
Data Dissemination over Wireless Sensor Networks
Sooyeon Kim, Sang H. Son, Senior Member, IEEE, John A. Stankovic, Fellow, IEEE,

and Yanghee Choi, Senior Member, IEEE

Abstract— In sensor networks, it is crucial to design and
employ energy-efficient communication protocols, since nodes
are battery-powered and thus their lifetimes are limited. We
propose a data dissemination protocol for periodic data updates
in wireless sensor networks, called SAFE (sinks accessing data
from environments), which attempts to save energy through data
delivery path sharing among multiple sinks that have common
interests. Simulation results show that the proposed protocol is
energy-efficient as well as scalable to a large sink population.

I. ENVIRONMENTAL MODEL

T HIS letter assumes that each sensor node has a processor,
memory, and a short-range radio communication facility.

Nodes are powered by batteries, and assumed to be revoked
when they exhaust all the battery power. We also presume the
support of underlying protocols, including topology manage-
ment, localization, routing, service availability advertisements,
etc.

II. THE DATA DISSEMINATION PROTOCOL

A. Query Transfer

The proposed protocol SAFE distributes sensor observations
to sinks that explicitly present their interests by sending data
requests. When a node needs data updates from a remote
location, the node transfers a query to its neighbors via one-
hop broadcast, which includes the location, the sensor data
type, the desired data update rate, and the service duration.
Such a node that initiates data dissemination is referred to as
a sink.

Every node maintains a recent query table and a data
management table. The query table records the most recent
queries that have been received, and the data table keeps
the status of sensor data being or to be distributed by the
node. Receiving a query from another node, a node executes
a function in Figure 1. At first, the node checks the query
table if the same query has recently been dealt with. If so,
the new query arrival is ignored to avoid wasting resource.
Otherwise, the node saves the query into its query table, and
then does appropriate things depending on its status regarding
the requested data in the data table. When the node is the
data source, it sends a PathSetup message to the inquiring

Manuscript received January 30, 2004; revised March 18, 2004. This work
was supported in part by the Brain Korea 21 project of Korea Ministry of
Education, the National Research Laboratory project of Korea Ministry of
Science and Technology, DARPA grant xxx, and NSF grant yyy.

S. Kim and Y. Choi are with the School of Computer Science and
Engineering, Seoul National University, Seoul 151-742, Korea. Email: �sykim,
yhchoi�@mmlab.snu.ac.kr.

S. H. Son and J. A. Stankovic are with the Department of Computer
Science, University of Virginia, Charlottesville, VA 22904-4740. Email: �son,
stankovic�@cs.virginia.edu.

recvQuery (�)
1 if isRecentlyDealtWith (�)
2 then return
3 saveQueryAsRecentOne (�)
4 if isSource (�)
5 then sendPathSetup (sender(�))
6 else if isJunction (�)
7 then sendJunctionInfo (sender(�))
8 else if isApproachingToSource (�)
9 then forwardQueryToNextHop (�)

Fig. 1. How to deal with a query arrival: a functional description.

recvPathSetup (�)
1 if destination (�) �� myAddr
2 then if noEntryInDataManTable (�)
3 then ��createEntry (�)
4 waitForAckFromSink (�)
5 else/* if the PathSetup � is destined for this node */
6 then �� findEntry (�)
7 if currState (�) � QUERY SENT
8 then sendAck (hopSender (�))
9 changeMyState (�, SUBSCRIBE SENT)

10 else if currState (�) � FEEDBACK RCVD
11 then if bestFeedbackCost (�) � cost (�)
12 then saveAsBestFeedback (�)

Fig. 2. How to deal with a PathSetup arrival: a functional description.

node via unicast. If the node is not the source but on a
dissemination path, which is called a junction, it sends a
JunctionInfo message to the sink via unicast. When the node is
neither the data source nor a junction, it forwards the query to
the next hop, as long as it is not farther away from the queried
location than the previous hop node. The previous hop node
information might be injected by the routing protocol or this
data dissemination protocol before forwarding a query.

B. Dissemination Path Setup

While a PathSetup message is delivered to the sink, all the
intermediate nodes follow the steps in Figure 2. Without the
corresponding entry in the data table, an intermediate node
creates a new entry with the previous hop node (progenitor
hereafter) information. Once having an entry for the PathSetup
message, each intermediate node starts a timer that waits for
an Ack message from its descendant, which confirms the path
is activated. The duration of the timer is set as a pessimistic
estimation of round trip time to the sink, say, several times
the network diameter. This timer prevents memory waste at

IEEE COMMUNICATIONS LETTERS, VOL. , NO. , 2004 2

B

r =10update

RA

E

C

D

F

G

(a) Initial topology.

BA

E

C

D

F

r=1
G

(b) Query transfer.

10 1

1

1PathSetup
A

G
B D

E

C F

Ack
Ack

Ack

(c) Path setup.

1

r=7

10 1

1

A

C

E

F

D
G

B

(d) Query transfer.

10 1 1

1

JunctionInfo

Subscribe

A

E

B

C

D

F

G

7

7

(e) Feedback transfer.

10 1
7

1

1

ChangeRate
A

E

B

C

D

F

G

7

7
TrailSetup

(f) Path setup.

r=4

7 1

1

7

7

10
A

F

B

C

E

D
G

(g) Query transfer.

7 1

1

7

7

10
A

F

B

C

E

D
G

JunctionInfo

JunctionInfo

Subscribe

4

(h) Path setup.

Fig. 3. How the proposed data dissemination protocol SAFE establishes data delivery paths.

irrelevant nodes, by releasing the memory occupied by that
entry when the timer expires.

JunctionInfo messages do not build paths while being
transferred to sinks. This is based on a presumption that
given that a junction happens to be in the vicinity of a sink,
there might also exist other junctions in that area. A path
from a junction to a sink is established only after the sink
subscribes to that junction. A sink compares every feedback
(either a JunctionInfo or a PathSetup) during a certain amount
of time1 after the first feedback received. When we attempt
to minimize message exchanges over the network, the best
subscription locus is one that can update the sink with the
smallest number of extra messages. We define the messaging
overhead as subscription cost � of a junction � when a data
sink � wants data updates from � through �

���	 �	 �� ��

��	 �� � ��� � ��� �
��	�� � �� if �� � ��

��	�� � �� otherwise

where
��	 � quantifies the hop distance from node � to , and
�� denotes the update rate requested by and thus available to
node �.

When the timer has expired, a sink subscribes to the node of
the best feedback until then. If the best one is a junction, the
sink sends a Subscribe message to that junction. Otherwise,
when the source is eventually the best subscription point, the
sink sends an Ack to its progenitor and every progenitor
acknowledges its progenitor in turn until the source gets
an Ack. Receiving a Subscribe message from a sink two
or more hops away, a junction sends a TrailSetup message
to that sink and establishes a path. This path enforcement
has two purposes. First, it considers the asymmetry of low-
power wireless communication [1], establishing the path in the
direction of actual updates instead of using the upstream path
the Subscribe message has traveled along. Second, it makes the

1For example, in the simulations in Section III, this value was set as five
times the network diameter.

subscription status management at each node scalable, keeping
a node’s potential subscribers as its immediate neighbors only.

A ChangeRate message is transferred to the progenitor
when the update rate has to be increased or decreased. As
an extreme, a ChangeRate message with the new update rate
of zero means unsubscribe from the update service.

Figure 3 illustrates an example, where nodes G, E, and then
F request sensor data originating from node A.

III. SIMULATION

We performed simulations using GloMoSim [2], with
802.11 MAC and SPEED [3] routing. We adopt the radio
energy model of an actual prototype [4], where the energy
dissipation is 1�J/b (transmission) and 0.5�J/b (reception).
Two simple protocols are implemented as baselines: unicast
and flooding. Using unicast, every data source serves each data
sink separately. With flooding, any queried data are broadcast
to the entire network with the maximum update rate desired
by the sinks.

We employ four metrics for the performance evaluation of
SAFE. Overall energy dissipation is the total energy dissi-
pation of the entire network. Energy dissipation per effective
data update measures the ratio of overall energy dissipation
to the total number of distinct data update messages received
by sinks. First turnaround time quantifies the elapsed time
between query transfer and the first feedback arrival. Finally,
data update success rate measures the ratio of the number
of effective updates received by sinks, to the total number of
updates expected.

In the following simulations, 100 sensor nodes form a
grid network over a 2500m�2500m terrain. The query inter-
arrival times follow the exponential distribution (�=1-5 sec).
A message is 64 bytes long, and every plotting is the average
of 20 runs with the 95% confidence intervals ranging from 0%
to 13% of the mean.

Figure 4 depicts a result with a source and sink populations
between 10 and 50. Desired update intervals are 3 seconds. For

IEEE COMMUNICATIONS LETTERS, VOL. , NO. , 2004 3

10 20 30 40 50
Number of sinks

0

5

10

15

20

25

30
E

ne
rg

y
di

ss
ip

at
io

n
(J

ou
le

) SAFE
Unicast
Flooding

(a) Overall energy dissipation.

10 20 30 40 50
Number of sinks

0.000

0.005

0.010

0.015

0.020

E
ne

rg
y

di
ss

ip
at

io
n

(J
ou

le
) SAFE

Unicast
Flooding

(b) Energy dissipation per update.

10 20 30 40 50
Number of sinks

0.0

0.1

0.2

0.3

0.4

0.5

F
irs

t t
ur

na
ro

un
d

tim
e

(s
ec

) SAFE
Unicast

(c) First turnaround time.

10 20 30 40 50
Number of sinks

0.0

0.2

0.4

0.6

0.8

1.0

U
pd

at
e

su
cc

es
s

ra
te

SAFE
Unicast
Flooding

(d) Update success rate.

Fig. 4. Single data source, varied number of data sinks, fixed desired update
intervals.

all the sink populations tested, SAFE always outperforms the
two baselines in total and per-update energy dissipation at the
same time, and spends less energy per update with larger sink
populations due to path sharing. Figure 4(c) shows how fast a
sink receives the first update. Flooding is not depicted, because
with flooding all the sinks except the first one experience
zero response time and the first turnaround time on average is
not a meaningful factor. SAFE always exhibits fast response
time regardless of background traffic volume due to distributed
query processing at junctions. Also SAFE retains a reasonable
level of update success rate, while unicast fails to maintain the
success rate with 50 sinks.

IV. CONCLUSIONS

This letter introduces a data dissemination protocol that
attempts data delivery path sharing between multiple sinks.
Results show that the proposed protocol achieves energy
efficiency as well as scalability, both of which are crucial for
large-scale battery-powered sensor networks.

REFERENCES

[1] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, ”An empirical study of epidemic algorithms in large scale
multihop wireless networks,” Technical Report IRB-TR-02-003, Intel
Research, Mar. 2002.

[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, ”Glo-
MoSim: A scalable network simulation environment,” UCLA Computer
Science Department Technical Report 990027, May 1999.

[3] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, ”SPEED: A stateless
protocol for real-time communication in sensor networks,” In Proc. of
the 23rd International Confernece on Distributed Computing Systems
(ICDCS-23), Providence, RI, USA, May 2003.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, ”System
architecture directions for networked sensors,” In Proc. of International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), Cambridge, MA, USA, Nov. 2000.

