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M3Sense: Affect-Agnostic Multitask Representation Learning Using
Multimodal Wearable Sensors
SIRAT SAMYOUN∗, MD MOFIJUL ISLAM∗, TARIQ IQBAL, and JOHN STANKOVIC, University
of Virginia, USA

Modern smartwatches or wrist wearables having multiple physiological sensing modalities have emerged as a subtle way to
detect different mental health conditions, such as anxiety, emotions, and stress. However, affect detection models depending
on wrist sensors data often provide poor performance due to inconsistent or inaccurate signals and scarcity of labeled data
representing a condition. Although learning representations based on the physiological similarities of the affective tasks
offer a possibility to solve this problem, existing approaches fail to effectively generate representations that will work across
these multiple tasks. Moreover, the problem becomes more challenging due to the large domain gap among these affective
applications and the discrepancies among the multiple sensing modalities. We present M3Sense, a multi-task, multimodal
representation learning framework that effectively learns the affect-agnostic physiological representations from limited
labeled data and uses a novel domain alignment technique to utilize the unlabeled data from the other affective tasks to
accurately detect these mental health conditions using wrist sensors only. We apply M3Sense to 3 mental health applications,
and quantify the achieved performance boost compared to the state-of-the-art using extensive evaluations and ablation studies
on publicly available and collected datasets. Moreover, we extensively investigate what combination of tasks and modalities
aids in developing a robust Multitask Learning model for affect recognition. Our analysis shows that incorporating emotion
detection in the learning models degrades the performance of anxiety and stress detection, whereas stress detection helps
to boost the emotion detection performance. Our results also show that M3Sense provides consistent performance across
all affective tasks and available modalities and also improves the performance of representation learning models on unseen
affective tasks by 5% − 60%.
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1 INTRODUCTION
Every year nearly 1 billion people suffer from different forms of mental health related problems, such as stress,
anxiety, and depression [70]. Given the chronic nature of these problems, this leads to increased suicides and
morbidity and accounts for significant economic burden [70]. Most importantly, since the COVID-19 pandemic,
there has been an alarming rise in these mental health related conditions worldwide [69, 70]. Accurate and
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Fig. 1. (a) State-of-the-art multimodal representation models learn to extract task-specify representation to learn task
models separately. These learning models require labeled data from a specific domain to train a particular task. (b) Our
proposed Multitask Domain Alignment-based Multimodal Representation Learning Model (M3Sense) can use both labeled
and unlabeled data to train the representation learning model to extract an affect-agnostic generalized representation. This
domain alignment-based training method helps to transfer the model across tasks and domains.

early diagnosis of these conditions are crucial for better interventions and improved healthcare outcomes [69].
Several research works in affect recognition have focused on accurately detecting these conditions in the form of
stress detection, anxiety detection, and emotion (happy, sad, angry, etc.) detection. Such solutions, also known as
affective applications, are designed to detect mental health related conditions from the behavioral and physiological
changes of a person by using facial expression captured via a video camera [95, 114], voice or speech captured
via a microphone [63], or physiological sensing data from wearable sensors [72, 89], placed on the wrist, head or
chest of the body.
Besides accurate detection, finding a subtle way to detect mental health conditions is important for better

interventions. State-of-the-art works predominately use a video camera or a microphone [63, 98, 114] to detect
these mental health conditions. However, placing these devices inside a room is highly privacy-invasive and
involves substantial installation and processing costs [94, 103]. Thus, these approaches are not ubiquitous and
limit usability in real-world settings. For example, a video camera or microphone based solution does not work
when the user is outside. On the contrary, the wearable sensors are unobtrusive, privacy-preserving, and offer
great ubiquity [25, 94]. Among the wearable sensors, the wrist-worn devices, including smartwatches, have
emerged as a very popular and convenient way to monitor these mental health conditions [98].

Despite these significant benefits, affective applications suffer performance degradation when built using wrist
physiological sensor data [7, 88, 106]. There are a couple of reasons behind this performance degradation. First,
the wrist devices have a small form factor and they usually provide less accurate data compared to the chest or
head based devices [90]. Although following the state-of-the-art works, we can use multimodal sensor data over
unimodal data to improve the model robustness [29, 33, 34, 54, 78], but wrist sensors are heterogeneous in terms
of sampling frequencies, and they primarily provide limited physiological signals with poor frequencies [23].
Thus, a learning model built with multiple wrist sensing modalities will struggle to detect the affective conditions
accurately. Moreover, Islam and Iqbal [34] showed that the presence of different combinations of modalities
often impacts the performance of a learning model. Therefore, to guarantee consistent performance for a task, a
learning model needs to carefully attend to different modalities to extract robust multimodal representation.
Second, there is a scarcity of labeled data for mental health conditions [60, 98], because such conditions can

only be annotated by experts, and in many cases, only a limited portion of the data represents a specific condition
(e.g., stress, anxiety, or negative emotion) [86]. On the other hand, we can collect a huge quantity of unlabeled data
with minimal human effort. However, as the state-of-the-art supervised learning approaches are predominately
using labeled data, the unlabeled data has been under utilized. Moreover, the performance of the learning models
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are highly dependent on the amount of training data. Thus, developing a learning framework which can utilize
both the labeled data and unlabeled data will help to improve the performance of the model (Fig. 1), and will also
reduce the human effort and the overhead to develop learning models for various affective applications.
Third, state-of-the-art multimodal representation learning models can not effectively extract generalized

representations which are transferable across tasks. These learning models [9, 33, 34, 38, 44, 52, 54, 65] are trained
to learn task-specific multimodal representations to improve the task performance which limits these models
usability across tasks and domains (Fig. 1 (a)). Specifically, most of the learning models for affective applications
are trained to learn affect-specific representations to improve the task performance. For example, a learning model
for emotion recognition (a source task) is trained to learn the salient representation to recognize an emotion
accurately. As a result, such learned representations will not effectively help to detect anxiety (target task),
even though there is a physiological association between emotion and anxiety. Moreover, the performance of a
model declines further if the source and target task domains are completely different [36]. For example, a model
trained to learn stress-specific affective representation in the lab environment may be able to detect stress in a
hospital environment, but it will not usually be effective in detecting anxiety in public speaking settings. Thus, a
fundamental limitation of state-of-the-art multimodal representation learning models for affective applications is
that the learned representations are not affect-agnostic, i.e, invariant to the affective applications. To the best
of our knowledge, the state-of-the-art works do not consider the discrepancy between both task and domain
characteristics to transfer a learning model trained on a source task to a target task from a different domain.
Fourth, although it is possible to develop a single and unified learning model to train multiple tasks, instead

of developing individual models for multiple tasks, one task often dominates the learning process which leads
to poor performance for other tasks [27, 28, 83, 97, 116]. This phenomenon is termed as negative knowledge
transfer across tasks in the multitask learning model (MTL) [28, 97]. For example, Standley et al. showed that
task-relatedness plays a crucial role in ensuring robust performance for all tasks in an MTL model [97]. Unrelated
tasks can force an MTL model to learn over-generalized features leading to negative knowledge transfer across
tasks [24, 27, 28, 31, 83, 97, 101, 116, 118]. Although several psychology studies showed the associations among
affective tasks [3, 17, 25], task relatedness among the affective tasks has not been explored to develop a robust
MTL model. Most importantly, the impact of various combinations of modalities and tasks has not been studied
in developing an MTL model to ensure robust performance across tasks and domains.
Interestingly, several works in psychology have revealed that the different mental health conditions, such

as, anxiety, stress, and emotions, have significant associations among each other [3, 17, 25]. For example, stress
is considered as a primary indicator of anxiety disorders [18, 105]. Moreover, people during stressful periods
experience different kinds of emotions [17, 20]. Often these mental health conditions trigger similar physiological
response to the human body, such as, irregular heart rhythms, increased skin sensitivity, and chest pain [2, 17, 62].
Along this line, state-of-the-art works have shown that both stress and anxiety can be placed in the same
region valence-arousal scale [11, 51, 112]. Despite these crucial insights of affective associations from several
the psychology studies, no prior works consider the affective associations across tasks to extract generalized
affect-agnostic representation to improve the task performance.
To address the above-mentioned challenges, we present a novel multimodal, multitask learning framework,

called M3Sense. In M3Sense, we develop Conditional Attention-based Multimodal Fusion (CAM), where we fuse
multimodal features conditioned on tasks by employing our proposed conditional attention model. To train our
proposed multimodal representation learning model, we devise a Domain Alignment-based Multitask Learning
Method by following the insights of the associations among the affective states from the aforementioned
studies. This training method utilizes a novel Domain Alignment Module to align the distributions of multimodal
representations across multiple tasks and domains. This method guides the representation learning model of
M3Sense to effectively learn the affect-agnostic representations, which will work across tasks and domains.
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Moreover, this method enables M3Sense to utilize both labeled and unlabeled data from both affective and non-
affective domains to train a robust representation model in an end-to-end manner. Finally, the affect-agnostic
representation is used to train multitask learning models to produce task-specific predictions.
We conducted extensive experimental evaluations to evaluate the performance of M3Sense on three affective

tasks: anxiety, emotion, and stress detection. We also compared the performance of M3Sense with state-of-the-
art multimodal representation learning models and handcrafted feature-based machine learning models. The
experimental results suggest that M3Sense outperforms feature-based models and representation learning models
by 9.6% − 26.2% and 0.6% − 11.7% across three evaluated tasks, respectively. Moreover, using ablation studies, we
investigate and find out which task combinations lead to performance degradation for the affective tasks. For
example, if we train M3Sense with anxiety and stress detection tasks, then the Top-1 accuracy of these tasks are
70.3% and 85.8%, respectively. However, if we introduce emotion in M3Sense, the Top-1 accuracy of anxiety and
stress detection tasks degrades to 60.2% and 82.4%, respectively. Furthermore, we evaluated the impact of different
combinations of modalities in affective tasks. The experimental evaluations suggest that M3Sense consistently
outperforms across all the combinations of modalities. To the best of our knowledge, we are the first to investigate
the impact of task and modality combinations in the multitask learning models.

Additionally, we evaluated the generalized representation learning capability of state-of-the-art learning models
and M3Sense by pre-training a model for a set of tasks and fine-tune that model for an unseen task prediction
with a few training samples. The experimental results suggest that the Top-1 accuracy of the state-of-the-art
models degrades considerably on many unseen task-transfer settings across heterogeneous domains, whereas
M3Sense can increase the accuracy of these models by approximately 5% − 60%. Thus, M3Sense can help to train
the representation learning models to extract affect-agnostic multimodal representations, which can be used
for unseen tasks across heterogeneous domains. To the best of our knowledge, we are the first to develop a
multimodal and multitask learning model which can be used across heterogeneous tasks and domains.
The key contributions of this work are:

• We develop a novel multitask learning framework, called M3Sense, which learns affect-agnostic representa-
tion frommultimodal sensor data.M3Sense allows using both labeled and unlabeled data from heterogeneous
affective and non-affective domains to train a learning model.
• We design a novel domain alignment-based training algorithm to train representation learning models to
extract generalized representations, which can be used across multiple unseen tasks and domains.
• We extensively evaluate the performance of M3Sense in three different affective domains. Experimental
results and ablation studies show that M3Sense outperforms handcrafted feature-based models and state-of-
the-art representation learning models across all the evaluated tasks and domains based on three datasets.
• We present valuable insights on which combinations of tasks and modalities aid in developing a robust Mul-
titask Learning (MTL) model. For example, stress detection helps to boost emotion detection performance
in an MTL model, whereas emotion detection deteriorates the anxiety and stress detection performance.
• We show that the accuracy of state-of-the-art learning models degrades considerably on many unseen
affective task transferring settings with different combination of modalities, whereasM3Sense improves the
accuracy of these models by approximately 5% − 60%.

2 RELATED WORK
Wearable-based affect recognition approaches:Wearable devices have emerged as themost privacy-preserving,
unobtrusive, and ubiquitous way for affect recognition. Several past works [26, 93, 95] used EEG signals data
collected from a head device, while the works in [58, 93] used different combinations of the physiological signals
collected from the chest, such as ECG (or heart-rate), EMG signal, respiratory signals, and skin conductance.
However, wearing a device on the chest or on the head is highly impractical for continuous monitoring, limiting
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these solutions’ effectiveness. On the contrary, several works [75, 76, 88, 100, 117] have used different combi-
nations of the wrist physiological signals, such as the BVP/PPG, skin conductance, temperature, and fingertip
oxygen saturation. However, these solutions require running independent models for detecting anxiety, emotion,
and stress, which is a major hurdle for such wrist devices having limited battery and processing power.
Handcrafted feature-based traditional machine learning approaches: Several works in the literature

have used traditional machine learning-based approaches for affective applications. Among these, the ensemble-
based methods (e.g., Random Forest, Extra Trees) provided the best results [75, 88, 91], as such methods boost the
performance by selecting the best features for the tasks (e.g., anxiety, emotion, stress). Among the other methods,
the Support Vector Machine [100, 117] and Linear discriminatory Analysis [94] methods were popularly used.
However, a significant limitation of all the traditional models is that they can not effectively capture the salient
representations and the long-term dependencies among the sensing modalities. Therefore, they yield much lower
performance than the deep models when built using wrist sensors.
Multimodal representation learning approaches:Multimodal representation learning approaches have

produced state-of-the-art results for various applications [29, 78, 81], such as human activity recognition [34, 35,
38, 44, 54], gesture recognition [38, 115], video classification [16, 30, 40], image captioning [57, 110], and visual
question answering [49, 56]. The wearable based affect recognition works have mostly used CNN [54, 79] and
RNN [109][50][88] models to effectively learn the spatial and temporal representations. Moreover, attention-based
mechanisms have been popularly integrated into such models [33, 54] to selectively focus on the task-specific
important information present in the multiple modalities. However, there are several reasons why such approaches
can not be effectively applied in multitask affect recognition. First, the representation learned by the models is not
affect-agnostic. Therefore, these representations when used on an unseen task leads to poor performance. Second,
the scarcity of expert-annotated data representing a condition (e.g., anxiety, emotion, stress) makes it difficult
to handle the disparities among the modality distributions. Moreover, the wrist data signals are often of poor
quality, which makes accurate detection challenging. Third, these approaches do not consider the associations
among these affective domains, and therefore are incapable of building a unified framework for all domains.
Multitask learning approaches: Multitask learning (MTL) is a machine learning paradigm that aims to

improve the performance of learning models by training multiple tasks jointly [83, 116]. Several multitask
learning approaches have been proposed in the literature to improve the task performance by learning a shared
generalized representation [24, 27, 31, 83, 101, 116, 118]. However, there are several reasons why the existing
solutions can not be straightforwardly used for our problem. First, state-of-the-art MTL frameworks learn all
the tasks simultaneously in a single model. Thus, all the tasks are available during the training phase. However,
these MTL models are not designed to train for one set of tasks and use the learned representation to learn an
unseen task. Second, the exiting MTL models assume the tasks are from related domains. However, the domain
gap for the affective tasks is considerably high when the source and target domain tasks are entirely different
distributions (e.g., from stress detection to anxiety detection), unlike same task under different environments
(e.g., from detecting stress in the hospital environment to detecting stress in a home environment). Third, these
MTL models do not employ any domain alignment technique, and thus, can not be applied to utilize labeled or
unlabeled data from entirely different domains.
Representation learning approaches using unlabeled data: Utilizing unlabeled data have been widely

studied in the literature [29, 53, 56, 66, 67, 77, 82], mostly in computer vision, speech recognition, and text
mining fields. Such techniques learn the underlying representation from data by applying self-supervised or
semi-supervised learning methods. However, in the affective domains, particularly the multitask and multimodal
setting, no such techniques have been explored or evaluated. For example, these works can not be used to align
unlabeled data from different modalities from the anxiety domain to the same in the stress domain or vice versa.
M3Sense overcomes this significant limitation of the state-of-the-art, and can be applied to any affective domain
using physiological signals in a multitask setting.
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3 BACKGROUND

3.1 Affective Applications for Mental Health
Affect refers to the outward expression of the feeling of the mind, which is often considered as an umbrella
term in mental health domains [92]. Affect recognition is an interdisciplinary field that deals with automatically
recognizing and modeling different mental health conditions of the user [113]. In this paper, we focus on a set of
affective applications from different aspects of mental health. We briefly discuss these applications below:

3.1.1 Stress detection: Stress is the state of being overwhelmed with physical or psychological pressure. It refers
to the bodily changes induced by external events or conditions [25]. Stress leads to several health problems, such
as, stroke, hypertension, depression [3]. Psychological stress can be detected using audio or visual modalities
[114] or physiological sensor data [85, 89].

3.1.2 Anxiety detection: Anxiety is the reaction of human body to various adverse situations, which is accompa-
nied by panic, fear, uneasiness. Scientists have often described anxiety as a reaction to stress, as they share very
similar symptoms [25] [3]. Past works on anxiety detection have mostly used self-assessment screening [4], and
physiological parameters based approaches [72, 117].

3.1.3 Emotion detection: Emotion is a state of mind that people experience in daily life. According to different
theories of emotion [73, 84], there are positive emotions (happy and sad) as well as negative emotions (anger,
fear, and frustration). Similar to stress and anxiety, existing emotion detection methods have used audio-visual
modalities [114], and physiological sensor data [75, 76, 100].

3.2 Correlations among Affective Domains
Over the years, researchers in psychology have revealed interesting associations among stress, anxiety and
emotions in different contexts. For example, the Circumplex model of affect, originally presented by Russel et al.
[84], has shown that all human emotions can be interpreted using a scale of two dimension: valence and arousal.
Valence refers to the positivity or negativity of an emotion, and arousal is a measure to the intensity or activation.
Later on, psychologists have extended this model over the years, and found that anxiety and stress can be placed
in the high valence and negative arousal region of this scale [11, 25, 51, 112], as they show very similar symptoms
to many of the emotions. For example, anxiety is significantly associated with fear and panic [80], two negative
emotions, while stress is often related to anger [68], another negative emotion. Moreover, works in [18, 105]
observed that stress can positively indicate the symptoms of anxiety, while other studies showed that people feel
a complex array of emotions during stress and anxiety periods [17, 19, 20]. Moreover, previous works [25] have
justified the placement of stressed state in the Circumplex model of emotion, and also pointed out the similarities
among different states of stress, anxiety and emotions.

While stress, anxiety and different emotions exhibit significant correlations in terms of behavioral and physi-
ological response to the human body, they differ too. For example, stress is associated to increased heart rate
variability (HRV) [41], while in many cases, anxiety is characterized by low heart rate variability [2]. This paper to
exploit such remarkable associations and differences among these affective domains using physiological sensors.

3.3 Wearable-based Affect Recognition using Physiological Signals
The wearable devices, usually placed on the head, chest or wrist of the body, provide most ubiquitous, and
privacy-preserving approach for affect recognition in the wild. For example, the Empatica E4 wristband [15]
provides several physiological signals from the wrist, while the RespiBAN Professional device [74] provides
several physiological signals from the chest. We briefly discuss such physiological modalities below.
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• EEG: Electroencephalography (EEG) captures the electrical activity of the brain, and is associated with
stress, anxiety, and emotions [26, 95]. It is captured from a wearable device placed on the head.
• EDA: Electrodermal activity (EDA) captures the electrical changes of the skin arising from the brain signals
that are caused by any stimulation [46, 94]. EDA can be measured from the skin conductance electrodes
present in both the wrist and the chest sensors.
• ECG and BVP: ECG refers to the Electrocardiogram signal measured from the chest and BVP represents
the Blood Volume Pulse signal available from the wrist. Both ECG and BVP signals are used to calculate the
heart-rate and the heart rate variability, which are vitals representing the mental health conditions [2, 41].
• Respiration: Previous studies found that human body respiration behavior changes (e.g., rapid breathing)
due to affective states changes [107]. The respiratory signal can be captured from a chest device.
• EMG: Electromyography (EMG) refers to the electrical activity produced by the skeletal muscles. An EMG
sensor is usually placed on the chest. Previous research have shown that different mental health disorders
can lead to increased EMG in specific muscles of the body [58, 94].
• Temperature: Skin temperature can be measured by using wrist or chest sensors. Prior studies have shown
the associations between skin temperature changes in response to emotions, stress or anxiety [94, 104].

While using a wrist device or a smartwatch is far more convenient than using a head or chest device in daily
life settings, the wrist devices have very limited resources in terms of processing power and battery. Therefore,
we aim to build a single wrist-based solution that will exploit the correlations among these domains, and will
work across each of these affective tasks (e.g., stress detection, anxiety detection, emotion detection).

4 AFFECT-AGNOSTIC MULTIMODAL REPRESENTATION LEARNING

4.1 Problem Formulation
Based on the motivation and background, we formulate the key research goals of this paper, which are two-fold.
First, we train a multimodal representation learning model to extract affect-agnostic representation by utilizing
labeled (𝐷𝐿 = (𝐷𝐿1 , 𝐷𝐿2 , . . . , 𝐷𝐿𝑁𝐿 )) and unlabeled datasets (𝐷𝑈 = (𝐷𝑈1 , 𝐷𝑈2 , . . . , 𝐷𝑈𝑁𝑈 )) from heterogeneous
domains. Second, using the affect-agnostic multimodal representation, we train a multitask model consisting of
𝑁 affective tasks𝑇 = (𝑇1,𝑇2, . . . ,𝑇𝑁 ). Each data sample in a labeled or unlabeled dataset 𝐷𝑖 consists of modalities
𝑀 , where𝑀 = (𝑀1, 𝑀2, . . . , 𝑀𝐾 ), and where 𝐾 is the number of categories of wrist modalities. Each data sample
comes from a domain, where a domain is represented by the context (e.g., public speaking, debating, or exercising)
and the environment (e.g., real-life, laboratory) where the data acquisition was performed. Our goal is to accurately
detect all these affective tasks by using the data from the modalities of𝑀 present in 𝐷𝐿 and 𝐷𝑈 , where each task
𝑇𝑖 classifies each data sample to the task class labels.

4.2 Design Goals and Learning Framework Overview
We identify the key design goals for developing the proposed affect-agnostic representation learning framework:
• Accurate affect recognition using multimodal wrist sensors: The learning model should accurately
detect multiple mental health conditions and should ensure ubiquitous usability by using wrist sensors
only. To facilitate robust performance, it should utilize multimodal data across the affective tasks.
• Bridging the gap among the affective tasks and domains: The framework should be able to learn
generalized representations from the data that will work well across heterogeneous affective tasks (e.g.,
detecting stress, emotion, and anxiety). Moreover, the performance should not degrade even if the trained
solution is tested in other domains, i.e, different contexts and environments.
• Minimize the burden on labeled data and utilize the unlabeled data: The framework should be able
to utilize the limited amount of labeled data available for each task from a particular domain. To ensure
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Fig. 2. Overview of our proposed affect-agnostic multitask representation learning framework, M3Sense. First, the Represen-
tation Learning Module uses different Unimodal Feature Encoders to extract unimodal representation from each modality
independently. Similarly, it uses multiple Conditional Attention-based Multimodal Fusion Models to extract task-specific
representations. M3Sense fuses these features to extract multimodal representation for each task. Second, the Domain
Alignment Module extracts distributions from the multimodal representations for all tasks, which are aligned to guide
the Representation Learning Module to learn affect-agnostic representation. Third, theMultitask Learning Module uses the
extracted multimodal representation for multiple task prediction. Finally, M3Sense uses both the Domain Alignment Loss and
Multitask Learning Loss to train multiple tasks with a single shared Representation Learning Module using both labeled and
unlabeled data from heterogeneous tasks and domains simultaneously.

robust performance with limited labeled data, it should also have the capability to utilize the huge amount
of unlabeled data from the heterogeneous tasks and domains.
• Reduce the model size and complexity for wrist device efficiency: To ensure ubiquitous usability
of the learning model, a single representation learning model for multiple tasks is preferred instead of
learning multiple models for each affective task. That way, we can compress the model size and reduce
complexity to ensure smooth running performance on the resource-constrained wrist devices.

Based on these design goals, we develop M3Sense, a multitask, multimodal representation learning framework
that effectively learns the affect-agnostic physiological representations to accurately detect affective conditions.
The complete architecture of M3Sense is depicted in Fig. 2. M3Sense consists of three learning modules: Represen-
tation Learning Module, Domain Alignment Module, and Multitask Learning Module. We also design a Domain
Alignment-based Multitask Training Algorithm to train these learning modules in an end-to-end manner.
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• Representation Learning Module: This module learns the salient multimodal representations from the
data for the affective tasks predictions. To achieve this, it sequentially applies the following two models.
– The Unimodal Feature Encoder (UFE) extracts the modality-specific salient spatial-temporal represen-
tation by sequentially employing spatial and temporal feature encoders and unimodal attention modules.
We have used different UFEs for different modalities to capture modality-specific feature distribution.

– Conditional Attention-based Multimodal Fusion (CAM) uses a novel multimodal fusion model
that extracts and fuses the task-specific salient representation using a conditional attention mecha-
nism. Our proposed architecture enables M3Sense to learn multiple tasks simultaneously by reusing the
representation learning module across tasks.

• Domain Alignment Module: To extract generalized multimodal representations, we have introduced
a Domain Alignment Module. The reasoning behind incorporating this module in M3Sense is two fold.
First, this module aligns the distributions of multimodal representations for multiple tasks to ensure the
extraction of affect-agnostic representations. Second, this module enables M3Sense to utilize both labeled
and unlabeled data from various domains to train a robust multimodal representation learning model.
• Multitask LearningModule: This module utilizes the extracted affect-agnostic generalized representation
to learn the task-specific representations using a Task Learning Network (TLN) and produces predictions.

4.3 Representation Learning Module
M3Sense employs a Representation Learning Module to extract multimodal representations for each task 𝑇𝑖 ∈ 𝑇 ,
which consists of Unimodal Feature Encoders (UFE) and Conditional Attention-based Multimodal Fusion Models
(CAM). We have used different UFEs to extract modality-specific feature representation. Moreover, UFEs are
shared among the tasks to transfer knowledge among the tasks. Similarly, M3Sense employs multiple CAMs to
extract task-specific multimodal representations using our proposed conditional attention model:

𝑋𝑇𝑖 = 𝐸𝑇𝑖 (𝐸𝑢𝑚 (𝑋 𝑟𝑚)) , 𝑇𝑖 ∈ 𝑇 (1)

Here 𝐸𝑇𝑖 is the task-specific multimodal feature encoder in CAM for task 𝑇𝑖 and 𝐸𝑢 is the shared unimodal
feature encoder (𝑢 stands for unimodal and 𝑟 stands for raw). Moreover, 𝑋𝑇𝑖 is the output of representation
learning module, which is a vector (tensor) of the extracted feature representation of task 𝑇𝑖 .

4.3.1 Unimodal Feature Encoder (UFE):. State-of-the-art works have shown that each modality coming from
the wearable sensors has unique physiological characteristics and distributions to detect these affective tasks
[46, 59, 94]. To capture the diverse characteristic of the modalities, we design the Unimodal Feature Encoders by
adopting a similar learning architecture proposed by Islam and Iqbal [33]. Each UFE employ a spatial-temporal
feature encoder and a unimodal self-attention module to extract the unimodal representation from the data:

𝑋 𝑡𝑚 = 𝐸𝑢𝑚 (𝑋 𝑟𝑚) = 𝐸𝑎𝑚 (𝐸𝑡𝑚 (𝐸𝑠𝑚 (𝑋 𝑟 ))) , 𝑚 ∈ 𝑀 (2)

Here, 𝐸𝑢𝑚 is the unimodal feature encoder for modality𝑚, which consists of three sequential learning models:
a spatial feature encoder (𝐸𝑠𝑚), a spatial-temporal feature encoder (𝐸𝑡𝑚), and a unimodal attention model (𝐸𝑎𝑚) (𝑢,
𝑠 , 𝑡 , and 𝑎 stands for unimodal, spatial, spatial-temporal, and attention, respectively). We present the architecture
of these learning modules in the subsequent section.

Spatial-temporal feature encoders: This part of UFE uses a combination of models to extract the spatial-temporal
features from the raw sequential data 𝑋 𝑟 = (𝑋 𝑟1 , 𝑋 𝑟2 , . . . , 𝑋 𝑟𝑀 ). Even though the wrist sensors provide limited
quantity of samples, this part of our solution ensures splitting data into subsequent windows and capturing the
best spatial and temporal features present within the data windows. Here, 𝑋 𝑟𝑚 = (𝑥𝑟𝑚,1, 𝑥𝑟𝑚,2, . . . , 𝑥𝑟𝑚,𝐿𝑟𝑚 ) and 𝐿

𝑟
𝑚 is
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the length of the raw feature sequence of modality𝑚 (𝑟 stands for 𝑟𝑎𝑤 , and 𝑟𝑎𝑤 feature is the sensor data before
any processing or employing feature encoder).
First, the unimodal raw feature sequence is split with window size of 𝑆𝑤𝑚 and stride size of 𝑆𝑠𝑡𝑚 to produce

segmented data, 𝑋 𝑟
′

𝑚 = (𝑥𝑟
′

𝑚,1, 𝑥
𝑟
′

𝑚,2, . . . , 𝑥
𝑟
′

𝑚,1) ∈ 𝑅𝐵×𝐿
𝑠
𝑚×𝑆𝑤𝑚×𝑆𝑟𝑚 , where 𝐵 is the Batch size, 𝐿𝑠𝑚 is the total number of

segment and 𝑆𝑟𝑚 is the feature dimension of modality𝑚 (𝑤 stands for window and 𝑠𝑡 stands for stride size).
Second, each segment is encoded using a spatial feature encoder (𝐸𝑠𝑚) to capture the spatially encoded features

sequence, 𝑋 𝑠𝑚 = (𝑥𝑠𝑚,1, 𝑥𝑠𝑚,2, . . . , 𝑥𝑠𝑚,1) ∈ 𝑅𝐵×𝐿
𝑠
𝑚×𝑆𝑠𝑚 , here 𝑆𝑠𝑚 is the dimension of the spatial feature (𝑠 stands for

encoded spatial feature). As the spatial feature encoders extract features from each window independently and
lack temporal features co-relation, these extracted features are referred to as spatial [33–35]. The primary reason
for splitting the raw sensor data and extracting spatial features is to reduce the temporal feature dimension,
as the temporal feature encoder, such as LSTM, suffers from extracting salient long-range features due to the
vanishing gradient. This reduction of temporal feature dimension also reduce the model complexity. We have
used a co-occurrence learning model [48] to design this encoder.

Third, we design a spatial-temporal feature encoder (𝐸𝑡𝑚) to extract the spatial-temporal feature representation,
𝑋 𝑡𝑚 = (𝑥𝑡𝑚,1, 𝑥𝑡𝑚,2, . . . , 𝑥𝑡𝑚,1) ∈ 𝑅𝐵×𝐿

𝑠
𝑚×𝑆𝑢 from the encoded spatial feature 𝑋 𝑠𝑚 , where 𝑆𝑢 is the spatial-temporal

feature dimension (𝑡 stands for spatial-temporal feature, and 𝑢 stands for unimodal). As recognizing affects
involves capturing long-term feature correlations, we employed a Long Short-Term Memory (LSTM), a variant of
recurrent neural network (RNN), to design this encoder. It must be noted that although the data from various
affective domains are not temporally aligned among each other, this part of M3Sense automatically extracts the
best temporal features that represent a specific affective condition. Past works in the literature have considered
the minimum duration for affective changes as 5 seconds [71, 91]. In our solution, the window size 𝑆𝑤𝑚 and batch
size 𝐵 are chosen in a way that captures the temporal features of a specific condition within this minimum
duration which provides the best performance.

Unimodal self-attention model: Although the aforementioned feature encoders capture the long-range spatial-
temporal features from raw sensor data, they can not effectively learn the sparse salient features from the unimodal
feature sequence [5, 33, 34, 54, 61]. State-of-the-art sequence learning models [33, 34, 52, 54], specifically natural
language representation models [5, 14, 49, 56, 61, 102], extensively used attention models to sparsely weight
different parts of temporal features for extracting salient representations. Recently, several attention models
have been proposed to extract salient representations from multimodal sensor data. For example, Long et al.
proposed a lightweight attention model, called Keyless, to extract salient unimodal representations, which are
then concatenated to produce a multimodal representation [54]. Moreover, Islam et al. proposed a multimodal
attention model to prioritize the modalities for extracting multimodal representations [33]. Following the insights
from these works, we design a unimodal attention model, 𝐸𝑎𝑚 , that uses a self-attention mechanism to extract the
unimodal representation, 𝑋𝑎𝑚 ∈ 𝑅𝐵×𝑆

𝑢 , from encoded spatial-temporal features 𝑋 𝑡𝑚 in the following way:

𝑋𝑎𝑚 = 𝐸𝑎𝑚 (𝑋 𝑡𝑚,𝑖 ) =
𝐿𝑠𝑚∑︁
𝑖=1

𝛼𝑚,𝑖𝑋
𝑡
𝑚,𝑖 , 𝑚 ∈ 𝑀 (3)

Here the attention weights 𝛼𝑚,𝑖 are calculated as follows,

𝛽𝑚,𝑖 = 𝑊 𝑎𝑇

𝑚 𝑋 𝑡𝑚,𝑖 (4)

𝛼𝑚,𝑖 =
𝑒𝑥𝑝 (𝛽𝑚,𝑖 )∑𝐿𝑠𝑚
𝑖
𝑒𝑥𝑝 (𝛽𝑚,𝑖 )

(5)

Here𝑊 𝑎
𝑚 is the modality-specific learnable parameters. Finally, the attended unimodal representations are

combined to produce a unimodal feature representation set, 𝑋𝑢 = (𝑋𝑎1 , 𝑋𝑎2 , . . . , 𝑋𝑎𝐾 ) ∈ 𝑅
𝐵×𝐾×𝑆𝑢 .
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Fig. 3. Conditional Attention-based Multimodal Fusion (CAM). The CAM extracts key and value representations from the
unimodal representations. CAM also extracts task (𝑇𝑖 ) embedding, which is used to calculate the attention weights to calibrate
value representations. The attention representation are fused (summed) to produce multimodal representations of task 𝑇𝑖 .

4.3.2 Conditional Attention-based Multimodal Fusion (CAM):. M3Sense integrates a novel Conditional Attention-
based Multimodal Fusion model, called CAM, that fuses the multimodal features to generate robust multimodal
representations from the sensor data (Fig. 3). Unlike the task-specific state-of-the-art models, which require
training from scratch, CAM allowsM3Sense to train multiple tasks by reusing the same representation model. This
architecture reduces the memory and computational complexity compared to the state-of-the-art models. CAM
helps to prioritize the modalities and extracts task-specific salient multimodal representations using conditional
attention mechanism:

𝑋𝑇𝑖 = 𝐸𝑇𝑖 (𝑋𝑢) , 𝑇𝑖 ∈ 𝑇 (6)

First, CAM projects each one-hot task identifier vector 𝑇𝑖 from a task set 𝑇 = 𝑇1,𝑇2, . . . ,𝑇𝑁𝑇 to an embedding,
𝑄𝑇𝑖 (𝑁𝑇 is the total number of tasks and 𝑇 stands for task):

𝑄𝑇𝑖 = 𝑇𝑖𝑊
𝑞 (7)

Here𝑊 𝑞 are the learnable parameters (𝑞 stands for query). 𝑄𝑇𝑖 represents the task representation which CAM
uses to query the unimodal features, 𝑋𝑢 , to extract task-specific salient representations.

Second, it embeds the unimodal features, 𝑋𝑢 , to produce key (𝐾𝑢 ) and value (𝑉𝑢 ) feature vector representations
in the following way:

𝐾𝑢 = 𝑋𝑢𝑊 𝐾 (8)
𝑉𝑢 = 𝑋𝑢𝑊𝑉 (9)

Here,𝑊 𝐾 and𝑊𝑉 are learnable parameters for key and vector representation projections, respectively.
Finally, for each task 𝑇𝑖 ∈ 𝑇 , CAM uses a task-specific representation, 𝑄𝑇𝑖 , as prior to query the key and value

representations of unimodal features to fuse and extract the multimodal representation, 𝑋𝑇𝑖 :

𝑋
′
𝑇𝑖
= 𝜎

(
𝑄𝑇𝑖𝐾

𝑢𝑇

√
𝐷𝑢

)
𝑉𝑢 ,𝑇𝑖 ∈ 𝑇 (10)

𝑋𝑇𝑖 =𝑊
𝑓

𝑇𝑖
𝑋
′
𝑇𝑖

,𝑇𝑖 ∈ 𝑇 (11)

Here,𝑊 𝑓

𝑇𝑖
is a learnable projection parameter to project fused multimodal representation, 𝑋𝑇𝑖 . We use this

multimodal representation in the subsequent parts of M3Sense.
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Fig. 4. Distribution-based Domain Alignment Module in M3Sense. It extracts distributions of multimodal representations for
each task on labeled and unlabeled training samples. Our proposed Domain Alignment Algorithm aligns these distributions to
guide the model during the training phase to learn affect-agnostic multimodal representation.

4.4 Domain Alignment Module
M3Sense uses CAM to learn task-specific salient multimodal representations from data. However, these rep-
resentations are not affect-agnostic, and therefore not generalized across tasks. Thus, these representations
are not beneficial for unseen tasks, which were not present during the training phase. To extract generalized
multimodal representations, we design a Domain Alignment Module in M3Sense, which utilizes the distributions
of multimodal representations for all tasks 𝑇𝑖 ∈ 𝑇 across domains (Fig. 4). Specifically, it aligns the distribution
across heterogeneous domains in a multitask setting (e.g., aligning a modality’s distribution from anxiety and
emotion domains to stress domains), which is the novelty of this module. Moreover, this module is capable of
utilizing both labeled datasets (𝐷𝐿 = (𝐷𝐿1 , 𝐷𝐿1 , . . . , 𝐷𝐿𝑁𝐿 )) and unlabeled datasets (𝐷𝑈 = (𝐷𝑈1 , 𝐷𝑈1 , . . . , 𝐷𝑈𝑁𝑈 ))
from heterogeneous domains (𝐿 stands for labeled, and 𝑈 stands for unlabeled data) during training. Here, 𝑁 𝐿

and 𝑁𝑈 are the numbers of labeled and unlabeled domains.
First, the Domain Alignment Module uses the extracted multimodal representation for each task from the

previous step (Section 4.3, Eq. 1), 𝑋𝑇𝑖 , to produce a posterior distribution for each task representation:

𝛼𝑇𝑖 ∼ (𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) = 𝑞𝜃 ((𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) |𝐸𝑇𝑖 (𝐸𝑢 (𝑋 𝑟 ))) , 𝑇𝑖 ∈ 𝑇, 𝑋 𝑟 ∈ 𝐷 = (𝐷𝐿 ∪ 𝐷𝑈 ) (12)

Finally, it calculates the KL-divergence loss between the posterior distributions of multimodal representations
for all tasks and a referenced prior distribution:

𝐿𝑎𝑙𝑖𝑔𝑛 =
∑︁

𝑋 𝑟 𝑟 ∈𝐷

∑︁
𝑇𝑖 ∈𝑇

𝐷𝐾𝐿
[
𝑞𝜃 (𝛼𝑇𝑖 |𝐸𝑇𝑖 (𝐸𝑢 (𝑋 𝑟 ))) | |𝑝 (𝛽)

]
, 𝑋 𝑟 ∈ 𝐷 = (𝐷𝐿 ∪ 𝐷𝑈 ) (13)

Here, 𝑝 (𝛽) is the prior reference distribution, with respect to which the extracted distribution is aligned.
We model 𝑝 (𝛽) as a Normal distribution, N(𝜇𝛽 , 𝜎𝛽 ) with zero mean and unit standard deviation, following the
re-parameterization trick proposed by Kingma and Welling [42]. Prior works on variational inference have used
normal distribution as a prior as it allows the use of the re-parameterization trick and provides an analytical
evaluation of the KL-divergence objective [6, 13, 42]. We use a distribution recognition neural network 𝑞 with
parameters 𝜃 to obtain 𝜇𝑇𝑖 and 𝜎𝑇𝑖 . In the re-parameterization trick, a random variable 𝜖 ∼ N(0, 1) is sampled
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Algorithm 1: Domain Alignment-based Multitask Training Method
Input: 𝑇 : Task list, 𝑋𝑟 : Raw features,𝑀 : Modalities, 𝐷𝐿 : Labeled datasets, 𝐷𝑈 : Unlabeled datasets
Output: Affect-agnostic learning model

1 for 𝑒𝑝𝑜𝑐ℎ ← 1 to 𝑁 𝑒 do
2 𝐿𝑎𝑙𝑖𝑔𝑛, 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 ← 0, 0 ⊲ Initialize the domain alignment and multitask learning losses to zero
3 for 𝑋𝑟 ∈ 𝐷𝐿 do
4 ⊲ Sample a batch of data from the labeled datasets
5 for 𝑇𝑖 ∈ 𝑇 do
6 X𝑇𝑖 = 𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟𝑚)) ⊲ Extract multimodal representation for each task (Eq. 1)
7 𝛼𝑇𝑖 ∼ (𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) = 𝑞𝜃 ((𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) |𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟 ))) ⊲ Encode posterior distribution (Eq.12)
8 𝐿𝑎𝑙𝑖𝑔𝑛 ← 𝐿𝑎𝑙𝑖𝑔𝑛 + 𝐷𝐾𝐿

[
𝑞𝜃 (𝛼𝑇𝑖 |𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟 ))) | |𝑝 (𝛽)

]
⊲ Calculate domain alignment loss (Eq. 13)

9 𝑦𝑇𝑖 = 𝐹𝑇𝑖 (𝑋𝑇𝑖 ) ⊲ Produce the task prediction (Eq. 14)
10 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 ← 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 + 1

𝐵

∑𝐵
𝑗=1 𝑦𝑇𝑖 log𝑦𝑇𝑖 ⊲ Calculate the multitask prediction loss (Eq. 15)

11 end
12 end
13 for 𝑋𝑟 ∈ 𝐷𝑈 do
14 ⊲ Sample a batch of data from the unlabeled datasets
15 for 𝑇𝑖 ∈ 𝑇 do
16 X𝑇𝑖 = 𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟𝑚)) ⊲ Extract multimodal representation for each task (Eq. 1)
17 𝛼𝑇𝑖 ∼ (𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) = 𝑞𝜃 ((𝜇𝑇𝑖 , 𝜎𝑇𝑖 ) |𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟 ))) ⊲ Encode posterior distribution (Eq.12)
18 𝐿𝑎𝑙𝑖𝑔𝑛 ← 𝐿𝑎𝑙𝑖𝑔𝑛 + 𝐷𝐾𝐿

[
𝑞𝜃 (𝛼𝑇𝑖 |𝐸𝑇𝑖 (𝐸𝑢 (𝑋𝑟 ))) | |𝑝 (𝛽)

]
⊲ Calculate domain alignment loss (Eq. 13)

19 end
20 end
21 𝐿 = 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 + 𝛾𝑎𝑙𝑖𝑔𝑛 × 𝐿𝑎𝑙𝑖𝑔𝑛 ⊲ Calculate training loss (Eq. 16)
22 Backpropagate the learning model to minimize the training loss 𝐿
23 end
24 return Affect-agnostic learning model

and multiplied by the 𝜇𝑇𝑖 and 𝜎𝑇𝑖 . The recognition neural network with the re-parameterization trick allows the
end-to-end training of the representation learning model ofM3Sense and back propagate through the distributions.

4.5 Multitask Learning Module
The third and final component of M3Sense is a Multitask Learning Module. It utilizes the learned affect-agnostic
representation, 𝑋𝑇𝑖 to produce the prediction of each task𝑇𝑖 ∈ 𝑇 . This module integrates a Task Learning Network
(TLN) that uses a neural network having fully-connected layers followed by a Softmax activation to predict the
classification probability for each task:

𝑦𝑇𝑖 = 𝐹𝑇𝑖 (𝑋𝑇𝑖 ) , 𝑋𝑇𝑖 = 𝐸𝑇𝑖 (𝐸𝑢 (𝑋 𝑟 )), 𝑇𝑖 ∈ 𝑇, 𝑋 𝑟 ∈ 𝐷𝐿 (14)

Here, 𝐹𝑇𝑖 is the Task Learning Network for task 𝑇𝑖 . Finally, we use the predictions, 𝑦𝑇𝑖 , for all tasks to calculate
the multitask learning loss 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 , where 𝑦𝑇𝑖 is the ground-truth label, and 𝐵 is the batch size.

𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (𝑦,𝑦) =
1
𝐵

𝐵∑︁
𝑗=1

∑︁
𝑇𝑖 ∈𝑇

𝑦𝑇𝑖 log𝑦𝑇𝑖 (15)
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Fig. 5. Inference pipeline of M3Sense. M3Sense uses Representation Learning Module to extract multimodal representation for
a particular task. Task Switch Module activates a particular Task Learning Network to produce predictions for the intended
task. However, we can also extract representations and produce predictions for multiple tasks in parallel by skipping the Task
Switch Module in M3Sense.

4.6 Domain Alignment-based Multitask Training Algorithm
Several state-of-the-art works have designed multimodal representation learning models to train a specific task
from a particular domain [16, 30, 33, 34, 38, 44, 54, 108]. However, by design, the learned representations of these
models are domain-specific, and therefore, can not effectively transfer knowledge from a task𝑇𝑖 in the domain 𝐷𝑖
to another task 𝑇𝑗 in the domain 𝐷 𝑗 .
To overcome the above-mentioned issue, we devise a novel algorithm that extracts the affect-agnostic mul-

timodal representation for multiple tasks from heterogeneous domains. The representation learned using this
algorithm in one domain (e.g., emotions while debating in a laboratory environment) is generalized and can be
effectively used to train multiple tasks across a heterogeneous domain (e.g., anxiety while public speaking in
a classroom environment). The procedure of our proposed training method is presented in Algorithm 1. This
algorithm consists of two steps. First, it extracts the distribution from the fused multimodal representation to
calculate the domain alignment loss, 𝐿𝑎𝑙𝑖𝑔𝑛 (Section 4.4, Eq. 13). This loss guides the model to extract affect-
agnostic representation across tasks and domains from both the labeled and unlabeled data. Second, M3Sense
utilizes the Multitask Learning Module and labeled data samples to calculate the task-specific prediction loss,
𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (Section 4.5, Eq. 15). This loss is used to train the Task Learning Network to produce predictions. Finally,
the algorithm combines these two losses, and trains the learning model in an end-to-end manner to extract
affect-agnostic multimodal representation and improve the task performance:

𝐿 = 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 + 𝛾𝑎𝑙𝑖𝑔𝑛 × 𝐿𝑎𝑙𝑖𝑔𝑛 (16)

Here, 𝛾𝑎𝑙𝑖𝑔𝑛 is the weight to the domain alignment loss, which are chosen based on the network performance.
We sample a batch of data from either labeled or unlabeled data samples during training. If the training batch
of data contains unlabeled data, then we only calculate 𝐿𝑎𝑙𝑖𝑔𝑛 loss and back-propagate to update the model
parameters. Otherwise, we calculate both the 𝐿𝑎𝑙𝑖𝑔𝑛 and 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 loss and update the model accordingly. Domain
alignment loss aims to extract similar representations for all the tasks for a particular domain. This task-based
supervision allows utilizing the unlabeled data without aligning the labels across tasks. Testing data split only
contains labeled data samples to evaluate the model performance for the affect recognition tasks.

4.7 Task Inference in M3Sense
As mentioned before, M3Sense utilizes three learning modules to train the representation learning model for
multiple tasks using both labeled and unlabeled data. However, all these modules are not needed in the inference
phase. The inference architecture of M3Sense is depicted in Fig. 5, which involves three modifications compared
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Table 1. Training and evaluation datasets.

Datasets Application Labels used Modalities used Subjects
VerBIO [111] Anxiety High or no anxiety EDA, BVP, TEMP 55
WESAD [91] Stress Stress, Amusement, Baseline EDA, BVP, TEMP 15

K-EmoCon [71] Emotion High valence and arousal, others EDA, BVP, TEMP 32
MMSDN [32] Stress, Mental workload - EDA, BVP, TEMP 15

MAYA Physical Activity - EDA, BVP, TEMP 12

to the training architecture. First, the Domain Alignment Module is removed, as we no longer need to align the
representation across domains and tasks for the predictions. Second, the multimodal representation is for a
particular task is extracted in the Representation Learning Module. However, if predictions for multiple tasks are
desired, it extracts the representations for multiple tasks in parallel. Third, a Task Switch Module is introduced,
which activates a particular Task Learning Network to generate task-specific predictions. During inference,
M3Sense first takes data samples from the wrist sensors and extracts a multimodal representation for a particular
task 𝑇𝑖 . Next, it uses the task switch to activate a particular Task Learning Network to produce predictions for the
intended task. However, if predictions for all the tasks is desired, M3Sense skips the Task Switch Module. This
design offers flexibility to choose tasks for inference. Moreover, as M3Sense is able to Task Learning Network for
multiple tasks together, it reduces the inference time too.

5 EXPERIMENTAL SETUP

5.1 Datasets
We have used five different datasets to train and evaluate M3Sense: VerBIO [111], WESAD [91], K-EmoCon
[71], MMSDN [32], and a new collected dataset, called MAYA. Among these, MMSDN and MAYA were used as
unlabeled datasets for training only, the others were used for both training and evaluation. We summarize the
datasets in Table 1.

5.1.1 Anxiety Dataset: VerBIO dataset [111] is a multimodal bio-behavioral dataset that explores an individuals’
anxiety during public speaking in real-life environments. This dataset provides the audio recordings and the
physiological signals captured using a wristband from total 55 participants while performing class presentations.
The participants were given self-report questionnaires to obtain their state-based anxiety during presentation
and personality-based anxiety using the popular STAI (State and Trait Anxiety) scale [96, 112].

5.1.2 Stress Dataset: WESAD [91] is a stress and affect detection dataset that provides physiological data from
the wearable sensors placed on the wrist and the chest from 15 participants. The participants underwent the Trier
Social Stress Test (TSST) [43] consisting of mental load tasks as well as the neutral, amusement and recovery
phases during the study. Next, self-report questionnaires were used to obtain the ground-truth annotations.
Overall, the dataset provides three kinds of labels, namely stress, amusement, and baseline.

5.1.3 Emotion Dataset: K-EmoCon [71] is publicly available dataset for emotion detection in natural conver-
sations. This dataset contains synchronised physiological signals recorded from the chest, wrist and the head
sensors from 32 participants, during 16 paired debate sessions. The ground-truth annotations are provided on a
valence-arousal scale, a popular model of emotion [84], along with the ratings for different emotion categories.
The annotations were provided by the participants themselves, as well as by external raters.

5.1.4 Unlabeled Dataset - 1: MMSDN dataset, presented in [32] is a multi-modal affective domain dataset which
aimed for detecting the stressful situations and mental workload of overall 15 nurses in a hospital. The acquisition
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of the dataset was performed in a natural working environment during their long working shifts during the
COVID-19 pandemic. Following the shifts, the participants filled out a survey, where they self-reported the levels
of different kinds of stress, mental workload, and physical workloads during the shifts.

5.1.5 Unlabeled Dataset - 2: As mentioned before, M3Sense integrates a Domain Alignment Module which is
able to utilize the unlabeled data from the other affective domains as well as from the non-affective domains
that involves any changes of physiological response to the body. Previous works in the literature have shown
significant correlations of physiological parameters changes during physical exercise [8, 99]. Inspired by these
works, we collect a new dataset, named MAYA from a completely different and non-affective domain that contains
the multimodal physiological data for different physical activities in daily life from 12 participants.

5.2 MAYA Dataset Collection and Study Protocol:
For this study, we chose a set of basic arm-based exercises, which are commonly recommended by experts for
healthy individuals as well as for patients to ensure arm mobility in daily life, such as, Shoulder Flexion, Shoulder
Abduction,Wrist Flexion,Wrist Extension, Elbow Flexion. Each exercise consists of a set of steps which involves
movement of different limbs of the arm (e.g., elbow, shoulder or wrist). Data was collected using the Empatica E4
wristband. All the sessions were recorded by a video camera to obtain the ground-truth annotations. Overall, 12
subjects (57% men, 43% women) were included. The participants were healthy individuals, aged 26-39 years, with
an average age of 33 years. The study protocol involved 3 phases: the baseline phase, the exercise phase, and the
resting phase. We discuss each of these phases below, which are also demonstrated in Fig. 6:

5.2.1 Baseline phase: First the participants were asked to wear the watch in their own ways. Then they were
shown 5 instructional videos showing each of the physical exercises. The videos were chosen by physical
therapists and these demonstrated how to perform each step of the exercise correctly. Afterwards, the participants
performed 2 practice sessions to make themselves comfortable with the exercises. On average, this phase took 20
minutes.

5.2.2 Physical exercise phase: The baseline phase helped the participants to achieve a physiological baseline.
Next, each participant began performing the exercise sessions. During a session, each participant performed
5 exercises, one after another. Overall, each participant performed 10 sessions of each exercise. The average
duration length for each participants exercise phase was 7 minutes.

5.2.3 Resting phase: In this phase, the participants were allowed to rest for 15 minutes to get back to their usual
physiological state. Then each participant was provided self-report questionnaires that included three categories
of questions. First, they were asked to rate the physical workload level and the intensity level on a scale of 1 to
10. Second, they were asked to report if they faced any pain or inconveniences during the exercises. Third, they
were also asked to rate different phases of the data collection.

5.3 Data Preparation
Since M3Sense is designed to be a single learning framework for multiple mental health applications, the datasets
were combined and processed in a similar manner. First the data from different modalities were split into several
windows, and then synchronized into combined files. Each row of a combined file indicates a data window that is
assigned a class label having a value between 0 to the number of classes for the affective application, an identifier
for the application, and another identifier for the participant. The window length was chosen as 20 seconds,
based on the previous works [10, 25, 94]. The signals from the wrist devices are often accompanied by noise and
motion artifacts, mostly due to attachment of the sensors. To handle such artifacts from the BVP(PPG), EDA and
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Fig. 6. Three phases of the MAYA dataset collection and study protocol: (a) Baseline phase- the participant is preparing for
the exercise phase and watching the video of an exercise. (b) Exercise phase- the participant is performing an exercise. (c)
Resting phase- the participant resting after a session.

TEMP signals, and thus to improve the quality of these signals, we applied a combination of a low pass filter and
a finite impulse response filter, similar to the techniques described in [88].

For the VerbIO dataset, we utilized the sessions that involved data collection in real-life settings in the context
of public-speaking anxiety. Following previous work [39], we assigned two labels for anxiety from the STAI scale,
one for no or low anxiety (scores between 20− 37) and high anxiety (scores between 37−higher). For the WESAD
dataset, it already contained labels from 0 to 3, no additional processing was required. For the K-EmoCon dataset,
we assigned the labels based on the valence and arousal scale ratings. Label 1 was assigned for the data samples
having high valence (value greater than 2) and high arousal (value greater than 2), label 0 was assigned otherwise.
For the unlabeled MMSDN dataset, we only used data from one randomly chosen session for each participant.
For the MAYA dataset, we utilized the data for the physical exercise phase only, as this phase represents the
physiological changes. For the unlabeled data samples, we used -1 as labels to avoid conflicts.
Following this step, two sets of data were prepared from each of the combined data files for a modality: a

training-validation set (35% of the overall samples), and a testing set (55% of the overall samples). The remaining
data samples were used as unlabeled, with a label −1. The training-validation set was split into training and
validation sets with a split of 75% − 25%. To ensure fair evaluation, a stratified splitting technique was followed
that ensured that data samples for each class for each application appeared in these sets in the same ratio.

5.4 Implementation Details of Learning Models
5.4.1 Training Architecture of M3Sense : To implement and train M3Sense using the datasets, the data from the
wrist physiological modalities were segmented with a segment size of 5 and a stride size of 5. Following the
implementation of Unimodal Feature Encoder (UFE) proposed by [33], we implemented that ofM3Sense. We used a
co-occurrence learning model [48] to implement the spatial encoder. The implementation consists of a two-layer
CNN (Convolutional Neural Network). The CNN has 64 and 32 channels with the kernel sizes of (1 × 1) and
(3× 3), respectively. In CNN, the role of kernels is to pool features at a different level of abstraction. Small kernels
(1×1) can pool local features and large kernels (3×3) can pool global features. The feature embedding size of each
encoded spatial unimodal feature for each modality was 128. Following this step, we applied batch normalization
to standardize the input layers, ReLU-activation to allow non-linear activation in the learning model, and dropout
layers (having a probability of 0.3) to regularize the learning model and prevent overfitting during the training.
These values were chosen based on our experimental evaluation and the implementation details of prior works
on representation learning [33, 34, 48] to ensure reproducibility of the experimental evaluations.

To implement the temporal feature extraction model, we used an LSTM (Long Short Term Memory) network
with a hidden feature size of 128. ReLU-activation and dropout layers (with a probability of 0.1) were used. To
implement the self-attention based module, a one dimensional Convolutional layer was utilized, along with
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batch normalization, ReLU-activation, and dropout layers (having a probability of 0.3). To implement the CAM
module, we used our proposed conditional attention-based multimodal fusion model. Following the fusion, batch
normalization, ReLU-activation, and dropout layers (having a probability of 0.3) were applied. Lastly, these
output features were passed through two fully connected layers, having a ReLU activation. To implement the
Task Learning Network, we used a fully connected neural network followed by ReLU-activation. The resulting
representations were passed through a Softmax layer to produce class labels probabilities for a particular affective
task, which provides 𝐿𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 using Cross Entropy Loss. Additionally, following the previous works [6, 13, 42],
we used the Normal distribution as a reference to calculate the domain alignment loss 𝐿𝑎𝑙𝑖𝑔𝑛 . We empirically set
the domain alignment loss weight 𝛾𝑎𝑙𝑖𝑔𝑛 = 0.3, which helped to train the model.

5.4.2 Training Architecture of Baseline Models: For performance comparison, we implemented two sets of baseline
models. We discuss the implementation and details of these models below.

Handcrafted features-based machine learning models: Previous works on affect recognition have success-
fully applied different traditional machine learning methods [75, 88, 91, 100]. We implemented 6 most commonly
used classifiers among these works for performance comparison. These are, Random Forest, Decision Tree, Extra
Trees, Linear Regression, Linear discriminatory Analysis, and Support Vector Machine. The tree-based models (e.g.,
Random Forest, Extra Trees) were implemented with 100 number of estimator trees, and with Gini impurity based
information gain. The Decision Tree implementation also used Gini-based gains, and followed the best splitting
strategy at each node. The Linear Regression implementation used a linear classifier with L2-regularization,
while the Support Vector Machine implementation used a classifier with the Radial Basis Function (RBF) kernel,
based on previous works [100, 117]. For the Linear discriminatory Analysis implementation, the singular value
decomposition strategy was used. It must be noted that these parameters and options provided the best results for
the training environment, and were chosen accordingly. For all of these implementations, the physiological signals
were split into windows of size 20 seconds (described in Section 5.3). Next we computed different handcrafted
statistical features (e.g., Mean, Standard Deviation, Maximum, Minimum) from the windows. We used a 10-fold
cross validation strategy to avoid overfitting by the models. The average scores were chosen across the runs.

Deep Multimodal Representation Learning Models: We compared the performance of M3Sense with two
baselines and two state-of-the-art multimodal representation learning models, which are as follows.
• Non-Attention: This baseline model uses a Unimodal Feature Encoder, similar to the learning architecture of
M3Sense (Section 4.3.1), except the self-attention learning model was removed. The spatial-temporal feature
encoder was kept to extract unimodal representation from data. Finally, the extracted representations are
summed to produce a fused multimodal representation, which is used for learning a specific task.
• Multimodal-Attention: Similar to the Non-Attention baseline model, this baseline model uses a spatial-
temporal feature encoder without a unimodal attention model. However, it utilizes a multimodal attention
model, adopted from the learning architecture of Keyless [54]. The implementation consists of a 1-D CNN
model that calculates the attention weights that are used to attend the feature from different modalities to
produce a multimodal representation, which is used for a particular task learning.
• Keyless [54]: Keyless is a state-of-the-art multimodal representation learning approach that uses a light-
weight attention model to extract unimodal features [54]. We implement this model by employing a
Unimodal Feature Encoder having a spatial-temporal feature encoder and a self-attention model. It follows
a similar architecture to the UFE of M3Sense.
• HAMLET [33]: HAMLET is another state-of-the-art multimodal representation learning model for a
single task learning, which employs a unimodal attention model to extract salient unimodal feature and
then an attention approach to fuse multimodal representation. It also utilizes a Unimodal Feature Encoder
architecture, similar to that of M3Sense. HAMLET leveraged the transformer-style self-attention model
[102] in designing both unimodal and multimodal attention model.
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5.4.3 M3Sense Variants: We develop three variants of M3Sense, based on the two state-of-the-art models, and a
baseline model. We replace the CAM in Representation Learning Module of M3Sense with three baseline models:
Non-Attention, Keyless [54], and HAMLET [33]. Unlike the baseline models, the M3Sense variants share the
multimodal representation across the tasks using the Multitask Learning Module, and also use the Domain
Alignment Algorithm to generate affect-agnostic representation to improve the task performance.

• M3Sense(Non-Attention): In this variant, we remove the unimodal self-attention model from the Repre-
sentation Learning Module of M3Sense (Section 4.3) and summed the extracted spatial-temporal feature to
produce unimodal representation. Moreover, we remove the CAM fromM3Sense and summed the unimodal
representation to produce multimodal representation representation. This fused representation is used in
all task-specific networks of M3Sense to produce multiple task predictions.
• M3Sense(Keyless): In this variant, unimodal feature encoder implementation is similar to the Unimodal
Feature Encoder of M3Sense. However, CAM is removed from M3Sense, and the extracted unimodal repre-
sentations are summed and used for task learning.
• M3Sense(HAMLET): This variant utilizes aUnimodal Feature Encoder is similar to that ofM3Sense. However,
we replace CAM in M3Sense with multimodal attention based fusion approach from HAMLET [33]. This
approach fuses the multimodal representation which is used by Task Learning Network of M3Sense. Similar
to the other baseline variant of M3Sense, each Task Learning Network shared the same fused representation.

5.5 Training Environment
We used PyTorch deep learning framework to implement the learning models of M3Sense and baseline models.
An Adam optimizer with weight regularization and cosine annealing warm restarts [55] were used to train all the
learning models. The initial leaning rate was set to 3𝑒−4. The cycle length (𝑇0) and the cycle multiplier (𝑇𝑚𝑢𝑙𝑡 ) were
set to 30 and 2, respectively. As we are training the learning models with multiple modalities for multiple tasks
on GPUs with limited memory, we set the batch size 2. We trained all the learning models, includingM3Sense and
baselines, for 65 epochs. To ensure reproducibility, we used a fixed random seed (333) in the PyTorch-Lightning
framework. Finally, the models were trained in a distributed manner on a GPU cluster environment with each each
cluster node having 1 − 4 GPUs from the following set of GPU models: 𝑃100,𝑉 100, 𝑅𝑇𝑋 − 2080, and 𝑅𝑇𝑋 − 6000.

6 RESULTS AND DISCUSSION

6.1 Comparison with Multimodal Learning Models
We compared the performance of M3Sense with the aforementioned baseline models. The experimental results
are presented in Table 2 and described below.

6.1.1 Results: The experimental results suggest that M3Sense outperformed all the features-based machine
learning models and the state-of-the-art multimodal representation models across all the tasks by achieving
the highest Top-1 accuracy in anxiety: 71.5%, emotion: 75.2%, and stress: 87.0% detection tasks (Table 2). For
the anxiety detection task, the best performing variants of M3Sense (M3Sense(Non-Attention)) outperformed
the best performing feature-based models (Extra Trees) and the multimodal representation model (HAMLET
[33]) by 9.6% and 1.3%, respectively. For the emotion recognition task, the best performing models of M3Sense
(M3Sense(CAM)) outperformed the best performing feature-based models (Support Vector Machine) and the
multimodal representation model (HAMLET [33]) by 26.2% and 11.7%, respectively. For the stress detection task,
the best performing variants of M3Sense (M3Sense(Keyless)) outperformed the best performing feature-based
models (Extra Trees) and the multimodal representation learning model (HAMLET [33]) by 15.5% and 0.6%,
respectively.
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Table 2. Performance comparison of multimodal learning models

Approach Learning Models Task (Top-1 Accuracy (%))
Anxiety Emotion Stress

Handcrafted Feature-Based
Machine Learning

Random Forest 60.0 46.9 69.6
Decision Tree 50.5 43.0 61.8
Extra Trees 61.9 43.9 71.5
Linear discriminatory Analysis 37.6 45.1 66.1
Linear Regression 40.0 48.1 65.3
Support Vector Machine 48.0 49.0 67.2

Deep Multimodal
Representation Learning

Non-Attention 60.3 62.0 82.8
Multimodal Attention 60.7 63.5 86.1
Keyless [54] 64.0 63.5 82.8
HAMLET [33] 70.2 63.5 86.4

M3Sense

M3Sense (Non-Attention) 71.5 75.2 81.5
M3Sense (Keyless) 66.7 75.2 87.0
M3Sense (HAMLET) 71.5 75.2 81.5
M3Sense (CAM) 70.3 75.2 85.7

Are handcrafted feature-based models suitable for affective tasks? The results in Table 2 suggest that
handcrafted feature-based machine learning models can not extract task-specific salient features for the affective
tasks. There is a considerable performance gap between the best-performing machine learning model and the
deep multimodal representation learning model. The reasoning behind this performance gap is such feature-based
models depend on the manual selection of features which do not help to train a generalized model to achieve
considerably better performance on the unseen data samples. Moreover, these models can not effectively capture
the temporal and spatial correlations in the data that represents these affective conditions.

Are the deep models and the attention approach helpful? Our results strongly indicate that all the deep
multimodal representation learning models, including M3Sense, outperformed the handcrafted feature-based
machine learning models by a good margin across all the tasks. Our explanation is these deep models extract
generalized feature representation for a particular task, which leads to better performance on unseen data samples.
However, the performance degrades, if an attention method is not included in the architecture. For example, the
Non-Attention model, which does not use the attention method under-performs than the other baseline models
across all the tasks. Thus, the learning model architecture plays a crucial role in improving task performance.
Additionally, to the best of our knowledge, we are the first to conduct ablation studies to evaluate the impact
of various attention mechanisms for affective tasks. The results clearly show that for all attention mechanisms,
when M3Sense is applied to the representation learning models, the task performance improves consistently.
Thus, M3Sense provides a generalized learning framework that helps to improve the performance of multimodal
learning models, regardless of which attention mechanism is used for multimodal fusion.

CanM3Sense further improve the performance?The results (Table 2) show that our framework,M3Sense out-
performs both the deep multimodal representation learning models and the handcrafted features-based models
across all the affective tasks. In particular, the performance of the deep models is considerably lower for some
tasks (e.g., 62.0% − 63.5% accuracy in the emotion detection task), while all variants of M3Sense performs con-
sistently well (e.g., 75.2%). We also observe that the Non-Attention learning model does not outperform the
handcrafted features-based models for anxiety detection, however, M3Sense can guide Non-Attention model to
learn generalized representations and improve the performance across all the tasks. Notably, the Non-Attention
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Table 4. Impact of task and domain variations in M3Sense. We evaluate which affective tasks should be learned together in
multitask learning model.

Task
Combinations

Context
Combinations

Environment
Combinations

Tasks (Top-1 Accuracy (%))
Anxiety Emotion Stress

Anxiety
Emotion
Stress

Presentation
Debate

Mental load tasks

Real-life
Real-life

Laboratory
60.2 75.2 82.7

Anxiety
Emotion

Presentation
Debate

Real-life
Real-life 63.5 63.5 -

Anxiety
Stress

Presentation
Mental load tasks

Real-life
Laboratory 70.3 - 85.8

Emotion
Stress

Debate
Mental load tasks

Real-life
Laboratory - 75.2 82.4

model with M3Sense outperforms baseline learning models for anxiety detection. Moreover, M3Sense helps to
improve all the evaluated baseline models across all the tasks by achieving the highest top-1 accuracy. The
reasoning behind this performance improvement is that M3Sense uses our proposed domain alignment approach
that guides the learning model to extract affect-agnostic representation, which benefits all tasks. Additionally, it
utilizes both the labeled and unlabeled data which helps the learning models to learn generalized representations
across tasks and domains to ensure robust performance in the multitask learning setting.
Moreover, as mentioned before we have used only wrist sensors with a very low sampling frequency to

evaluate the multimodal learning models. For example, for a stressful condition having a duration 60 seconds, the
Empatica E4 wristband [15] will provide 4𝐻𝑧 × 60 = 240 samples of EDA only, while a respiBAN chest strap [74]
will provide 700𝐻𝑧 × 60 = 42000 samples. Our results showing superior performance over the state-of-the-art
representation learning models suggest that the combination of CAM and the Domain Alignment Module helps to
extract the useful information from these fewer samples from wrist devices.

6.2 Which Affective Tasks Should be Learned Together in Multitask Learning Model?
We experimentally analyze what combinations of tasks and domains are suitable for the affective applications
in the multitask learning settings.We trained separate multitask models with various combinations of tasks,
while keeping the modality combination same: BVP, EDA, and TEMP. We developed three baselines multitask
learning models by incorporating state-of-the-art multimodal representation learning models intoM3Sense. Table
4 presents the results. We discuss our findings from the results below.

Detecting stress facilitates emotion detection regardless of domains: The experimental results suggest
that incorporating stress detection in the multitask learning model helps to improve the performance of emotion
detection, regardless of the context and environment. For example, for the emotion recognition task, a combination
of anxiety and emotion provides 63.5% Top-1 accuracy, while the introduction of stress improves the accuracy to
75.2%. Thus, stress detection in a multitask learning model helps to regularize the representations to improve the
performance of emotion detection. It must be noted that these results show the relevance with the findings of
psychology studies that stress is usually considered as a cause, while emotions often result from stress [3, 19]. We
also notice that the performance of our models slightly changes with the change of the context or environment;
rather, it is dependent on the variations of tasks. For example, stress data were collected in the laboratory in
the context of mentally stressful tasks; however, the learned generalized representations are used for emotion
detection, which was performed in different real-life conversational contexts.
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Fig. 7. Experimental evaluations of state-of-the-art multimodal representation learning model and M3Sense for unseen tasks.
Here, M3Sense([Task-Set]) to [Task] in the figure title denotes that M3Sense is pre-trained for [Task-Set] and fine-tuned for
[Task]. (Non-Attn: Non-Attention, Multi-Attn: Multimodal-Attention)

Emotion detection degrades the performance of other tasks: Interestingly, our experimental evaluations
indicate that incorporating an emotion detection task in a multitask learning model degrades the performance
of other tasks considerably. However, the emotion detection performance is leveraged from the other tasks
representations. For example, a multitask model with anxiety and stress detection tasks achieves the highest
Top-1 accuracy of 70.3% and 85.8% for anxiety and stress detection tasks, respectively. However, incorporating
emotion in that model reduces the accuracy of anxiety and stress detection tasks 10.1% and 3.1%, respectively. The
reasoning behind these performance degradations is that emotion detection is much more complicated than stress
and anxiety because of a wide variety of emotions. Although both stress and anxiety are located in the negative
valence and high arousal region of the circumplex model [25, 84], the other regions of the model have many
other emotions, which are not beneficial to learn representations for stress or anxiety detection tasks. As a result,
the emotion detection task dominates the multitask learning and forces the models to learn over-generalized
representation, which leads to performance degradation for other tasks. Thus, we should not use emotion with
stress, and anxiety detection tasks in an affective multitask learning model. However, incorporating anxiety and
stress detection will help to improve the performance of emotion detection.
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6.3 Generalizability of Representation Learning Models
We investigated whether a representation learned for one task can be used for another unseen task prediction (a
task which was not present during training), and thus reduce the dependency on a huge labeled dataset to train a
model for the target task. We conduct this experimentation in three phases:
• Transfer baseline models across tasks: In this phase, we investigated whether a model can learn a
generalized representation that can be used to train a model for an unseen task with limited training data.
We trained the baseline models for emotion, anxiety, and stress tasks separately, called source tasks. After
that, we froze the Representation Learning Module of these models and replace only the Task Learning
Network of the source task with a model for the target task. Finally, we used this modified model and
fine-tuned it with a small labeled dataset for the unseen task.
• Transfer multitask model (M3Sense) across tasks: The goal of this experimentation is to investigate
whether the learned representation by M3Sense generalizes well to learn unseen tasks with a few labeled
training samples. We pre-trained M3Sense with a pair of tasks and then froze the Representation Learning
Module of the model. After that, the Task Learning Network part was replaced with a model for the unseen
target task, and the modified model was with a small labeled dataset for the unseen task.
• Fine-tune a multitask model (M3Sense) to a single task: In this phase, we investigated the impact of
fine-tuning the multitask learning model of M3Sense to a single task model. This experimentation aims to
investigate whether fine-tuning a multitask model can lose the generalizability of learned representation
across tasks. We followed the similar procedure of prior experiments. In this case, the model was pre-trained
with all the tasks (anxiety, emotion, and stress) and then fine-tuned for a specific target task.

Are the state-of-the-art models capable of handling unseen tasks? The experimental results in Fig. 7
suggest that the performance of state-of-the-art multimodal learningmodels for unseen task degrades considerably
for some combination of modalities. For example, if we transfer Keyless [54] and HAMLET [33] models from
anxiety detection to emotion recognition, then the Top-1 accuracy degrades to less than 40% for the following
combination of modalities: BVP-EDA-TEMP, EDA-TEMP, BVP-TEMP, EDA, BVP. The capability of transferring a
state-of-the-art multimodal learning model across tasks is highly dependent on the combination of modalities
and the pair of source and target tasks. The reasoning behind this performance degradation for unseen task is
that these multimodal learning models extract task-specific representation which are not generalized across tasks.
Thus, these models are not effective for unseen task learning. Additionally, given the fact that the commercially
available wrist devices come with different available sensors combinations, the state-of-the-art models when
trained for one device will struggle to perform well in new devices having different modalities.

Can M3Sense improve the performance of models on unseen tasks? The experimental results in Fig. 7
suggest that if we trained M3Sense with a source task set and fine-tune that model for an unseen task, then the
performance of the fine-tuned model stays the same or slightly reduced compared to a model which is trained
with all the source tasks and the unseen task. For example, if we transfer M3Sense(Anxiety-Stress) model to
learn the emotion recognition task, then the Top-1 accuracy of the emotion recognition task stays the same
(M3Sense(Anxiety-Stress) denotes that M3Sense is trained for anxiety and stress tasks). However, if we fine-tune
M3Sense(Emotion-Stress) model to learn anxiety detection tasks with a few training samples, then the performance
of anxiety detection reduces slightly. Although the performance for an unseen task in the fine-tuned model
of M3Sense degrades slightly in some settings, this fine-tuned model of M3Sense outperforms all the evaluated
state-of-the-art model performance to learn an unseen task. The reasoning behind this consistent performance to
learn an unseen task is that M3Sense can learn affect-agnostic representation by using the Domain Alignment
Module which being generalized is effective for unseen tasks.

Does fine-tuning M3Sense for a single affective task help? Experimental results in Fig. 7 suggest that if
we train M3Sense with all the tasks and then fine-tuning for a target task, the accuracy degrades slightly. Despite
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(a) Anxiety detection models.

(b) Emotion detection models.

(c) Stress detection models.

Fig. 8. Impact of modality combinations in handcrafted feature-based machine learning models, multimodal representation
learning models, and the variants of M3Sense for affect recognition.

this, the fine-tuned model still outperforms the task-specific baselines and state-of-the-art models. The reasoning
behind this slight performance degradation is that the fine-tuned model learns task-specific representation, which
leads to the loss of generalizability of the learned representation. However, it does not degrade considerably, as
we only fine-tuned the task learning model part.

6.4 Ablation Studies
6.4.1 Impact of Modalities on Task Performance: Previous works [23, 45] have found that using multimodal
data over unimodal data improves the representation learning performance. However, no prior works on affect
recognition have demonstrated whether all or specific combinations of modalities can work better for detecting
these tasks. To bridge this gap of literature, we do an ablation study using different modality combinations. All
3 categories of compared methods were used, i.e., the feature-based traditional models, the deep multimodal
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Table 5. Impact of utilizing unlabeled data through the domain alignment module in multitask learning.

Training Method Learning Models Task (Top-1 Accuracy (%))
Anxiety Emotion Stress

Without unlabeled data

M3Sense (Non-Attention) 54.9 75.2 81.5
M3Sense (HAMLET) 52.7 75.2 83.6
M3Sense (Keyless) 55.0 75.2 81.5
M3Sense (CAM) 51.4 75.2 81.7

With unlabeled data

M3Sense (Non-Attention) 71.5 75.2 81.5
M3Sense (Keyless) 66.7 75.2 87.0
M3Sense (HAMLET) 71.5 75.2 81.5
M3Sense (CAM) 70.3 75.2 85.7

representation learning models, and the variants of M3Sense. Fig. 8 demonstrates the results, from which we
make the following observations.
Unimodal or multimodal sensors for affect recognition? The results (Fig. 8) show that whether to use

unimodal or multimodal sensors for better performance- it comes down to the individual affective tasks. For
example, for anxiety detection, the best result obtained using a combination of the BVP and TEMP modalities was
74.7% (usingM3Sense(HAMLET)), while the samemodel using all modalities provided 70.3%. Moreover, for anxiety,
using the single modality TEMP achieved performance (69.4%) nearly as good as using all modalities using the
same model (70.2%). It shows clinical relevance with previous works that have shown that temperature (TEMP)
is a strong indicator of anxiety [3, 64]. Overall, our findings suggests that a combination of EDA-BVP-TEMP
yielded the best accuracy performance for emotion (75.2% using M3Sense(HAMLET)) and stress (86.4% using
HAMLET), while a combination for BVP and TEMP modalities provided the best results for anxiety (74.7%
using M3Sense(HAMLET))). Additionally, M3Sense outperforms the feature-based machine learning models and
state-of-the-art multimodal representation learning models in all combination of modalities.
A solution with consistent performance is needed: A major problem with the commercially available

wrist devices or smartwatches is they come with a variety of embedded sensors, For example, the latest version of
the Apple watch (Series 7) does not provide an temperature sensor, while that for the Samsung Galaxy (Series 4)
does not include a EDA sensor [12]. Therefore, we need a learning model that will provide consistent performance
regardless of which sensing modalities are available. From the results, we see that all variants of M3Sense, our
solution, provides consistent performance across all sensors combinations, where the feature-based traditional
models, or the state-of-the-art models often do a poor job. For example, for emotion detection, if the EDA sensor is
absent, the best performance achieved by using the remaining sensors with the feature-based traditional models
is 49% accuracy (using Support Vector Machine), and that with the deep representation models is 63.5% accuracy
(using HAMLET), and while our solution using the same model (M3Sense (HAMLET)) produces 75.2% accuracy.

6.4.2 Impact of utilizing unlabeled data in M3Sense: In addition to using labeled data from the same domain
for learning the representation as the state-of-the-art does, M3Sense is capable of utilizing unlabeled data from
heterogeneous domains through the domain alignment module. To show the effectiveness of this part of our
solution, we conducted experiments with the variants of M3Sense under different settings. First, we trained the
variant of M3Sense by using only labeled data. As we did not use unlabeled data, only multitask learning losses
were used to train the models. Second, we used both labeled and unlabeled data and utilized the multitask learning
losses and domain alignment loss to align the distribution of the representation. We present the results in Table 5.
We make the following interpretations from the results.
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Table 6. Comparison of mode size (number of parameters in thousands) of different learning models

Learning Models Model Size Combined Model SizeAnxiety Emotion Stress
Non-Attention 1110 K 1110 K 1110 K 3330 K
Multimodal Attention 1112 K 1112 K 1112 K 3336 K
Keyless [54] 1113 K 1113 K 1113 K 3339 K
HAMLET [33] 1115 K 1115 K 1115 K 3345 K
M3Sense (Non-Attention) – – – 2244 K
M3Sense (Keyless) – – – 2248 K
M3Sense (HAMLET) – – – 2250 K
M3Sense (CAM) – – – 2251 K

Does unlabeled data help in affect recognition? The experimental results in Table 5 suggest that the
addition of unlabeled data helps to improve the accuracy of anxiety and stress detection tasks. Among all the
tasks, the anxiety detection task achieved the highest performance improvement of 16.6% in Top-1 accuracy,
while the stress detection task achieves an accuracy gain of 3.6%. The reasoning behind this performance
improvement is that domain alignment module enables M3Sense to effectively utilize unlabeled data to learn
affect-agnostic representations from multiple heterogeneous domains. Our explanation is that the generalized
representation learned from the unlabeled data mostly provide additional salient information for the stress and
anxiety detection task. Moreover, the unlabeled datasets we have used in this work are from the mental and
physical workload domains (Section 5.1.4 and 5.1.5). Previous works in the literature have shown significant
correlations among these domains with stress and anxiety [1, 32, 47]. On the contrary, compared to stress and
anxiety detection, emotion detection is a more complex and difficult task, as it involves a variety of emotions
placed in the circumplex model [84]. Thus, these results show clinical relevance with the aforementioned works
in the literature. We also note that the overall experiments show the prospect of unlabeled data to leverage the
affective tasks performance in multitask settings. Although the utilizing unlabeled data have been explored in the
literature [29, 53, 56, 66, 67, 77, 82], our Domain Alignment Module aligns the unlabeled data distribution across
heterogeneous domains in a multitask setting (e.g., aligning a unlabeled data of a modality from anxiety and
emotion domains to stress domain), which is the main benefit of this module over these existing works.

6.5 Comparison of Learning Model Complexity (Space and Time)
We analyzed the space and time complexity for different deep multimodal representation learning models and
the variants of our proposed multitask learning framework, M3Sense. We conducted these analyses by executing
a batch of size 2 with multimodal data samples on a 𝑃100 GPU node in a cluster computing environment. This
computing node has 60𝐺𝐵 memory and 10 CPUs. The analyses of space (number of parameters in a model) and
time (batch of data samples execution time) model complexity are presented in Table 6 and 7, respectively.
CanM3Sense reduce the model size? The results in Table 6 suggest that each deep multimodal learning

model has the approximately same number of parameters (1112𝐾) in a single task setting. For three affective tasks
(anxiety, emotion, and stress) with three modalities (BVP, EDA, TEMP), the combined model size is approximately
3337𝐾 . Our proposed multitask learning framework M3Sense learns all the tasks using a single model, unlike a
separate learning model for each task. The number of parameters of M3Sense with baseline multimodal learning
models is approximately 2248𝐾 , which is approximately 33% lower than the combined model size of baseline
learning models for multiple tasks. The reasoning behind this space reduction is that M3Sense uses a single and
generalized representation learning model for all the tasks compared to the baseline learning models, which use
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Table 7. Comparison of execution of time (Millisecond) per batch size of 2 for different learning models

Method Execution Time (Millisecond) Combined Execution Time
(Millisecond)Anxiety Emotion Stress

Non-Attention 142 141 143 426
Multimodal Attention 160 159 158 477
Keyless [54] 173 170 174 517
HAMLET [33] 195 192 196 583
M3Sense (Non-Attention) – – – 172
M3Sense (Keyless) – – – 191
M3Sense (HAMLET) – – – 212
M3Sense (CAM) – – – 203

a separate model for each task. Thus, in the multitask learning setting, M3Sense reduces the combined model size
of state-of-the-art single task-based learning models without compromising the performance.
Can M3Sense reduce the execution time? The results in Table 7 suggest that each baseline multimodal

learning model requires less than 200𝑚𝑠 computing time to execute a batch of size 2 with three modalities (BVP,
EDA, TEMP). These baseline models require more than 400𝑚𝑠 computing time to infer the prediction for all
tasks. On the other hand, M3Sense can reduce this multitask inference time to approximately 200𝑚𝑠 , which 50%
reduction compared to the baseline learning models.

7 BROADER IMPACT
Our research shows that multitask learning (MTL) can be a new perspective in the mental health domains research
by utilizing the significant associations among these domains. Our framework, M3Sense provides a generalized
and scalable platform that can be integrated into any wearable-based affection detection pipeline. Future work
would be interesting to extend this research to other mental health domains, such as depression and mental
workload, and to find out which affective tasks should be learned together to guarantee robust performance
across all domains. Moreover, it must be noted that our multitasking framework considers each of the mental
health domains as individual affective tasks (e.g., stress, anxiety, emotion), given the correlations among these
domains found from the literature (explained in Section 3), and it uses the individual rating scales of the domain
for ground truth labels, such as, the valence-arousal scale of emotion, STAI scale of anxiety. The other rating
scales from these domains can also be utilized in a similar manner, which we leave as a future work. Future works
also can manifest the ability of MTL to develop personalized models that can account for subjective differences
based on potential bio-markers (e.g., age, gender, and personality).

Additionally, this research shows the potential usability of unlabeled data from heterogeneous domains, which
can be instrumental in reducing the dependency on expert-annotated data for these mental health conditions.
Moreover, since the COVID-19 pandemic, there has been a massive surge in the mental wellness and wearable
industry’s growth [21, 22]. Companies like Apple, Samsung, and Garmin are enhancing new physiological
capabilities and mental wellness features to their latest smartwatches [37, 87]. Our research gives the impression
that a single model can detect various mental health conditions using different embedded sensors from these
watches with consistent performance. Our proposed learning framework can reduce the model size and execution
time, which will be crucial for these resource-constrained devices. It also opens us with many possibilities in
building intelligent cognitive assistants on smartwatches, including early assessment of multiple mental health
conditions and providing preventive interventions by utilizing its interaction capabilities.
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8 CONCLUSION
In this work, we developed a novel multitask learning framework, called M3Sense, to learn affect-agnostic
multimodal representations for affect recognition tasks. Moreover, we designed a novel domain alignment
algorithm to train multitask models to learn generalized representation using limited labeled and a huge amount of
unlabeled data. Our extensive experimental evaluations and ablation studies suggest thatM3Sense outperforms all
the evaluated handcrafted feature-based machine learning models and state-of-the-art multimodal representation
learning models across all the evaluated tasks and domains. Moreover, we evaluated the impact of various task
combinations and modalities in M3Sense, which provides valuable insights to design a multitask learning model
for affect recognition tasks. Additionally, M3Sense is a unified learning model that can help to improve the
performance of the state-of-the-art representation learning model by 5% − 60% for several unseen tasks with
various input modalities. Moreover, the findings from our experimental evaluations can be used to develop robust
multitask learning models for various mental health applications.
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