
1

Design, Implementation, and Evaluation of a
QoS-Aware Real-Time Embedded Database

Woochul Kang, Sang H. Son, Senior Member, IEEE, and John A. Stankovic, Fellow, IEEE

Abstract—QeDB (Quality-aware real-time Embedded DataBase) is a database for data-intensive real-time applications running on

embedded devices. Currently, databases for embedded systems are best effort, providing no guarantees on their timeliness and data

freshness. Existing real-time database (RTDB) technology cannot be applied to these embedded databases since it hypothesizes that

the main memory of a system is large enough to hold the entire database. This, however, might not be true in data-intensive real-time

applications. QeDB uses a novel feedback control scheme to support QoS in such embedded systems without requiring all data to

reside in main memory. In particular, our approach is based on simultaneous control of both I/O and CPU resources to guarantee the

desired timeliness. Unlike existing work on feedback control of RTDB performance, we implement and evaluate the proposed scheme

on a modern embedded device. The experimental results show that our approach supports the desired timeliness of transactions while

still maintaining high data freshness compared to baseline approaches.

Index Terms—Real-time database, embedded database, transaction tardiness, sensor data freshness, QoS management, feedback

control, Multiple Inputs/ Multiple Outputs (MIMO) control.

F

1 INTRODUCTION

Recent advances in sensor technology and wireless connec-

tivity have paved the way for next generation real-time ap-

plications that are highly data-driven, where data represent

real-world status [1]. For many of these applications, data

from sensors are managed and processed in application-

specific embedded systems with certain timing constraints. For

example, control units of an automobile collect and process a

large volume of real-time data not only from internal sensors

and devices [2], but also from external environments such as

nearby cars and intelligent roads [3][4]. Another examples are

PDAs carried by firefighters for search-and-rescue tasks. These

PDAs collect real-time sensor data from both the burning

building and other firefighters. They also process the data to

check the dynamically changing status of the fire scene and

alert in a timely fashion if there is a potential danger to the

firefighters. [5][6]. In these applications, ad-hoc management

of data can increase the difficulty of development due to ever

increasing complexity and size of data. Hence, it is essential

to provide a systematic mechanism to manage the data.

An embedded database [7] is an integral part of such

applications or application infrastructures. Unlike traditional

DBMSs, database functionality is delivered as part of the

application or application infrastructure. These databases run

with or as part of the applications in embedded systems. Em-

bedded databases provide an organized mechanism to access

large volumes of data for applications. Instead of providing

full features of traditional DBMSs, such as complex query

• W. Kang is with Electronics and Telecommunication Research In-

stitute (ETRI), 138 Gajeongno, Yuseong-gu, Daejon, Korea. E-mail:

wchkang@etri.re.kr

• S.H. Son, and J.A. Stankovic are with the Department of Computer

Science, University of Virginia, 151 Engineer’s Way, PO Box 400740,

Charlottesville, VA. E-mail: {son,stankovic}@cs.virginia.edu

optimization and handling mechanisms, embedded databases

provide minimal functionality such as indexing, concurrency

control, logging, and transactional guarantees. Several off-the-

shelf embedded databases are available such as Berkeley DB

[8], and SQLite [9]. However, these embedded databases are

unaware of timing and data freshness requirements, showing

poor performance in real-time applications [10].

Achieving timeliness of tasks has been a core research issue

in the real-time systems domain, and it has been actively

investigated [11][12]. Unfortunately, applying those results to

the emerging data-intensive real-time applications and embed-

ded databases has several problems. One main difficulty lies

in the inappropriate real-time task model of traditional real-

time computing work. In particular, most real-time research

has been focused on computation-intensive applications. This

work assumes that all data resides in main memory for real-

time tasks, which might not be true in data-intensive real-

time applications. This assumption has been mainly used

to eliminate the highly unpredictable response time of I/O

operations to disks.

To address these problems, we have designed and im-

plemented a real-time embedded database (RTEDB), called

QeDB (Quality-aware Embedded DataBase). QeDB has been

designed particularly for embedded devices for data-intensive

applications, where not all the data can be fit into main-

memory. For such applications, QeDB provides a storage

abstraction layer that virtualizes the underlying storage devices

while guaranteeing the desired timeliness of transactions ac-

cessing data via the abstraction layer. To the best of our knowl-

edge, this is the first paper on providing Quality-of-Service

(QoS) for embedded databases with a real implementation.

The contributions of this paper are as follows:

1) Real-time transaction model for RTEDBs: In QeDB, a

real-time transaction is defined as a real-time task that accesses

data through a RTEDB with optional transaction guarantees.

2

For example, real-time transactions of a firefighter’s PDA

run periodically to retrieve the up-to-date sensor data by

issuing requests to the underlying RTEDB and also perform

computational tasks such as checking the potential dangers,

and finding safe paths. Because real-time transactions consist

of both data accesses and computation with the retrieved data,

the timeliness of these transactions is determined not only by

their computational activities, but also by their I/O activities.

Further, our observations show that the response time of a

transaction’s computational activities is highly affected by its

I/O activities, and vice versa. For instance, decreasing the size

of buffer cache in RTEDBs increases not only the average I/O

response time, but also the CPU load because more frequent

buffer management activities, e.g., searching for least-recently-

used pages, are required due to low buffer hit ratio. This close

interaction between computation load and I/O load implies that

the QoS of transactions can be guaranteed only when both I/O

and computation are considered simultaneously.

2) A novel feedback control architecture: In QeDB, the

metrics for QoS are the timeliness of transactions and the

freshness of data, which may pose conflicting requirements

[13]. QeDB achieves the desired QoS using a novel feed-

back control technique. Even though feedback control has

recently been applied to RTDB to systematically trade data

freshness for the timeliness of transactions in the presence

of dynamic workloads [14][15], these approaches control a

single resource, i.e., CPU load, to achieve the QoS goals. In

contrast, QeDB exploits a Multiple Inputs/Multiple Outputs

(MIMO) modeling and controller design technique to capture

the close interactions of multiple control inputs (CPU load and

I/O load) and the multiple system outputs (the timeliness of

I/O operations and computation). The MIMO controller adjusts

both CPU load and I/O load simultaneously.

3) Implementation: Most RTDB work is based on simulation

and some assumptions are too rigid to implement. Hence,

there were limitations in modeling real system behaviors

and workloads. Very little prior work, such as [16][10][17],

has evaluated real-time data management techniques in real

database systems. QeDB has been implemented by extending

Berkeley DB [8], which is a popular open-source embedded

database, to support a target QoS. QeDB does not require

particular support from underlying operating systems; it relies

only on the standard real-time features of POSIX [18].

4) Evaluation: QeDB has been implemented and evaluated

on a real embedded device with realistic workloads. The

evaluation results demonstrate that MIMO control of QoS

in QeDB is significantly more effective than the baseline

approaches. In particular, QeDB makes a better negotiation

between the timeliness of transactions and the freshness of

data by providing proper amount of resources in a robust and

controlled manner.

The rest of the paper is organized as follows. Section

2 presents the overview of real-time transactions and data

model in QeDB. Section 3 describes the QeDB architecture

and feedback control procedure. In Section 4, we discuss the

details of feedback control mechanism in QeDB. In Section

5, implementation issues are discussed. Section 6 shows the

details of the evaluation settings and presents the evaluation

results. Related work is presented in Section 6 and Section 7

concludes the paper and discusses future work.

2 OVERVIEW OF QEDB

2.1 System Model

QeDB targets real-time embedded devices, which have rel-

atively small main memory compared to their secondary

storage. Since the capacity of the secondary storage is usually

far greater than the size of main memory, databases bigger than

the main memory can be used with support from the secondary

storage. Figure 1 shows the software stack of an embedded

system, which runs a real-time application with support from

a RTEDB. A buffer cache is located in main memory, and it is

a cache between the slow secondary storage and the CPU. The

buffer cache is global, and shared among transactions to reduce

the average response time in accessing data. An I/O request

from application(s) for a data object incurs I/O operations to

the secondary storage only if the data object is not found in

the buffer cache.

(QeDB)

Application(s)

OS(H/W)

RTEDB

Secondary

Storage

ra
w

 I
/O

re
q

u
es

ts

buffer cache

n
et

w
o
rk

g
et

/p
u

t

ca
ll

s
Fig. 1. A real-time application with support from a RT-

EDB.

QeDB provides an abstraction layer for real-time appli-

cations; it virtualizes the underlying storage devices while

guaranteeing the desired timeliness of transactions and data

freshness. Data can be accessed transparently regardless of its

location; data can be in main memory, secondary storage, or

even in somewhere in the network 1.

2.2 Data and Transactions

Unlike traditional DBMSs, QeDB does not support complex

query processing of data. Instead, QeDB is a key/value store,

which supports efficient and concurrent access to the data2.

While the interface put(key k1,value v) is used for the storage

of data v with key k1, the interface get(key k2) is used for

the retrieval of data with key k2. Operations get and put

involve mostly I/O operations between the buffer cache and the

secondary storage to fetch and flush data. However, they also

involve computation such as manipulating the buffer cache,

looking up indexes, and locking data and index pages. In

1. Currently, we are developing a network-based transparent data replication
layer for QeDB [19].

2. QeDB uses the same data storage and retrieval mechanism of the
underlying Berkeley DB without extension.

3

this paper, I/O operations refer to put and get operations in

QeDB, which include not only raw I/O operations to secondary

storages, but also computation required for the I/O operations.

Data objects in QeDB can be classified into two classes,

temporal and non-temporal data. Temporal data objects are

updated periodically by update transactions. For example,

an update transaction is issued when a new sensor reading

becomes available. In contrast to update transactions, user

transactions may read and modify both temporal and non-

temporal data objects. The operations of transactions are

hard-coded into the applications, and invoked dynamically

at runtime. The characteristics of a transaction, such as its

execution time and access pattern, are known at design time.

However, the workload and data access pattern of the whole

database is unpredictable and changes dynamically because the

invocation frequency of each transaction is unknown and mul-

tiple transactions execute concurrently. Hence, their response

times can be unpredictable. Transactions access data through

QeDB and transactional properties such ACID (atomicity,

consistency, isolation, and durability) between data accesses

are provided if they are specified by the applications.

Program 1 shows an example of a transaction that is invoked

periodically in a firefighter’s PDA to check the structural

integrity of the building3. Note that the PDA not only performs

I/O operations to get/put data, but also computations that

check the integrity of the structure. The logical consistency

of the data accesses can be guaranteed by enclosing all or

part of the transaction with begin transaction and commit (or

abort). However, logical consistency is not required for all

transactions and it is application-dependent.

Program 1 A transaction checking the integrity of a structure.
trx_check_structure_integrity()

{

/* A list of keys to sensor data to process */

DBT key_displacement_sensors={Sen_1,Sen_2,..., Sen_n}

/* memory to copy in sensor data */

DBT data_sensors[NUM_SENSORS];

/* Some computation */

init();

/* perform I/Os by reading in data from the DB */

for (i=0; i< NUM_SENSORS; i++){

data_sensors[i]= get(key_displacement_sensors[i]);

}

/* computation */

status = analyze_integrity(data_sensors);

/* another I/O */

put(key_status, status);

}

2.3 Real-Time Transactions

Transactions can be classified as two categories: real-time

transactions and non-real-time transactions. Real-time trans-

actions are real-time tasks, which have deadlines on their com-

pletion time, and they have higher priority than non-real-time

transactions. For instance, the transaction in Program 1 should

report the status of the structural integrity of the burning

3. Some details are not shown for clarity and readability.

building within a specified deadline; otherwise, the firefighters

may lose a chance to escape from a dangerous place that

might collapse. We apply soft deadline semantics, in which

transactions still have value even if they miss their deadline.

For instance, having a late report on the status of the building

is better than having no report due to the abortion of the

transaction. Soft deadline semantics have been chosen since

most data-intensive real-time applications accessing databases

are inherently soft real-time applications. Hard real-time is

hard to achieve because of the concurrent data access and the

complex interactions that occur, such as database locking. The

primary focus of this paper is providing QoS management that

can dynamically minimizes the tardiness of these soft real-time

transactions at runtime.

3 QOS MANAGEMENT IN QEDB

Next, we describe our approach to managing the performance

of QeDB in terms of QoS. We define the QoS metrics in

Section 3.1. An overview of the feedback control architecture

of QeDB is given in Section 3.2.

3.1 QoS Metrics

The goal of the system is to maintain QoS at a certain level.

The most common QoS metric in real-time systems is deadline

miss ratio. The deadlines of transactions are application-

specific requirement on the timeliness of the transactions, and

the deadline miss ratio indicates the ratio of tardy transactions

to the total number of transactions. However, it turns out

deadline miss ratio is problematic in RTEDBs because the

rate of transaction invocation in embedded databases is very

low compared to conventional database systems, which handle

thousands of transactions per second. For example, a real-time

transaction of a firefighter’s PDA, which checks the status of

the building, can be invoked on a per-second basis [20]. With

such a small number of transactions, the confidence interval

of deadline miss ratio can be very wide [21]. This makes

the deadline miss ratio not very suitable for a QoS control.

Therefore, QeDB controls the QoS based on the average

tardiness of the transactions. For each transaction, we define

the tardiness by the ratio of response time of the transaction

to its respective (relative) deadline.

tardiness =
response time

deadline
. (1)

Another QoS metric, which may pose conflicting require-

ments, is data freshness. In RTDBs, validity intervals are

used to maintain the temporal consistency between the real-

world state and sensor data in the database [15]. A sensor

data object Oi is considered fresh, or temporally consistent, if

current time− timestamp(Oi) ≤ avi(Oi), where avi(Oi) is

the absolute validity interval of Oi. To support the sensor data

freshness for Oi, we set the update period Pi = 0.5×avi(Oi)
[22]. QeDB supports the desired data freshness in terms of

perceived freshness (PF) [15].

PF =
Nfresh

Naccessed
, (2)

4

where Nfresh is the fresh data accessed by real-time trans-

actions, and Naccess is the total data accessed by real-time

transactions. When overloaded, the data freshness could be

sacrificed in order to improve the tardiness as long as the data

freshness is within the user-specified bounds. This approach is

effective if we consider the high update workloads, e.g., sensor

data updates during emergency, which may cause significant

delays of tasks and transactions.

value

reference

time

T s

Mp

_2%+

Fig. 2. Definition of settling time (Ts) and overshoot(Mp).

Average performance metrics such as tardiness and data

freshness are not sufficient to describe the behavior of dy-

namic computing systems, in which performance could change

significantly in a relatively short time interval [23]. Two

performance metrics are introduced from control theory to

describe the transient behavior of a computing system (see

Figure 2). Maximum overshoot Mp is the worst-case system

performance in the transient state and it is given in the

percentage to its reference value. Settling time Ts is the time

required for the system to reach its steady-sate value, which

is usually within ±2% of the reference value.

3.1.1 I/O deadline and CPU deadline

The tardiness of a transaction is determined by the response

time of both I/O operations and the computation in the trans-

action. In particular, in a data-intensive real-time application,

the I/O response time is a critical factor. The tardiness of

a transaction in Equation 1 tells how much a system is

overloaded, but it does not tell which resource is overloaded;

it can be either I/O or CPU. Therefore, the deadline of a

transaction is divided into two pseudo deadlines, I/O deadline

and CPU deadline, to measure the tardiness of I/O and CPU

activities separately. In a transaction, I/O deadline and CPU

deadline are the maximum total time allocated to all I/O

operations and all computation activities, respectively. Hence,

the sum of the two pseudo deadlines is equal to the deadline

of the transaction. The deadlines of transactions are given by

applications, and they are fixed at run-time. However, pseudo

deadlines are adjusted dynamically at run-time for control-

purpose.

Initially, the pseudo I/O and CPU transaction deadlines are

determined based on the profiled minimum execution time

of I/O operations, EXECi/o, and the computation activities,

EXECcpu, in the transaction. EXECi/o includes the over-

head which is proportional to the number of I/O operations,

such as looking up the buffer cache, locking index/data pages,

but it does not include actual I/O time to access data in the

secondary storage since the buffer hit ratio is assumed 100%.

EXECcpu is the minimum execution time of the transaction

except the EXECi/o. Given EXECi/o and EXECcpu, the

slack time of a transaction can be obtained:

(EXECi/o + EXECcpu)× sf = deadline, (3)

where sf is a slack factor, and it should be greater than one

for a transaction to be schedulable in the given system. Hence,

the pseudo I/O and CPU deadlines are set initially as follow:

deadlinei/o = EXECi/o × sf, (4)

deadlinecpu = EXECcpu × sf (5)

= deadline− deadlinei/o (6)

The definition of tardiness in Equation 1 is extended to

tardiness in I/O and CPU as follows:

tardinessi/o =
response timei/o

deadlinei/o
(7)

tardinesscpu =
response timecpu

deadlinecpu
(8)

However, assigning the same static slack factor for both

I/O and CPU deadline can be problematic since the ideal

slack times for I/O operations and computation change as the

system status changes. For example, when one of the resource

is overloaded while the other is not, it would be desirable to

allocate more slack time to the overloaded resource since the

other resource is under-utilized. To this end, QeDB dynami-

cally adjusts I/O and CPU deadlines at each sampling period

by Algorithm 1.

Algorithm 1: Run-time adaptation of deadlines.

Input: average tardinessi/o and tardinesscpu
Data: state variables τi/o and τcpu
if tardinessi/o ≥ tardinesscpu then

τi/o ++; τcpu = 0;

δd = α× τi/o;

increase deadlinei/o by δd%
else

τcpu ++; τi/o = 0;

δd = α× τcpu;

decrease deadlinei/o by δd%
end

deadlinecpu = deadline− deadlinei/o

In Algorithm 1, I/O and CPU deadlines are adjusted by

δd% on every sampling period. In a normal state, δd is set to

a small number to prevent the high oscillation of deadlines;

α is a constant factor and set to 1 in our testbed. However,

as a specific resource is being overloaded for consecutive

sampling periods, δd increases multiplicatively to speed up

the adaptation of pseudo deadlines. Since the sum of the I/O

deadline and the CPU deadline is equal to the deadline of the

transaction, the multiplicative increase of one pseudo dead-

line implies the multiplicative decrease of the other pseudo

deadline. In the presence of a QoS controller, the overloading

of a specific resource happens consecutively when the QoS

controller cannot adjust CPU or I/O load any further.

5

Setting I/O deadlines can serve two purposes: time-

cognizant I/O scheduling and I/O workload control. In time-

cognizant I/O scheduling, the I/O requests with shorter I/O

deadlines are scheduled first to meet the deadlines. In this

paper, we use I/O deadlines only for I/O workload control

purpose. The controller controls the I/O workload based on

tardinessi/o. In terms of I/O scheduling, First-come/First-

service scheduling policy is used for its simplicity. We reserve

the study on the impact of the time-cognizant scheduling for

future work.

3.2 QoS Management Architecture

buffer_size∆update rate∆

..

..

..

Dispatch

Abort/Restart

Block
Block Queue

Monitor
admission

rate

CPU tardiness error

I/O tardiness error

∆cpu_load

∆

Ready Queue

User tranactions

Best effort

Update

Q1

Q0

Q2

hit_ratio

Transaction Handler

Admission
Control

FMCCBM SC

QoS Manager

Tardiness

Feedback Controller

(MIMO)

Fig. 3. The QeDB architecture.

Figure 3 shows the QoS management architecture of QeDB.

It consists of the MIMO feedback controller, QoS Man-

ager, performance monitor, transaction handler, admission

controller, and ready queue.

Admitted transactions are placed in the ready queue. Figure

3 shows three separate queues in the ready queue. Temporal

data updates are scheduled in Q0 and receive the highest

priority. Q1 handles real-time user transactions. Non-real-time

transactions in Q2 have the lowest priority, and they are

dispatched only if Q0 and Q1 are empty.

The transaction handler manages the execution of the

transactions. It consists of a freshness manager (FM), a unit

managing the concurrency control (CC), a basic scheduler

(SC), and a buffer manager (BM). Transactions in each queue

are scheduled in FCFS manner. The FM checks the freshness

of a data object before accessing it, using the timestamp

and the absolute validity interval of the data. A transaction

accessing a data object is blocked if the data object is not

fresh. For concurrency control, we apply 2PL (two phase

locking) provided by Berkeley DB which is underlying QeDB.

Transactions can be blocked, aborted, and restarted due to data

conflicts. To reduce the frequency of I/O operations, the BM

manages the cache of recently used data. This cache is shared

among the processes.

The monitor computes the I/O and CPU tardiness, i.e.,

the difference between the desired I/O (and CPU) response

time and the measured I/O (and CPU) response time at each

sampling instant. Based on the errors, the MIMO feedback

controller computes the required buffer hit ratio adjustment

(∆hit ratio) and CPU load adjustment (∆cpu load).

The QoS manager estimates the required buffer size adjust-

ment and update rate adjustment based on ∆hit ratio and

∆cpu load. Update transactions waiting in the ready queues

are discarded according to their update rates. The buffer cache

size is adapted by the BM in the transaction handler as

requested by the QoS manager.

The details of the feedback control procedure follows.

3.2.1 Feedback control procedure

Controller

(MIMO)

RTEDB

Tardiness
+

−

+

−−−

−

1

1

e (k)

i/o

cpu

e (k)
tardiness (k)

i/o

cpu_load

hit_ratio∆

∆ tardiness (k)
cpu

Fig. 4. Tardiness control loop.

The goal of the feedback controller shown in Figure 4 is to

support the transaction response time equal to its deadline,

which requires the desired tardiness to be 1. The overall

feedback control procedure is as follows.

1) At the kth sampling instant, the tardiness errors ei/o(k)
and ecpu(k) are computed for I/O tardiness and CPU

tardiness, respectively.

2) Based on ei/o(k) and ecpu(k), the MIMO con-

troller computes the control signal ∆hit ratio and

∆cpu load. Unlike a Single Input/Single Output (SISO)

controller, the MIMO controller computes control sig-

nals simultaneously considering both I/O tardiness and

CPU tardiness.

3) The QoS manager translates ∆hit ratio to

∆buffer size. The QoS manager maintains a

linear model that correlates the buffer size to the buffer

hit ratio [24]. This linear model is updated at each

sampling period since locality of data accesses changes

dynamically at run-time. ∆buffer size is achieved

by changing the buffer cache size according to this

model. Changing the buffer cache size also changes

the CPU load as shown in the next section. Therefore,

∆cpu load is adjusted after applying a new buffer size.

4) The ∆cpu load is achieved by adjusting the update

rates of the temporal data. For cost-effective temporal

data updates, the access update ratio AUR[i] is com-

puted for each temporal data di; AUR[i] is defined

as
Access Frequency[i]
Update Frequency[i] . If ∆cpu load < 0, the update

rates of a data object, which is accessed infrequently,

are adjusted from p[i] to p[i]new [10]. The adjustment

changes the CPU load by (p[i]new − p[i])/p[i]. This

update period adjustment repeats to a subset of temporal

data until ∆cpu load ≥ 0 or no more update rates

adaptation is possible.

The details of the feedback control loop design are discussed

in the following section.

6

4 FEEDBACK CONTROL LOOP DESIGN

In this section, we take a systematic approach to designing the

tardiness controller.

4.1 System Modeling and Verification

The first step in the design of a feedback control loop is

the modeling of the controlled systems [23], which in our

study are RTEDBs. One approach is to use first-principles

of the RTEDB. However, the inner workings of complex

software systems such as RTEDBs are extremely complicated.

Therefore, instead of using the first-principles, we employ

system identification technique [25]. System identification is an

empirical approach that quantifies several system parameters

and performance metrics by constructing statistical models

from the data.

4.1.1 Selection of system outputs/control inputs

As defined in Section 3, the primary QoS metric in QeDB

is transaction tardiness. Hence, we need to choose tuning

parameters, or control inputs, to dynamically control trans-

action tardiness. In selecting appropriate control inputs, two

factors should be considered [26]: (1) the parameters must

be dynamically adjustable; (2) the parameters must affect the

selected performance metrics in a meaningful way. In QeDB,

we synthetically divided the tardiness into CPU tardiness and

I/O tardiness. Since QeDB has two QoS metrics, we need at

least two control inputs to precisely control them.

Given I/O tardiness as one of the QoS metrics, we can easily

choose buffer hit ratio as the system parameter to control the

I/O tardiness. Intuitively, the higher buffer hit ratio reduces the

cost of fetching data objects from secondary storages, virtually

decreasing the average I/O response time. In QeDB, the buffer

hit ratio is controlled by adjusting the size of the buffer cache.

Regarding CPU tardiness, one available tuning parameter

that significantly affects it is the utilization of CPU. High

CPU utilization can make the response time of transactions

longer due to the high CPU contention among tasks. In

RTEDBs, the major factor that decides the CPU utilization

is the frequency of temporal data updates since the frequent

update of temporal data can significantly increases the CPU

overhead. By dropping incoming update requests, we can save

the CPU load for handling them at the cost of degrading

the freshness of temporal data. However, the lower bound

of the update frequency is determined by the application’s

requirements on data freshness as stated in Section 3.1.

4.1.2 Rationale behind MIMO control

Unlike previous work [14][15], which has single-input, single-

output (SISO) control, QeDB in this paper has multiple inputs

(hit ratio and cpu load) and multiple outputs (tardinessi/o
and tardinesscpu). We may choose to use two separate SISO

models for each pair of control input and system output;

one SISO model for relating ∆hit ratio and tardinessi/o,

and another model for relating ∆cpu load and tardinesscpu.

However, if an input of a system is highly affected by

another input, then a MIMO model should be considered [26]

since having two SISO models cannot capture the interactions

between the different control inputs and system outputs.

We performed a series of experiments on a testbed to

understand the interactions between multiple control inputs

and multiple system outputs (the details of the testbed and

configuration parameters are discussed in Section 5.) Figure

5 shows the results of varying the cache size while the

update rate of the temporal data is fixed. It shows that

changing the buffer hit ratio via varying the cache size also

changes the CPU load, and they are inversely proportional;

increasing the buffer hit ratio decreases the CPU load, and

vice versa. This occurs because the I/O operations of QeDB

involve not only raw I/O to the secondary storage, but also

computation such as searching for data pages in a buffer,

locking data/index pages, and finding a least-recently-used

page. Therefore, when the buffer hit ratio is low, the CPU load

increases proportionally to find LRU pages, and allocate buffer

space for new pages from the secondary storage. In the next

experiment, the update rate of the temporal data is varied while

the buffer size is fixed. Figure 6 shows the results. Update

transactions are computation-intensive, and they are expected

to only change the CPU load. The result in Figure 6-(b)

matches this expectation. While the buffer hit ratio is affected

a little by varying the update rates, the effect is negligible.

However, Figure 6-(c) shows that changing the CPU load

by adjusting the update rates affects both I/O tardiness and

CPU tardiness; both the I/O tardiness and the CPU tardiness

are proportional to the CPU load. This is because the I/O

operations in QeDB involves lots of computation themselves

and the increased CPU load makes them preempted more

frequently by high priority update transactions. Moreover,

increasing the update rates of the temporal data increases the

lock conflict rate, making I/O operations wait for the locks.

These results show that a MIMO model is required to capture

those close interactions of multiple inputs and multiple outputs

of QeDB.

4.1.3 System identification

In the actual system identification [25] of a RTEDB, two inputs

are changed simultaneously with relatively prime cycles on

the same testbed. The relatively prime cycles are used to fully

stimulate the system by applying all different combination of

two inputs. The result, which is shown in Figure 7, is used

for system modeling.

The form of linear time invariant model for QeDB is shown

in Equation 9, with parameters A and B.
[

tardinessi/o(k + 1)
tardinesscpu(k + 1)

]

=

A ·

[

tardinessi/o(k)
tardinesscpu(k)

]

+B ·

[

hit ratio(k)
cpu load(k)

]

(9)

Because QeDB is modeled as a MIMO system, A and B

are 2x2 matrices. Note that we model QeDB as a first-order

system; the current outputs are determined by their inputs and

the outputs of the last sample. In our study, the model has

A =

[

0.275 −0.266
−0.158 0.601

]

, and B =

[

−0.255 1.980
0.120 0.784

]

as its parameters. All eigenvalues of A are inside the unit

7

0 50 100 150 200 250
0

2

4

6

8
C

a
c
h

e
 s

iz
e

 (
M

B
)

Time (x 5 seconds)

0 50 100 150 200 250
0

20

40

60

80

100

U
p

d
a

te
 p

e
r

s
e

c
o

n
d

Cache size(MB)

Update per second

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

B
u
ff
e
r

h
it
 r

a
ti
o

Time (x 5 seconds)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
P

U
 l
o
a
d

Buffer hit ratio

CPU load

0 50 100 150 200 250
0.5

1

1.5

I/
O

 t
a
rd

in
e
s
s

Time (x 5 seconds)

0 50 100 150 200 250
0.5

1

1.5

C
P

U
 t
a
rd

in
e
s
s

I/O tardiness

CPU tardiness

(a) Cache size vs. update rate (b) Buffer hit ratio vs. CPU load (c)I/O and CPU tardiness

Fig. 5. Varying cache size.

0 50 100 150 200 250
0

2

4

6

8

C
a

c
h

e
 s

iz
e

 (
M

B
)

Time (x 5 seconds)

0 50 100 150 200 250
0

20

40

60

80

100

U
p

d
a

te
 p

e
r

s
e

c
o

n
d

Cache size(MB)

Update per second

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

B
u
ff
e
r

h
it
 r

a
ti
o

Time (x 5 seconds)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
P

U
 l
o
a
d

Buffer hit ratio

CPU load

0 50 100 150 200 250
0.5

1

1.5

I/
O

 t
a
rd

in
e
s
s

Time (x 5 seconds)

0 50 100 150 200 250
0.5

1

1.5

C
P

U
 t
a
rd

in
e
s
s

I/O tardiness

CPU tardiness

(a) Cache size vs. update rate (b) Buffer hit ratio vs. CPU load (c)I/O and CPU tardiness

Fig. 6. Varying update rate.

0 50 100 150 200 250
0

2

4

6

8

C
a

c
h

e
 s

iz
e

 (
M

B
)

Time (x 5 seconds)

0 50 100 150 200 250
0

20

40

60

80

100

U
p

d
a

te
 p

e
r

s
e

c
o

n
d

Cache size(MB)

Update per second

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

B
u
ff
e
r

h
it
 r

a
ti
o

Time (x 5 seconds)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
C

P
U

 l
o
a
d

Buffer hit ratio

CPU load

0 50 100 150 200 250
0.5

1

1.5

I/
O

 t
a
rd

in
e
s
s

Time (x 5 seconds)

0 50 100 150 200 250
0.5

1

1.5

C
P

U
 t
a
rd

in
e
s
s

I/O tardiness

CPU tardiness

(a) Cache size vs. update rate (b) Buffer hit ratio vs. CPU load (c)I/O and CPU tardiness

Fig. 7. Varying cache size and update rate simultaneously (System identification).

circle, hence, the system is stable [23]. The accuracy metric

R2 (= 1− variance(experimental value - predicted value)

variance(experimental value)
) is 0.844

and 0.866 for I/O and CPU tardiness, respectively. This shows

that the above model is accurate enough since R2 ≥ 0.8 is

considered acceptable [23].

One issue in modeling a computing system is its non-

linearity and time-variant characteristics. Complex systems

such as RTEDBs can show a non-linear response to inputs.

For example, the CPU deadline miss ratio develops differently

when the CPU is saturated from when it is not saturated.

However, the system can be approximated closely with linear

time invariant models such as the ARX model by choosing

an operating region where the system’s response is approxi-

mately linear [23]. Even when the system’s response is highly

non-linear, the system can be modeled with linear models

by dividing the operating region into several sub-operating

regions, which are approximately linear; in this case, adaptive

control techniques such as gain scheduling [23] can be used for

control. In case of QeDB, the operating region of the controller

is set so that the tardiness is bigger than 0.5 and less than 1.5.

Since the accuracy of the linear model in the operating region

is acceptable, the linear model is sufficient for our purpose.

Another important issue in system identification is choosing

a proper sampling interval. In QeDB, the buffer cache affects

the choice of sampling interval because the buffer hit ratio

changes slowly after adjusting its size. If the sampling interval

is too short, controlling the buffer size may not take full

effect until the next sampling instant, thus, resulting in phase

delays between control inputs and system outputs. Conversely,

if the sampling interval is too long, the speed of control will

be slow. Our experiments showed that 5 second sampling

interval makes a good trade-off between the two conflicting

8

requirements. Hence, in Figures 5, 6, and 7, each point

corresponds to a sampling point and takes 5 seconds. Further, it

should be noted that in these figures almost no phase delays are

observed between the control inputs (cache sizes and update

rates) and system outputs (buffer hit ratios and CPU loads).

This can be attributed to choosing a proper sampling interval,

which is long enough to have effect on the input signals until

their next sampling instants.

4.2 Controller Design

For QeDB, we choose to use a proportional integral (PI)

control function given by,

u(k) = −K

[

e(k)
eI(k)

]

= −
[

KP KI

]

[

e(k)
eI(k)

]

(10)

where KP and KI are proportional and integral control gains,

respectively. KP and KI are 2×2 matrices, hence K is a 2×4
matrix. At each sampling instant k, the controller computes

the control input u(k) =

[

hit ratio(k)
cpu load(k)

]

by monitoring the

control error e(k) =

[

1− tardinessio(k)
1− tardinesscpu(k)

]

and integrated

control error eI(k) =

[

eI,1(k − 1) + eI,1(k − 1)
eI,2(k − 1) + eI,2(k − 1)

]

. The

control gains, Kp and KI, determine the controller’s char-

acteristics, which includes the settling time and the overshoot.

To obtain proper control gains, we choose to use the linear

quadratic regulator (LQR) technique, which is accepted as

a general technique for MIMO controller design [23]. In the

LQR technique, control gains are set to minimize the quadratic

cost function,

J =

∞
∑

k=0

[e(k) eI(k)] ·Q ·

[

e(k)
eI(k)

]

+u(k)T ·R ·u(k). (11)

The cost function J includes the control errors e(k), the

integrated control errors eI(k), and the weighting matrices

Q and R. Matrix Q quantifies the cost of control errors and R

quantifies the cost of control effort. LQR allows us to better

negotiate the trade-off between the speed of response and over-

reaction to random fluctuation by selecting appropriate Q and

R matrices. The steps in LQR design are 1) selecting the

weighting matrices Q and R, 2) computing the control gain

K, and 3) evaluating the performance of the new controller by

running a computer simulation. These steps repeat by choosing

new Q and R if the performance is not suitable.

First, we need to normalize the terms in Equation 11. In

QeDB, equal weights on I/O and CPU are imposed by choos-

ing R=diag(1/30, 1/30) since both the buffer hit ratio and the

CPU load have a range of [0,1]. In matrix R, component r1,1
is the cost associated with I/O control effort and r2,2 is the cost

for CPU control. For the matrix Q, we focus on the diagonal

entries. These entries correspond to the state variables e1(k),
e2(k), eI1(k), eI2(k), where the subscript 1 refers to the I/O

tardiness and the subscript 2 refers to the CPU tardiness. We

choose q1,1 = 0.1 = q2,2 to provide equal costs for the

control errors (e1(k), e2(k)). A smaller cost is placed on the

integrated control errors eI,1(k), eI,2(k), as indicated by the

elements q3,3 and q4,4: Q=diag(0.1, 0.1, 0.005, 0.005). The

details of computing KP and KI using LQR are somewhat

involved. Typically, tools such as MATLAB command dlqr are

employed. For more details on the LQR technique, readers are

referred to [23].

5 IMPLEMENTATION

Commonly, embedded databases are used as components of

open systems consisting of many other interacting software

components and applications, instead of as isolated monolithic

databases [16]. To this end, QeDB is intended for use in open

systems and built on top of a POSIX-based standard operat-

ing system [27], instead of a specialized real-time operating

system.

In this section, we describe the system components used in

the implementation of QeDB, and discuss some implementa-

tion issues not directly related to QoS control.

5.1 Hardware and Software

The hardware platform used in the testbed is the Nokia

N810 Internet tablet [28]. The summarized specification of the

testbed is given in Table 1. We chose this platform because

N810 represents typical modern embedded systems that QeDB

is aiming for; it has small main memory space and a large

flash memory space, limiting the application of main memory-

based RTDB technologies4. The flash memory in N810 has

2KB page size and 128KB erase block size. Since flash-based

storage is de-facto standard of modern embedded devices as

N810, flash-based storage is assumed as secondary storage

in QeDB. However, the presented approach of QeDB is not

specific to flash-based storage.

The operating system of N810 is Maemo, which is a

modified version of GNU/Linux slimmed down for mobile

devices5.

TABLE 1

H/W specification of the testbed.

CPU 400MHz TI OMAP 2420
Memory 128 MB RAM
Flash storage 256 MB (on-board), 2GB (SD card)
Network IEEE 802.11b/g, Bluetooth 2.0

The flash memory of N810 can be accessed through MTD

(Memory Technology Device) [29] and JFFS2 (Journaling

Flash File Systems, version 2) [30]; database files in QeDB

are stored in the flash device via this JFFS2 filesystem. MTD

provides a generic interface to access flash devices, which

includes routines for read, write, and erase. JFFS2 is a log-

structured file system designed for use on flash devices in

embedded systems. Rather than using a translation layer on

flash devices to emulate a normal hard drive, it places the

filesystem directly on the thin MTD layer. JFFS2 organizes

a flash device as a log which is a continuous medium, and

4. In N810, the remaining main memory space for user applications is less
than 30MB.

5. Maemo is based on GNU/Linux 2.6.21 kernel and compliant with POSIX
standards.

9

data is always written to the end of the log. In a flash device

old data cannot be overwritten before erasing, so the modified

data must be written out-of-place. Using a background process,

JFFS2 collects garbage data.

QeDB is an extension of Berkeley DB, which is a popular

open-source embedded database. Berkeley DB provides robust

storage features as found in traditional database systems, such

as ACID transactions, recovery, locking, multi-threading for

concurrency, and slave-master replication for high availability.

However, Berkeley DB does not provide the QoS support in

terms of transaction tardiness and data freshness, which is the

main objective for the design of QeDB.

5.2 Implementation Details and Issues

We discuss several implementation issues and challenges for

implementing QeDB.

5.2.1 CPU scheduling

Currently, Linux underlying QeDB supports preemptive real-

time scheduling by partially implementing POSIX 1003.b

and 1003.c real-time extension features [18][27]6. Since the

POSIX real-time extension does not support optimal real-

time scheduling and concurrency control algorithms such as

EDF (earliest-deadline-first), they should be implemented in

RTEDBs for optimal performance. However, we choose to

assign priorities manually to tasks based on their importance,

since the experimental results in [31] show that static priority

assignment schemes achieve the performance very close to that

of EDF when the multi-programming level (MPL) is low; the

MPL of real-time tasks in QeDB is typically less than 3.

Four classes of tasks or transactions are defined in QeDB.

Different priorities are assigned to them based on their im-

portance as shown in Table 2. First, the control task, which

periodically performs monitoring and feedback control of the

system, is assigned the highest priority, 15. On every sampling

period, the control task calculates and enforces the control in-

puts by adjusting system parameters, and then sleeps until the

next sampling period starts. Update transactions are aperiodic

real-time tasks with priority 10 and they are invoked when

new updates of temporal data arrives. Update transactions are

scheduled by FIFO scheduling policy. We assign priority 5
to user transactions, since delayed sensor data updates can

impair the freshness of data. Finally, the priority of best-effort

transactions is 0, which is a non-real-time priority.

5.2.2 CPU load measurement

The CPU load is one of the control inputs in QeDB, and the

effectiveness of feedback control depends on the preciseness of

the CPU load information. In Linux underlying QeDB, several

types of CPU information are available for users and applica-

tions. First, Linux exports CPU load average information via

proc file system (/proc/loadavg), and several commands like

top use this information. However, this information is based

on queuing-theoretic estimation by observing the length of run

6. In POSIX threads, fixed priorities, ranging from 1 to 99, belong to real-
time scheduling class and their priority is not dynamically adjusted by the
CPU scheduler.

queue in the CPU scheduler. Moreover, this does not provide

fine-grained information on how much CPU time has been

used by a specific set of tasks. Instead of using this CPU

load average information, we use the number of clock ticks

that have actually been used by the real-time tasks both in

user and kernel modes. This information is available via the

/proc/stat interface in Linux. It should be noted that when we

measure the CPU load, we only consider the CPU time spent

by real-time tasks, since the load incurred by non-real-time

tasks does not affect the tardiness of the real-time tasks. The

CPU time is assigned to non-real-time tasks only when there

is no real-time task. Hence, the CPU load at each sampling

period for control purpose is measured as follows:

time spent by real-time tasks in the sampling period

sampling period
. (12)

5.2.3 Avoiding double buffering

QeDB uses a file system to store data. When using file systems

with a database, the read data is double-buffered in both the

file system buffer cache and the DBMS buffer cache. Double

buffering not only wastes memory space, but also makes I/O

response time unpredictable. DBMS have no control over the

filesystem layer buffer cache, since it is controlled by the

operating system. QeDB’s dynamic buffer adjustment scheme

cannot achieve its goal in the presence of double-buffer since

changing the buffer size at QeDB only affects the buffer in the

DBMS layer. Unfortunately, Berkeley DB for Linux, which is

underlying QeDB, does not support direct I/O, or bypassing

the file system’s buffer cache. QeDB solves this problem by

making a separate partition for database files, and disabling the

buffer cache of that partition at the file system level. The buffer

cache in the file system is disabled by applying modification

to the JFFS2 code in the Linux kernel.

6 EVALUATION

In this section, we discuss the goal and background of the

experiments and present the results.

6.1 Evaluation Testbed

Firefighting has been considered as one of the domains that

can best benefit from improvements in timely sensor data

gathering, processing and integration. Little timely information

can make huge differences in making decisions [20][5][6]. If

we can build a system that satisfies the requirements of such a

highly stressful domain, we might also be able to apply these

results in less extreme environments, such as computing while

driving. To this end, a firefighting scenario from [6] is adopted,

and simulated on our testbed for more realistic evaluation.

In the scenario, a PDA carried by a firefighter collects sensor

data via wireless communication, and a periodic real-time

task running on the PDA checks the status of the burning

building such as the possibility of collapse, explosion, the

existence of safe retreat path, etc. The PDA carried by a

firefighter is simulated by a N810 Internet tablet and a stream

of sensor data from a building is simulated by a separate

3.0 GHz Linux desktop. The two devices are connected via

10

TABLE 2
QeDB tasks.

Task class Priority Scheduling policy periodicity

Control task 15 (real-time) round robin periodic
Update transactions 10 (real-time) FIFO non-periodic
User transactions 5 (real-time) FIFO periodic
Best-effort transactions 0 (non-real-time) round robin non-periodic

wireless Ethernet. The desktop simulates 1024 sets of sensors

located in the building by continuously sending update reports

to the N810. The report period of each set of sensors is

uniformly distributed in [1 sec, 10 sec]. In the N810, each

update report from the desktop initiates an update transaction

to the underlying QeDB. Each set of sensors takes 1KB in

storage space, totaling 1MB for temporal database in the N810.

The N810 has another 7MB data for non-temporal data such

as maps of the building, and engineering data to analyze the

status of the building7.

Every 200ms, a new QeDB user transaction is instantiated

by a local timer in the N810. The user transaction has a

similar structure to Program 1 and it simulates the operation

of checking the status of the building. The profiled minimum

response time, or the execution time, is 31 ± 0.52ms for

EXECI/O, and 36 ± 0.3ms for EXECCPU with 99%

confidence. The deadline of the user transaction is set to

110ms and the remaining 90ms slot is reserved for non-real-

time tasks, which are still important for proper operation of the

system. For example, our experiment shows that the keypad

and GUI components are not working smoothly if the user

transaction takes longer than 110ms. This is similar to having

aperiodic servers in real-time scheduling to handle aperiodic

tasks [32]. Figure 8 shows the tasks in one period; this period

repeats in the experiment.

sensor data updates

90ms

RT user transactions Non−RT tasks

110ms

Fig. 8. Tasks in the experiment.

6.2 Performance Evaluation Goals and Baselines

Considering the goal of QeDB, stated in Section 3.1, the two

objectives of the performance evaluation are 1) to determine

if QeDB can meet the QoS specification given by applications

under various conditions and 2) to test the effectiveness of the

proposed MIMO control approach.

Considering the first objective, we have studied and evalu-

ated the behavior of the algorithms under various conditions,

where a set of parameters have been varied. These parameters

are: 1) the ratio of I/O operations to computation in a transac-

tion and 2) access patterns as computation systems may show

different behaviors for different workloads.

7. These are raw data sizes. The total storage and memory overhead to keep
this raw data in the database system is more than the twice the raw data.

TABLE 3
Tested approaches.

Open Pure Berkeley DB
CPUonly RTEDB with SISO control of update rates
QeDB RTEDB with MIMO control

TABLE 4
QeDB SISO control (CPUonly) parameters.

Control input (u(k)) CPU load
System output (y(k)) average transaction tardiness
Modeling methods System identification
System model y(k + 1) = 0.8595y(k) + 0.1449u(k)
R2 0.8927
Controller type PI control
Controller design method Pole placement (Ts = 10 and Mp = 0.01)
Controller gain KP = 1.3057 and KI = 0.3319

The second objective is investigated by comparing the

MIMO-controlled QeDB with different state-of-art approaches

with regard to performance adaptation. For performance com-

parisons, we consider three approaches shown in Table 3.

Open is the basic Berkeley DB without any special perfor-

mance control facility. However, the FCFS scheduling with

3 differentiated queues, as in Section 3.2, is still used to

process real-time transactions faster. Thus, Open represents a

state-of-art database system. In contrast, CPUonly represents

a RTDB having a QoS management scheme [10], which is

not I/O-aware. In CPUonly, as the tardiness of transactions

deviates from the desired tardiness, only the CPU workload

is adjusted by changing update rates of temporal data. I/O

workload is not dynamically controlled. This scheme is orig-

inally designed for main-memory RTDBs that have zero or

negligible I/O workload. This approach uses a SISO model

and controller; the CPU utilization is the control input and the

transaction tardiness is the system output. A PI controller is

used for CPUonly. Table 4 shows the parameters and settings

of CPUonly. Finally, QeDB is our approach, which controls

both I/O and CPU tardiness using a MIMO controller.

6.3 Average Performance

In this experiment, workloads are varied by applying different

user transaction characteristics and data access patterns.

6.3.1 I/O-intensive vs. computation-intensive workloads

The effect of the ratio of I/O operations to computation

in workloads is investigated by applying user transactions

with different characteristics. Table 5 shows the characteristics

of user transactions with different ratios of I/O operations

(EXECI/O) to computation (EXECCPU). Among the trans-

action types, type A is the most computation-intensive, and

11

A B C D E
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
T

a
rd

in
e
s
s

Open

CPUonly

QeDB

A B C D E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
iv

e
d
 f
re

s
h
n
e
s
s

Open

CPUonly

QeDB

A B C D E
0

1

2

3

4

5

6

B
u

ff
e

r
s
iz

e
(M

B
)

Open

CPUonly

QeDB

(a) Tardiness (b) Perceived freshness (c) Buffer size

Fig. 9. Average performance with different I/O-to-computation ratios.

TABLE 5

User transaction properties.

Type EXECI/O EXECCPU

A 15ms 53ms
B 27ms 39ms
C 35ms 33ms
D 45ms 23ms
E 55ms 13ms

conversely type E is the most I/O-intensive. The minimum

I/O execution time, EXECI/O, is adjusted by changing the

number of data object accesses per user transaction. Similarly,

the minimum computation time, EXECCPU , is adjusted by

changing the loop counts of a dummy computation loop.

Figure 9 shows the average performance of each approach

with different I/O-to-computation ratios; the confidence in-

terval is 95%. As shown in Figure 9-(a), both CPUonly

and QeDB closely satisfy the tardiness performance goal. In

contrast, Open does not achieve the goal in any transaction

type. Actually, the tardiness of Open could not be measured in

all cases since the system did not respond. In this case the real-

time tasks took all the resources, preventing the low-priority

tasks from proceeding. The target tardiness is achieved at the

loss of data freshness as shown in Figure 9-(b). It quantifies the

costs of achieving the target tardiness goals. It is interesting

that more degradation in data quality is required as we increase

the amount of I/O operations in user transactions. We believe

that this result is attributed to the increase of lock conflicts;

user transactions have higher chance of conflicts with update

transactions as the number of I/O operations increases. The

frequent locks and unlocks due to conflicts incur higher load,

e.g. context switching cost in QeDB as well as in the operating

system layer. Moreover, I/O operations are more costly since

they take longer response time to access secondary storages

once data objects are not found in the buffer cache. This

shows that I/O has high performance impact on the tardiness of

transactions, particularly when the ratio of I/O in a transaction

is high.

It should be noted that QeDB maintains high data fresh-

ness as shown in Figure 9-(b) while the data freshness of

CPUonly drops sharply as I/O-to-computation ratio increases.

In CPUonly, the data freshness of Type E transactions, which

are most I/O-intensive, is 0.20 while QeDB’s data freshness

is 0.60. This data freshness gap between CPUonly and QeDB

derives from the fact that QeDB can effectively control I/O

loads by dynamically adjusting the size of the buffer cache. As

shown in Figure 9-(c), when transactions are less I/O-intensive,

e.g., for types A, B and C, the buffer cache can be smaller

than the default size. Even with the smaller buffer caches,

QeDB can still achieve the desired tardiness. In contrast, when

transactions are I/O-intensive, e.g., for types D and E, QeDB

maintains the high data freshness by increasing the size of

the buffer cache. Type E transactions of QeDB consume 50%
more main memory than CPUonly’s.

6.3.2 Varying access patterns

In this experiment, the effect of data contention is tested using

x− y data access scheme. In x− y access scheme, x% of the

data accesses are directed to y% of the data in the database. For

instance, with 90-10 access pattern, 90% of the data accesses

are directed to 10% of the data in the database, thus, incurring

data contention on 10% of the entire data. We tested the

robustness of our approach by applying three different x− y

access patterns; 90-10, 70-30, and 50-50.

The average performance for each approach with each data

access pattern is shown in Figure 10; the confidence interval

is 99%. Figure 10-(a) shows that both CPUonly and QeDB

achieve the tardiness goal in all data access patterns. In

contrast, Open does not achieve the goal in any data access

pattern. The tardiness of Open could not be measured in

70-30 and 50-50 data access patterns because the system

did not respond as in the previous I/O-to-computation ratio

experiment.

Even though both CPUonly and QeDB achieve the tardiness

goal, the trade-offs they make are very different. Figure 10-

(b) shows the total freshness, which is the ratio of fresh

data to the entire data in the database. CPUonly shows lower

data freshness compared to QeDB, and this is even more

evident when we consider the perceived freshness of the data

as shown in Figure 10-(c). In the 90-10 access pattern, the

total size of locality is small, and transactions are CPU-

bound since most data access requests can be handled in the

buffer with high buffer hit ratio. However, as the data access

spreads widely as in 50-50 access pattern, the size of locality

becomes larger, and the transactions become I/O-bound since

12

90−10 70−30 50−50
0

0.5

1

1.5

2

2.5

3

3.5

4

T
a

rd
in

e
s
s

Open

CPUonly

QeDB

90−10 70−30 50−50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
o

ta
l
fr

e
s
h

n
e

s
s

Open

CPUonly

QeDB

(a) Tardiness (b) Total freshness

90−10 70−30 50−50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

iv
e

d
 f

re
s
h

n
e

s
s

Open

CPUonly

QeDB

90−10 70−30 50−50
0

1

2

3

4

5

6

B
u

ff
e

r
s
iz

e
(M

B
)

Open

CPUonly

QeDB

(c) Perceived freshness (d) Buffer size

Fig. 10. Average performance with X-Y access patterns.

the small buffer of CPUonly incurs low hit ratio. In the

CPUonly case, the tardiness is controlled only by adjusting the

freshness of the temporal data, regardless of which resource

is getting overloaded. Therefore, CPUonly has to lower the

freshness of the data excessively, which can be problematic

if an application requires high data freshness. For example,

the total freshness of CPUonly drops from 0.73 ± 0.02 to

0.37± 0.1 when the access pattern changes from 90-10 to 50-

50, which is more than 50% degradation of the data freshness.

In contrast, QeDB achieves more stable data freshness in all

data access patterns. As the size of locality is getting larger,

QeDB increases the size of the buffer as in Figure 10-(d),

while still maintaining high data freshness. For instance, the

buffer size increase about 64% and the total freshness drops

18% when the access pattern changes from 90-10 to 50-50. If

we consider the perceived freshness of the data, the difference

between CPUonly and QeDB is even higher. The perceived

freshness drops only 14% in QeDB while it drops 40% in

CPUonly.

6.4 Transient Performance

The average performance is not enough to show the perfor-

mance of dynamic systems. Transient performance such as set-

tling time should be small enough to satisfy the requirements

of applications. In this experiment, the workload increases

by introducing a disturbance. For example, consider a situ-

ation where peer firefighters opportunistically exchange their

temporal data when they are close enough to communicate

with each other. This opportunistic data exchange incurs both

additional I/O and CPU load to process it. In the experiment,

the disturbance is a periodic transaction that lasts for 50

sampling periods. The periodic transaction retrieves 1KB data

page with 10ms interval.

Figure 11-(a) shows the tardiness of real-time transactions.

The corresponding buffer hit ratio and data freshness at the

same time are shown in Figure 11-(b). The disturbance starts

at the 60th sampling period and ends at the 110th sampling

period. In Figure 11-(a), we can see that the tardiness increases

suddenly at the 60th sampling period. However, the tardiness

stabilizes within 3 sampling periods. When the disturbance

disappears at the 110th sampling period, it takes 8 sampling

periods to stabilize. These long settling times are the result

of controller tuning in the controller design phase in Section

4.2. We could reduce the settling times by choosing control

parameters for more aggressive control at the controller de-

sign time. However, aggressive control results in the higher

overshoot and fluctuations in controller inputs (the cache size

and update rates). For details on controller tuning, the reader

is referred to [33]

Figure 12 shows the transient behavior of CPUonly in

the same experiment settings. In coping with the unexpected

disturbance, CPUonly exhibits similar transient behavior as

QeDB in terms of the settling time and overshoot (see Figure

12-(a)). However, CPUonly makes greater tradeoffs in data

freshness to guarantee the desired tardiness as shown in Figure

12-(b). Hence, the data freshness of CPUonly fluctuates highly.

The fluctuation magnitudes are 64% and 39%, respectively for

CPUonly and QeDB.

13

0 20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

Time (x5 seconds)

I/O tardiness

CPU tardiness

Total tardiness

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

C
a
c
h
e
 s

iz
e
 (

M
B

)

Time (x5 seconds)

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

T
o
ta

l
fr

e
s
h
n
e
s
s

Cache size(MB)

Total freshness

(a) Tardiness (b) Buffer size and freshness

Fig. 11. Transient performance of MIMO QeDB.

0 20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

Time (x5 seconds)

Total tardiness

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

C
a
c
h
e
 s

iz
e
 (

M
B

)

Time (x5 seconds)

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

T
o
ta

l
fr

e
s
h
n
e
s
s

Cache size(MB)

Total freshness

(a) Tardiness (b) Buffer size and freshness

Fig. 12. Transient performance of SISO QeDB (CPUonly).

7 RELATED WORKS

Most RTDB work is based on simulations [34][35][36][13]

[37][38]. Only a few approaches [16][10][17][39] have actu-

ally been implemented and evaluated in real database systems.

STRIP (STanford Real-time Information Processor) [16] is

one of the first real-time database implementations and it

was designed for time-cognizant business applications such

as stock trading. The Beehive real-time database supports

advanced real-time transaction scheduling based on data dead-

line, not transaction deadline [17]. Chronos has been primarily

designed for high-throughput business applications, and it

provides feedback control mechanism to guarantee the target

deadline miss ratio of transactions. However, most of these

systems are not available publically, or are outdated. QeDB has

been developed to address this problem. Moreover, all previous

implementations take main memory-based RTDB approaches,

limiting their application to a broader range of systems,

resource-constrained systems in particular. In contrast, QeDB

does not require that all data should reside in main memory.

In the embedded systems domain, several DBMS imple-

mentations [40][41] are available. Most of the them are flash

memory-based DBMSs, and exploit the peculiar characteris-

tics of flash memory to optimize the resource consumption.

Some DBMSs [42][43] target extremely resource-constrained

embedded systems such as sensor platforms. However, these

DBMSs provide only basic features for accessing data such

as indexing. Some features of DBMSs such as concurrency

control and guaranteeing logical consistency are usually not

supported in these DBMSs. Therefore, their performance

optimization is at the flash device level. Moreover, even

though they provide efficient mechanisms for accessing data,

these approaches are basically best-effort; they do not assure

any guarantees on the performance. Unlike these DBMSs,

QeDB guarantees the QoS goals set by the applications via

feedback control even in the presence of dynamically changing

workload.

Feedback control has been actively applied to manage

the performance of various systems such as web servers

[44], real-time middleware [45], caching services [46], and

email servers [47]. In particular, applying control-theoretic

approaches to computing systems showed its effectiveness

when the operating environments, e.g., workload, are highly

dynamic and unpredictable. However, these approaches are not

directly applicable to RTDBs, because they do not consider

RTDB-specific issues such as data freshness. Moreover, these

approaches consider only single resource, e.g., contention in

CPU, for QoS management. Unlike these approaches, QeDB

manages multiple resources, which have close interaction, via

MIMO feedback control.

14

8 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel feedback control architecture

to support the desired tardiness of transactions in RTEDBs.

In order to provide more efficient and robust control behavior,

our approach can control multiple closely interacting resources

simultaneously. We showed the feasibility of the proposed

feedback control architecture by implementing and evaluating

it on a modern embedded system. Our evaluation shows that

the simultaneous control of I/O and CPU resource can make a

better negotiation between the timeliness of transactions and

the freshness of data by providing proper amount of resources

in a robust and controlled manner.

In the future, we plan to enhance QeDB in several different

directions. First, the feedback control scheme of QeDB will

be extended to include other QoS metrics such as power,

which is critical in mobile embedded systems. Second, we are

interested in coordinating the interaction of multiple control

loops in a system. For example, we currently disable dynamic

voltage and frequency scaling (DVFS) to avoid the interference

between the control loops of QeDB and DVFS. Finally, the

presence of multiple processors and cores also poses an

interesting problem. In multi-processor systems, we need to

investigate how the loads of multiple processors affect the

timeliness of transactions. This is required to formulate a

model that captures their correlation. Currently, our work

considers only single processor systems.

ACKNOWLEDGMENTS

This work was supported, in part, by IT R&D Program of

MKE/KEIT 10035708 , KOSEF WCU Project R33-2009-000-

10110-0, and US NSF grant CNS-0614886, CNS-0614870,

and CNS-0626616.

REFERENCES

[1] J. A. Stankovic, “When sensor and actuator networks cover the world,”
ETRI Journal, vol. 30, no. 5, pp. 627–633, 2008.

[2] D. Nystrom, A.Tesanovic, C.Norstrom, J. Hansson, and N.-E. Bankestad,
“Data management issue in vehicle control systems: a case study,” in
ECRTS’02, 2002.

[3] W. Enkelmann, “Fleetnet - applications for inter-vehicle communica-
tion,” in Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, 2003.

[4] “CarTALK2000 Project, http://www.cartalk2000.net/,” 2007.
[5] “Communication and Networking Technologies for Public

Safety,,” National Institute of Standards and Technology,
http://w3.antd.nist.gov/comm net ps.shtml, 2008.

[6] “Fire Information and Rescue Equipment (FIRE) project,
http://fire.me.berkeley.edu/,” 2008.

[7] A. Nori, “Mobile and embedded databases,” in SIGMOD ’07: Proceed-
ings of the 2007 ACM SIGMOD international conference on Manage-

ment of data. ACM, 2007, pp. 1175–1177.
[8] “Oracle Berkeley DB, http://www.oracle.com,” 2008.
[9] “SQLite, http://www.sqlite.org,” 2008.
[10] K.-D. Kang, J. Oh, and S. H. Son, “Chronos: Feedback control of a real

database system performance,” in RTSS, 2007.
[11] J. A. Stankovic, “Misconceptions about real-time computing: A serious

problem for next-generation systems,” Computer, vol. 21, no. 10, pp.
10–19, 1988.

[12] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley, “On using
priority inheritance in real-time databases,” in Proceedings of the 12th
Real-Time Systems Symposium, Dec 1991, pp. 210–221.

[13] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams
in a soft real-time database system,” in SIGMOD ’95: Proceedings of
the 1995 ACM SIGMOD international conference on Management of

data. New York, NY, USA: ACM, 1995, pp. 245–256.

[14] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and management
of QoS in real-time databases supporting imprecise computations,” IEEE

Transactions on Computers, vol. 55, no. 3, pp. 304–319, March 2006.
[15] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline

miss ratio and sensor data freshness in real-time databases,” IEEE

Transacctions on Knowledge and Data Engineering, vol. 16, no. 10,
pp. 1200–1216, October 2004.

[16] B. Adelberg, “STRIP: A soft real-time main memory database for open
systems,” Ph.D. dissertation, Stanford University, 1997.

[17] J. A. Stankovic, S. H. Son, and J. Liebeherr, “Beehive: Global multi-
media database support for dependable, real-time applications,” Lecture
Notes in Computer Science, vol. 1553, pp. 51–72, 1998.

[18] B. Gallmeister, Programming for the Real World, POSIX.4. O’Relly
& Associates, 1995.

[19] W. Kang, S. H. Son, and J. A. Stankovic, “PRIDE: A data abstraction
layer for large-scale 2-tier sensor networks,” in The 6th IEEE Commu-

nications Society Conference on Sensor, Mesh and Ad-hoc Communica-

tions and Networks (SECON), June, 2009.
[20] X. Jiang, N. Y. Chen, J. I. Hong, K. Wang, L. Takayama, and J. A. L,

“Siren: Context-aware computing for firefighting,” in In Proceedings of

Second International Conference on Pervasive Computing, 2004.
[21] L. Bertini, J. C. B. Leite, and D. Mosse, “Statistical qos guarantee and

energy-efficiency in web server clusters,” in ECRTS ’07: Proceedings

of the 19th Euromicro Conference on Real-Time Systems. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 83–92.

[22] K. Ramamritham, S. H. Son, and L. C. Dipippo, “Real-time databases
and data services,” Real-Time Systems, vol. 28, no. 2-3, pp. 179–215,
2004.

[23] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. Wiley IEEE press, 2004.

[24] K. P. Brown, M. J. Carey, and M. Livny, “Goal-oriented buffer manage-
ment revisited,” SIGMOD Rec., vol. 25, no. 2, pp. 353–364, 1996.

[25] L. Ljung, Systems Identification:Theory for the User 2nd edition. Pren-
tice Hall PTR, 1999.

[26] Y. Diao, N. Gandhi, and J. Hellerstein, “Using MIMO feedback control
to enforce policies for interrelated metrics with application to the Apache
web server,” in Network Operations and Management, April, 2002.

[27] “IEEE Portable Applications, http://standards.ieee.org/regauth/posix,”
2009.

[28] “Nokia N-Series, http://www.nseries.com/,” 2008.
[29] “Memory Technology Device Subsystem for Linux, www.linux-

mtd.infradead.org/,” 2008.
[30] “JFFS2: The Journalling Flash File System, version 2,

http://sources.redhat.com/jffs2/,” 2008.
[31] R. F. M. Aranha, V. Ganti, S. Narayanan, C. R. Muthukrishnan, and

K. Ramamritham, “Implementation of a realtime database system,”
Information Systems, vol. 21, pp. 557–4, 1996.

[32] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable

Scheduling Algorithms And Applications (Real-Time Systems Series).
Santa Clara, CA, USA: Springer-Verlag TELOS, 2004.

[33] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo, “I/O-aware
deadline miss ratio management in real-time embedded databases,” in
The 28th IEEE Real-Time Systems Symposium (RTSS), Dec, 2007.

[34] R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions,”
SIGMOD Rec., vol. 17, no. 1, pp. 71–81, 1988.

[35] J. R. Haritsa, M. Livny, and M. J. Carey, “Earliest deadline scheduling
for real-time database systems,” in In Proceedings of the 12th Real-Time
Systems Symposium, 1991, pp. 232–242.

[36] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley, “Performance
evaluation of two new disk scheduling algorithms for real-time systems,”
The Journal of Real-Time Systems, vol. 3, no. 3, pp. 307–336, 1991.

[37] X. C. Song and J. W. S. Liu, “Maintaining temporal consistency:
Pessimistic vs. optimistic concurrency control,” IEEE Trans. on Knowl.

and Data Eng., vol. 7, no. 5, pp. 786–796, 1995.
[38] M. Xiong, K. Ramamritham, J. Stankovic, D. Towsley, and

R. Sivasankaran, “Scheduling transactions with temporal constraints:
exploiting data semantics,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 14, no. 5, pp. 1155–1166, Sep/Oct 2002.
[39] C.-S. Peng, K.-J. Lin, and C. Boettcher, “Real-time database benchmark

design for avionics systems,” in RTDB, 1996.
[40] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and M. J. Joe, “LGeDBMS:

A small DBMS for Embedded System with Flash Memory.” in Proceed-
ings of the 32nd International Conference on Very Large Data Bases

(VLDB), 2006.
[41] S.-W. Lee and B. Moon, “Design of flash-based DBMS: an in-page

logging approach,” in SIGMOD ’07: Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, 2007.

15

[42] G. Mathur, P. Desnoyers, D. Ganesan, and P. J. Shenoy, “Capsule: an
energy-optimized object storage system for memory-constrained sensor
devices,” in SenSys, 2006.

[43] S. Nath and A. Kansal, “FlashDB: Dynamic self-tuning database for
NAND flash,” in The International Conference on Information Process-

ing in Sensor Networks (IPSN), 2007.
[44] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “A feedback

control approach for guaranteeing relative delays in web servers,”
in RTAS ’01: Proceedings of the Seventh Real-Time Technology and

Applications Symposium (RTAS ’01), 2001.
[45] C. Lu, X. Wang, and C. Gill, “Feedback control real-time scheduling

in orb middleware,” in RTAS ’03: Proceedings of the The 9th IEEE

Real-Time and Embedded Technology and Applications Symposium.
Washington, DC, USA: IEEE Computer Society, 2003, p. 37.

[46] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementation,
and evaluation of differentiated caching services,” IEEE Trans. Parallel

Distrib. Syst., vol. 15, no. 5, pp. 440–452, 2004.
[47] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus,

“Using control theory to achieve service level objectives in performance
management,” Real-Time Syst., vol. 23, no. 1-2, pp. 127–141, 2002.

Woochul Kang received his PhD degree from
the University of Virginia in 2009. Since Feb.
2000, he is working as an research engineer at
Electronics and Telecommunications Research
Institute (ETRI) in South Korea. At ETRI, he was
the major developer of Q-Plus real-time operat-
ing system and development tools. His research
interests include cyber-physical systems, real-
time embedded systems, embedded databases,
large-scale distributed systems, feedback con-
trol of computing systems, and wireless sensor

networks. Currently, he is investigating a distributed middleware archi-
tecture that enables efficient and timely access to real-time sensor data
in large-scale distributed cyber-physical systems.

Sang H. Son received his Ph.D. in Computer
Science at the University of Maryland in 1986.
He then joined the University of Virginia as
Assistant Professor of Computer Science and
was promoted to Associate Professor in 1992,
and to full Professor in 1999. He is serving
as an Associate Editor of IEEE Transactions
on Computers, since Sept. 2007, and served
as an AE of the IEEE Transactions on Parallel
and Distributed Systems. He is also serving on
the editorial boards of the Real-Time Systems

Journal, Journal of Information Processing Systems, and Journal of
Mobile Communications, Networks, and Computing. He is the chair of
the IEEE Technical Committee on Real-Time Systems, and has served
as the Program Chair and/or General Chair of several real-time and
database conferences, including IEEE Real-Time Systems Symposium,
IEEE Conference on Parallel and Distributed Systems, International
Workshop on Real-Time Database Systems, IEEE Conference on Elec-
tronic Commerce, and International Conference on Networked Sensing
Systems. He was President of the Korean Computer Scientists and
Engineers Association (KOCSEA), and in 2004, he received the IEEE
Outstanding Contribution Award. He is the editor of three books and
author or co-author of one book and over 260 refereed papers Son’s
research focuses on designing and evaluating models and methodolo-
gies for the development of robust and responsive computer systems
and databases for complex real-time applications. He has been work-
ing on supporting multi-dimensional requirements such as real-time,
security, and fault-tolerance in distributed data service systems. He
also investigated adaptive QoS management in real-time data services
using feedback control, real-time data/event services in wireless sensor
networks, undersea surveillance using sensor networks, consistency in
mobile environments, and applying real-time and database technology
in embedded systems.

John A. Stankovic received his Ph.D. from
Brown University in 1979 and then served on
the faculty of University of Massachusetts at
Amherst. He came to UVa as BP America Pro-
fessor and Chair of the Department of Computer
Science in 1997. Professor Stankovic is a Fellow
of the IEEE, a Fellow of the ACM, and he served
on the Computing Research Association Board
of Directors for nine years. He received an IEEE
Award for Outstanding Technical Contributions
and Leadership in Real-Time Systems, and an

Outstanding Scholar Award from the University of Massachusetts. He
was Co-Founder and Co-Editor-in-Chief of the International Journal on
Real-Time Systems, Editor-in-Chief of IEEE Transactions on Parallel
and Distributed Computing, Associate Editor for ACM Transactions on
Wireless Sensor Networks, Associate Editor for ACM Transactions on
Embedded Systems, and Book Series Editor for Real-Time Systems.
Stankovic’s primary research interests are in the areas of real-time
computing, embedded computing, cyber physical systems, and ad hoc
wireless sensor networks. He is investigating various approaches to
real-time scheduling, including the development of a theory and prac-
tice of feedback control real-time scheduling. He is also involved with
building a network virtual machine for wireless sensor networks, and
is developing a component-based operating system and associated
analysis tools for embedded systems.

