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With the transformation to smarter cities and the development of technologies, a large amount of data is col-

lected from sensors in real time. Services provided by ride-sharing systems such as taxis, mobility-on-demand

autonomous vehicles, and bike sharing systems are popular. This paradigm provides opportunities for im-

proving transportation systems’ performance by allocating ride-sharing vehicles toward predicted demand

proactively. However, how to deal with uncertainties in the predicted demand probability distribution for im-

proving the average system performance is still a challenging and unsolved task. Considering this problem, in

this work, we develop a data-driven distributionally robust vehicle balancing method to minimize the worst-

case expected cost. We design efficient algorithms for constructing uncertainty sets of demand probability

distributions for different prediction methods and leverage a quad-tree dynamic region partition method for

better capturing the dynamic spatial-temporal properties of the uncertain demand. We then derive an equiva-

lent computationally tractable form for numerically solving the distributionally robust problem. We evaluate

the performance of the data-driven vehicle balancing algorithm under different demand prediction and region

partition methods based on four years of taxi trip data for New York City (NYC). We show that the average

total idle driving distance is reduced by 30% with the distributionally robust vehicle balancing method using

quad-tree dynamic region partitions, compared with vehicle balancing methods based on static region par-

titions without considering demand uncertainties. This is about a 60-million-mile or a 8-million-dollar cost

reduction annually in NYC.
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1 INTRODUCTION

The number of cities is increasing worldwide and the transformation to smarter cities is taking
place, which brings an array of emerging urbanization challenges [33]. With the development of
technologies, we are able to collect, store, and analyze a large amount of data efficiently [3]. An in-
telligent transportation system is one example in which sensing data collected in real time provide
opportunities for understanding spatial-temporal human mobility patterns. For instance, traffic
speed [6], travel time [7, 22], passengers’ demand model [31, 47] and origin-destination model of
taxi networks [24, 27], and transportation network efficiency [41] are inferred and measured.

Researchers have been working on various approaches to improve the performance of trans-
portation systems. Smart parking systems that allocate and reserve parking space for drivers [18],
routing, and motion planning problems for mobile systems [23, 42] have been proposed. By consid-
ering future demand predicted with data when making current decisions, optimal vehicle balancing
strategies have many advantages compared with approaches that do not balance vehicles from a
systemwide coordination perspective. Vehicle balancing methods have been studied for car shar-
ing systems [44] or mobility-on-demand systems [40, 43] by distributing vehicles among regions or
reactive trip assignment [5], based on current or predictive demand. Vehicle balancing can reduce
the number of vehicles needed to serve all passengers in mobility-on-demand systems [36, 50, 51]
and bike-sharing systems [37, 38], or reduce customers’ waiting time [36, 51] and taxis’ total idle
distance [29] with the same number of empty vehicles. However, the limited knowledge we have
about demand and mobility patterns [17] affect the performance of vehicle balancing strategies,
and make real-time decisions under demand model uncertainties still a challenging and unsolved
task. Considering demand uncertainties, although the robust optimal solution shows its advantage
in worst-case scenarios compared with non-robust approaches [4, 26, 28], there is still a tradeoff
between the system’s average and worst-case performance [30].

In this work, we integrate the process of estimating passenger demand based on data and calcu-
lating a vehicle balancing solution, to consider demand model uncertainties and compute a vehicle
resource allocation solution in real time. In practice, it is difficult to obtain a true probability distri-
bution of the random passenger demand purely based on data, making it impossible to estimate the
true expected vehicle balancing cost. Therefore, we minimize the worst-case expected vehicle bal-
ancing cost under a set of possible probability distribution functions of passenger demand learned
from data, by formulating a data-driven distributionally robust optimization problem. Distribution-
ally robust optimization techniques have been developed for minimizing the worst-case expected
(average) cost under a set of probability distributions of the random parameters by solving a semi-
definite programming (SDP) problem [14, 19, 35], instead of the worst-case cost under the extreme
case value of the parameters in robust optimization in the literature. These algorithms have been
shown to provide solutions with better average cost compared with the minimizing worst-case
robust optimization approaches [9], hence, they are less conservative than robust optimization
algorithms. However, there are no approaches for real-time distributionally robust vehicle bal-
ancing, or evaluations to show the ride-sharing service performance improvement by considering
prediction uncertainties of the demand probability distribution, especially for complicated demand
prediction models such as time-series or deep neural network [25, 31, 47] yet.
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Hence, we design a computationally tractable dynamic vehicle balancing method that is robust
to uncertainties in the probability distribution of the demand. Efficient algorithms for construct-
ing an uncertainty set of the probability distributions based on data and different demand models
are developed, where we utilize a structural property of the covariance of the random demand. A
quad-tree dynamic region partition method is used for the first time, and shown to improve per-
formance in the experiments. We then derive an equivalent convex optimization form of the non
linear programming (LP) or SDP form of the distributionally robust vehicle balancing problem,
and guarantee both average performance of the system and computational tractability. Finally, we
evaluate the average costs of the distributionally robust vehicle balancing method, based on un-
certainty sets constructed on different region partitions and demand models from real data. We
calculate the total idle distance by summing up the distance every vehicle runs without any pas-
senger on it, and the “average total idle distance” by taking the average of all the testing samples.

The contributions of this work are the following:

• We explicitly take the ambiguity of demand probability distribution into account when min-
imizing vehicle balancing cost. We design a data-driven distributionlly robust dynamic ve-
hicle balancing method to optimize the expected cost over the worst-case distribution of
demand. Previous vehicle balancing work either focuses on one specific probability distri-
bution or aims to find a robust solution for a deterministic worst-case demand.

• For the first time, we design a quad-tree dynamic region partition method and efficient
algorithms to construct uncertainty sets of probability distributions given different demand
models. These sets better capture the spatial-temporal correlations of demand uncertainties
based on data.

• We derive an equivalent convex reformulation of the distributionally robust vehicle bal-
ancing problem to guarantee computational tractability of finding a solution under demand
uncertainties. The original distributionally robust vehicle balancing problem is a minimax
problem with an objective function that is convex of the decision variables and linear of the
uncertain parameters.

• We evaluate the average cost obtained by adopting the distributionally robust vehicle bal-
ancing solutions based on four years taxi trip data of New York City. We show that for the
average demand model, the average total idle distance is reduced by 10.05% with static grid
region partition. With the quad-tree dynamic region partition, the average total idle dis-
tance is reduced by 20% more. This is about 60 million miles or 8 million dollars gas cost
reduction annually compared with non-robust solutions. For a more accurate time-series
demand model, the average total idle distance is reduced by 7.68% by considering demand
prediction uncertainties with a static grid region partition, and is reduced by 19.60% more
with a quad-tree dynamic region partition.

The rest of the article is organized as follows. The distributionally robust vehicle balancing
problem is presented in Section 2. Efficient algorithms for constructing distributional uncertainty
sets for different demand prediction models and a dynamic region partition method are designed
in Section 3. An equivalent computationally tractable form of the distributionally robust vehicle
balancing problem is proved in Section 4. We show performance improvement in experiments
based on a real dataset in Section 5. Concluding remarks are provided in Section 6.

2 DYNAMIC DISTRIBUTIONALLY ROBUST VEHICLE BALANCING

In this section, we propose a distributionally robust vehicle balancing problem based on dynamic
spatial region partitions. The goal includes balancing vehicles for efficient service and reducing
the total costs, such as vehicles’ total idle distance or the total number of vehicles sent to other
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Table 1. Parameters and Variables of Taxi Dispatch Problem (8)

Parameters of (8) Description

nk the number of regions at time k

τ model predicting time horizon

nc total number of regions for time {1, 2, . . . , τ }
rc ∈ Rnc ∼ F ∗, F ∗ ∈ F the concatenated demand vector with unknown distribution function F ∗ for k = 1, . . . , τ

W k ∈ Rnk×nk

weight matrix, W k
i j is the distance from region i to j

P k
v , P k

o , Qk
v , Qk

o region transition matrices from time k to (k + 1)

V 1 ∈ Nn1
the initial number of vacant taxis at each region provided by GPS and occupancy status data

O 1 ∈ Nn1
the initial number of occupied taxis at each region provided by GPS and occupancy status data

mk ∈ R+ the upper bound of distance each taxi can drive idly for picking up a passenger at time k

Mk ∈ Rnk×nk

the structural constraint matrix that restricts X k
i j = 0 for far away regions

α ∈ R+ the power on the denominator of the objective function

β ∈ R+ the weight factor of the objective function

Variables of (8)

X k
i j ∈ R+ the number of taxis dispatched from region i to region j during time k

V k ∈ Rnk

+ the number of vacant taxis at each region before dispatching at the beginning of time k

Ok ∈ Rnk

+ the number of occupied taxis at each region before dispatching at the beginning of time k

Sk ∈ Rnk

+ the number of vacant taxis at each region after dispatching at time k

regions. By considering different probability distribution functions of predicted demand, we take
explicitly the ambiguity of demand probability distributions to guarantee the average system per-
formance. Previous work either assumes an explicit demand distribution [36, 38, 50, 51] or aims to
find a robust vehicle balancing solution for the worst-case [28, 30, 36] given static city region par-
titions. The generalization of the vehicle balancing problem formulation in this work is explained
in Section 2.2. A list of parameters and variables in the problem formulation is shown in Table 1.

We assume that one day is divided into K time intervals indexed by t = 1, 2, . . . ,K in total.
Vehicle balancing or re-balancing decision for a time window of τ intervals is calculated at the be-
ginning of the current time interval in a receding horizon control process. To improve the overall
performance of the system, the main decision variables in the proposed algorithm are the number
of empty vehicles in each region that will be allocated to other regions under certain objectives
and constraints, and the total number of empty vehicles at each region will be changed after re-
balancing. Examples of receding horizon control of resource allocation approaches include eco-
nomic power dispatch [26], taxi dispatch [29], autonomous mobility-on-demand service [51], and
so on. In particular, each τ discrete time slots (t , t + 1, . . . , t + τ − 1) is indexed by k = 1, 2, . . . ,τ
when we calculate a vehicle re-balancing solution for empty unassigned vehicles toward demand
predicted within time (t , t + 1, . . . , t + τ − 1), respectively. The effect of current decisions to the
future re-balancing cost is involved. Only the solution of k = 1 for time t is implemented, while
the solutions for remaining time slots are not materialized. After one empty vehicle arrives at its
dispatched region, a local controller will assign the vehicle to pick up one or several passengers
in this region’s request queue according to the local control or trip assignment algorithms, such
as greedy method or trip assignment algorithms designed in the literature [5, 12, 32]. Local trip
assignment algorithm is out of the scope of this work, and our vehicle balancing method is ag-
nostic and thus could also be employed in conjunction with those other local control methods to
improve the re-balancing. In this work, we focus on the city level vehicle balancing problem cal-
culated at the beginning each time step t , such that demand prediction uncertainties and expected
total resource allocation cost are considered in a computationally tractable optimization problem
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format. When the time horizon rolls forward by one time step from t to (t + 1), information about
uncertain demand is first updated, and vehicle locations and occupancy status are observed again.
For notation convenience, the parameters and variables definition in the following parts of this
section omit the time index t when there is no confusion.

2.1 Problem Formulation

We assume that for every τ time slots the number of region partitions in the city is either static
or changing arbitrarily with time, use superscript k to denote time, and space is partitioned to
nk regions (nodes) at time k . We define rk

j � 0 as the predicted total amount of demand (e.g.,

number of passengers for a mobility-on-demand system) of region j during time k , where j =

1, . . . ,nk , k = 1, . . . ,τ , and rk = [rk
1 , r

k
2 , . . . , r

k
nk

]T ∈ Rnk

is a column vector of predicted demand

of all regions at time k , and we consider rk as a random vector instead of a deterministic one. To
model spatial-temporal correlations of demand during every τ consecutive time slots, we define
the concatenation of demand as rc = (r 1, r 2, . . . , rτ ), nc =

∑τ
k=1 n

k . We assume that F ∗ is the
true probability distribution of the random vector rc , i.e., rc ∼ F ∗. It is worth noting that F ∗ can
vary for different time step t , and rk , rc is predicted as real-valued vectors instead of integers
according to the current learning models [31, 47]. In Section 3, we will build an uncertainty set for
the probability distribution of rc at each time step t .

We denote by a non-negative matrix Xk the decision matrix at time k , where Xk ∈ Rnk×nk

+ , and

Xk
i j ≥ 0 is the number of empty unassigned vehicles that will be sent from region i to region j

(or node i to node j) at time k according to the demand and service requirements. For notational
convenience, we define a set of decision variables as X 1:τ = {X 1, X 2, . . .X τ } ∈ Dc , where Dc is
the convex domain of decision variables defined by constraints. If we have the true probability
distribution of demand rc ∼ F ∗, then minimizing the expected cost of allocating vehicles in the
city is defined as a stochastic programming problem:

min.
X 1:τ

Erc∼F ∗
[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc , (1)

where J (X 1:τ , rc ) is the cost of allocating vehicles according to decisions X 1:τ under demand rc .
However, in many applications we only have limited knowledge about the true distribution F ∗.

The knowledge of random demand rc is restricted to a set of independent and random samples—
historical or streaming demand data, according to an unknown distribution F ∗. We assume that
the true lower, upper bound, mean and covariance information lie in a neighborhood of their
respective empirical estimates, a common assumption of data-driven optimization problems [14,
19]. It is worth noting that solving problem (1) is computationally expensive, especially for a large-
scale transportation network. We then consider to minimize the worst-case expected cost as a
robust form of problem (1) defined in the following:

min.
X 1:τ

max
F ∈F

Erc∼F

[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc . (2)

Problem (2) is a form of a distributionally robust optimization problem, in the sense of minimizing
the worst case expected cost when we are uncertain about the true probability distribution of the
demand, or the parameter rc [14, 19], instead of the worst-case cost under the extreme case value
of the parameters in robust optimization in the literature. It provides solutions with better average
cost compared with the minimizing worst-case robust optimization approaches [9] in LP and SDP
problems, hence, less conservative than robust optimization algorithms. In the rest of this section,
we define concrete forms of the objective function and constraints. In Section 3, we design an
algorithm for calculating the set F such that F ∗ ∈ F with a desired probability.
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2.1.1 Service Quality Metric Function JE . We defineV k
j ∈ R+,Ok

j ∈ R+ as the number of vacant

and occupied vehicles in region j before balancing or re-balancing at the beginning of time k ,

respectively, andV k ,Ok ∈ Rnk

+ . When receding the time horizon, we always first update real-time

sensing information, such as GPS locations and occupancy status of all vehicles, and V 1 ∈ Rn1

+

and O1 ∈ Rn1

+ are provided by real-time data. We denote Sk
i > 0 as the total amount of vehicles

available within region i during time k with dispatch decision {X 1, . . . ,X k }, and

Sk
i =

nk∑
j=1

X k
ji −

nk∑
j=1

X k
i j +V

k
i > 0, k = 1, . . . ,τ ,

V k+1
i =

nk∑
j=1

Pk
v, jiS

k
j +

nk∑
j=1

Qk
v, jiO

k
j , Ok+1

i =

nk∑
j=1

Pk
o, jiS

k
j +

nk∑
j=1

Qk
o, jiO

k
j , k = 1, . . . ,τ − 1,

(3)

where Pk
v , P

k
o ,Q

k
v ,Q

k
o ∈ Rnk×nk+1

are region transition matrices: Pk
v, ji (Pk

o, ji ) describes the proba-

bility that a vacant vehicle starts from region j at the beginning of time interval k will traverse
to region i and being vacant (occupied) at the beginning of time interval (k + 1); similarly, Qk

v, ji

(Qk
o, ji ) describes the probability that an occupied vehicle starts from region j at the beginning of

time interval k will traverse to region i and being vacant (occupied) at the beginning of time in-
terval (k + 1). The current occupied vehicles can drop passengers, turn to empty vehicles and be
part of the service in the future. The region transition matrices are learned from historical data,

and satisfy that
∑nk

j=1 P
k
v,i j + P

k
o,i j = 1,

∑nk

j=1 Q
k
v,i j +Q

k
o,i j = 1.Methods of origin-destination pre-

diction [24, 25], taxi trajectory prediction [27], and region transition matrices calculation have
been analyzed in previous work [29, 51]. Though the estimation based on data is not perfectly
accurate, at each time step (each k = 1), we always update GPS information of current vacant and
occupied vehicles before calculating the vehicle dispatch decision, such thatV 1,O1 are always true
values. It is a compensation for the inaccurate estimation based on experiments in References [29,
51]. Hence, in this work, we only consider predicted demand uncertainties for time k = 1, . . . ,τ
to avoid unnecessary computational complexity of involving both demand and region transition
matrices uncertainties.

Balancing the supply–demand ratio across the network is one commonly considered service
quality metric for taxi dispatch [29] and autonomous mobility on demand systems [50]. The ob-
jective is defined as minimizing the total difference between the local and global demand–supply
ratio for τ time intervals

τ∑
k=1

nk∑
i

�������
rk

i

Sk
i

−
∑nk

j=1 r
k
j∑nk

j=1 S
k
i

�������
. (4)

However, function (4) is not concave of the uncertain random parameters rk , making the prob-
lem (2) computationally intractable to find a maximum value of the objective function over rk

given xk . Hence, we adopt the following equivalent service quality function JE :

JE (X 1:τ , rk ) =
τ∑

k=1

nk∑
i=1

�
�

rk
i

(Sk
i )α

�
� , (5)

where α > 0 is a non-negative value close to 0, and minimizing the objective function (5) approx-
imates minimizing the objective (4). This is because the optimal solution of Equation (5) makes
the absolute value function (4) close to 0, as proved by Lemma 1 in Reference [30]. As proved in
Theorem 1 of Reference [30], Equation (5) is convex of the decision variables on the denominator.
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We then minimize Equation (5) to reach the balancing vehicle objective with other objective and
constraint functions in the final formulation of vehicle balancing problem (see Section 2.1.2). With
the definition of Sk

i as Equation (3), Sk
i is linear of X 1:τ , JE is a function concave (linear) in rk and

convex in X 1:τ that has the decision variables on the denominator.

2.1.2 Cost of Balancing and Re-balancing. Besides minimizing the service quality function (5),
we also consider minimizing the costs (such as idle distance) by sending vacant vehicles according

to Xk . Given the city map and region partition structure during time k , we define W k ∈ Rnk×nk

as the weight matrix, whereW k
i j describes the cost of sending one vehicle from region i to region j

during time k according to the spatial network model. For instance, whenW k
i j is the approximated

distance to drive from region i to region j, the en route idle distance is considered as the cost for
allocating one empty vehicle. WhenW k

i j = 1, the cost of re-balancing a vehicle between any region

pair (i, j ) is identical that the total number of vacant vehicles balanced between all pairs of (i, j ) is
considered as the total cost. The across-region balancing cost according to Xk is

JD (X k ) =
nk∑
i=1

nk∑
j=1

X k
i jW

k
i j . (6)

The distance every vehicle can travel is bounded, because of the speed limit during time k and
traffic conditions—during congestion hours, the distance each vehicle can go to pick up a pas-
senger should be shorter than normal hours without congestion. Assume that the idle distance
upper bound for a vehicle at time k is mk > 0, provided by traffic speed monitors and forecasting
models [1, 6], the distance from region i to region j is disti j . Then the following constraint:

Xk
i j � 0 and Xk

i j = 0 when disti j �mk (7)

indicates a solution that satisfies Xk
i j = 0 for disti j > m

k , i, j = 1, . . . ,nk . Hence, a vehicle can only

be sent from region i to region j to balance the demand–supply ratio at time k , when the distance
between the two regions is smaller than or equal tomk .

We aim to balance vehicles with minimum idle distance, and define a weight parameter β of two
objectives JD in Equation (6) and JE in Equation (5). How parameter β will affect the cost of each
objective, the idle distance and the balancing of vehicles is discussed and compared by experiments
in Reference [29]. With constraints (3) and (7), we consider the following distributionally robust
vehicle balancing problem under uncertain probability distributions of random demand:

min.
X 1:τ ,S 1:τ ,V 2:τ ,O2:τ

max
F ∈F

E
⎡⎢⎢⎢⎢⎣

τ∑
k=1

JD (X k ) + β JE

⎤⎥⎥⎥⎥⎦
s.t. (3), (7),

(8)

where X 1:τ , S1:τ ,V 2:τ ,O2:τ denote variables and O2, . . . ,Oτ (V 1 and O1 are given by sensing in-
formation) respectively. The above problem (8) cannot be immediately translated into an LP or
SDP form. Only the service requirement JE has decision variables on the denominator and is di-
rectly related to the random demand rk , balancing cost JD and all the constraints are linear in the
variables and not functions of rk . The minimization part of problem (8) is convex of the decision
variables, since JE is convex of the decision variables, JD and the constraints are all linear, and
linear constraints and objective function are convex [10].

2.2 Generalization of Problem Formulation

Reducing the dependency of the average performance of solutions on the accuracy of de-

mand model: Problem (8) is one example of a distributionally robust vehicle balancing problem
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that does not restrict the specific distribution of random demand. For instance, for queuing mod-
els, the average number of waiting customers in the queue is related to the demand–supply ratio
or supply–demand ratio for a stable queue [20]. Considering a balanced demand–supply ratio is
considering balancing the average number of waiting customers intuitively. Robotic mobility-on-
demand systems [48, 50] usually assume a queuing model to describe the passenger arrival rate at
region i is λk

i . When calculating the arrival rate for one time interval from historical data, λk
i equals

the total number of requests appearing in one time interval, or rk
i in this work. Mean and covari-

ance of the estimation of λk
i still exist when calculating this arrival rate λk

i via data. Hence, when
a mobility-on-demand system can be described by a queuing model, solving problem (8) provides
a solution for balancing vehicles for λk

i in a range instead of a deterministic value. Therefore, we
do not restrict the demand model to satisfy a specific distribution and we reduce the dependency
of the average performance of solutions to the accuracy of demand model.

Similarly, bicycle balancing and re-balancing problems also require that the demand–supply ra-
tio of each station is restricted inside a range to provide a certain level of service satisfaction [38].
While adjusting the range of demand–supply ratio or supply–demand ratio back and forth is com-
putationally expensive, when we find a feasible solution of Equation (8), the demand–supply ratio
of each region should not be far away from the global demand–supply ratio, and falls in a range
around the global level. Hence, when the objective is to make the demand–supply ratio of each
region all be inside some range without knowing the feasible upper and lower bounds of the range,
solving Equation (8) that makes the local ratio all close to the global ratio and will reach an equiv-
alent objective without selecting the range manually.

Balancing vehicles for carpooling or heterogeneous vehicle service: We consider a single
type vehicle balancing problem (for instance, each individual empty vehicle is considered to have
the same ability) under formulation (8). When each vehicle in the system has a different service
ability, for instance, when the capacity of one vehicle is C1 = 1, C2 = 2, C3 = 3 or C4 = 4, we
denote Ok

l,i
as the number of vehicles with capacityCl before dispatch at region i , and Xk

l,i j
as the

number of vehicles that should go from region i to region j. Then the total number of available

seats or supply is Sk
i =
∑4

l=1Cl (Ok
l,i
+
∑nk

j=1 X
k
l, ji
−∑nk

j=1 X
k
l,i j

) > 0. With this number Sk
i , objective

function JE defined as Equation (5) is still concave in rk , convex in Xk
l

, l = 1, 2, 3, 4, since linear
operation preserves convexity [10, Chapter 3.2.2]. The balancing cost (6), constraints about region
transition (3) and idle distance bound (7) can be modified accordingly and still be linear of decision
variables. Under this scenario, with a modified definition of Sk

i , the vehicle balancing model (8)
can be generalized for carpooling or heterogeneous capacity vehicle balancing problems. With
periodically re-balancing vehicles every hour or 30-minutes by a centralized distributionally
robust optimizer, a local level matching between passengers and vehicles within each region will
assign one vehicle to several requests according to its capacity, such as the local carpool algorithm
developed in Reference [12].

3 EFFICIENT DISTRIBUTIONAL SET CONSTRUCTION ALGORITHMS

We design efficient algorithms for constructing the uncertainty set F of probability distributions
in problem (8), with spatial-temporal data that provides information about the true distribution
F ∗ of rc . Empirical estimates of the uncertainty set for predicted variables according to confidence
regions of hypothesis testings are acceptable in portfolio management problems [9, 14]. However,
vehicle trip or trajectory data are usually large-scale spatial-temporal data, and how to efficiently
extract information of mobility demand is a challenging task. Considering the computational cost
of building a distributional set for every consecutive τ time slots (the demand prediction and vehi-
cle balancing time lengths) of one day, we leverage the structure property of the covariance matrix

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 2, Article 17. Publication date: January 2021.



DD DRO Vehicle Balancing 17:9

Table 2. Parameters of Algorithm 1 and Algorithm 2

rc (t ) ∈ Rnc the concatenated demand at each region from time t to t + τ − 1

r̃c (dl , t , Ip ) one sample of rc (t ) according to sub-dataset Ip , records at date dl

r̂c ∈ Rnc , Σ̂c ∈ Rnc×nc the estimated mean and covariance of vector r.v. rc

r̂c,l , r̂c,h the estimated lower and upper bound of vector r.v. rc

γ B
1 , γ B

2 the bootstrapped thresholds for accepting hypothesis testing (9)

αh ∈ (0, 1) significance level of a hypothesis testing

N B ∈ Z+ the time of re-sampling in bootstrap
N ∈ Z+ the size of bootstrap sample sets

of rc to develop efficient construction algorithms for set F based on different demand prediction
models. Then, for prediction methods directly using average historical values as the demand, and
more accurate complicated prediction models such as time series, we can describe the prediction
uncertainties by a closed and convex set, and use the uncertainty set to make distributionally ro-
bust vehicle dispatch decisions based on Equation (8). Furthermore, to reflect the spatial-temporal
dynamic properties of demand and index regions efficiently, we build our distributional set based
on a dynamic space partition method.

3.1 Distributional Set Formulation

We denote one sample of vector rc (t ) = (r t , r t+1, . . . , r t+τ−1) at date dl as r̃c (dl , t ), a vector of
demand at each region for time {t , t + 1, . . . , t + τ − 1}, t = 1, . . . ,K of each day. We aim to con-
struct a uncertainty set F (t ) that describes possible probability distributions of rc (t ) based on the
support, mean and covariance of random samples of rc (t ). We omit t for the following problem
definition when there is no confusion. Possible probability distributions of a random vector rc is
related to the following hypothesis testing H0: Given mean μ0, covariance Σ0, test statistics γ1, γ2,
and with a given significance level αh , the random vector rc satisfies that [14]

H0 : (E[rc ] − μ0)T Σ−1
0 (E[rc ] − μ0) � γ1, E[(rc − μ0) (rc − μ0)T ] � γ2Σ0. (9)

Without prior knowledge of the true mean μ0, covariance Σ0, test statistics γ1 and γ2, constructing
set F based on data is an inverse process of hypothesis testing—estimating the mean and covari-
ance and calculating threshold values γ1 and γ2 such that Equation (9) is an acceptable hypothesis
by the dataset with probability at least 1 − αh . The problem of constructing F is formally defined
as follows.

Definition 3.1 (Problem 1). Given a sample set of rc , find values of r̂c,l , r̂c,h , r̂c , Σ̂c ,γ B
1 , andγ B

2 , such
that with probability at least 1 − αh with respect to the samples the hypothesis testing Equation (9)
is acceptable, i.e., with probability at least 1 − αh the true distribution of rc is contained in the
following distributional set F :

F (r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1 ,γ

B
2 )

={(E[rc ] − r̂c )T Σ̂−1
c (E[rc ] − r̂c ) � γ B

1 , E[(rc − r̂c ) (rc − r̂c )T ] ≤ γ B
2 Σ̂c , rc ∈ [r̂c,l , r̂c,h]},

(10)

where r̂c,l and r̂c,h is the lower and upper bound of each entry of the demand vector, respectively.

We then design Algorithm 1 (a list of parameters in Table 2) to calculate the bootstrapped [11]

estimations of r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1 ,γ

B
2 for rc (t ), t = 1, 2, . . . ,K of every time step, that makes H0

in Equation (9) acceptable.
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Fig. 1. The process of calculating Σ̂ ∈ Rn×n , n =
∑K

t=1 n
t when receding time horizon. When index moves

from t = 1 to t = 2, only entries in matrix Σ̂ shown in blue are new and necessary for calculating Σ̂c (t ), t = 2.

3.2 Reducing Computational Complexity

The dimension of r̂c , Σ̂c is decided by the number of dynamic regions and the prediction horizon,
which can be large-scale for spatial-temporal city transportation data. However, the mean and
covariance matrices for t , t + 1, . . . , t + τ have overlapping components: For instance, r̂c (t ) and
r̂c (t + 1) both include estimated mean values of demand in time (t + 1, t + 2, . . . , t + τ − 1). Hence,
instead of always repeating the process of calculating a mean and covariance for τ time slots for
each index t , the key idea of reducing computational cost of constructing F (t ), t = 1, . . . ,K is to
calculate the mean and covariance of each pair of time slots of the whole day only once. Then pick

the corresponding components needed to construct r̂c (t ) and Σ̂c (t ) for each index t .
Specifically, we define the whole day demand vector as r = (r 1, r 2, . . . , rK ) ∈ Rn ,n =

∑K
t=1 n

t ,
i.e., a concatenated demand vector for each time slot of one day. And we denote r̂ as the estimated
mean of the random vector r . To get all covariance components for each index t , the process is
as follows: At t = 1, calculate the covariance of rc (1), store it as Σ̄[1:n1,1:n1]; and every time when
rolling the time horizon from t to t + 1, only calculate the covariance matrix entries between τ
pairs of (r t+τ−k , r t+τ ), k = 0, . . . ,τ − 1 and store the result as

Σ̄[n[1,t+τ−1]:n[1,t+τ ],n[1,t+τ−k ]:n[1,t+τ−k+1]] = Σ̄[n[1,t+τ−k ]:n[1,t+τ−k+1],n[1,t+τ−1]:n[1,t+τ ]] = cov(r t+τ−k , r t+τ ),
(11)

wheren[1,t+τ ] =
∑t+τ

j=1 n
j , the subscript [b1 : b2,b2 : b1] means entries from theb1th to theb2th rows

and b2th to the b1th columns of matrix Σ̄ as explained in Figure 1.
Then we have Algorithm 1 that describes the complete process of constructing distributional

sets. Given vehicles’ service trajectories or trips data, we count the total number of pick up events
during one hour at each region as total demand. If the given dataset is the arriving time of each
customer at different service nodes of a network, then the total number of customers appear-
ing in every service node during each unit time is the demand. When categorical information
such as normal days or holidays/special event days of one year, different weather conditions or a
combination of different contexts is available, indexed as Ip ,p = 1, 2, . . . , P , we cluster the dataset
as subsets first.

For step 3, the process of picking components from the mean and covariance matrices of the
whole day demand is

r̂c (t , Ip ) = r̂[n[1,t−1]:n[1,t+τ−1]] (Ip ), Σ̂j
c (t , Ip ) = Σ̂j

[n[1,t−1]:n[1,t+τ−1],n[1,t−1]:n[1,t+τ−1]]
(Ip ). (12)

For the jth re-sampled subset S j (t , Ip ), the mean and covariance matrices are E[rc ] = r̄ j
c (t , Ip ) and

E[rcr
T
c ] = Σ̄j

c (t , Ip ), respectively. For step 3(2), according to the definition of F in Equation (10),

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 2, Article 17. Publication date: January 2021.



DD DRO Vehicle Balancing 17:11

ALGORITHM 1: Algorithm for constructing distributional sets

Input: A dataset of spatial-temporal operation records

1. Demand aggregating and sample set partition

Aggregate demand of each region for each time t to get a sample set S of demand r for the whole day

(denote S (t ) as a sample set for rc (t )) from the original data. Partition S (orS (t )) and denote S (Ip ) ⊂ S (or

S (t , Ip ) ⊂ S (t )), p = 1, . . . , P as the subset of categorical information Ip . Set a significance level 0 < αh < 1,

the number of bootstrap time NB ∈ Z+ and the size of bootstrap sample set N ∈ Z+.

2. Bootstrapping mean and covariance matrix for all time steps t in one day

for j = 1, . . . ,NB do

Re-sample S j (Ip ) = {r̃ (Ip )1, . . . , r̃ (Ip )N } from S (Ip ) with replacement, calculate the sample mean

r̄ j (Ip ) and covariance Σ̄j (Ip ) of the whole day demand vector of set S j (Ip ) as Equation (11).

end for

Get the bootstrapped mean covariance, and support of the whole day demand vector

r̂ (Ip ) = 1
NB

∑NB

j=1 r̄
j (Ip ), Σ̂(Ip ) = 1

NB

∑NB

j=1 Σ̄j (Ip ), r̂c,l (Ip ) =mini r̃ (Ip )i , r̂c,h (Ip ) =maxi r̃ (Ip )i .

3. Bootstrapping γ B
1 and γ B

2 for each subset S (t , Ip )
for j = 1, . . . ,NB do

Get the mean and covariance vector for the jth re-sampled set r̄
j
c (t , Ip ), Σ̄

j
c (t , Ip ), then get r̂c (t , Ip ),

Σ̂c (t , Ip ) as (12). Get γ
j
1 (t , Ip ) and γ

j
2 (t , Ip ) by Equations (13) and (14).

end for

Get the 	NB (1 − αh )
-th largest value of γ
j
1 (t , Ip ) and γ

j
2 (t , Ip ), j = 1, . . . ,NB , as γ B

1 (t , Ip ) and γ B
2 (t , Ip ),

respectively.

Output: Distributionally uncertainty sets (10).

we get γ j
1 (t , Ip ) by the following equation:

γ j
1 (t , Ip ) = [r̄ j

c (t , Ip ) − r̂c (t , Ip )]T Σ̂−1
c (t , Ip )[r̄ j

c (t , Ip ) − r̂c (t , Ip )]. (13)

According to definition (10), the left part of the inequality related to γ B
2 satisfies that

E[(rc − r̂c ) (rc − r̂c )T ] = E[rcr
T
c ] − r̂cE[rT

c ] − E[rc ]r̂T
c + r̂c r̂

T
c = Σ̄c − r̂c r̂

T
c .

Then we get γ j
2 for index (t , Ip ) by solving the following convex optimization problem:

min.
γ2

γ2, s.t Σ̄j
c (t , Ip ) − [r̂c (t , Ip )][r̂c (t , Ip )]T ≤ γ2Σ̂c (t , Ip ). (14)

3.3 Constructing Uncertainty Sets for a General Demand Prediction Model

Besides directly using the estimated moments of the concatenated demand vector rc (t , Ip ) for
each index (t , Ip ), methods that predict demand for time t based on the latest observation of
time t − 1, t − 2, . . . or streaming data have also been applied in areas such as transportation net-
works [31, 49], power networks [26, 39], and health care systems [2]. Complicated models can be
more accurate than the average value prediction. It is critical to develop an uncertainty set con-
structing algorithm for general demand modeling techniques, and explore the effects of consider-
ing uncertainties to improve performance. In this subsection, we design a process of constructing
distributional uncertainty sets for a general demand prediction model, and introduce an example
of multivariate time-series demand predicting model based on streaming data.

3.3.1 Uncertainty Set of a General Demand Prediction Model. We do not restrict the learning
or modeling method to predict demand, and assume that fr : O[t−1−l,t−1] → Rτ n is a function of
mapping sensing or observation data available to the system by time t (from time (t − 1 − l ) to
time (t − 1)) to predicted concatenated demand at time t . The prediction function fr is unknown
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and can only be estimated from data. We would like to quantify the estimation uncertainty and
consider possible estimation errors when providing ride-sharing service. Then we have the follow-
ing relation between the deterministic component of predicted demand r̂c (t ) and the true demand
rc (t ):

rc (t ) = fr (Ot−1), rc (t ) = r̂c (t ) + δc (t ). (15)

Here δc (t ) ∈ Rτ n is considered as the estimation residual that measures the difference between
the true demand and the estimated value. The available data Ot−1 can include not only demand
data of each region but also weather and traffic conditions that can act as exogenous input of the
prediction model. The time index (t − 1) of the observation data Ot−1 used to predict rc (t ) can
include purely historical data of demand at each day of time t , streaming demand data of the same
day before time t or both. Then we compare our estimation of rc (t ) based on data for each sample
r̃c (t ) of rc (t ) with the true sample vector value rc (t ), and get a corresponding sample of estimation
residual as

δ̃c (t ) = r̃c (t ) − r̂c (t ). (16)

With a subset of training data Str (t ) = {r̃c (t ), Õt−1} that includes both observations Õt−1 until
time t and demand r̃c (t ) sampled from multiple days, we get an estimation of function fr (Ot−1).
Then for each subset of testing samples Ste (t ) = {r̃c (t ), Õt−1}, according to Equation (15), we have

a set Sr (t ) = {r̂c (t )} as a sample set of estimated or predicted demand and a set Sδ (t ) = {δ̃c (t )}
as a sample set of residuals δc (t ). We also have the corresponding mean and covariance for the
residuals in set Sδ (t ).

We consider each δ̃c (t ) ∈ Sδ as one sample of the random residual vector δc (t ). Since r̂c (t ) is
deterministic for time index t , the following equations hold (the time index t is omitted for notation
convenience), which indicates the relationship between E[rc ] and E[δc ], Σc and Σδ , respectively:

E[rc ] − r̂c = E[δc ], E[(rc − r̂c ) (rc − r̂c )T ] = E(δcδ
T
c ), r̂c,l = r̂c + δ̂c,l , r̂c,h = r̂c + δ̂c,h ,

rc − E[rc ] = r̂c + δc − (r̂c + E[δc ]), Σc = E[(rc − E[rc ]) (rc − E[rc ])T ] = Σδ , Σ̂c = Σ̂δ ,
(17)

where Σc and Σδ are the unknown true covariance of rc and δc ; Σ̂c and Σ̂δ are the estimated ma-
trices for Σc and Σδ ; and δc,l and δc,h are the lower and upper bound of the estimation residual,
respectively. To build an uncertainty set for the demand distribution rc (t ), the problem is equiv-
alent to describe the distributional uncertainty set as equations and inequalities of statistics of
δc .

Hence, according to the definition of distributional uncertainty set (10) defined based on the
range of mean and covariance of rc , we define the following problem of constructing distributional
uncertainty set for rc with the estimated support, mean and covariance values of the residual δc .

Definition 3.2 (Problem 2). Given a sample set of rc , for a prediction method fr , find the values of

δ̂c,l , δ̂c,h , r̂c , Σ̂δ ,γ B
δ,1

, andγ B
δ,2

, such that with probability at least 1 − αh with respect to the samples,

the true distribution of rc is contained in the following distributional set F :

F (δ̂c,l , δ̂c,h , r̂c , Σ̂c ,γ
B
1 ,γ

B
2 )

={rc ∈ [r̂c + δ̂c,l , r̂c + δ̂c,h] : (E[δc ])T Σ̂−1
δ E[δc ] � γ B

δ,1, E(δcδ
T
c ) ≤ γ B

δ,2Σ̂δ }.
(18)

For a general modeling method fr , we design the following Algorithm 2 to build an uncertainty
set of rc based on bootstrapped estimated support, mean and covariance values of residual δc [11,
45].
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ALGORITHM 2: Algorithm for constructing distributional sets for a general prediction method

Input: A dataset of spatial-temporal operation records

1. Demand aggregating and sample set partition similar as Algorithm 1

2. Estimate the bootstrapped mean and covariance of the residual vector for all t in one day.

for j = 1, . . . ,NB do

Re-sample S j (Ip ) = {r̃ (Ip )1, . . . , r̃ (Ip )N } from S (Ip ) with replacement, estimate parameters of a

prediction function fr (Ot−1), calculate the estimation residual set S j

δ
(Ip ) = {δ̃ (Ip )i } of all samples based on

prediction function fr , where δ̃ (Ip )i = r̃ (Ip )i − r̂ (Ip )i , then get the sample mean δ̄ j (Ip ), sample covariance

Σ̄
j

δ
(Ip ), and Ej [δcδ

T
c ](Ip ) = 1

N

∑N
i=1 δ̃ (Ip )i (δ̃ (Ip )i )T of residual for all time steps t.

end for

Get the bootstrapped mean, covariance, and support of the residual vector

E[δ ](Ip ) = 1
NB

∑NB

j=1 δ̄
j (Ip ), Σ̂δ (Ip ) = 1

NB

∑NB

j=1 Σ̄
j

δ
(Ip ), δ̂c,l (Ip ) =mini δ̃ (Ip )i , δ̂c,h (Ip ) =maxi δ̃ (Ip )i .

3. Bootstrapping γ B
δ,1

and γ B
δ,2

for each subset Sδ (t , Ip )

for j = 1, . . . ,NB do

Get the statistics of residual vector for the jth re-sampled set, δ̄
j
c (t , Ip ), Σ̂δ (t , Ip ), Ej [δcδ

T
c ](t , Ip ) by

picking up the corresponding entries for time index t from δ̄ j (Ip ), Σ̂δ (Ip ), and Ej [δcδ
T
c ](Ip ). Calculate:

γ
j

δ,1
(t , Ip ) = argmin

γ1

[(δ̄
j
c (t , Ip ))T (Σ̂

j

δ
(t , Ip ))−1δ̄

j
c (t , Ip )], γ

j

δ,2
(t , Ip ) = argmin

γ2

[Ej [δcδ
T
c ](t , Ip ) � γ2Σ̂δ (t , Ip )].

end for

Get the 	NB (1 − αh )
-th largest value of γ
j

δ,1
(t , Ip ) and γ

j

δ,2
(t , Ip ) , j = 1, . . . ,NB , as γ B

δ,1
(t , Ip ) and

γ B
δ,2

(t , Ip ), respectively.

Output: Distributionally uncertainty set (18) for prediction function fr .

Examples of demand prediction models. Taxi demand prediction methodologies designed
based on time-series analysis [31] and deep neural network [47] are examples of function (15) that
model the spatial-temporal relation of the complex taxi network. For instance, time-series analysis
is also widely applied method for predicting demand in resource allocation problems [2, 26, 31],
such as autoregressive integrated moving average (ARIMA) model used in Reference [31]. In gen-
eral, an ARIMA model is denoted with orders (p,d,q), where p is the order of the Auto Regressive
term, q is the order of the Moving Average term, d is the minimum number of differencing needed
to make the time-series data stationary. If the time-series data are already stationary, then d is
supposed to be 0. The coefficients of ARIMA model for function (15) can be fitted by maximum
likelihood estimation. Then through the analytic expression of prediction function fr , we can get
the residual δc (t ), which covers the random error components by equation δc (t ) = rc (t ) − r̂c (t ).
By estimating uncertainty of δc (t ) via Algorithm 2, we describe how the true demand can deviate
from our prediction through repeated data experiments to solve the Problem 2.

3.4 Dynamic Space Partitioning

A grid file [34] is a static data structure that divides the underlying space into a grid of adjacent
cells. These cells have equal dimensions. Each cell stores spatial objects (e.g., total number of ve-
hicle requests), within its boundaries. The number of objects in each cell is unbounded. Vehicle
balancing approaches based on static spatial partitions has reduced total idle driving distance of
all taxis in the network and increased service fairness [28, 29, 50]. However, when we capture the
reality of spatial-temporal vehicle balancing problems like the taxi requests we address in this ar-
ticle, we can easily notice that those requests are dynamic. This dynamic nature spans both the
space and time. For example, suburbanites tend to go to their business in the metropolitan area
in the morning and return in the afternoon. This makes vehicle requests in down-town higher
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in the afternoon. This pattern might change depending on the occurrence of other events, (e.g., a
state fair, or a football game). This leads to the following two major challenges. (1) It is not only
necessary to index those mobility requests, but also to reflect their spatial-temporal dynamic prop-
erties on the employed index. (2) It is also a real burden to do that while achieving high efficiency.
Since the grid structure enforces a fixed partitioning schema with fixed boundaries regardless of
the data distributions, we build our solution based on a different but dynamic index structure, the
quad-tree [16].

The quad-tree [16] is a dynamic hierarchical data structure, where the space is recursively de-
composed into disjoint equal-sized partitions. Each non-leaf node has 2d children, where d is the
number of dimensions, typically d = 2 for modeling the spatial dimensions. For spatial data, a
non-leaf node A that covers a rectangle determined by ((xmin ,ymin ), (xmax ,ymax )) is spatially
divided into adjacent disjoint nodes: ((xmin ,ymin ), (xmid ,ymid )), ((xmid , ymid ), (xmax ,ymax )),
((xmid , ymin ), (xmax , ymid )), and ((xmin , ymid ), (xmid , ymax )), where xmid = avд(xmin , xmax )
and ymid = avд(ymin , ymax ). A leaf node stores a maximum of M points or items that are within
its boundaries. If the number of items exceeds the threshold, then the node splits. The quad-tree
is unbalanced, but it has good support for skewed data. Practically, real-world spatial datasets are
highly skewed.

Both the quad-tree and grid files can be classified as space partitioning techniques, as opposed
to data partitioning techniques (e.g., R-tree [21]). The advantage of using a quad-tree to index
the demand locations is that a quad-tree provides data-sensitive clustering while partitioning the
underlying space and time. It is also efficient to handle data sparseness when some regions have
dense data points, (i.e., pick up requests), and others have few. In addition, unlike the static and
fixed partitions produced by the grid structure, the partitions produced by quad-tree are dynamic
depending on the distribution of the underlying dataset. This means for the same given space if the
data points changed, the resultant regions from quad-tree partitioning will vary in shapes, sizes,
and numbers. Here, we leverage a 3d-quad-tree. Two dimensions are used to store the taxi pickup
locations and the third represents the time of the day, i.e., the three dimensions for partitioning data
include (latitude, lonдitude, time − interval ). The time dimension is divided into fixed intervals
to provide a fair comparison with the grid structure, and the (latitude, lonдitude ) dimensions are
partitioned according to the non-leaf node split process described above. In experiments we use
various time intervals to show the effect of fixed time interval partitioning on the quality of the
modeling process, or the uncertainty set of the random demand vector.

In this work, we evaluate a dynamic space partition method using a quad-tree that is com-
patible with the distributionally robust vehicle balancing problem (8) and the distributional set
construction, Algorithm 1. The quad-tree-based method further reduces idle distance according to
experiments.

4 COMPUTATIONALLY TRACTABLE FORM

In this section, we derive the main theorem of this work—an equivalent computationally tractable
form of the distributionally robust optimization problem (8) via strong duality. Only JE (X 1:τ , rc )
part of problem (8) is related to the random demand rc . The objective function of (8) is convex over
the decision variables and concave (linear) over the random parameter, with decision variables on
the denominators. This form is not a LP or a SDP problem examined by previous work [8, 9, 13].
Hence, the form of JD (X k ) is the same and the process of deriving a standard convex optimization
problem that is equivalent to problem (8) is mainly to analyze the JE (rk ,X 1:τ ) part, as shown in
the following theorem.
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Table 3. New York City Data Used in This Evaluation Section

Taxi Trip Data
Collecting Period Data Size Record Number

01/01/2010–12/31/2013 100 GB 700 million
Data Format

Trip Information Time Resolution Trip Locations
Start and end points Second GPS coordinates

Theorem 4.1. The distributionally robust resource allocation problem (8) with a distributional

set (10) is equivalent to the following convex optimization form:

min. β (v + t ) +
τ∑

k=1

JD (X k )

s.t.

⎡⎢⎢⎢⎢⎣
v + (y+1 )T r̂c,l − (y−1 )T r̂c,h

1
2 (q − y − y1)T

1
2 (q − y − y1) Q

⎤⎥⎥⎥⎥⎦ � 0

t � (γ B
2 Σ̂c + r̂c r̂

T
c ) ·Q + r̂T

c q +
√
γ B

1 ‖Σ̂
1/2
c (q + 2Qr̂c )‖2

aik

(Sk
i )α

� yk
i , y = [y1

1,y
1
2, . . . ,y

τ
1 ,y

τ
2 , . . . ,y

τ
nτ ]T ,

y1 = y
+
1 − y−1 , y+1 ,y

−
1 ,y � 0, Q � 0, X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc .

(19)

Proof. See Appendix A.1.
Specifically, with the constraints of problem (8) to represent the constraintX 1:τ , S1:τ ,V 2:τ ,O2:τ ∈
Dc in Equation (19), we have a computationally tractable form for the distributionally robust taxi
dispatch problem (8).

5 EVALUATIONS WITH TAXI TRIP DATA

We evaluate the performance of the distributionally robust vehicle balancing framework (8) con-
sidered in this work based on four years of taxi trip data in New York City (NYC) [15], by simula-
tions if the algorithm can be implemented for city-level taxi or ride-sharing service. Information
for every record includes the GPS coordinators of locations, and the date and time (with preci-
sion of seconds) of pick up and drop off locations, the number of taxis involved is about 10K, as
summarized in Table 3. We construct distributional uncertainty sets according to Algorithm 1 and
Algorithm 2, solve Equation (19), the equivalent convex optimization form of problem (8) to get
vehicle balancing solutions across regions. A region is partitioned by either a static equal-area grid
or a dynamic quad-tree method, demand is predicted by either directly using the average value of
historical data, the ARIMA model, and neural network–based Spatio-Temporal Dynamics Network
(STDN) [46] model. After reaching the dispatched regions, we assume that each driver pick up one
passenger or passenger group according to the local controller algorithm in Reference [12], and
add this inside region idle distance to the across-region idle distance of all taxis for calculating the
total idle distance. To compare the average performance of different methods, we use the idea of
cross-validation from machine learning. All data are separated as a training subset for construct-
ing the uncertain distribution set and a testing subset for comparing the true vehicle balancing
costs and average total idle distance of all testing samples (we use 200 weekday’s data for testing).
We use taxi operational data for experiments, because this dataset is public, contains information
about peoples’ mobility pattern, and we show the advantage of vehicle service provided according
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Table 4. Comparing Thresholds γ B
1 and γ B

2
for Different NB and Dimensions of rc

γ B
1 γ B

2

NB = 10 n = 50,τ = 2 0.739 5.24
NB = 100 n = 50,τ = 2 0.368 2.47
NB = 1000 n = 50,τ = 3 0.013 1.56
NB = 5000 n = 50,τ = 3 0.012 1.49

to our framework by bridging the gap between demand data to a balanced supply. The evaluation
results validate the efficiency improvement for taxi service system in a city by using the algorithm
proposed in this work. The application of our framework can be taxis, autonomous mobility-on-
demand systems [50], or bike sharing [37], depending on what kind of demand data are available.
Balancing autonomous vehicles with a predicted demand probability distribution in a city outper-
forms other vehicle dispatch algorithms such as nearest-neighbor or collaborative taxi dispatch
algorithm in the literature, as compared based on NYC data [50]. Though not considering any pre-
diction uncertainties, applying the estimation of future demand to make decisions still improves
mobility service systems’ performance. Hence, we only compare our method that considers uncer-
tainties of demand probability distributions with the method of using the predicted demand model
as the true demand model in this section.

How does the number of samples affect the distribution set: We partition the map of NYC
into different number of equal-area grids to compare the values of γ B

1 and γ B
2 of Algorithm 1.

Algorithm 1 captures information about the support, the first and second moments of the random
demand, αh = 0.1. We show the value of γ B

1 and γ B
2 with different values of sample number NB

and the dimension of rc (τn) in Table 4. For the same region partition and prediction time horizon
τ , when the values of γ B

1 ,γ
B
2 are smaller, the volume of the uncertainty set is smaller, the demand

prediction is more accurate. Comparing the first two lines in Table 4, when the value of NB is
increased, values of γ B

1 and γ B
2 are reduced, which means the volume of the distributional set is

smaller and the demand prediction is more accurate. For a large enough NB , the value of τn does
not affect γ B

1 and γ B
2 much, as shown in the third and fourth lines of Table 4.

5.1 Performance of Distributionally Robust Solutions

We compare three vehicle balancing methods, include the distributionally robust framework (8),
the robust method of Reference [30], and the non-robust method with the average requests number
during each unit time as the demand model [29] (equivalent to the passenger arrival rate of a
queueing model in each unit time [50, 51]). The optimal cost of each method is a weighted sum
of the demand–supply ratio mismatch error and estimated total idle driving distance. For each
testing sample data rk , we use the demand–supply ratio mismatch error (Equation (4)) to measure
how well the optimal solution balances the vehicle toward the true supply. The idle distance of
each taxi between two trips with passengers is approximated as the distance between one drop-off
event and the following-up pick-up event.

We compare the average costs of cross-validation tests in Figure 2. The average costs show the
performance when we applying the optimal solution of each method to balance taxis under all
testing samples of rc aggregated from weekdays’ data from 5 pm to 8 pm. The region partition
method is a static equal-area grid partition and the distributional uncertainty set is constructed
via Algorithm 1. The minimum average cost of a second-order-cone (SOC) robust solution [30] is
close to the average cost of the distributionally robust solutions of Equation (19). They both use the
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Fig. 2. The average cost of cross-validation tests for the distributionally robust solutions via solving Equa-
tion (19) (“DRO” line), two types of uncertainty sets of the robust solutions (lines SOC and Box) and non-
robust solutions.

Fig. 3. One-hour Interval Quad-Tree for
Demand.

Fig. 4. Half-hour Interval Quad-Tree for
Demand.

first and second moments information of the random demand. In particular, the average demand–
supply ratio mismatch error is reduced by 28.6%, and the average total idle driving distance is
reduced by 10.05%, the weighted-sum cost of the two components is reduced by 10.98% compared
with non-robust solutions.

In Figure 2, robust solutions with the box type of uncertainty set and the SOC type of uncertainty
set provide a desired level of probabilistic guarantee—the probability that an actual dispatch cost
under the true demand vector being smaller than the optimal cost of the robust vehicle balancing
solutions is greater than (1 − ϵ ). However, they do not directly minimize the average performance
of the solutions and we need to tune the value of ϵ and test the average cost. The horizontal
lines show the average cost of distributionally robust solutions and non-robust solutions, since
these costs are irrelevant to ϵ . The average cost of solutions of Equation (19) is always smaller
than costs of robust balancing solutions based on the box type uncertainty set, which only uses
information about the range of demand at each region. This result indicates that the second order
moment information of the random variable should be included for modeling the uncertainty of
the demand and calculating an optimal solutions. The distributionally robust method (Equation (8))
directly provides a better guarantee for the average performance under uncertain demand, and the
SOC robust method designed in Reference [30] provides a probabilistic guarantee for the single-
point worst-case performance of the demand.

5.2 Grid Partition Compared with Quad-Tree Partition

As provided in Figure 3, the quad-tree covers from−75.37 to−73.29 for longitude and from 40.11 to
41.04 for the latitude in New York city area. The time in this figure is divided into 1-hour intervals.
Figure 4 gives a snapshot for the quad-tree partitions when we change the time dimension to be
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Table 5. Comparison of γ B
1 and γ B

2 Values with a Dynamic
Quad-tree Partition Method and a Static Equal-area Grid
Partition for Different Time Intervals t , Where Unit “h”

Means Hour and “m” Means Minute

Grid Quad-Tree Change Rate

t = 2 h, γ B
1 0.016 0.021 31.25%

t = 2 h, γ B
2 1.73 2.05 18.50%

t = 1 h, γ B
1 0.0130 0.0110 −15.38%

t = 1 h, γ B
2 1.56 1.35 −13.46%

t = 50 m, γ B
1 0.0128 0.0107 −16.41%

t = 50 m, γ B
2 1.53 1.32 −13.73%

t = 40 m, γ B
1 0.0125 0.0102 −18.40%

t = 40 m, γ B
2 1.49 1.26 −15.44%

t = 30 m, γ B
1 0.0121 0.0095 −21.49%

t = 30 m, γ B
2 1.46 1.21 −17.12%

t = 20 m, γ B
1 0.0119 0.0120 0.84%

t = 20 m, γ B
2 1.41 1.48 4.96%

t = 15 m, γ B
1 0.0120 0.0123 2.50%

t = 15 m, γ B
2 1.40 1.50 7.14%

Change Rate is calculated via (VQuad−T r ee −VGr id )/VGr id ,

where V{·} means the values in the corresponding column.

in 30-minute intervals, which is different from the one-hour quad-tree in Figure 3. The red dots in
both figures represent taxi-requests distributed over the space and time of the day. We fixed the
time interval as 2 hours down to 15 minutes as shown in Table 5, and get different partitions on
(longitude, latitude) dimensions. We then use demand vectors after these partitions to calculate
the uncertain set of probability distributions for 5–8 pm of weekdays, to show the effect of time-
interval length on the quality of the quad-tree.

Table 5 shows the comparison of γ B
1 and γ B

2 values with a dynamic quad-tree partition method
and a static simple equal-area grid partition method for different values of time interval t . For
the same region partition and prediction time horizon τ , when the values of γ B

1 ,γ
B
2 are smaller,

the volume of the uncertainty set is smaller, the demand prediction is more accurate. After region
partition and pick-up events aggregation, the demand of each hour is predicted by directly calcu-
lating the average of all training data. For the following experiments, we use the same values of
τ = 4, Ns = 1000, and αh = 0.1. According to the results of t = 2 h and t = 1 h shown in Table 5
for weekdays’ demand data from 5 pm to 8 pm, we conclude that the granularity of time also
affects demand prediction accuracy. For t = 1 h, with static equal-area grid partition and the aver-
age requests number during each unit time as the demand model, the Mean Average Percentage
Error (MAPE) is 32.6%. When the length of one time instant is appropriate, the quad tree partition
method improves the accuracy of demand prediction. The volume of uncertainty sets shrink, with
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Table 6. Comparison of Average Total Idle Distance (Weekdays
5 pm–8 pm) with Distributionally Robust Dispatch Solutions by

Solving Equation (19) (Equivalent Form of Equation (8))

Region division Grid Quad-tree Change rate
t = 1 h 7.63 × 104 6.62 × 104 −13.1%

t = 30 min 6.84 × 104 5.47 × 104 −20.0%

smaller γ B
1 and γ B

2 values when we use the quad tree partition method, according to the results
when t = 50 m, t = 40 m, and t = 30 m. However, when the length of one time instant is too short,
predicting demand based on the quad tree method is worse than that based on the simple equal-
area grid partition. The values of γ B

1 and γ B
2 for time lengths t = 20 m and t = 15 m show that the

values of γ B
1 and γ B

2 are increased by quad tree partition.
In Table 6, we compare the average total idle distance with distributionally robust dispatch

solutions by solving Equation (19) (equivalent form of Equation (8)), based on an equal-area grid
region partition and a quad-tree region partition method. For a fixed time interval of 1 hour, the
quad-tree region partition method can reduce average total idle distance by 13.1%, and for a fixed
30-minute interval, the reduction rate is 20%. This is about a 30% or 60 million miles reduction of
total idle distance or 8 million dollar cost reduction annually for all taxis in NYC, compared with
the method of balancing taxis in the city with average requests number that does not consider
demand uncertainties. By partitioning the regions with a data-sensitive quad-tree method from
the beginning, the distributional set better captures the spatial-temporal properties of demand.
The performance of the data-driven vehicle balancing method is then significantly improved.

5.3 Time-series Demand Prediction and Distributional Uncertainty Sets

In this subsection, we show the demand prediction error at different times of one weekday us-
ing the ARIMA time-series model, the demand distributional uncertainty sets constructed based
on Algorithm 2 based on grid and quad-tree region partition methods, and considering demand
prediction uncertainties reduces the total idle distance of all taxis in NYC compared with service
provided by not considering prediction uncertainties. Though some recent developed complicated
models in the literature such as [31, 46, 47] provide a relatively more accurate model, the MAPE
can still be 15.5% by deep neural network [46, 47] or 22% by assembled time-series model [31] with
fine tuned parameters. To make reliable vehicle dispatch decisions, the prediction error should not
be neglected. The focus of this work is to show the benefit of the proposed dynamic region parti-
tioning and distributionally robust optimization methods, instead of comparing demand prediction
models. Hence, we use the widely applied ARIMA model to predict demand in this subsection and
the deep neural network–based STDN demand prediction model in the next subsection. We show
that our proposed framework works for different types of demand prediction model when building
the uncertainty sets, and the optimal solution guarantees the average cost of a taxi dispatch system.

We first compare the true demand and predicted demand via ARIMA model for different time
of weekdays in Figures 6, 7, and 8. Figure 5 shows a static equal-area grid region partition for
Manhattan and the positions of Regions 13, 24, and 42. Downtown and midtown Regions 13 and 24
are relatively busier especially during daytime compared with Region 42, and have relatively small
prediction errors than the not busy upper town Region 42. When demand is predicted by a time-
series model and uncertainty sets are constructed by Algorithm 2, Table 7 shows the comparison of
γ B

δ,1
and γ B

δ,2
values with a dynamic quad-tree partition method and a static simple equal-area grid

partition method for different values of time interval t . When the values are smaller, the volume of
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Fig. 5. Heat map of demand in Manhattan area:
lighter means more demand. Regions 13, 24, and
42 via grid partition (50 regions in total) are de-
noted in the right figure.

Fig. 6. Comparison of the true demand and
demand predicted by ARIMA model in re-
gion 13 in one day. The MAPE at each hour
is from 5.23% to 19.57%.

Fig. 7. Comparison of the true demand
and demand predicted by ARIMA model in
region 24 in one day. The MAPE at each
hour is from 4.68% to 18.35%.

Fig. 8. Comparison of the true demand
and demand predicted by ARIMA model
in region 42 in one day. The MAPE at each
hour is from 6.79% to 26.14%.

the uncertainty set is smaller. For other parameters of the experiments, we use τ = 4 for weekdays
5–8 pm, Ns = 1,000, and αh = 0.1 for all comparison.

When the length of one time instant is appropriate, the quad tree partition method improves
the accuracy of demand prediction. The volume of uncertainty sets shrink, with smaller γ B

δ,1
and

γ B
δ,2

values when we use the quad tree partition method, according to the results when t = 50 m,

t = 40 m, and t = 30 m. However, when the length of one time instant is too long such as t = 2 h
and t = 1 h, or too short, such as t = 20 m and t = 15 m, predicting demand based on the quad
tree method is worse than that based on the simple equal-area grid partition. The phenomenon of
accuracy changes with the granularity of time step length has also been revealed in other predic-
tion methods [25, 31], that neither a too fine or too coarse prediction time step length works, and
30 minutes or 1 hour is often selected. The values of γ B

δ,1
and γ B

δ,2
are increased by the dynamic

region partition method. Table 7 also shows the generality and compatibility of the dynamic quad-
tree region partition method with different demand prediction models.

When demand is predicted by ARIMA, we compare the average total idle distance with distri-
butionally robust dispatch solutions by solving Equation (19) (equivalent form of Equation (8)),
based on equal-area grid region partition and quad-tree region partition methods in Table 8. For
a fixed time interval of 1 hour, quad-tree region partition method can reduce average total idle
distance by 11.05%, and for a fixed 30-minutes interval, the reduction rate is 19.60%. When we use
the grid method for region partitioning, compared with vehicle dispatch decisions not considering
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Table 7. Comparison of γ B
δ,1

and γ B
δ,2

Values with a

Dynamic Quad-tree Partition Method and a Static
Equal-area Grid Partition for Different Time Intervals t ,
Where Demand Is Predicted by ARIMA Model, Unit “h”

Means Hour, and “m” Means Minute

Grid Quad-Tree Change Rate

t = 2 h, γ B
δ,1

0.015 0.019 26.67%

t = 2 h, γ B
δ,2

1.67 2.02 20.96%

t = 1 h, γ B
δ,1

0.0127 0.0106 −16.54%

t = 1 h, γ B
δ,2

1.53 1.31 −14.38%

t = 50 m, γ B
δ,1

0.0125 0.0103 −17.60%

t = 50 m, γ B
δ,2

1.51 1.30 −14.00%

t = 40 m, γ B
δ,1

0.0123 0.0101 −17.89%

t = 40 m, γ B
δ,2

1.47 1.23 −16.33%

t = 30 m, γ B
δ,1

0.0119 0.0092 −22.70%

t = 30 m, γ B
δ,2

1.45 1.19 −17.93%

t = 20 m, γ B
δ,1

0.0120 0.0121 0.83%

t = 20 m, γ B
δ,2

1.42 1.47 3.52%

t = 15 m, γ B
δ,1

0.0121 0.0123 1.70%

t = 15 m, γ B
δ,2

1.43 1.51 5.59%

Change Rate is calculated via (VQuad−T r ee −VGr id )/VGr id , where

V{·} means the values in the corresponding column.

Table 8. Comparison of Average Total Idle Distance (Weekdays
5 pm–8 pm) with Distributionally Robust Dispatch Solutions by
Solving Equation (19) (Equivalent form of Equation (8)), Demand

Predicted by the ARIMA Model

Region division Grid Quad-tree change rate
t = 1 h 7.15 × 104 6.36 × 104 −11.05%
t = 30 m 6.58 × 104 5.29 × 104 −19.60%

the demand prediction error by ARIMA, the average total idle driving distance is reduced by 7.68%,
though the ARIMA model is more accurate than the bootstrapped average demand model we use
in Table 6 (the idle distance reduction rate of the distributionally robust compared with non-robust
solutions is 10.05%, when using grid method for region partition and the average requests num-
ber during each unit time as the demand model [29], equivalent to the passenger arrival rate of a
queueing model in each unit time [50, 51]). Hence, using a data-sensitive quad-tree method from
the beginning for region partition and a distributional set better captures the spatial-temporal
correlated uncertainties of demand helps to reduce the total idle distances, even the demand pre-
diction model is a relatively accurate time-series model. They together provides a 27.27% mileage
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Table 9. Comparison of γ B
δ,1

and γ B
δ,2

Values with a

Dynamic Quad-tree Partition Method and a Static
Equal-area Grid Partition for Different Time Intervals t ,
Where Demand Is Predicted by STDN Model, Unit “h”

Means Hour, and “m” Means Minute

Grid Quad-Tree Change Rate

t = 2 h, γ B
δ,1

0.014 0.017 21.43%

t = 2 h, γ B
δ,2

1.61 1.92 19.25%

t = 1 h, γ B
δ,1

0.0113 0.0099 −12.39%

t = 1 h, γ B
δ,2

1.38 1.21 −12.32%

t = 50 m, γ B
δ,1

0.0108 0.0097 −10.19%

t = 50 m, γ B
δ,2

1.31 1.17 −10.69%

t = 40 m, γ B
δ,1

0.0101 0.0090 −10.89%

t = 40 m, γ B
δ,2

1.26 1.13 −10.32%

t = 30 m, γ B
δ,1

0.0095 0.0086 −9.47%

t = 30 m, γ B
δ,2

1.20 1.09 −9.17%

t = 20 m, γ B
δ,1

0.0103 0.0105 1.94%

t = 20 m, γ B
δ,2

1.29 1.36 5.43%

t = 15 m, γ B
δ,1

0.0106 0.0108 1.89%

t = 15 m, γ B
δ,2

1.31 1.38 5.34%

Change Rate is calculated via (VQuad−T r ee −VGr id )/VGr id , where

V{·} means the values in the corresponding column.

reduction compared with grid-region partition, ARIMA demand prediction without considering
model uncertainties.

5.4 Neural Network–based STDN Prediction and Distributional Uncertainty Sets

We also evaluate our algorithm using a recently developed neural network–based demand predic-
tion algorithm STDN [46]. The STDN model utilizes the novel 2D local convolutional layers, LSTM
units, and an attention mechanism on the sequential data. The STDN builds upon the Deep Multi-
View Spatio-Temporal Network [47], which introduces the local convolutional layer. Using STDN
to predict demand, The Root Mean Square Error is 21.94% and the MAPE is 15.5%. We show the
performance of our proposed distributionally robust vehicle balancing algorithm and quad-tree
dynamic region partition method based on STDN in this subsection.

We compare the average total idle distance with distributionally robust dispatch solutions by
solving Equation (19) (equivalent form of Equation (8)), based on equal-area grid region partition
and quad-tree region partition methods in Table 10. For a fixed time interval of 1 hour, quad-tree
region partition method can reduce average total idle distance by 10.80%, and for 30-minute in-
tervals, the reduction rate is 16.69% compared with grid region partition method. When we use
the grid method for region partitioning, compared with vehicle dispatch decisions not considering
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Table 10. Comparison of Average Total Idle Distance (Weekdays
5 pm–8 pm) with Distributionally Robust Dispatch Solutions by

Solving (19) (Equivalent form of Equation (8)), Demand Predicted
by the STDN Model

Region division Grid Quad-tree change rate
t = 1 h 6.76 × 104 6.03 × 104 −10.80%
t = 30 m 6.17 × 104 5.14 × 104 −16.69%

the demand prediction error by STDN, the average total idle driving distance is reduced by 6.59%,
though the STDN model is more accurate than most earlier demand prediction model (the idle dis-
tance reduction rate of the distributionally robust compared with non-robust solutions is 10.05%,
when using grid method for region partition and the average requests number during each unit
time as the demand model [29], equivalent to the passenger arrival rate of a queueing model in
each unit time [50, 51]). Hence, using a data-sensitive quad-tree method from the beginning for
region partition and a distributional set better captures the spatial-temporal correlated uncertain-
ties of demand, and helps to reduce the total idle distances, even the demand prediction model is
relatively accurate. They together provide a 23.28% mileage reduction compared with grid-region
partition and STDN demand prediction without considering model uncertainties.

6 CONCLUSION

Vehicle balancing strategies coordinate vehicles to fairly serve customers from a systemwide per-
spective, and reduce total idle distance to serve the same number of customers compared with
strategies without balancing. However, the uncertain probability distribution of demand predicted
from data affects the performance of solutions and has not been considered by previous work.
In this article, we design a data-driven distributionally robust vehicle balancing method to mini-
mize the worst-case average cost under uncertainties about the probability distribution of demand.
Then we design efficient algorithms to construct a set of distributions given a spatial-temporal de-
mand dataset and different demand prediction models, and leverage a quad-tree dynamic region
partition method to better capture the dynamic properties of the random demand. We prove an
equivalent computationally tractable form of the distributionally robust problem under the con-
structed distributional set. Evaluations show that for a prediction model of using the average of
historical value, the average demand–supply ratio mismatch error is reduced by 28.6%, and the
average total idle driving distance is reduced by 10.05% compared with non-robust solutions, if
using the distributionally robust algorithm desgined in this work. With quad-tree dynamic region
partitions, the average total idle distance is reduced by 20% more. For a more accurate time-series
model, the average total idle distance is reduced by 7.68% by considering demand prediction un-
certainties with static grid region partition, and is reduced by 19.60% more with the quad-tree
dynamic region partition. In the future, we will design hierarchical vehicle balancing strategies
for heterogeneous vehicle networks.

A APPENDIX

A.1 Proof of Theorem 4.1

Proof. We have aik

(Sk
i )α
> 0 and rc � 0 by the definitions of JE in Equation (5) and the demand

model, then for any vector y ∈ Rnc , y = [y1
1,y

1
2, . . . ,y

τ
1 ,y

τ
2 , . . . ,y

τ
nτ ]T that satisfies 0 < aik

(Sk
i )α

�

yk
i , we also have 0 � ∑τ

k=1

∑nk

i=1
aik r k

i

(Sk
i )α

� yT rc , and the second inequality strictly holds when all
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aik r k
i

(Sk
i )α
= yk

i , for i = 1, . . . ,nk , k = 1, . . . ,τ . The constraints of problem (8) are independent of rc ,

hence, for any rc , the minimization problem

min.
X k

β
τ∑

k=1

nk∑
i=1

aikr
k
i

(Sk
i )α
+

τ∑
k=1

JD (X k ), s.t X [1,τ ], S [1,τ ],V [2,τ ],O [2,τ ] ∈ Dc

is equivalent to

min.
X k

βyT rc +

τ∑
k=1

JD (X k )

s.t.
aik

(Sk
i )α

� yk
i , y ∈ Rnc ,

y = [y1
1,y

1
2, . . . ,y

τ
1 ,y

τ
2 , . . . ,y

τ
nτ ]T , X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc .

(20)

In this proof, we use the objective function of problem (20). In particular, only the part of yT rc is
related to rc , and we first consider the following maximization problem:

max
rc∼F ,F ∈F

E[yT rc ]. (21)

By the definition of problem (8) and problem (20), only the objective function includes the ran-
dom vector rc , and is concave of rc , convex of Xk for k = 1, . . . ,τ . The distributional set F con-
structed by Algorithm 1, the domain ofy,X 1:τ , S1:τ ,V 2:τ , andO2:τ are convex, closed, and bounded
sets. Hence, problem (21) satisfies the conditions of Lemma 1 in Reference [14], and the maximum
expectation value of yT rc for any possible rc ∼ F , where F ∈ F equals the optimal value of the
problem,

min.
Q,q,v,t

v + t

s.t. v � yT rc − rT
c Qrc − rT

c q, ∀rc ∈ [r̂c,l , r̂c,h], Q � 0

t � (γ B
2 Σ̂c + r̂c r̂

T
c ) ·Q + r̂T

c q +
√
γ B

1 ‖Σ̂
1/2
c (q + 2Qr̂c )‖2.

(22)

Hence, we first analytically find the optimal value of problem (22). Note that the first constraint
aboutv is equivalent tov � f (r ∗c ,y), where f (r ∗c ,y) is the optimal value of the following problem:

max.
rc

yT rc − rT
c Qrc − rT

c q, s.t. r̂c,l � rc � r̂c,h . (23)

For a positive semi-definite Q , problem (23) is convex. The Lagrangian of (23) under the con-
straint y+1 ,y

−
1 � 0 is L (rc ,y

+
1 ,y
−
1 ) = yT rc − rT

c Qrc − rT
c q + (y+1 − y−1 )T rc − (y+1 )T r̂c,l + (y−1 )T r̂c,h .

When Q � 0, the inverse of matrix Q is convex, the supreme value of the Lagrangian is calcu-
lated via taking the partial derivative over rc , let ∇rc

L = 0, y1 = y
+
1 − y−1 , y+1 ,y

−
1 � 0, and a convex

constraint

sup
rc

L (rc ,y
+
1 ,y
−
1 ) =

1

4
(q − y − y1)TQ−1 (q − y − y1) − (y+1 )T r̂c,l + (y−1 )T r̂c,h .

Then the first inequality constraint of problem (22) for any r̂c,l � rc � r̂c,h is equivalent to

v �1

4
(q − y − y1)TQ−1 (q − y − y1) − (y+1 )T r̂c,l + (y−1 )T r̂c,h .
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By Schur complement, the above constraint is⎡⎢⎢⎢⎢⎣
v + (y+1 )T r̂c,l − (y−1 )T r̂c,h

1
2 (q − y − y1)T

1
2 (q − y − y1) Q

⎤⎥⎥⎥⎥⎦ � 0.

Together with other constraints, the equivalent convex optimization form of problem (8) is prob-
lem (19). �
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