
Real Time Distant Speech Emotion Recognition in Indoor
Environments

Mohsin Y Ahmed, Zeya Chen, Emma Fass and John Stankovic
Department of Computer Science, University of Virginia

Charlottesville, VA, USA
{mohsin.ahmed,zeyachen,enf5cb,stankovic}@virginia.edu

ABSTRACT
We develop solutions to various challenges in different stages of the
processing pipeline of a real time indoor distant speech emotion
recognition system to reduce the discrepancy between training and
test conditions for distant emotion recognition. We use a novel
combination of distorted feature elimination, classifier optimiza-
tion, several signal cleaning techniques and train classifiers with
synthetic reverberation obtained from a room impulse response gen-
erator to improve performance in a variety of rooms with various
source-to-microphone distances. Our comprehensive evaluation is
based on a popular emotional corpus from the literature, two new
customized datasets and a dataset made of YouTube videos. The
two new datasets are the first ever distance aware emotional cor-
puses and we created them by 1) injecting room impulse responses
collected in a variety of rooms with various source-to-microphone
distances into a public emotional corpus; and by 2) re-recording
the emotional corpus with microphones placed at different dis-
tances. The overall performance results show as much as 15.51% im-
provement in distant emotion detection over baselines, with a final
emotion recognition accuracy ranging between 79.44%-95.89% for
different rooms, acoustic configurations and source-to-microphone
distances. We experimentally evaluate the CPU time of various
system components and demonstrate the real time capability of our
system.
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1 INTRODUCTION
Extracting emotional components from human speech (speech emo-
tion recognition) in real time has been a challenging problem for
several decades. Speech is the most common and natural commu-
nication medium in humans. Therefore, accurate real time speech
emotion recognizers have far more potential for real world deploy-
ment centric applications because 1) speech has pervasive reach-
ability to nearby sensors (microphone) as opposed to video/facial
expression based emotion recognizers, and, 2) speech is less intru-
sive as opposed to galvanic skin resistance based emotion recog-
nizers. A real time speech emotion recognizer will have profound
impact on a wide range of applications if it can be accurate in a
wide range of environments with different acoustic configurations
and different source-to-microphone distances. If these challenges
can be met, then the solution can be used in many applications
requiring real time emotion recognition. For example, it can be
used in an advanced driver assistance system to detect real time
mood of a vehicle driver, as aggressive driving behavior may lead
to accidents. Similarly, real time cockpit behavior for airline pilots
can be monitored for possible depressive syndromes leading to sui-
cidal tendencies. In general, people with suicidal tendencies can be
monitored for mood to support just in time interventions. Certain
medical conditions like heart diseases are likely to worsen due to
anger and excitement, therefore such patients can be monitored in
real time for emotional outbursts and subsequent interventions can
possibly avoid heart attacks.

In a real time indoor speech emotion recognition system, the
microphones are deployed in certain places of the room. These mi-
crophones capture speech signals originating from sources (human)
situated at various distances. Increasing source-to-microphone dis-
tance reduces signal-to-noise ratio and induces noise and reverbera-
tion effects in the captured speech signal, thus degrading the quality
of captured speech, and hence the performance of the emotion rec-
ognizer. A related area of research is distant-speech-recognition
(DSR) i.e. converting speech to text by distant microphones, which
is an extension of the automatic-speech-recognition (ASR) problem,
where a lot of progress has been made [7, 10, 14] in recent years.
However, real time distant emotion recognition (RTDER) is an area
not explored before to the best of our knowledge. It is important to
note that, the solutions of the DSR problem are not generalizable
to solve DER problem because of the difference in the nature of the
core problems. DSR targets translating captured speech in distant
microphones to text, while RTDER targets classifying captured
speech into certain emotional classes in real time. Speech emotion
recognition requires a large number of local and global acoustic
features, a static or dynamic emotion training set and uses classi-
fiers like support vector machines (SVM), Gaussian mixture models
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(GMM) and random forest whereas automatic speech recognition
needs a limited number of features (MFCC) with hidden Markov
models (HMM) and uses a different technique involving phonemes
and language models.

A real time speech emotion recognition system is generally eval-
uated using one or more emotional speech database/corpuses. An
emotional speech corpus is generally made from real-world inci-
dent recordings or from acted/elicited artificial emotional utter-
ances in sound laboratories by professional/semi-professional/non-
professional actors. A majority of the existing emotional speech
databases are made artificially because of the legal and moral issues
of using real life recordings for research purposes. An extensive list
of state-of-the-art emotional corpuses can be found in [4], where
the corpuses have been made by professional/nonprofessional ac-
tors and from extracted movie clips. A common characteristic of
all the existing emotional corpuses is that all of them are made
of clean speech recorded by closely situated microphones, often
in a noise-proof anechoic sound studio. All the existing real time
speech emotion recognition results are based on these clean speech
recordings and, hence, these results are not applicable to a real
world environment where acoustic sensors are likely to be situated
far from the speakers. Therefore, no solution to the RTDER problem
exist to date.

In this paper, for the first time, we address different stages of
the processing pipeline of a real time speech emotion recognition
system to solve the previously unexplored RTDER problem and
increase real time emotion recognition accuracy in distant micro-
phones in different room types. The main contributions of our work
are:

• We identify several challenges in different stages of a real
time distant speech emotion recognition pipeline and pro-
vide solutions to them with empirical results obtained over
extensive evaluations.

• We create the very first distance aware emotional corpuses
to use in our experiments by 1) re-recording a popular emo-
tional corpus with a microphone array with microphones
placed at various distances, and 2) by injecting room im-
pulse responses collected in a variety of rooms with various
source-to-microphone distances into the same emotional
corpus. We plan to make these distance aware emotional
corpuses freely available for research purpose.

• Our novel combination of distorted acoustic feature elim-
ination, best feature selection and classifier optimization
techniques improves the real time distant emotion detection
accuracy between 1.31% (for the worst case scenario of a
large church hall) to 6.12% from the baseline in a variety of
rooms with various source-to-microphone distances. We per-
form the most comprehensive feature analaysis for RTDER
using the largest known emotional feature set consisting of
6552 acoustic features. Note that, we considered loud back-
ground noisy environments and extremely large rooms with
very high reverberation effects for possible worst-case situa-
tion analysis and achieved improvement from the baseline
even in the worst scenarios.

• At the signal acquisition stage, we use 2 state-of-the-art dere-
verberation and denoising techniques to clean the distant

Figure 1: Raw waveforms of an angry utterance containing
6 separate sentences in 7 microphones situated at different
distances.

emotional speech signal. In addition, we combine these ap-
proaches with our novel combination of distorted feature
elimination, best feature selection and classifier optimiza-
tion techniques to achieve up to 10.84% improvement from
the baseline in a variety of rooms with various source-to-
microphone distances, with the final classification accuracy
ranging between 79.44%-94.95%.

• At the classifier training stage, we train our classifiers with
synthetic reverberation obtained from a room impulse re-
sponse generator to reduce the discrepancy between train-
ing and testing conditions in a RTDER environment. Our
training approach only requires emotion samples with clean
speech at a close microphone. In addition, we combine this
with our novel feature and classifier enhancement techniques
to obtain up to 15.51% improvement from baselines across all
the rooms in a variety of distances, with the final accuracy
ranging between 87.85%-95.89%.

• We evaluate the above mentioned techniques on a YouTube
video dataset consisting of 37 clips spanning over 3 hours
from lectures, public speech, talk-shows, and personal state-
ments from both actors and real people and obtain a max-
imum of 7.30% of improvement in recognizing real world
emotions at various source-to-microphone distances in dif-
ferent rooms, with a maximum accuracy of 93.68%.

• We experimentally evaluate the CPU runtime of each compo-
nent of our system and demonstrate the real time capability
of our system.

2 PROBLEM FORMULATION: REAL TIME
DISTANT EMOTION RECOGNITION

Speech based real time emotion detection is a complex problem
due to the diversity in the way different people speak and express
emotions, linguistics of different languages and accents, and the
expression of a wide range of emotions by human. However, when
speech is captured by distant microphones (as opposed to right next
to the speaker), it adds further complexity to the real time emotion
detection problem due to room reverberation, noise, and reduced
signal-to-noise ratio.

In the past 2 decades, various emotional corpuses have been
made by the affective computing community from clean emotional
speech recorded in anechoic (non-reverberant) and noise-free sound



Real Time Distant Speech Emotion Recognition in Indoor Environments Mobiquitous, November 2017, Melbourne, Australia

Figure 2: Stages of a standard acoustic emotion detection
pipeline.

studios simulated by professional or non-professional actors, and
hence, all the existing emotion detection results are based on clean
emotional recordings. However, for a realistic real time emotion
detection system deployed in open environments, one or more mi-
crophones will be situated at certain places of a room, and hence
capture sound waves coming from distant sources (human subjects).
We formally call this a Real Time Distant Emotion Recognition (RT-
DER) problem. As an example, we record 6 sample angry utterances
from an emotional corpus in front of a microphone array consisting
of 7 microphones situated at various distances, and Figure 1 shows
the recorded waveforms. The waveform of microphone 1 demon-
strates clear recording with highest signal-to-noise-ratio (SNR),
where microphone 1 is situated nearest to the speaker. However, as
the speaker to microphone distance increases, background noise
and room reverberation are injected into the recordings, and hence
the SNR decreases, as observed in recordings from microphones 2-7.
This induced noise and reverberation drastically affect the emotion
detection performance, as we demonstrate in later sections.

Figure 2 demonstrates a standard acoustic emotion detection
pipeline. A clean speech emotional corpus is created by induced or
acted emotional utterances from professional or non-professional
actors. A training and test set is generated from the emotional
corpus, and emotional models are generated from the training set
after extracting emotion correlated acoustic features. Finally, the
same features are extracted from the test set and the emotional
models are applied on the test set to classify emotion. In the con-
text of RTDER, the training set is obtained from a clean speech
signal while the test set is obtained from distant speech; hence the
challenge arises because of discrepancy in training and test data.
In this paper, we address different stages of the acoustic emotion
detection pipeline in context of RTDER with an objective of making
training and testing conditions similar, and thus increase emotion
classification accuracy. The challenges we address and solve are:

• Challenge 1: Can we find a set of emotion correlated acous-
tic features which are robust against microphone-to-speaker
distance?

• Challenge 2: Can we clean the test speech recorded over
distance from noise and room reverberation?

• Challenge 3: Can we add artificial room acoustic configura-
tion into the clean speech training to reduce the discrepancy
between training and test scenario?

• Challenge 4: Can we execute various system components
of our solution in real time on standard available hardware
of our target safety centric applications?

3 FINDING DISTANCE ROBUST FEATURES
When emotional speech signal is recorded by a distant microphone,
the recorded signal becomes distorted compared to the original sig-
nal because of room ambient noise and reverberation. The amount
of distortion depends on the acoustic properties of the room and
amount of noise. For our solution, we empirically find a set of acous-
tic features which are robust across distance as well as correlated to
target emotions. We then use these distance robust features for both
training with clean emotional speech and testing on distant speech.
Since these features are robust across distance, their distortion with
distance is minimal, hence the discrepancy between training and
testing in RTDER is also minimal, and accuracy is improved.

In our solution, we calculate the distortion of a particular feature
f at distance d using the following formula:

distortiond =

���� f0 − fd
f0

���� × 100% (1)

Where, f0 = feature value for clean signal (distance 0),
fd = feature value for signal at distance d.

For the rest of this section, we discuss the data preparation
strategy for our experiments, feature extraction, distorted feature
filtering, best feature selection and classifier optimization methods.

3.1 Data Preparation
We used the Berlin Emotional Speech Database, also known as Emo-
DB [2], in our experiments to find distance robust emotional speech
features. Emo-DB is a well-known and widely used freely available
emotional corpus in the affective computing domain. It contains
short sentences in German each spanning between 2-5 seconds in
7 different emotion categories: anger, anxiety, boredom, disgust,
happiness, neutrality and sadness. There are 535 utterances in total
in Emo-DB spanning these 7 emotions spoken by 10 professional
actors (5 males and 5 females).

Just like most other emotional corpuses, Emo-DB contains only
clear speech recordings. We apply the following 2 techniques to
impose distance effect in Emo-DB recordings.

Re-record Emo-DBwith amicrophone array:Weplayed the
Emo-DB recordings with a loudspeaker and recorded them with a
VocoPro UHF-8800 microphone array consisting of 4 microphones
placed at distances of 1m, 3m, 5m and 7m from the loudspeaker.
The recording was done in a 10m x 5m lab at 16 KHz sampling
rate and 24-bit precision. There was loud background HVAC noise
present while recording. Most indoor applications would fall within
7m of speaker-to-microphone distance hence we did not record for
any further distance. To the best of our knowledge, this is the first
emotional corpus recorded with different speaker-to-microphone
distances, and we plan to make this dataset freely available to the
research community. We refer this dataset as "Emo-DB-Array" for
the remaining of the paper.

Inject distance effect into Emo-DB from AIR impulse re-
sponse database: The Aachen Impulse Response (AIR) [6] data-
base is a collection of room impulse responses (IR) measured in a
variety of rooms with various acoustic configurations and with dif-
ferent source-to-microphone distances. A room impulse response
can be used to describe the acoustic properties of a room in terms of
sound propagation and reflections for a specific source-microphone
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Table 1: Room Configurations of IRs from AIR Database
Room Dimensions Speaker-to-Microphone Distances

Office room 5m x 6.4m x 2.9m 1m, 2m, 3m
Meeting room 8m x 5m x 3.1m 1.45m, 1.7m, 1.9m, 2.25m, 2.8m
Lecture room 10.8m x 1.09m x 3.15m 2.25m, 4m, 5.56m, 7.1m, 8.68m, 10.2m
Aula Carolina church 19m x 30m 1m, 2m, 3m, 5m, 15m, 20m

configuration. The distant reverberated signal s(n) is represented
as a convolution of the source (clean) signal x(n) with the room IR
r(n)

s(n) = x(n) ∗ r (n) (2)
We convolved the Emo-DB recordings with room impulse re-

sponses obtained from the AIR database. Convolving the Emo-DB
recordings with these IRs injects the acoustic and various distance
effects of AIR database rooms into the Emo-DB database recordings.
We refer this dataset as "Emo-DB-AIR" for the remaining of the pa-
per. Table 1 summarizes the dimensions and speaker-to-microphone
distances of various rooms from the AIR database whose IRs were
convolved with Emo-DB recordings to construct Emo-DB-AIR.

3.2 Feature Extraction
We used the widely used OpenSMILE feature extraction toolkit [5]
to extract a large number of 6552 features as 39 functionals of 56
acoustic low-level descriptors (LLD) related to energy, pitch, spec-
tral, cepstral, mel-frequency and voice quality and corresponding
first and second order delta regression coefficients. The 39 statisti-
cal functionals are applied to the LLDs computed from each of the
emotional utterances to map a time series of variable length onto
a static fixed size (6552) feature vector. Features were extracted
on the utterance level, i.e., 1 feature vector per sentence. These
6552 features constitute the Emo-Large feature set of OpenSMILE
toolkit, which is the largest emotion specific feature set known to
date in terms of number of features. We chose the largest feature
set because it would allow us to know more emotion correlated
features which get distorted over distance, and hence would help
to build a feature set robust to distance by keeping the distance
agnostic emotion correlated features only. Such an approach to find
distance robust emotional features has not been attempted before,
to the best of our knowledge.

3.3 Iterative Distorted Feature Cut (IDFC)
Procedure

For each of the 6552 features, distortion of each feature with respect
to its corresponding clean signal feature value is calculated using
equation 1, for both the Emo-DB-Array and Emo-DB-AIR datasets.
The features are then sorted by their distortion value from highest
to lowest, and iteratively discarded (cut) from the train and test sets
one by one. In each step of the iteration, a new emotion model is
built with the updated reduced-by-1 feature set, and tested upon
the test set, and corresponding classification accuracy is logged. A
support vector machine (SVM) classifier from theWeka data mining
toolkit is used for training and testing, as SVM is reported to have
best performance in emotion detection in prior works. The features
are normalized to the range [-1, 1] before training and testing. This
procedure iterates across all 6552 features and returns the best
accuracy achieved across all iterations and the corresponding best
feature cut.
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Figure 3: We picked the subset of most important features.
Choosing the most important 3271 features yielded highest
cross-validation accuracy of 88.78%.

3.4 Feature Selection and SVM Parameter
Optimization

We chose a large feature set consisting of 6552 features so that
we can identify the highest number of distance sensitive distorted
features. Although the Emo-Large feature set is an emotion de-
tection feature set, not all the 6552 features are equally important
for the emotion detection task. Allowing a lot of less-correlated
features overfits the classification model resulting in greater errors,
in addition to increased latency for real time operation. Therefore,
we used an algorithm presented in [3] which ranks the features by
their importance to the classification problem by calculating their
F-scores. The larger the F-score is, the more likely this feature is
more discriminative. We also calculated optimized hyperparame-
ters for the SVM using grid search, with the cost c = 4 and gamma
γ = 0.00195.

For a 2-class (binary) classification problem, given training vec-
torsxk,k = 1, ...,m, if the number of positive and negative instances
are n+ and n-, respectively, then the F-score of the ith feature is
defined as:

F (i) =
(x̄i

(+) − x̄i )
2 + (x̄i (−) − x̄i )

2

1
n+−1

∑n+
k=1(x

(+)

k,i − x̄i (+))2 +
1

n−−1
∑n−

k=1(x
(−)

k,i − x̄i (−))2
(3)

where x̄i , x̄i (+), x̄i (−) are the mean of the ith feature of the whole,
positive and negative data sets respectively, and ¯xk,i (+), ¯xk,i (−) are
the ith feature of the kth positive and negative instance, respec-
tively. The Emo-DB dataset has 7 different emotion labels; hence
this is a multi-class classification problem, as opposed to binary clas-
sification. For multi-class classification, the algorithm constructs
C(k, 2) = k (k−1)

2 binary classifiers between each possible pair of
the original k classes. F-score based feature ranking is calculated
for each of these binary classifiers, and finally it selects the same
feature subset for every binary classifier to maximize the average
accuracy over all classes.

Next, we sort all the features by their F-score importance, and
evaluate if choosing a smaller subset of more important features
improves the classification performance. We iteratively chose larger
subsets of important features, and do a 10-fold cross validation on
the training set. Figure 3 shows that choosing a subset of 3271
most important features yields highest cross-validation accuracy
(88.78%) with the optimized SVM model (c = 4,γ = 0.00195) with a
Radial-Basis kernel.

Finally, we again apply the iterative distorted feature cut pro-
cedure on the best 3271 features to eliminate the most distorted
features among these best 3271 features to further increase the emo-
tion detection accuracy, as seen from results in the next section.
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3.5 Evaluations
We experimented with the IDFC, feature selection with F-score
and SVM parameter optimization procedures on Emo-DB-AIR and
Emo-DB-Array datasets. We set the baseline as when no feature
and classifier enhancements are done, and training is done on clean
speech from Emo-DB and testing is done on noisy and reverberated
speech from Emo-DB-AIR and Emo-DB-Array. On average, we
get 2.15%, 2.93%, 2.09% and 1.31% classification improvement for
Aula Carolina church, lecture, meeting and office rooms with a
final average classification accuracy of 85.14%, 81.53%, 93.19%, and
90.97%, respectively, for the Emo-DB-AIR dataset, and 6.12% average
improvement for the Emo-DB-Array dataset with a final average
accuracy of 87%. Small distances (like 1m) in small rooms (meeting,
office, lab) yields least improvement, as the signal gets little distorted
with such small distance, hence the IDFC procedure is less effective.
But in larger distances, the IDFC procedure accompanied with best
feature subset and optimized SVM is effective in most cases.

While the average accuracy increase may seem low, we show in
sections 4 and 5 that these distorted feature elimination, best feature
selection and classifier optimization techniques, when accompanied
by signal cleaning and training transformation techniques, yield
accuracy improvement as much as 15.51% from the baseline.

4 CLEANING SIGNAL FROM
REVERBERATION AND NOISE

As stated earlier, speech signals captured in distant microphones are
infected with reverberation and noise. In this section, we address
the signal acquisition stage of the pipeline presented in Figure 2.
We use 2 state-of-the-art dereverberation and denoising techniques
to clean the distant signal, as described below.

4.1 Dereverberation and Denoising Algorithms
4.1.1 Weighted-Prediction Error (WPE). WPE performs inverse

filtering of room acoustics based on linear prediction. For each sam-
ple time t , the WPE method [13] linearly predicts the reverberation
component contained in an observed speech sample, x(t) from its
preceding samples x(u);u < t . Let y(t) be the distant speech signal
at time t containing reverberation and background noise. Let yn [k]
denote a short-time-Fourier-transform (STFT) coefficient calculated
from y(t), where n and k are the time frame and frequency bin in-
dices, respectively. yn [k] is dereverberated at each frequency bin k
using a linear filter as follows:

xn [k] = yn [k] −

TT∑
τ=T⊥

д∗τ [k]yn−τ [k] (4)

where * is the complex conjugate operator, and T⊥ and TT is the
effective time period of the filter. We setT⊥ = 3 andTT = 50 to deal
with long-term reverberation. G = (дT⊥ , ...,дTT ) is a set of filter
coefficients optimized to minimize the following objective function:

FWPE =

N∑
n=1

©«
���yn [k] −∑TT

τ=T⊥
д∗τ [k]yn−τ [k]

���2
θn

+ logθn
ª®®¬ (5)

where N is the total number of time frames and θ = (θ1, ...,θN ) is
a set of auxiliary variables optimized jointly withG . The optimized

filter FWPE is applied to yn [k] to generate dereverberated and
denoised STFT coefficient xn [k].

4.1.2 Coherent-to-Diffuse Power Ratio Estimation (CDR). This
method has been proposed by Schwarz and Kellermann [12] to
clean the speech signal from reverberation and noise. This tech-
nique estimates the ratio between direct and diffuse (reverberation
and noise) signal components, also called as coherent-to-diffuse
power ratio (CDR), from the measured coherence between speech
captured in two omnidirectional microphones. The CDR estimators
are applied in a spectral subtraction postfilter for reverberation
suppression.

We experimented with 3 different CDR estimators to suppress
reverberation:

• Known direction of arrival (DOA) and noise coherence
• Unknown DOA
• Unknown noise coherence

DOA is the angle between the received sound wave axis and
microphone axis. Sounds which propagate directly to microphone
have a DOA of 0, but reverberated sound being reflected from room
walls and objects have a non-zero DOA. The details of the CDR
estimators are beyond the scope of this paper, and interested readers
should refer to [12] for the details.

4.2 Results
We applied the CDR dereverberation technique on Emo-DB-AIR
dataset and WPE dereverberation and denoising technique on both
the Emo-DB-AIR and Emo-DB-Array datasets. The CDR algorithm
requires having 2 omnidirectional microphones for coherence and
CDR estimation. The AIR database is a binaural impulse response
database, which means IRs were collected with 2 microphones,
which justifies our use of Emo-DB-AIR dataset for CDR based dere-
verberation.

4.2.1 Emo-DB-AIR Evaluation. Figure 4 shows the comparative
results of different dereverberation and denoising techniques on the
Emo-DB-AIR dataset. For these evaluations, we set the baseline as
when no signal cleaning is done, i.e. training on clean speech from
Emo-DB and testing on noisy and reverberated speech from Emo-
DB-AIR. The metric for these analyses is the percentage accuracy of
correctly classified emotional utterances (total 535). For baseline, we
use the SVM classifier with original 6552 features for classification.

The room dimensions of different rooms in the AIR dataset are
provided in Table 1. From Figure 4, we can see that, for the Aula
Carolina church which has the largest dimension and very high
reverberation effect, none of the dereverberation and denoising
technique can improve the baseline. For the other 3 rooms, the CDR
with unknown noise coherence technique consistently improves
from the baseline inmost cases, the improvement ranging between 1
to 10 utterances. Best improvement was obtained in the office room,
which has the smallest dimensions. As expected, the number of
correctly classified utterances decreases in all roomswith increasing
speaker-to-microphone distance.

The performance of the WPE algorithm in most cases was be-
low the baseline and in some instances it severely degraded the
performance. To investigate the issue, we listened to some of the
emotional clips from EMO-DB-AIR dereverberated by the WPE
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Figure 4: Performance of WPE and CDR dereverberation and denoising techniques on Emo-DB-AIR dataset. CDR with un-
known noise coherence consistently outperformed the baseline in most cases (except Aula Carolina church).
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Figure 5: IDFC on original 6552 features improves performance inmost cases (except Aula Carolina church due to its very large
dimensions) for the Emo-DB-AIR dataset under CDR with unknown noise coherence. Another IDFC on best 3271 features
(from Figure 3) with optimized SVM parameters (c = 4,γ = 0.00195) further boosts performance in all source-to-microphone
distances.

algorithm. Our perception was that this algorithm distorts the orig-
inal signal significantly as a side effect of dereverberation, which
causes performance degradation. The performance of other 2 CDR
estimation based techniques also ended up being sub baseline.

The CDR with unknown noise coherence technique was found
to be the best performing one from the comparative performance
study of all the dereverberation and denoising techniques. We fur-
ther improve its performance by applying the iterative distorted
feature cut procedure and feature selection and classifier param-
eter optimization techniques introduced in section 3. The results
are shown in Figure 5. For the Aula Carolina church, the IDFC
procedure with best 3271 features and optimized SVM improves
performance for 1m and 2m source-to-microphone distances, al-
though without any feature enhancement the performances were
sub-baseline for all distances. For lecture, office and meeting rooms,
there is a 2.34%, 1.57% and 2.25% accuracy improvement, with an
average final accuracy of 80.90%, 92.70%, and 91.96%, respectively.

4.2.2 Emo-DB-Array Evaluation. The result of WPE dereverber-
ation technique on Emo-DB-Array dataset is shown in Figure 6.
Unlike Emo-DB-AIR dataset, WPE technique improves from the
baseline in all distances for Emo-DB-Array except 1m as the signal
distortion due to reverberation and noise at 1m distance is too small
to be dereverberated. The lab environment where we recorded Emo-
DB-Array using a microphone array had more surrounding noise
component from HVAC than reverberation, while the Emo-DB-AIR
dataset has stronger reverberation effect than noise. Hence, the
lesson learned is that WPE technique performs better on noisy
signals rather than reverberated signals.

We further applied the iterative distorted feature cut, best feature
selection and classifier optimization procedures from section 3 to
further improve the WPE dereverberation and denoising perfor-
mance on the Emo-DB-Array dataset. An improvement of 1.12%,
8.79%, 10.84% and 8.41% was obtained with a final accuracy of
94.95%, 92.15%, 86.17%, and 79.44% for 1m, 3m, 5m and 7m dis-
tances, respectively, when we applied the IDFC procedure on the
best 3271 features with an optimized SVM classifier.

From these results, we can conclude that the best feature selec-
tion, IDFC and classifier optimization techniques combined with
the CDR and WPE techniques significantly improve emotion de-
tection performance in various indoor environments across a wide
range of source-to-microphone distances even in worst reverberant
(Aula Carolina) and noisy (lab) conditions.

5 TRAININGWITH ARTIFICIAL
REVERBERATION

The objective of our approach in section 4 was to make the testing
condition similar to the training condition by reducing noise and
reverberation from the distant speech and making it as clean as
possible like the clear speech training. In this section, we take
the opposite approach: making the training condition as similar
as possible to testing condition. We do this by injecting artificial
reverberation into clear emotional speech and use this artificially
reverberated speech for training the classifier.
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Figure 6: Performance of WPE dereverberation and denois-
ing technique on Emo-DB-Array dataset. Combining WPE
with feature selection, IDFC and optimized SVM results in a
performance boost.

5.1 The Artificial Room Impulse Response
Generator

In equation 2, we showed that the distant reverberated sound signal
is the convolution of the clean speech signal and the room impulse
response. Impulse response represents the acoustic physical prop-
erty of a room in terms of sound propagation and reflection which is
essentially a FIR filter. Room impulse responses can be synthetically
generated using the image source model [1] (ISM), which acts as a
transfer function between a sound source and an acoustic sensor
(microphone) in a given environment if some acoustic parameters
of the room are known. Once such a room impulse response is
available, a sample of distant audio data at any distant microphone
can be obtained by convolving the impulse response with the clean
speech signal, as in equation 2.

We used the Lehmann’s modified and improved ISM simulation
technique [8] to generate artificial room impulse responses. The
model requires the following room specific parameters:

• Room dimensions
• Source and microphone positions
• Reverberation time T60
• Absorption coefficients of 6 wall surfaces of the room (op-
tional)

• Sound velocity in the room (optional)
Absorption coefficients represent the acoustic absorption capa-

bility of a surface. The value is in the range of 0 to 1. The higher
the value, the more sound absorbing the surface is (hence, less
reverberant). Anechoic chambers are made of fully absorbing wall,
floor and ceiling surfaces. This parameter to the ISM simulation
model is optional. If omitted, the model is built with equal relative
absorption coefficients for all 6 wall surfaces.

The reverberation time, T60 is the time required for the sound
energy to decay by 60 dB after the sound source has been turned
off. A standard method for measuring T60 from the room impulse
response has been presented by Schroeder [11]. But in our case,
we have to estimate T60 blindly, as we do not know the impulse
response. T60 only depends on the room’s physical properties, and
hence it can be estimated from a signal reverberated in that partic-
ular room. We used a blind T60 estimation method proposed in [9]

Table 2: Average True T60 vs. average estimated T60 in differ-
ent rooms

Room
Speaker-to-
Microphone
Distances

Average True T60
(Schroeder’s
method)

Average
Estimated T60

Office room 1m, 2m, 3m 0.56s 0.63s

Meeting room 1.45m, 1.7m, 1.9m,
2.25m, 2.8m 0.30s 0.25s

Lecture room 2.25m, 4m, 5.56m,
7.1m, 8.68m, 10.2m 0.84s 0.80s

which estimates reverberation time from a reverberated sound sig-
nal using a statistical model for sound decay. The advantage of this
method is that it can be used to estimateT60 just from the (reverber-
ated) sound recordings and without any additional measurement.
The limitation of this method is that, this algorithm allows estimat-
ing the T60 within a range of 0.2 s to 1.2 s and assumes that source
and receiver are not within the critical distance. Hence, for very
large rooms or halls (like Aula Carolina in the AIR dataset) having
high T60, this method will not work. But for almost every practical
in-house scenario, the method works.

To test the accuracy of the T60 estimation, we took a number
of clean recordings from the Emo-DB dataset and convolved them
with the real impulse responses from the lecture, meeting and office
rooms from AIR dataset with different source-to-microphone dis-
tances. Then we blind estimated the correspondingT60 of the rever-
berated signal for that particular room and source-to-microphone
distance. We also measured the trueT60 from the impulse responses
in the AIR dataset using Schroeder’s method [11], and compared
the estimated T60 with true T60, as shown in Table 2. We found the
discrepancy between average true and estimated T60 being 7 ms, 5
ms and 4ms for office room, meeting room and lecture room, respec-
tively. It must be noted that, the T60 estimation for Aula Carolina
church was not possible because of its very large dimensions (18m
x 30m x 15m), and the true T60 for Aula Carolina using Schroeder’s
method was found to be 4.5+ seconds, where the estimation can
estimate T60 up to 1.2 second.

5.2 Results
Evaluations were done on meeting, lecture and office rooms from
the Emo-DB-AIR dataset and on the Emo-DB-Array dataset.

5.2.1 Emo-DB-AIR evaluation. We used the room dimensions,
different source and microphone positions and T60 reported in [6]
for the rooms in Emo-DB-AIR dataset as input to the ISM simula-
tion model. Figure 7 shows results of when training is done with
speech from Emo-DB and testing on noisy and reverberated speech
from Emo-DB-AIR (baseline). The 2nd series in Figure 7 is IDFC on
the best 3271 features with optimized SVM which we showed in
earlier sections and kept here for comparison. The 3rd series is train-
ing with reverberation (but no feature or classifier enhancement)
which significantly improves average classification performance
of 7.41%, 3.07% and 2.31% for lecture, meeting and office rooms,
respectively, across all the source-to-microphone distances. When
we incorporate training with synthetic reverberation with IDFC on
the best 3271 features and optimized SVM, there is a performance
boost, as seen from Figure 7. On average, we get 10.44%, 3.74% and
4.24% final performance increase compared to baseline for lecture
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Table 3: Computation Time for Various System Tasks

Task Computation time (s)
SVM training & classification 0.15
6552 feature extraction 0.03

CDR
No noise coherence 0.21
No DoA 0.21
Known DoA and noise coherence 0.26

WPE (per utterance) 1.91

T60 estimation Schroeder’s method 0.02
Blind estimation 11.17

ISM simulation & convolution 1.28

room, meeting room and office room, respectively, when we use
a fusion of training with synthetic reverberation and apply IDFC
on best 3271 features with optimized SVM parameters. The final
emotion classification accuracy achieved has an average accuracy
of 88.75%, 94.84% and 93.89% for lecture, meeting and office rooms,
respectively.

5.2.2 Emo-DB-Array evaluation. We measured the lab dimen-
sions where we recorded the Emo-DB-Array dataset, with posi-
tions of the loudspeaker and microphones for various source-to-
microphone distances, and estimated T60 from Schroeder’s method
as input to the ISM simulation model. However, in contrast to Emo-
DB-AIR dataset, we used the default setup of absorption coefficients
in the ISM simulation model with equal relative absorption coeffi-
cients (instead of real absorption coefficients) for the lab walls to
observe the performance under this constraint.

The results are shown in Figure 8. The first 2 series in Figure
8 show the performance for baseline (no training transformation
done) and IDFC on the best 3271 features with optimized classifier,
as described in earlier sections. The final 3 series are for training
with synthetic reverberation, adding IDFC on the original 6552
features, and adding IDFC on best 3271 features with optimized
classifier. At the end, a final classification accuracy of 95.89%, 93.08%,
87.85% and 86.54% are achieved for 1m, 3m, 5m and 7m source-
to-microphone distances, respectively, with an improvement of
2.06%, 9.72%, 12.52% and 15.51% from the baseline, respectively.
The improvement increases with increasing source-to-microphone
distance, as the signal distortions at near distances are too small for
the training transformation to be as effective at further distances.
Note that, the lab had loud background HVAC noise present, under
which these improvements were obtained.

From these results, we conclude that the feature and classifier
enhancement techniques combined with training with synthetic
reverberation improves distant emotion recognition in a variety of
situations, even with loud background noise.

6 CPU TIME BENCHMARKING FOR REAL
TIME EXECUTION

We did all our experiments on a workstation having a Core i7-
2600 CPU with 3.40 GHz clock frequency and 8 GB memory. We
benchmark the computation time for SVM model building and
classification, feature extraction, CDR and WPE dereverberation
and denoising, T60 estimation using Schroeder’s method and blind
T60 estimation and impulse response simulation using ISM method
with fast convolution, as shown in Table 3. Computation time is
the time spent running the particular task plus running OS code
on behalf of the task.

As seen from Table 3, some tasks (like WPE dereverberation,
blind T60 estimation, ISM simulation) have high CPU execution
times even for a powerful workstation we used in our experiments,
and pose a challenge for RTDER. Other tasks have low CPU exe-
cution times and can run in real time. Blind T60 estimation, which
has extremely high latency, is needed only once for a particular
room for input into the ISM model, and needs not to be run in real
time. The ISM simulation and convolution computations are also
needed once for a particular room and a speaker-microphone con-
figuration. If the speaker position is static (like sitting by a dining
table or in a living room), ISM model needs to be computed once
for training and hence needs not run in real time. However, if the
speaker is moving, ISM needs to be updated as the speaker moves,
which needs real time ISM computation based on speaker position.
Schemes like advanced computation of all possible ISM models can
be incorporated to minimize real time ISM computation (discussed
in section 8). And, low latency CDR can be used instead of compar-
atively higher latency WPE for dereverberation and denoising for
smooth real time operation.

Note that, the CPU times reported in Table 3 will increase in
orders of magnitude if run on more resource constrained hardware
like the Arduino/Raspberry Pi or a smartphone. In such cases, the
corresponding system components may not be able to execute real
time without a cloud service. However, we argue that the most
likely applications of a RTDER system are safety-critical in nature
(vehicle/aircraft safety, patient safety, occupant safety in smart
homes) and therefore it is expected that the system components
would run on powerful machines to ensure real time execution.

7 YOUTUBE DATASET EVALUATION
All our evaluations in sections 3, 4, and 5 were based on the Berlin
Emotional Speech Database Emo-DB and its 2 distance aware vari-
ants created by us: Emo-DB-AIR and Emo-DB-Array. In this section,
we experimented with a different dataset made from both acted and
real emotional incidents taken from a number of YouTube video
clips, as opposed to only acted artificial utterances of Emo-DB.

We collected 37 emotional clips from YouTube spanning more
than 3 hours of emotional speech. 2 persons labeled them into
4 emotion categories: angry, happy, neutral and sad. The angry
recordings included clips from the talk show "The Daily Show"
with the host reacting on the South Carolina church shooting in
2015, a talk show from CNN with the participants reacting about
gun control, a heated speech from a presidential candidate of the
US national election 2016, and a number of clips taken from TV
shows and movies from YouTube. Among the happy recordings are
some personal statements released by a number of people and some
funny clips taken from NBC talk shows. The neutral recordings
consisted of a documentary recording about the US constitution,
with a few others. The sad recordings included a number of personal
statements about abuse, depression, monologues about deceased
people and a number of clips from TV shows and movies.

We split these recordings into a total of 1124 10 second utterances
and convolved them with the meeting and office room impulse re-
sponses from the AIR database with various source-to-microphone
distances. We transformed the training by injecting synthetic re-
verberation from the impulse response simulator, as described in
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Figure 7: Training with synthetic reverberation accompanied with IDFC on best feature selection and classifier optimization
results in 3.74%-10.44% average improvement across different rooms for Emo-DB-AIR dataset.

1m 3m 5m 7m
60

70

80

90

100

Speaker-to-microphone distance in lab environment

A
cc
ur

ac
y
(%
)

Baseline
IDFC on best 3271 features with optimized SVM
IDFC on original 6552 features trained with synthetic
reverberation
IDFC on best 3271 features with optimized SVM trained
with synthetic reverberation

Figure 8: Training with synthetic reverberation accompa-
nied with IDFC on best feature selection and classifier
optimization results in 2.06%-15.51% improvement across
various source-to-microphone distances for Emo-DB-Array
dataset.

section 5. We also selected the best 3255 features from the F-scores
of the original 6552 features and applied the IDFC procedure on
the features of both training and test set with the optimized SVM.
We achieve an average accuracy increase of 3.11% and 7.30% from
the baseline (no training transformation or feature enhancement
done) in the meeting room and office room, respectively, with a
final emotion detection accuracy of 93.68% and 93.15%, respectively,
across all the source-to-microphone distances in corresponding
rooms.

From these results, we verify that our approach increases distant
emotion recognition accuracy for realistic emotional speech data
as well as acted corpus as shown in prior sections.

8 DISCUSSION, LIMITATION, AND FUTURE
WORK

8.1 Public Dataset vs. Real Deployment
We limited our experiments to the 2 distance aware variants of the
Emo-DB public dataset: Emo-DB-Array and Emo-DB-AIR, which
we customized according to our needs. These 2 are the very first

distance aware emotional datasets, to the best of our knowledge.
Since RTDER is a new area of research, we present our preliminary
results based on variants of the public Emo-DB dataset in this paper.
In our future subsequent work, we plan to include RTDER results
based on real deployments in real families.

8.2 Static vs. Dynamic Speakers
We considered only static speakers in this paper, i.e. though speak-
ers were situated away from the microphones, their position re-
mained static, as opposed to moving/dynamic speakers. Dynamic
and moving speakers will impose Doppler effect of changing fre-
quency on the distant microphones, and will cause dynamic noise
and reverberation profiles in the indoor environment. Our work
is extensible to handle moving speakers, given that we are able to
measure speaker-to-microphone distance in real time with good
precision. Several indoor positioning and distant measurement tech-
niques in wireless fields (Wi-Fi, Bluetooth, RSSI) exist in literature.
We look forward to utilize a suitable real time distance measure-
ment technique to support dynamic speakers in our future work.

8.3 Real Time Computation Scenario for Static
vs. Dynamic Speakers

For static fixed position speakers, feature extraction, signal cleaning
(WPE or CDR), and SVM classification needs to be done real time
with the audio stream. Reverberation adaptation (T60 estimation,
ISM simulation, convolution) and SVM training need not to be done
real time, as they need to be computed just once for static speakers
and a certain indoor environment.

However, for dynamically moving speakers, the room IR needs to
be updated real time as the speakermoves, therefore ISM simulation,
convolution, and SVM training also needs to be computed real
time. As discussed in section 6, ISM simulation and convolution
are computation heavy tasks, and challenging to be computed real
time, especially in resource constrained platforms like Raspberry
Pi. One possible solution is advanced computing of all possible
room IRs by all possible speaker-to-microphone distances into an
IR cache, and use the appropriate IR from the cache depending on
the latest speaker position for convolving with the speech signal.
Another solution is to use opportunistic room IR computation based
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Table 4: Confusion Matrix for Detected Emotions

True Classified As
Anger Anxiety Boredom Disgust Happy Neutral Sad

Anger 117 0 0 1 8 1 0
Anxiety 4 56 0 0 6 3 0
Boredom 0 0 70 0 0 5 5
Disgust 0 2 1 38 1 2 2
Happy 13 3 0 1 53 1 0
Neutral 0 1 3 0 0 75 0
Sad 0 0 2 0 0 2 59

on latest speaker position. For example, if the current speaker-to-
microphone distance is 3 meters, then compute IRs with 2.9m and
3.1m in advance and use the one whichever happens to be the next
distance (assuming 0.1m distance precision) with the opportunistic
scheme. T60 estimation, even for dynamically moving speakers,
needs to be computed just once for a particular room, hence need
not to be computed real time.

8.4 Confusion Matrix
With our proposed techniques, we significantly improved real time
emotion recognition performance over distance. However, scope
exists for betterment of the core solution i.e. emotion detection
with clear speech, upon which our solutions stand. We analyzed
the confusion matrix of 7 different emotions from Emo-DB after
a 10-fold cross validation on the clear speech data, as shown in
Table 4. We noticed that a significant number (around 33%) of
misclassifications occur between the angry and happy emotions.
Techniques involving hierarchical classifiers with specialized angry
vs. happy separators, textual features added with acoustic features
after a speech-to-text conversion can improve the misclassification
rate between angry and happy classes.

8.5 Important Features for DER
We analyzed 6552 acoustic features as 39 functionals of 56 acoustic
low-level descriptors (LLD) related to energy, pitch, spectral, cep-
stral, mel-frequency and voice quality and corresponding first and
second order delta regression coefficients. Among these, various
MFCC, FFT, zero crossing rates, and pitch related LLD features were
found to be most important for distant emotion recognition. These
features have minimal distortion due to distance and can most
effectively catch the changes in prosody due to different emotions.

9 CONCLUSION
We present novel solutions to various challenges in the processing
pipeline of an acoustic RTDER system. The solutions we present
are useful in real time recognition of emotions from distant speech
in a variety of rooms with various acoustic configurations and
source-to-microphone distances. We provide empirical evidence
that our novel combination of feature selection, classifier optimiza-
tion and distorted feature elimination technique combined with
WPE and CDR dereverberation and denoising algorithm is capable
of increasing emotion detection accuracy as much as 10.84%, with
the final accuracy ranging between 79.44%-94.95%. In addition, our
feature and classifier enhancement and distorted feature elimina-
tion technique combined with training with synthetic reverberation
from a room impulse response generator increase emotion detec-
tion accuracy as much as 15.51% across various rooms, acoustic
configurations and source-to-microphone distances, with the final

accuracy ranging between 87.85%-95.89%. We considered worst-
case situations with extremely reverberant church halls and noisy
backgrounds with loud HVAC noise and obtained improvement
even in worst conditions. A case study on a dataset made from
37 realistic YouTube videos spanning 4 different emotions demon-
strates a maximum of 7.30% increase in accuracy for detecting real
world distant emotions in different rooms, with a maximum accu-
racy of 93.68%. We evaluated the CPU runtime of various system
components and demonstrate the real time execution capability of
our system. We concluded with discussing some limitations of our
current solutions, and proposed methods to solve those in future
works.
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