed to
our model as inputs because the narratives from the first
responders and the vital signs are the only information that
we can directly obtain from verbal conversations in the
emergency scenes. In these experiments, we used the textual
narratives and vitals transcribed by the responders as they
are directly available in the data and do not require speech
to text conversion. So the ConfG(Ci) score in Equation 1
was always set as 1. The results of evaluating the speech to
text conversion step for both noise-free and noisy realistic
audio data from incident scenes were presented in [1].

For a subset of 3657 records, the actual protocols used by
the responders were labeled by an EMS responder partic-
ipating in our project with advanced life support training.
This labeling was used as ground truth for assessing the
accuracy of the protocol selection component. This was done
by developing a set of rules unique to each of the pre-selected
protocols to filter out cases that were either ambiguous
or fell into another protocol. For example, in order for a
case to be labeled as an opioid overdose, the medication
Naloxone must have been administered and the documented
field impression must indicate that the original responder
believed the patient’s presentation was due to an overdose.
Thus, we marked the cases that the medication Naloxone was
given and the impressions included opioid overdoses. First
responders’ interventions recorded in these reports served as
the ground truth to evaluate the suggestions generated by our
model and the quality of the feedback to responders.

It should be noted that in actual deployment, the narratives
and vital signs will be extracted from streaming speech data
and fed into the system, as they become available. So, the
cognitive assistant system has to perform context inference
and provide suggestions on protocols and interventions in
real time using partial information and evidence. However,
due to unavailability of such data, in these experiments we
use the final complete narrative transcribed by the responders
for evaluation. Evaluating the performance of system using
streaming data and assessing the impact of partial informa-
tion on the accuracy of results is the subject of future work.

We developed multiple machine learning (ML) models
with several variations of hyper-parameters that were trained
on the RAA data to perform intervention prediction. These
models were used to compare the performance of the in-
tervention prediction by our proposed weakly supervised
knowledge-driven BT method. We specifically compared
the following three supervised ML models for intervention
prediction to our BT method: Support Vector Machines
(SVM), Random Forest (RF), and Decision Trees (DT). To
train these supervised ML models, we used the intervention
column in the RAA reports as the ground truth and the
narrative text as input. For feature extraction, each narrative
was represented in vector space after pre-processing (i.e.,
tokenization, normalization, stemming, stopwords removal).
Three different kinds of feature vectors, namely, n-grams,



(a) Example output from information extraction stage (b) Example output from protocol execution & intervention prediction
Fig. 3: An example of the results from the proposed BT Cognitive Assistant System

uni-grams, and signs and symptoms were coonstructed from
the narratives and used for ML models. The test dataset for
intervention prediction included 1000 RAA EMS reports.
The remaining 7302 EMS reports were used to train the ML
models. We applied 5-fold cross-validation by splitting the
training data consisting of 7302 reports into 5841 training
cases and 1461 validation cases and trained multi-class clas-
sifiers (for 94 intervention classes) using the three supervised
ML models. To achieve a fair comparison between the risk-
aware, knowledge-driven, weakly supervised BT method and
the data driven, supervised ML models, we also added the
following two settings to the ML models: (i) Training the ML
models using a class weighting approach where intervention
classes with higher risk scores were assigned lower weights
to direct the ML models towards selecting less safety-critical
interventions with lower risk factors; (ii) Applying a similar
confidence score filtering implemented for the BT model (in
Section III.F) to filter the interventions with low confidence
scores from the list of suggestions by the ML models.

B. Experimental Results

Protocol Selection. To evaluate the automated protocol
selection procedure, we compared the ranked list of pro-
tocols selected by the cognitive assistant with the ground
truth protocol labels in the test data annotated by the first
responders participating in our project. Since the protocol
selection component generates a ranked list of top 3 protocols
with their confidence scores, we applied a top-3 accuracy
metric to evaluate if the target label by the responder is
one of the top 3 predictions by the cognitive assistant. Our
experiments with a set of 3657 test cases showed an average
top-3 accuracy of 89.0%.

We identified the following reasons for sub-optimal perfor-

mance of our protocol selection method based on our review
of the cases where the protocol selection method resulted in
incorrect predictions (i.e., it’s predictions did not match the
labels provided by the EMS responders).

• Errors occurred in mapping between input text and stan-
dard concepts in our Information Extraction component,
which led to generation of inaccurate text vectors and
consequent generation of wrong ranking for the selected
protocols. These errors were due to: (1) MetaMap
not recognizing the required concepts as CUIs; (2)
Some identified CUIs by MetaMap not appearing in the
mapping between CUIs and standard concepts in our
model; (3) CUIs and concepts not precisely matching
(e.g., We get the CUI ”Respiratory Sound” from UMLS
mapping to the required concept ”Wheezing.” However,
they are not the same since wheezing is one kind of
respiratory sound. Thus, some other respiratory sounds
will be mapped to wheezing, which leads to mapping
errors.); (4) MetaMap not producing the correct nega-
tion detection results, leading to failure in identifying
the presence of some concepts in the input text.

• Protocol vectors were manually developed based on
the descriptions of concepts representing signs and
symptoms in the set of protocols. The value of each
concept in the protocol vector was assigned with differ-
ent weights based on their importance, as reviewed and
ranked by one of the participating EMS responders in
our project. Some of the manually assigned weights in
the protocol vectors caused errors.

• In some cases, missing critical information (e.g., incom-
plete vital signs) affected the correctness of the text
vector representing the EMS narration.

Intervention Suggestion. In this experiment, we evaluated



the performance of the intervention suggestion module of
our cognitive assistant by formulating it as a multi-class
classification problem. We used the list of interventions
performed by the responders in the dataset as ground truth
and compared it with the list of interventions suggested by
the cognitive assistant system. We define the predictions
which appear in the ground truth as true positives (TP),
while the ones which are not included in the ground truth
as false positives (FP). We define the interventions in the
ground truth that are missed by our cognitive assistant as
false negatives (FN). By calculating the TPs, FNs and FPs
for each RAA case, we use both weighted and micro average
precision, recall and F1-score to evaluate the performance of
the intervention prediction. The weighted metrics calculate
precision, recall, and F1-score for each class, and find their
weighted average based on the number of instances for each
class to take the class-imbalance into account.

In addition to traditional methods for evaluation of multi-
output prediction results, we also consulted with first respon-
ders about the FN and FP intervention predictions because
some of the suggested interventions although reasonable,
might not be performed by the first responders and some of
the suggestions are too risky to be performed at the scene.
EMS protocols are written in terms of escalating clinical
care, therefore even if an intervention is indicated under a
certain protocol the responder may not perform it due to time
or resource limitations. Further, EMS protocols prioritize life
and limb saving interventions over comfort measures, and
simple interventions are preferred over the complex ones
whenever possible. Under this consideration, we used another
metric to evaluate our intervention suggestion method in
terms of the risk incurred by the interventions.

All the suggested interventions were classified into four
distinct classes of red, orange, yellow and green. This is
according to the severity of the condition that the intervention
addresses as well as possible side effects they might have for
patients when incorrectly suggested (FPs) or not suggested
(FNs). These severity levels were then encoded as different
risk scores Risk(Ii) from 1 to 4 assigned to each interven-
tion class. Larger scores indicate a higher risk if an incorrect
intervention is suggested to the responder. Then for each
EMs test case with a set of I interventions, we calculated
the average risk factor of the suggested interventions by
summing the products of the risk scores Risk(Ii) and con-
fidence scores Conf(Ii) of the incorrect interventions (FP
or FN) provided by the model and normalized it by dividing
by the number of ground truth interventions for each case.
The average normalized risk to evaluate the performance of
model over n test cases was calculated as follows:

Avg. Normalized Risk =
1

n

∑
Conf(Ii) ·Risk(Ii)

|I|
(6)

The evaluation results using the metrics mentioned above
are shown in Table I. Our results show that the knowledge
driven weakly supervised BT method has a comparable
performance to the supervised ML methods that use signs
and symptoms as their feature set when evaluated using

the traditional evaluation metrics (precision, recall, and F1)
used for multi-class classification task. However, the average
normalized risk factor of the interventions suggested by the
BT model is at least 22% (0.34 vs. 0.44) lower than the best
performing supervised ML model that uses signs-symptoms
features (i.e., Linear SVM model). This means that we
can effectively avoid suggesting safety-critical interventions
using the confidence propagation and filtering mechanisms
of the BT model.

It should be noted that ML models using unigram features
outperformed the models using ngrams so we only report
the results for unigram features in Table I. Also, in case
of the ML models using unigram features, the unigrams
were extracted from the semi-structured narratives that often
contain the interventions performed by the responders at
the scene. Thus the ML models using this feature set per-
formed significantly better than the ML models using signs-
symptoms features and the BT model because of having
access to the actual ground truth or prediction labels. So, for
fairness of comparison we mainly focus on the ML models
that use signs and symptoms as their feature set.

The supervised ML methods trained with class weighting
perform worse in terms of precision, recall, and F1 than
the models with no knowledge of risk scores, and they also
yield higher average risk factors. One reason for these results
might be the extra FN and FP predictions brought by the
weight assignments for the ML models. On the other hand,
the ML models with filtering, which get rid of predictions
with confidence scores lower than a threshold, only slightly
reduced the risk factor compared to the original models (0.24
to 0.23 for SVM-unigram, 0.42 to 0.39 for RF-unigram).

Furthermore, the proposed BT method has the following
advantages compared to supervised ML models:

• The BT model has high modularity, which means
when we need to edit/add/remove any EMS protocols
in the model, what we need to do is only substitut-
ing/inserting/deleting the corresponding protocol sub-
trees. However, when it comes to supervised data-driven
ML methods, re-collection and labeling of data and re-
training the whole model is required.

• The BT method is weakly supervised and knowledge-
driven and does not rely on the availability of training
data and correctness of labels. Whereas the performance
of supervised ML methods greatly relies on the quantity
and quality of the training data and labels.

• Contrary to ML methods which are black box end-to-
end solutions from input text to intervention sugges-
tions, the BT framework is transparent and can provide
explanation and evidence for the decisions made and
suggestions provided to the responders.

V. DISCUSSION AND FUTURE WORK

From the evaluations conducted in the previous section,
the following major challenges were identified:

• The concept list used in the information gathering phase
is currently manually created and is limited to the
knowledge of protocols and, thus, it might be a possible



Model Weighted
Precision

Micro
Precision

Weighted
Recall

Micro
Recall

Weighted
F1 Score

Micro
F1 Score

Cross-Validation
Micro F1 Score

Avg.
Risk

Behavior Tree 0.65 0.76 0.66 0.66 0.64 0.71 NA 0.34

Linear
SVM

unigram 0.88 0.92 0.86 0.88 0.87 0.90 0.88 0.24
unigram, filtering 0.88 0.92 0.86 0.88 0.87 0.90 0.88 0.23
signs-symptoms 0.62 0.81 0.63 0.64 0.61 0.72 0.73 0.44

Random
Forest (RF)

unigram 0.84 0.91 0.72 0.71 0.74 0.80 0.78 0.42
unigram, weighted 0.76 0.88 0.63 0.65 0.65 0.74 0.74 0.49
unigram, filtering 0.84 0.91 0.71 0.71 0.74 0.80 0.78 0.39
signs-symptoms 0.65 0.76 0.60 0.60 0.66 0.67 0.72 0.60

Decision
Trees (DT)

unigram 0.82 0.84 0.80 0.82 0.81 0.82 0.83 0.28
unigram, weighted 0.77 0.80 0.79 0.79 0.77 0.80 0.79 0.39
unigram, filtering 0.80 0.84 0.80 0.81 0.80 0.83 0.81 0.28
signs-symptoms 0.62 0.64 0.60 0.61 0.60 0.63 0.67 0.82

TABLE I: Intervention suggestion provided by the weakly supervised BT model vs. the supervised ML models, Support Vector Machine (SVM), Random-Forest (RF), and
Decision Tree (DT). Weighted supervised models are trained with classes weighted using inverse intervention risk scores. Models with filtering use confidence score filtering
to remove interventions with low confidence scores from the final list of suggestions. The ML models using unigram feature set outperform the BT model since they contain
the ground truth prediction labels (interventions) that are embedded in the input text. So for a fair comparison, we consider the signs-symptoms feature set. Among the models
using signs-symptoms as the feature set, the SVM model outperforms both the RF and the DT models with a micro F1 score of 0.72 and the BT model performs similarly to
SVM with a micro F1 score of 0.71. However, the BT model results in a 22% reduction in normalized average risk factor (0.34 vs. 0.44 for the SVM model).

reason for missing important concepts from the input
text. Also, as the number of the target EMS protocols
grows, the amount of effort needed for modeling the
protocols and manually extending the concept list sig-
nificantly increases. Thus, we plan to develop methods
for automated creation of more complete and accurate
concept lists in the future. We are investigating the
vector space models and weakly supervised techniques
to expand the limited set of manually identified concepts
to a larger lexicon of EMS relevant terms.

• The inaccuracies in detection of presence or absence
of the concepts in text largely affect the results of the
protocol selection and execution phases. Currently, we
rely on the negation detection features of MetaMap to
extract the absence of concepts. Future work will focus
on developing techniques for more precise detection of
concept presence and absence in EMS domain.

• The unified dictionary format for representing and col-
lecting the extracted information, the protocol condi-
tions, and the modularity of behavior tree models enable
scalability of the BT framework. We plan to study the
possibility of automatically creating and extending the
behavior tree models based on EMS data or protocols.

• Interventions performed by a first responder are nec-
essarily limited by the underlying context such as
transport time, severity of patient illness and resources
available. Systematically accounting for these contexts
would improve and better account for both the safety
and rate of the intervention suggestion false positives.

• When deployed in the real incident scenes, the cog-
nitive assistant system might need to perform context
inference and decision making based on the partial
and incomplete information extracted from streaming
speech data. Evaluating the performance of system
using streaming data is the subject of future work.

VI. CONCLUSION

This paper presented a Behavior Tree cognitive assistant
system for emergency response which can be implemented
as a rescue robot or virtual assistant interacting with the
responders at the incident scenes to provide them with
suggestions on the most appropriate protocols and inter-
ventions to execute. Our experimental results show that
supervised ML methods trained on historical EMS data might
perform similarly or better than the knowledge-driven BT

method when compared using traditional accuracy metrics.
However, the proposed BT modeling framework provides
better guarantees on the safety of interventions suggested
to the responder as well as transparency and evidence. The
proposed cognitive assistant system has also the potential to
be used during simulated training experiments for preparing
responders with the knowledge of protocol guidelines and
scoring their performance in executing the protocols.
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