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Abstract—With the development of the Internet of Things,
millions of sensors are being deployed in cities to collect real-
time data. This leads to a need for checking city states against
city requirements at runtime. In this paper, we develop a
novel spatial-temporal specification-based monitoring system for
smart cities. We first describe a study of over 1,000 smart city
requirements, some of which cannot be specified using existing
logic such as Signal Temporal Logic (STL) and its variants.
To tackle this limitation, we develop SaSTL—a novel Spatial
Aggregation Signal Temporal Logic—for the efficient runtime
monitoring of safety and performance requirements in smart
cities. We develop two new logical operators in SaSTL to augment
STL for expressing spatial aggregation and spatial counting char-
acteristics that are commonly found in real city requirements. We
define Boolean and quantitative semantics for SaSTL in support
of the analysis of city performance across different periods and
locations. We also develop efficient monitoring algorithms that
can check a SaSTL requirement in parallel over multiple data
streams (e.g., generated by multiple sensors distributed spatially
in a city). Additionally, we build a SaSTL-based monitoring
tool to support decision making of different stakeholders to
specify and runtime monitor their requirements in smart cities.
We evaluate our SaSTL monitor by applying it to three case
studies with large-scale real city sensing data (e.g., up to 10,000
sensors in one study). The results show that SaSTL has a
much higher coverage expressiveness than other spatial-temporal
logics, and with a significant reduction of computation time for
monitoring requirements. We also demonstrate that the SaSTL
monitor improves the safety and performance of smart cities via
simulated experiments.

Index Terms—Signal Temporal Logic, Runtime Verification,
Smart Cities.

I. INTRODUCTION

Smart cities are emerging around the world. Examples
include Chicago’s Array of Things project [1], IBM’s Rio de
Janeiro Operations Center [2] and Cisco’s Smart+Connected
Operations Center [3], just to name a few. Smart cities utilize
a vast amount of data and smart services to enhance the safety,
efficiency, and performance of city operations [4]. There is a
need for monitoring city states in real-time to ensure safety
and performance requirements [5]. If a requirement violation
is detected by the monitor, the city operators and smart
service providers can take actions to change the states, such as
improving traffic performance, rejecting unsafe actions, send-
ing alarms to police, etc. The key challenges of developing
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such a monitor include how to use an expressive, machine-
understandable language to specify smart city requirements,
and how to efficiently monitor requirements that may involve
multiple sensor data streams (e.g., some requirements are
concerned with thousands of sensors in a smart city).

Previous works [6], [7], [8], [9] have proposed solutions
to monitor smart cities using formal specification languages
and their monitoring machinery. One of the latest works,
CityResolver [10] uses Signal Temporal Logic (STL) [11]
to support the specification-based monitoring of safety and
performance requirements of smart cities. However, STL is
not expressive enough to specify smart city requirements
concerning spatial information such as “the average noise
level within 1 km of all elementary schools should always be
less than 50 dB”. There are some existing spatial extensions
of STL (e.g., SSTL [12], SpaTeL [9] and STREL [13], [14],
see [15] for a recent tutorial), which can express requirements
such as “there should be no traffic congestion on all the
roads in the northeast direction”. But they are not expressive
enough to specify requirements like “there should be no traffic
congestion on all the roads on average”, or “on 90% of
the roads”, which require the aggregation and counting of
signals in the spatial domain. To tackle these challenges and
limitations, we develop a novel Spatial Aggregation Signal
Temporal Logic (SaSTL), which extends STL with two new
logical operators for expressing spatial aggregation and spatial
counting characteristics which we demonstrate are commonly
found in real city requirements. More specifically, this paper
has the following major contributions:

(1) To the best of our knowledge, this is the first work
studying and annotating over 1,000 real smart city require-
ments across different service domains to identify the gap
of expressing smart city requirements with existing formal
specification languages. As a result, we found that aggregation
and counting signals in the spatial domain (e.g., for repre-
senting sensor signals distributed spatially in a smart city)
are extremely important for specifying and monitoring city
requirements.

(2) Drawing on the insights from our requirements study,
we develop a new specification language SaSTL, which ex-
tends STL with a spatial aggregation operator and a spatial
counting operator. SaSTL can be used to specify Point of
Interests (PoIs), the physical distance, spatial relations of
the PoIs and sensors, aggregation of signals over locations,
degree/percentage of satisfaction and the temporal elements
in a very flexible spatial-temporal scale. We define Boolean
and quantitative semantics with theoretical proofs.

(3) We compare SaSTL with some existing specification
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Figure 1: A framework for runtime monitoring of real-time city requirements

languages and show that SaSTL has a much higher coverage
expressiveness (95%) than STL (18.4%), SSTL (43.1%) or
STREL (43.1%) over 1,000 real city requirements.

(4) We develop novel and efficient monitoring algorithms
for SaSTL. In particular, we present two new methods to speed
up the monitoring performance: (i) dynamically prioritizing
the monitoring based on cost functions assigned to nodes of
the syntax tree, and (ii) parallelizing the monitoring of spatial
operators among multiple locations and/or sensors.

(5) We evaluate the SaSTL monitor by applying it to
monitoring real city data collected from Chicago and Aarhus.
The results show that SaSTL monitor has the potential to help
identify safety violations and support the city managers and
citizens to make decisions.We also evaluate the SaSTL monitor
on a third case study of conflict detection and resolution among
smart services in simulated New York City with large-scale
real sensing data (e.g., up to 10,000 sensors used in one
requirement). Results of our simulated experiments show that
SaSTL monitor can help improve the city’s performance (e.g.,
21.1% on the environment and 16.6% on public safety), with
a significant reduction of computation time compared with
previous approaches.

(6) We develop a SaSTL monitoring tool that can support
decision making of different stakeholders in smart cities. The
tool allows users (e.g., city decision maker, citizens) without
any formal method background to specify city requirements
and monitor city performance easily.

This paper is an extended version of [16]. We extend with
the following new contributions. First, we add new quantitative
semantics and monitoring algorithms, with new proofs of
soundness and correctness in Section III. Compared to the
conference version (Boolean semantics), the new quantitative
semantics presents the monitoring results with real values,
and better supports decision-makers to compare the satisfac-
tion/violation degrees between different options. Second, we
develop new monitoring algorithms for the proposed quanti-
tative semantics and improve the monitoring algorithms for
the new spatial operators in Section IV. Third, we develop a
monitoring tool to support monitoring and decision making
using SaSTL in smart cities in Section VI. The tool also
provides a way for non-expert users to input requirements in
the English language. Then the tool translates the requirements

to SaSTL formal specification automatically for monitoring.
Fourth, we extend the evaluation with a new city scenario
using real data from Aarhus, Denmark in Section VII. The
results show that the SaSTL monitor has the potential to
help identify safety violations and support city managers and
citizens to make decisions. Last, we elaborate with more
discussions on how to apply the SaSTL monitor in smart cities
and extend the related work.

II. APPROACH OVERVIEW

Figure 1 shows an overview of our SaSTL runtime mon-
itoring framework for smart cities. We envision that such a
framework would operate in a smart city’s central control
center (e.g., IBM’s Rio de Janeiro Operations Center [2] or
Cisco’s Smart+Connected Operations Center [3]) where sensor
data about city states across various locations are available in
real time. The framework would monitor city states and check
them against a set of smart city requirements at runtime. The
monitoring results would be presented to city managers to
support decision making. The framework makes abstractions
of city states in the following way. The framework formalizes
a set of smart city requirements (See Section III) to some ma-
chine checkable SaSTL formulas (See Section IV). Different
data streams (e.g. CO emission, noise level) over temporal and
spatial domains can be viewed as a 3-dimensional matrix. For
any signal sj in signal domain S, each row is a time-series
data at one location and each column is a set of data streams
from all locations at one time. Next, the efficient real-time
monitoring for SaSTL verifies the states with the requirements
and outputs the Boolean satisfaction to the decision makers,
who would take actions to resolve the violation. To support
decision making in real time, we improve the efficiency
of the monitoring algorithm in Section V. We implement
SaSTL runtime monitoring tool following this framework for
city experts without any formal methods background (see
Section VI). We describe more details of the framework in
the following sections.

III. ANALYSIS OF REAL CITY REQUIREMENTS

To better understand real city requirements, we conduct a
requirement study. We collect and statistically analyze 1000
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Table I: Examples of city requirements from different domains

Domain Example

Transportation
Limits vehicle idling to one minute adjacent to any school, pre-K to 12th grade , public or private, in the City of New York [17].

The engine, power and exhaust mechanism of each motor vehicle shall be equipped, adjusted and operated to prevent the escape of a trail of

visible fumes or smoke for more than ten (10) consecutive seconds [18].

Prohibit sight-seeing buses from using all bus lanes between the hours of 7:00 a.m. and 10:00 a.m. on weekdays [19].

Energy Operate the system to maintain zone temperatures down to 55°F or up to 85°F [20].

The total leakage shall be less than or equal to 4 cubic feet per minute per 100 square feet of conditioned floor area [21].

Environment LA Sec 111.03 minimum ambient noise level table: ZONE M2 and M3 – DAY : 65 dB(A) NIGHT : 65 dB(A) [22].

The total amount of HCHO emission should be less than 0.1mg per m3 within an hour , and the total amount of PM10 emission should

be less than 0.15 mg per m3 within 24 hours [23].

Emergency NYC Authorized emergency vehicles may disregard 4 primary rules regarding traffic [24].

At least one ambulance should be equipped per 30,000 population (counted by area ) to obtain the shortest radius and fastest response
time [25].

Public Safety Security staff shall visit at least once per week in public schools [26].

Key elements: temporal , spatial , aggregation , entity , condition , comparison

Table II: Key elements of city requirements and statistical
results from 1000 real city requirements

Element Form Number Example

Temporal

Dynamic Deadline 77 limit ... to one minute
Static Deadline 98 at least once a week

Interval 168 from 8am to 10am; within 24
hours;

Default 657 The noise (always) should not
exceed 50dB.

Spatial
PoIs/Tags 801 school area; all parks;
Distance 650 Nearby
Default 154 (everywhere) ; (all) locations

Aggregation

Count, Sum 256 in total; x out of N locations;
%;

Average 196 per m2;
Max, Min 67 highest/lowest value

Entity Subject 1000 air quality; Buses;

Comparison

Value comparison 836 More than, less than

Boolean 388 Street is blocked; should
Not 456 It is unlawful/prohibited...

Condition Until 24 keep... until the street is not
blocked.

If/Except 44 If rainy, the speed limit...

quantitatively specified city requirements (e.g., standards, reg-
ulations, city codes, and laws) across different application
domains, including energy, environment, transportation, emer-
gency, and public safety from over 70 cities (e.g. New York
City, San Francisco, Chicago, Washington D.C., Beijing, etc.)
around the world. Some examples of these city requirements
are highlighted in Table I. We identify key required features
to have in a specification language and its associated use in a
city runtime monitor. The summarized statistical results of the
study and key elements we identified (i.e., temporal, spatial,
aggregation, entity, comparison, and condition) are shown in
Table II.

Temporal: Most of the requirements include a variety of
temporal constraints, e.g. a static deadline, a dynamic dead-
line, or time intervals. In many cases (65.7%), the temporal
information is not explicitly written in the requirement, which
usually means it should be “always” satisfied. In addition, city
requirements are highly real-time driven. In over 80% require-
ments, cities are required to detect requirement violations at
runtime. It indicates a high demand for runtime monitoring.

Spatial: A requirement usually specifies its spatial range
explicitly using the Points of Interest (PoIs) (80.1%), such

as “park”, “xx school”, along with a distance range (65%).
One requirement usually points to a set of places (e.g. all the
schools). Therefore, it is very important for a formal language
to be able to specify the spatial elements across many locations
within the formula, rather than one formula for each location.

We also found that the city requirements specify a very large
spatial scale. Different from the requirements of many other
CPS, requirements from smart cities are highly spatial-specific
and usually involve a very large number of locations/sensors.
For example, the first requirement in Table I specifies a vehicle
idling time “adjacent to any school, pre-K to 12th grade in
the City of New York”. There are about 2000 pre-K to 12th
schools, even counting 20 street segments nearby each school,
there are 40,000 data streams to be monitored synchronously.
An efficient monitoring is highly demanded.

Aggregation: In 51.9% cases, requirements are specified
on the aggregated signal over an area, such as, “the total
amount”, “average...per 100 square feet”, “up to four vending
vehicles in any given city block”, “at least 20% of travelers
from all entrances should ...”, etc. Therefore, aggregation is a
key feature for the specification language.

IV. FORMALIZING TEMPORAL-SPATIAL REQUIREMENTS

SaSTL extends STL with two spatial operators: a spatial
aggregation operator and a neighborhood counting operator.
Spatial aggregation enables combining (according to a chosen
operation) measurements of the same type (e.g., environmental
temperature), but taken from different locations. The use of
this operator can be suitable in requirements where it is
necessary to evaluate the average, best or worst value of a
signal measurement in an area close to the desired location.
The neighborhood counting operator allows measuring the
number/percentage of neighbors of a location that satisfy a
certain requirement.

A. SaSTL Syntax

We define a multi-dimensional spatial-temporal signal as ω ∶
T×L→ {R ∪ {�}}n, where T = R≥0, represents the continuous
time and L is the set of locations. We define X = {x1,⋯, xn}
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as the set of variables for each location. Each variable can
assume a real value v ∈ R or is undefined for a particular
location (xi = �). We denote by πxi(ω) as the projection of ω
on its component variable xi ∈X . We define P = {p1,⋯, pm}
a set of propositions (e.g. {School,Street,Hospital,⋯} ) and
L a labeling function L ∶ L→ 2P that assigns for each location
the set of the propositions that are true in that location.

A weighted undirected graph is a tuple G = (L,E, η) where
L is a finite non-empty set of nodes representing locations, E ⊆
L × L is the set of edges connecting nodes, and η ∶ E → R≥0
is a cost function over edges. We define the weighted distance
between two locations l, l′ ∈ L as

d(l, l′) ∶= min{∑
e∈σ

η(e) ∣ σ is a path between l and l′}.

Then we define the spatial domain D as,

D ∶= ([d1, d2], ψ)
ψ ∶= ⊺ ∣ p ∣ ¬ ψ ∣ ψ ∨ ψ

where [d1, d2] defines a spatial interval with d1 < d2 and
d1, d2 ∈ R, and ψ specifies the property over the set of
propositions that must hold in each location. Intuitively, it
draws two circles with radius r1 = d1 and r2 = d2, and
the locations l ⊧ ψ between these two circles are selected.
In particular, D = ([0,+∞),⊺) indicates the whole spatial
domain. We denote Ll([d1,d2],ψ) ∶= {l′ ∈ L ∣ 0 ≤ d1 ≤ d(l, l′) ≤
d2 and L(l′) ⊧ ψ} as the set of locations at a distance between
d1 and d2 from l for which L(l′) satisfies ψ. We denote the
set of non-null values for signal variable x at time point t
location l over locations in LlD by

αxD(ω, t, l) ∶= {πx(ω)[t, l′] ∣ l′ ∈ LlD and πx(ω)[t, l′] ≠ �}.

We define a set of operations op(αxD(ω, t, l)) for op ∈
{max,min, sum,avg} when αxD(ω, t, l) ≠ ∅ that computes
the maximum, minimum, summation and average of values in
the set αxD(ω, t, l), respectively. To be noted, Graph G and
its weights between nodes are constructed flexibly based on
the property of the system. For example, we can build a graph
with fully connected sensor nodes and their Euclidean distance
as the weights when monitoring the air quality in a city; or we
can also build a graph that only connects the street nodes when
the two streets are contiguous and apply Manhattan distance.
It does not affect the syntax and semantics of SaSTL.

The syntax of SaSTL is given by

ϕ ∶= x ∼ c ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1UIϕ2 ∣ Aop
D x ∼ c ∣ C

op
D ϕ ∼ c

where x ∈X , ∼∈ {<,≤}, c ∈ R is a constant, I ⊆ R>0 is a real
positive dense time interval, UI is the bounded until temporal
operators from STL. The always (denoted ◻) and eventually
(denoted ◊) temporal operators can be derived the same way
as in STL, where ◊ϕ ≡ true UIϕ, and ◻ϕ ≡ ¬◊¬ϕ.

In SaSTL, we define a set of spatial aggregation operators
Aop
D x ∼ c for op ∈ {max,min, sum,avg} that evaluate the

aggregated product of traces op(αxD(ω, t, l)) over a set of
locations l ∈ LlD. We also define a set of new spatial counting
operators CopD ϕ ∼ c for op ∈ {max,min, sum,avg} that
counts the satisfaction of traces over a set of locations. More
precisely, we define CopD ϕ = op({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}),

where g((ω, t, l) ⊧ ϕ)) = 1 if (ω, t, l) ⊧ ϕ, otherwise
g((ω, t, l) ⊧ ϕ)) = 0. From the new counting operators, we
also derive the everywhere operator as ⧈Dϕ ≡ Cmin

D ϕ > 0, and
somewhere operator as �Dϕ ≡ Cmax

D ϕ > 0. In addition, CsumD ϕ
specifies the total number of locations that satisfy ϕ and CavgD ϕ
specifies the percentage of locations satisfying ϕ.

We now illustrate how to use SaSTL to specify various city
requirements, especially for the spatial aggregation and spatial
counting, and how important these operators are for the smart
city requirements using examples below.

Example 1 (Spatial Aggregation). Assume we have a require-
ment, “The average noise level in the school area (within 1
km) in New York City should always be less than 50 dB and
the worst should be less than 80 dB in the next 3 hours”
is formalized as, ⧈([0,+∞),School) ◻[0,3] ((Aavg

([0,1],⊺)xNoise <
50) ∧ (Amax

([0,1],⊺)xNoise < 80)). ([0,+∞),School) selects all
the locations labeled as “school” within the whole New York
city ([0,+∞)) (predefined by users). ◻[0,3] indicates this re-
quirement is valid for the next three hours. (Aavg

([0,1],⊺)xNoise <
50) ∧ (Amax

([0,1],⊺)xNoise < 80) calculates the average and
maximal values in 1 km for each “school”, and compares
them with the requirements, i.e. 50 dB and 80 dB.

Without the spatial aggregation operators, STL and its
extended languages cannot specify this requirement. First, they
are not able to first dynamically find all the locations labeled
as “school”. To monitor the same spatial range, users have
manually get all traces from schools, and then repeatedly apply
this requirement to each located sensor within 1 km of a school
and do the same for all schools. More importantly, STL and
its extended languages could not specify “average” or “worst”
noise level. Instead, it only monitors each single value, which
is prone to noises and outliers and thereby causes inaccurate
results.

Example 2 (Spatial Counting). A requirement that “At
least 90% of the streets, the particulate matter (PMx) emis-
sion should not exceed Moderate in 2 hours” is formal-
ized as Cavg([0,+∞),Street)(◻[0,2](xPMx < Moderate)) > 0.9.
Cavg([0,+∞),Street)ϕ > 0.9 represents the percentage of satisfaction
is larger than 90%. Specifying the percentage of satisfaction
is very common and important among city requirements.

B. SaSTL Semantics

We define the SaSTL semantics as the satisfiability rela-
tion (ω, t, l) ⊧ ϕ, indicating that the spatio-temporal signal
ω satisfies a formula ϕ at the time point t in location l
when πv(ω)[t, l] ≠ � and αxD(ω, t, l) ≠ ∅. We define that
(ω, t, l) ⊧ ϕ if πv(ω)[t, l] = �.

(ω, t, l) ⊧ x ∼ c ⇔ πx(ω)[t, l] ∼ c
(ω, t, l) ⊧ ¬ϕ ⇔ (ω, t, l) /⊧ ϕ
(ω, t, l) ⊧ ϕ1 ∧ ϕ2 ⇔ (ω, t, l) ⊧ ϕ1 and (ω, t, l) ⊧ ϕ2

(ω, t, l) ⊧ ϕ1UIϕ2 ⇔ ∃t′ ∈ (t + I) ∩T ∶ (ω, t′, l) ⊧ ϕ2

and ∀t′′ ∈ (t, t′), (ω, t′′, l) ⊧ ϕ1

(ω, t, l) ⊧ Aop
D x ∼ c⇔ op(αxD(ω, t, l)) ∼ c

(ω, t, l) ⊧ CopD ϕ ∼ c ⇔ op({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}) ∼ c
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where, for counting operator (ω, t, l) ⊧ CopD ϕ ∼ c, the valid
ranges for c are c ∈ [0,1) when op = sum/min, and c ∈ [0,N]
when op = sum/min. Otherwise (e.g., c < 0), the requirement
is trivially satisfied or violated.

Example 3. Following Example 1, checking the city states
with a requirement,
⧈([0,+∞),Hospital) ◻[0,5] ((Aavg

([0,500],⊺)xAQI < 50) ∧
(Amax

([0,500],⊺)xAQI < 80)),
to start with, assuming we have the AQI level data from a

number of sensors within 500 meters of one of the hospital, the
sensor readings in 5 hours as, {[51, ..., 11], [80, ..., 30],..., [40,
..., 30]}, ϕt = (Aavg

([0,500],⊺)]xAQI < 50) ∧ (Amax
([0,500],⊺)xAQI <

80), then, we check ϕt for this hospital at each time,
at t = 1, avg(51, ...,40) > 50 ∧max(51, ...,40) < 80, thus,

ϕt1 = False,
at t = 2, avg(49, ...,20) < 50 ∧max(49, ...,20) > 80, thus,

ϕt1 = False,
...
at t = 5,avg(11, ...,30) < 50 ∧max(11, ...,30) < 80, thus,

ϕt1 = True.
Thus, we have ◻[0,5]ϕt = False.
Next, the monitor checks all qualified hospitals the same

way and reaches the final results,
⧈([0,+∞),Hospital) ◻[0,5] ((Aavg

([0,500],⊺)xAQI < 50) ∧
(Amax

([0,500],⊺)xAQI < 80)) = False.

In a real scenario, the monitor algorithm can also decide to
terminate the monitor and return the False result when at t = 1,
because the always operator returns False as long as a one-time
violation occurs. Similarly, the everywhere operator will also
return False when the first hospital violates the requirement.

Definition 1 (Quantitative Semantics). Let x > c be a numer-
ical predicate, we then define the robustness degree (i.e. the
quantitative satisfaction) function ρ(ϕ,ω, t, l) for an SaSTL
formula over a spatial-temporal signal ω as,

ρ(x ∼ c, ω, t, l) = πx(ω)[t, l] − c
ρ(¬ϕ,ω, t, l) = −ρ(ϕ,ω, t, l)
ρ(ϕ1 ∨ ϕ2, ω, t, l) =max{ρ(ϕ1, ω, t, l), ρ(ϕ2, ω, t, l)}
ρ(ϕ1UIϕ2, ω, t, l) = supt′∈(t+I)∩T(min{ρ(ϕ2, ω, t

′, l),
inft′′∈[t,t′](ρ(ϕ1, ω, t

′′, l))})

ρ(Aop
D x ∼ c, ω, t, l) =

⎧⎪⎪⎨⎪⎪⎩

sum(αx
D

(ω,t,l))−c
∣αx
D

(ω,t,l)∣ op = sum

op(αxD(ω, t, l)) − c op ∈ {max,min, avg}
ρ(CopD ϕ ∼ c, ω, t, l)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

maxl′∈Ll
D

{ρ(ϕ,ω, t, l′)} op = max

minl′∈Ll
D

{ρ(ϕ,ω, t, l′)} op = min

δ(⌈c⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) op = sum

δ(⌈c × ∣LlD ∣⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) op = avg

where we define δ(k,S) as a function that returns the kth
smallest number of set S, ∣S∣ > 0, and 0 ≤ k ≤ ∣S∣. For
CopD ϕ ∼ c, when op = sum, it requires that there are at least ⌈c⌉
locations that satisfy ϕ, thus, we denote the ⌈c⌉th smallest ro-
bustness value from {ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD} as the robustness

value of this formula. [c] indicates the smallest integer that is
larger than or equal to c. Similarly, when op = avg, the formula
is converted as there are at least ⌈c×∣LlD ∣⌉ locations that satisfy
ϕ, thus, we denote the ⌈c × ∣LlD ∣⌉th smallest robustness value
from {ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD} as the robustness value of this
formula. Same as the Boolean semantics, the valid ranges for
c are c ∈ [0,1) when op = sum/min, and c ∈ [0,N] when
op = sum/min. Otherwise (e.g., c < 0), the requirement is
trivially satisfied or violated.

Example 4. Assuming we have data (1,2,3), (2,3,4), (4,5,7)
from three locations satisfying D, thus,

● ρ(Cmax
D (◻[0,2](x > 5)) > 0) = ρ(Cmax

D ({−4,−3,2}) > 0) = 2
● ρ(Cmin

D (◻[0,2](x > 5)) > 0) = ρ(Cmin
D ({−4,−3,2}) > 0) = −4

● ρ(Csum
D (◻[0,2](x > 5)) > 1) = ρ(Csum

D ({−4,−3,2}) > 1) = −3
● ρ(Cavg

D (◻[0,2](x > 5)) > 0.2) = ρ(Cavg
D ({−4,−3,2}) > 0.2) = 2

The quantitative semantics of SaSTL inherit the two funda-
mental properties of STL, i.e., soundness and correctness. We
give the formal definitions below.

Theorem 1 (Soundness). Let ϕ be an STL formula, ω a trace
and t a time,

ρ(ϕ,ω, t, l) > 0 ⇒ (ω, t, l) ⊧ ϕ
ρ(ϕ,ω, t, l) < 0 ⇒ (ω, t, l) /⊧ ϕ

Secondly, if ω satisfies ϕ at time t, any other trace ω′ whose
point-wise distance from ω is smaller than ρ(ϕ,ω, t, l) also
satisfies ϕ at time t.

Theorem 2 (Correctness). Let ϕ be an STL formula, ω and
ω′ traces over the same time and spatial domains, and t, l ∈
dom(ϕ,ω), then

(ω, t, l) ⊧ ϕ and ∣∣ω − ω′∣∣∞ < ρ(ϕ,ω, t, l)⇒ (ω′, t, l) ⊧ ϕ

In summary, the qualitative value indicates if the signal
(i.e. city data) satisfies the requirement. The quantitative value
indicates the satisfaction or dissatisfaction degree. If it is larger
or equal than zero, it means that the requirement is satisfied.
The larger the value is, the more the requirement is satisfied.
On the contrary, if the value is smaller than zero, it means the
requirement is not satisfied. The smaller the value is, the more
the requirement is dissatisfied.

V. EFFICIENT MONITORING FOR SASTL

In this section, we first present both Boolean and quan-
titative monitoring algorithms for SaSTL, then describe two
optimization methods to speed up the monitoring performance.

A. Monitoring Algorithms for SaSTL

The inputs of the monitor are the SaSTL requirements ϕ
(including the time t and location l), a weighted undirected
graph G and the temporal-spatial data ω. In smart cities, the
data on city states is collected continuously or periodically.

For the Boolean monitoring algorithm, the output for each
requirement is a Boolean value indicating whether the re-
quirement is satisfied or not. For the quantitative monitoring
algorithm (Algorithm 1), the output for each requirement is a
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Algorithm 1: SaSTL quantitative monitoring algorithm
MonitorQ(ϕ,ω, t, l,G)
Input : SaSTL Requirement ϕ, Signal ω, Time t, Location l, weighted

undirected graph G
Output: Satisfaction Value ρ
begin

switch ϕ do
Case x ∼ c

return πx(ω)[t, l] − c;
Case ¬ϕ

return- MonitorQ(ϕ,ω, t, l,G);
Case ϕ1 ∧ϕ2

return min(MonitorQ(ϕ1, ω, t, l,G),
MonitorQ(ϕ2, ω, t, l,G));

Case ϕ1UIϕ2
Real v ∶= −∞
for t′ ∈ (t + I) ∩ T do

v′ ∶= MonitorQ(ϕ2, ω, t
′, l,G)

for t′′ ∈ [t, t′] do
v′ ∶=min{v′,MonitorQ(ϕ2, ω, t

′′, l,G)}
end
v =max{v, v′}

end
return v;

Case Aop
D
x ∼ c ; ▷ See Alg. 2.

return AggregateQ(x, c, op,D, t, l,G);
Case Cop

D
ϕ ∼ c ; ▷ See Alg. 3.

return CountingNeighboursQ(ϕ, c, op,D, t, l,G);
end

end

number indicating the satisfaction degree of the requirement.
To start with, the monitoring algorithm parses ϕ to sub-
formulas and calculates the satisfaction for each operation
recursively. We derived operators ◻ and ◊ from UI , and
operators ⧈ and � from Cop

D ∼ c, so we only show the
algorithms for UI and Cop

D ∼ c.

We present the quantitative monitoring algorithms of the
operatorsAop

D and Cop
D in Algorithm 2 and Algorithm 3, respec-

tively. We apply distributed parallel algorithm deScan() [27]
to accelerate the process of searching locations that satisfy
D. As we can tell from the algorithms, essentially, Aop

D
calculates the aggregated values on the signal over a spatial
domain, while Cop

D calculates the aggregated results over
spatial domain. For the quantitative monitoring algorithm (as
presented in Algorithm 1), the output for each requirement is
a robustness value indicating its satisfaction degree. Similar to
the Boolean monitoring algorithm, the quantitative monitoring
algorithm also parses ϕ to sub-formulas and calculates the
satisfaction for each operation recursively.

The time complexity of monitoring the logical and temporal
operators of SaSTL is the same as STL [28]. The time
complexity to monitor classical logical operators or basic
propositions such as ¬x, ∧ and x ∼ c is O(1). The time
complexity to monitor temporal operators such as ◻I , ◊I ,
UI is O(T ), where T is the total number of samples within
time interval I . In this paper, we present the time complexity
analysis for the spatial operators (Lemma 3) and the new
SaSTL monitoring algorithm (Theorem 6). The total number
of locations is denoted by n. We assume that the positions of
the locations cannot change in time (a fixed grid). We can pre-
compute all the distances between locations and store them in
an array of range trees [29] (one range tree for each location).
We further denote the monitored formula as φ, which can be

Algorithm 2: AggregateQ(x, op,D, ω, t, l,G)
begin

Real v := 0; n := 0;
if op == "min" then v ∶=∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D

do
if op ∈ {min, max, sum} then

v := op(v,πx(ω)[t, l′]);
end
if op =="avg" then

v := sum(v,πx(ω)[t, l′]);
end
n ∶= n + 1

end
if n == 0 then return ∞;
if op == "avg" ∧n ≠ 0 then return v/n − c ;
if op == "sum" ∧n ≠ 0 then return (v − c)/n ;
else return v − c;

end

Algorithm 3: CountingNeighboursQ(x, op,D, ω, t, l,G)
begin

Real n ∶= 0, List s ∶= Null;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D

do
s.add(Monitor(ϕ,ω, t, l′,G))
n ∶= n + 1

end
if n == 0 then return ∞;
else

switch op do
Case max

return s.max()
Case min

return s.min()
Case sum

return s.max(round(c))
Case avg

return s.max(round(c × n))
end

end
end

represented by a syntax tree, and let ∣φ∣ denote the total number
of nodes in the syntax tree (number of operators).

Lemma 1 (Complexity of spatial operators). The time com-
plexity to monitor at each location l at time t the satisfaction
of a spatial operator such as ⧈D, �D, Aop

D , and Cop
D is

O(log(n) + ∣L∣) where L is the set of locations at distance
within the range D from l.

Theorem 3. The time complexity of the SaSTL monitoring al-
gorithm is upper-bounded by O(∣φ∣×Tmax×(log(n)+∣L∣max))
where Tmax is the largest number of samples of the intervals
considered in the temporal operators of φ and ∣L∣max is the
maximum number of locations defined by the spatial temporal
operators of φ.

B. Performance Improvement of SaSTL Parsing

To monitor a requirement, the first step is parsing the
requirement to a set of sub formulas with their corresponding
spatial-temporal ranges. Then, we calculate the results for the
sub-formulas. The traditional parsing process of STL builds
and calculates the syntax tree on the sequential order of the
formula. It does not consider the complexity of each sub-
formula. However, in many cases, especially with the PoIs
specified in smart cities, checking the simpler propositional
variable to quantify the spatial domain first can significantly
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Figure 2: An example of city abstracted graph. A requirement
is ⧈([0,+∞),School) ◻[a,b] (Aop

([0,d],⊺)ϕ ∼ c) (The large nodes
represent the locations of PoIs, among which the red ones
represent the schools, and blue ones represent other PoIs. The
small black nodes represent the locations of data sources.)

reduce the number of temporal signals to check in a com-
plicated formula. For example, the city abstracted graph in
Figure 2, the large nodes represent the locations of PoIs,
among which the red ones represent the schools, and blue
ones represent other PoIs. The small black nodes represent
the locations of data sources (e.g. sensors). Assuming a
requirement ⧈([0,+∞),School) ◻[a,b] (Aop

([0,d],⊺])ϕ ∼ c) requires
to aggregate and check ϕ only nearby schools (i.e., the red
circles), but it will actually check data sources of all nearby
12 nodes if one is following the traditional parsing algorithm.
In New York City, there are about 2000 primary schools, but
hundreds of thousands of PoIs in total. A very large amount
of computing time would be wasted in this way.

Algorithm 4: Satisfaction of (ϕ1 ∧ ϕ2, ω)
case ϕ1 ∧ϕ2 do

return Monitor(ϕ1, ω, t, l,G) ∧ Monitor(ϕ2, ω, t, l,G);
if cost(ϕ1, l,G) ≤ cost(ϕ2, l,G) then

if ¬ Monitor(ϕ1, ω, t, l,G) then
return Monitor(ϕ2, ω, t, l,G);

end
return True;

end
if ¬ Monitor(ϕ2, ω, t, l,G) then

return Monitor(ϕ1, ω, t, l,G);
end
return True;

end

To deal with this problem, we now introduce a monitoring
cost function cost ∶ Φ×L×GL → R+, where Φ is the set of all
the possible SaSTL formulas, L is the set of locations, GL is
the set of all the possible undirected graphs with L locations.
The cost function for ϕ is defined as:

cost(ϕ, l,G) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ϕ ∶= p ∨ ϕ ∶= x ∼ c ∨ ϕ ∶= True

1 + cost(ϕ1, l,G) if ϕ ∶= ¬ϕ1

cost(ϕ1, l,G) + cost(ϕ2, l,G) if ϕ ∶= ϕ1 ∗ ϕ2,∗ ∈ {∧,UI}
∣LlD ∣ if ϕ ∶= Aop

Dx ∼ c

∣LlD ∣cost(ϕ1, l,G) if ϕ ∶= Cop
Dϕ1 ∼ c

Using the above function, the cost of each operation is
calculated before “switch ϕ” (refer to Algorithm 1). The cost
function measures how complex it is to monitor a particular
SaSTL formula. This can be used when the algorithm evaluates
the ∧ operator and it establishes the order in which the sub-
formulas should be evaluated. The simpler sub-formula is the

first to be monitored, while the more complex one is monitored
only when the other sub-formula is satisfied. We update
monitor(ϕ1 ∧ ϕ2, ω) in Algorithm 4. With this cost function,
the time complexity of the monitoring algorithm is reduced to
O(∣φ∣×Tmax×(log(n)+ ∣L′∣max)), where ∣L′∣ is the maximal
number of locations that an operation is executed with the
improved parsing method. The improvement is significant for
city requirements, where ∣L′∣max < 100 × ∣L∣max.

C. Parallelization

In traditional STL monitor algorithm, the signals are
checked sequentially. For example, to see if the data streams
from all locations satisfy ⧈D ◻[a,b] ϕ in Figure 2, usually,
it would first check the signal from location 1 with ◻[a,b]ϕ,
then location 2, and so on. At last, it calculates the result from
all locations with ⧈D. In this example, checking all locations
sequentially is the most time-consuming part, and it could
reach over 100 locations in the field.

To reduce the computing time, we parallelize the monitoring
algorithm in the spatial domain. To briefly explain the idea:
instead of calculating a sub-formula (◻[a,b]ϕ) at all locations
sequentially, we distribute the tasks of monitoring independent
locations to different threads and check them in parallel. (Al-
gorithm 5 presents the parallel version of the spatial counting
operator CD.) To start with, all satisfied locations l′ ∈ LlD are
added to a task pool (a queue). In the mapping process, each
thread retrieves monitoring tasks (i.e., for li,◻[a,b]ϕ) from the
queue and executes them in parallel. All threads only execute
one task at one time and is assigned a new one from the pool
when it finishes the last one, until all tasks are executed. Each
task obtains the satisfaction of Monitor(ϕ,ω, t, l,G) function,
and calculates the local result vi of operation op(). The reduce
step sums all the parallel results and calculates a final result
of op().

Algorithm 5: Parallelization of Counting of (x, op,D, ω, t, l,G)

Function
CountingNeighbours(ϕ,op,D, ω, t, l,G):

begin
paratasks = Queue();
for l′ ∈ Ll

D
do

paratasks.add(l);
end
results = Queue();
for i in 1..NumThreads do

Threadi ←
worker(ϕ,ω, t,G);

end
Wait();
return op(results);

end

Function worker (ϕ,ω, t,G):
begin

Real v ∶= 0;
if op == "min" then v ∶=∞;

;
if op == "max" then
v ∶= −∞; ;

while Num(tasks)>0 do
l = paratasks.pop();
moni =

Monitor(ϕ,ω, t, l,G);
v = op(v, moni);

end
results.add(v)

end

Lemma 2. The time complexity of the parallelized algorithm
Monitor(φ, ω) is upper bounded by O(∣φ∣Tmax(log(n) +
∣L∣max
P

)) when distributed to P threads.

In general, the parallel monitor on the spatial domain
reduces the computational time significantly. It is very helpful
to support runtime monitoring and decision making, especially
for a large number of requirements to be monitored in a
short time. In practice, the computing time also depends
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on the complexity of temporal and spatial domains as well
as the amount of data to be monitored. A comprehensive
experimental analysis of the time complexity is presented in
Section VII.

VI. TOOL FOR THE SASTL MONITOR

We develop a user-friendly prototype tool for the SaSTL
monitor that can support decision making of different stake-
holders in smart cities. The interface and flowchart of the tool
are shown in Figure 3. The tool allows users (e.g., city decision
maker, citizens) without any formal method background to
check the city performance (data) with their own requirements
easily in four steps.

Step 1: selecting the monitoring city and PoI. To start with,
users select the areas (such as a city, or a particular area of
the city) to monitor, then choose the important labels that a
requirement is involved with, such as, schools, parks, theaters,
etc. Once selected, the important points of interest (PoIs) are
shown on the map. This helps users define and verify the
monitoring locations. If a location or label is not included,
users are also able to add them with their GPS coordinates.
The map displays the locations of the specified labels and
sensors. Users can enlarge the map to check the distribution
of sensors and PoIs and revise the requirements accordingly.

Step 2: setting up the city data interface. The data of the
city states collected from sensors across temporal and spatial
domains are introduced to the monitor in the Data section. For
the offline monitoring, users can specify the data location of
each variable on the computer. For runtime monitoring, the
sensing data continuously come into the computer, the data
interface of which can be set up in this section.

Step 3: specifying the city safety requirements. As the
next important step, users specify all requirements in the
requirement section. Users first select the template and then
choose/fill in the essential part using the structured template
language. To be noted, the entities and spatial ranges corre-
spond to the available data variables and PoIs inputs from the
areas and data sections.

We define a series of templates using structured language
learning from the existing city requirements, as shown in
Figure 4. The goal of these templates is to help and inspire
users to specify requirements precisely. These templates are
adequate to represent all the example requirements given in
Table I as well as the total set of 1,000 quantitatively-defined
requirements. We define the templates in a recursive way. T
is a template, and T1 and T2 are instances of T. The elements
in T are optional, i.e. < > can be defined as blank, indicating
this element is not applicable or default in this requirement.
For example, an environmental requirement is written as, “The
<average> <air quality> within <1> mile of all <parks> should
<always> be <above> <good>." The duration is interpreted
as always (default) and there is no condition element. To
convert a structured requirement to SaSTL, we extract the pre-
defined key elements and translate them to the SaSTL formula
following the rules. Meanwhile, users are also able to use the
advanced features to input the city requirements in the format
of the SaSTL formal formulas directly.

Step 4: runtime monitoring. With all the data and require-
ments well defined, users can start the monitor in order to
check if the incoming data from the smart city satisfies the
requirements. The results are displayed with a Boolean value
indicating if the requirement is satisfied and a robustness value
indicating how much the requirement is satisfied or violated.
In addition, the map also displays the monitor results visually.
Two examples are shown in Figure 5. The first one is moni-
toring an air quality requirements of high schools in Chicago,
and the second one is monitoring a traffic requirement in New
York City. The green circle represents the location satisfied the
requirement and the red circle represents the location violates
the requirement; the size of the circle represents the degree of
satisfaction or violation. Users can zoom in and out the map
to focus on a specific area or check the overall performance
as needed (See Figure 5 (2)).

In summary, we defined templates helping users to specify
requirements to the SaSTL formal formulae. We believe these
templates can not only help users to convert the requirement
from English to formal formulae, they are also helpful for users
to write the requirements much more specifically and precisely.
The templates defined in this paper are not sufficient to cover
all the city requirements, especially the new requirements
coming with more and more smart services being developed.
However, the approach that using structured language to
specify requirements proposed in this paper is general and
effective. Also, the templates are easily extended to adapt to
new requirements.

We envision this tool can be used by different stakeholders
in smart cities, including but not limited to,

City managers and decision makers: In the city operating
center, with city data collected in real time, the Tool is able to
help city managers and decision makers to monitor the data
at runtime. It also helps the city center to detect conflicts, and
provide support for decision makers by showing the trade-offs
of satisfaction degrees among potential solutions.

City planners: City planners, either from the government to
make long-term policies or from a company to make a short-
term event plan, they are able to use the Tool to verify the past
city data with their requirements and make plans to prevent
the violations.

Service designers: Smart services are designed by different
stakeholders including the government, companies and private
parties, they are not aware of all the other services. However,
with the monitor, they can test the influence of their services
on the city and adjust the services to better serve the city.

Everyday citizens: The tool can also provide a service to the
everyday citizens. Citizens without any technical background
are able to specify their own requirements and check them
with the city data to find out in which areas of the city and
period of the day their requirements are satisfied, and make
plans about their daily life. For example, a citizen can specify
an environmental requirement with his/her preferred air quality
index and traffic conditions, and check the city data with the
requirements and make up travelling agenda accordingly.
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Figure 3: Interface of the SaSTL monitoring tool

T:= The <aggregation operator> <entity> within <d> miles (from <a>th mile to
<b>th mile) of <spatial operator> <PoIs> should <temporal operator> be
<compare> <parameter> within <t> hours (from <m>th hour to <n>th hour / on
<date> day).
T:= If T1, then T2.
T:= It is prohibited that T1.
T:= T1 and/until/except T2.

Figure 4: Templates to specify city requirements

(1) Air Quality in Chicago (2) Traffic in New York City

Figure 5: Display of the Monitoring Results on the Maps (The
green circle represents the location satisfied the requirement
and the red circle represents the location violates the require-
ment; the size of the circle represents the degree of satisfaction
or violation.)

VII. EVALUATION

We evaluate the SaSTL monitor by applying it to three big
city application scenarios, New York, Chicago, and Aarhus.
The experiments are evaluated on a server machine with 20
CPUs, each core is 2.2GHz, and 4 Nvidia GeForce RTX
2080Ti GPUs. The operating system is Centos 7.

Figure 6: Requirement Satisfaction Rate during Different Time
Periods in Chicago

A. Runtime Monitoring of Real-Time Requirements in Chicago

1) Introduction: We apply SaSTL to monitor the real-time
requirements in Chicago. The framework is the same as shown
in Figure 1, where we first formalize the city requirements
to SaSTL formulas and then monitor the city states with the
formalized requirements. Chicago is collecting and publishing
city environment data (e.g., CO, NO, O3, visible light) every
day since January, 2017 [1]. In our evaluation, we emulate
the Chicago data as it arrives in real time, i.e. assuming the
city was operating with our SaSTL monitor. Specifically, we
monitor data from 118 locations between January, 2017 and
May, 2019. In addition, we incorporate the Chicago crime rate
data published by the city of Chicago [30]. The sampling rates
of sensors vary by locations and variables (e.g., CO is updated
every few seconds, and the crime rate map is updated by
events), so we normalize the data frequency as one minute.
Then we specify 80 safety and performance requirements that
are generated from the real requirements, and apply the SaSTL
to monitor the data every 3 hours continuously to identify the
requirement violations.
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Figure 7: Number of Requirements Checked on Different
Computing Time

2) Chicago Performance: Valuable information is identified
from the monitor results of different periods during a day.
We randomly select 30 days of weekdays and 30 days of
weekends. We divide the daytime of a day into 4 time periods
and 3 hours per time period. We calculate the percentage of
satisfaction (i.e., number of satisfied requirement days divides
30 days) for each time period, respectively. The results of two
example requirements CR1 and CR2 are shown in Figure 6.
CR1 specifies “The average air quality within 5km of all
schools should always be above Moderate in the next 3 hours.”
and is formalized as ⧈([0,+∞),School) ◻[0,3] (Aavg

([0,5],⊺)xair >
Moderate). CR2 specifies “For the blocks with a high crime
rate, the average light level within 3 km should always be
High” and is formalized as ⧈([0,+∞),⊺)◻[0,3] (xCrime = High→
Aavg

([0,3],⊺)xLight >= High).
The SaSTL monitor results can be potentially used by

different stakeholders.
First, with proper requirements defined, the city decision

makers are able to identify the real problems and take actions
to resolve or even avoid the violations in time. For example,
from the two example requirements in Figure 6, we could see
over 20% of the time the requirements are missed everyday.
Based on the monitoring results of requirement CR1, decision
makers can take actions to redirect the traffic near schools
and parks to improve the air quality. Another example of
requirement CR2, the satisfaction is much higher (up to 33%
higher in CR2, 8pm - 11pm) over weekends than workdays.
There are more people and vehicles on the street on weekends,
which as a result also increases the lighted areas. However, as
shown in the figure, the city lighting in the areas with high
crime rate is only 60%. An outcome of this result for city
managers is that they should pay attention to the illumination
of workdays or the areas without enough light to enhance
public safety.

Second, it gives the citizens the ability to learn the city
conditions and map that to their own requirements. They can
make decisions on their daily living, such as the good time
to visit a park. For example, requirement CR1, 11am - 2pm
has the lowest satisfaction rate of the day. The instantaneous
air quality seems to be fine during rush hour, but it has an
accumulative result that affects citizens’ (especially students
and elderly people) health. A potential suggestion for citizens
who visit or exercise in the park is to avoid 11am - 2pm.

3) Algorithm Performance: We count the average moni-
toring time taken by each requirement when monitoring for
3-hour data. Then, we divide the computing time into 5
categories, i.e., less than 1 second, 1 to 10 seconds, 10 to

60 seconds, 60 to 120 seconds, and longer than 120 seconds,
and count the number of requirements under each category
under the conditions of standard parsing, improved parsing
with single thread, 4 threads, and 8 threads. The results are
shown in Figure 7. Comparing the 1st (standard parsing)
and 4th (8 threads) bar, without the improved monitoring
algorithms, for about 50% of the requirements, each one takes
more than 2 minutes to execute. The total time of monitoring
all 80 requirements is about 2 hours, which means that the
city decision maker can only take actions to resolve the
violation at earliest 5 hours later. However, with the improved
monitoring algorithms, for 49 out of 80 requirements, each
one of them is executed within 60 seconds, and each one of
the rest requirements is executed within 120 seconds. The total
execution time is reduced to 30 minutes, which is a reasonable
time to handle as many as 80 requirements. More importantly,
it illustrates the effectiveness of the parsing function and
parallelization methods. Even if there are more requirements
to be monitored in a real city, it is doable with our approach
by increasing the number of processors.

B. Runtime Conflict Detection and Resolution in Simulated
New York City

1) Introduction: The framework of runtime conflict detec-
tion and resolution [31], [10] considers a scenario where
smart services send action requests to the city center, and
where a simulator predicts how the requested actions change
the current city states over a finite future horizon of time.
Then it checks the predicted states against city requirements.
If the requirements are satisfied, the requested actions will be
approved to execute in the city. If there exists a requirement
violation within the future horizon, a conflict is detected.
CityResolver will be applied to resolve the conflicts. Details of
the resolution are not the main part of this paper, please refer
to CityResolver [10]. Note that with the conflicts detected and
resolved, the city’s future states will be affected. In this paper,
we apply the SaSTL monitor to specify requirements with
spatial aggregation and check the predicted spatial-temporal
data with the SaSTL formulas.

We set up a smart city simulation of New York City using
the Simulation of Urban MObility (SUMO) [32] with the
traffic pattern (vehicle in-coming rate of key streets) from real
city data [33], on top of which, we implement 10 services
(S1: Traffic Service, S2: Emergency Service, S3: Accident
Service, S4: Infrastructure Service, S5: Pedestrian Service, S6:
Air Pollution Control Service, S7: PM2.5/PM10 Service, S8:
Parking Service, S9: Noise Control Service, and S10: Event
Service). The real-time states (including CO, NO, O3, PMx,
Noise, Traffic, Pedestrian Number, Signal Lights, Emergency
Vehicles, and Accident number) from the domains of envi-
ronment, transportation, events and emergencies are obtained
from about 10,000 simulated nodes. Then, we apply the STL
Monitor as the baseline to compare the capability of require-
ment specification and the ability to improve city performance.
We simulate the city running for 30 days with sampling rate as
10 seconds in two control sets, one without any monitor and
one with the SaSTL monitor. For the first set (no monitor),
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Table III: Safety and Performance Requirements for New York City

Requirement SaSTL

NYR1
The average noise level in the school area (within 1km) should always be less than
50dB in the next 30min. ⧈([0,+∞),School) ◻[0,30] (Aavg

([0,1],⊺)
xNoise < 50)

NYR2
If an accident happens, at least one of the nearby hospitals (within 5km), its traffic
condition within 2km should not reach the level of congestion in the next 60 min.

⧈([0,+∞),⊺)(Accident→ C([0,5],Hospital)(◻[0,60](Aavg

([0,2],⊺)
x <

Congestion)) > 0)

NYR3
If there is an event, the max number of pedestrians waiting at an intersection should
not be greater than 50 for more than 10 minutes. ⧈([0,+∞),⊺)(Event→ ◻[0,10](Amax

([0,1],⊺)xped < 50))

NYR4
At least 90% of the streets, the PMx emission should not exceed Moderate in 60
min. Cavg

([0,+∞),⊺)
(◻[0,60](Amax

([0,1],⊺)xPMx < Moderate)) > 0.9

NYR5
If an accident happens, it should be solved within 60 min, and before that nearby
(500 m) traffic should be above moderate on average and safe in worst case.

⧈([0,+∞),⊺)(Accident→ (Aavg

([0,500],⊺)
xtraffic <

Moderate ∧Amax
([0,500],⊺)xtraffic < Safe)U[0,60]¬Accident)

Table IV: Comparison of the City Performance with the STL
Monitor and the SaSTL Monitor

No Monitor SaSTL Monitor
Number of Violation Unknown 173
Air Quality Index 67.91 40.18
Noise (db) 73.32 41.42
Emergency Waiting Time (s) 20.32 11.88
Vehicle Waiting Number 22.7 12.6
Pedestrian Waiting Time (s) 190.2 61.1
Vehicle Waiting Time (s) 112.12 59.22

there is no requirement monitor implemented. For the second
one (SaSTL monitor), five examples of different types of real-
time requirements and their formalized SaSTL formulas are
given in Table III.

2) NY City Performance: The results are shown in Ta-
ble IV. We measure the city performance from the domains
of transportation, environment, emergency and public safety
using the following metrics, the total number of violations
detected (i.e., the total number of safety requirements violated
during the whole simulation time), the average CO (mg)
emission per street, the average noise (dB) level per street, the
emergency vehicles waiting time per vehicle per intersection,
the average number and waiting time of vehicles waiting in
an intersection per street, and the average pedestrian waiting
time per intersection.

We make some observations by comparing and analyzing
the monitoring results.

First, the SaSTL monitor obtains a better city performance
with fewer number of violations detected under the same
scenario. As shown in Table IV, on average, the framework
of conflict detection and resolution with the SaSTL monitor
improves the air quality by 40.8%, and improves the pedestrian
waiting time by 47.2% comparing to the one without a
monitor.

Second, the SaSTL monitor reveals the real city issues,
helps refine the safety requirements in real time and supports
improving the design of smart services. We also compare
the number of violations on each requirement. The results
(Figure 8 (1)) help the city managers to measure city’s
performance with smart services for different aspects, and also
help policymakers to see if the requirements are too strict to be
satisfied by the city and make a more realistic requirement if
necessary. For example, in our 30 days simulation, apparently,
NYR4 on air pollution is the one requirement that is violated
by most of the smart services. Similarly, Figure 8 (2) shows
the number of violations caused by different smart services.
Most of the violations are caused by S1, S5, S6, S7, and S10.

Table V: Computing time of requirements with standard pars-
ing function, with improved parsing functions and different
number of threads

Standard Parsing (s) 1 thread (s) 4 threads (s) 8 threads (s)
NYR1 2102.13 140.29 50.31 26.12
NYR2 55.2 0.837 1.023 0.912
NYR3 69.22 22.25 7.54 4.822
NYR4 390.19 390.19 100.23 53.32
NYR5 61.76 61.76 20.25 15.68
Total 2678.5 615.32 179.35 100.85

(1) Requirements (2) Smart Services

Figure 8: Distributions of the violations over requirements and
smart services

The five major services in total cause 71.3% of the violations.
City service developers can also learn from these statistics to
adjust the requested actions, the inner logic and parameters of
the functions of the services, so that they can design a more
compatible service with more acceptable actions in the city.

3) Algorithm Performance: We compare the average com-
puting time for each requirement under four conditions, (1)
using the standard parsing algorithm without the cost function,
(2) improved parsing algorithm with a single thread, (3)
improved parsing algorithm with spatial parallelization using
4 threads and (4) using 8 threads. The results are shown in
Table V.

First, the improved parsing algorithm reduces the com-
puting time significantly for the requirement specified on
PoIs, especially for NYR1 that computing time reduces from
2102.13 seconds to 140.29 seconds (about 15 times). Second,
the parallelization over spatial operator further reduces the
computing time in most of the cases. For example, for NYR1,
the computing time is reduced to 26.12 seconds with 8 threads
while 140.29 seconds with single thread (about 5 times). When
the amount of data is very small (NYR2), the parallelization
time is similar to the single thread time, but still much efficient
than the standard parsing.

The results demonstrate the effectiveness and importance
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Figure 9: Comparisons of Satisfaction Rate on AR1 to AR5

of the efficient monitoring algorithms. In the table, the total
time of monitoring 5 requirements is reduced from 2678.5
seconds to 100.85 seconds. In the real world, when multiple
requirements are monitored simultaneously, the improvement
is extremely important for real-time monitoring.

C. Evaluation for Aarhus

1) Introduction: In this case study, we monitor the past
data of events and states from Aarhus to show how the SaSTL
monitor helps to understand the effects caused by events and
therefore aids in decision making for city events. We utilize 60
days (August to September 2014) of Aarhus city data collected
simultaneously across the domains of transportation (e.g., traf-
fic volume, parking), events (e.g., cultural events and library
events) and the environment (generated pollution and weather).
All the data were collected from 449 observation points and
published by CityPulse [34]. Data was collected with different
sampling rates (e.g., the traffic data were aggregated by 5
minutes and events data were recorded by the event time), thus
for the monitoring purpose, we normalize the data frequency
as 5 minutes. Five safety and performance requirements and
their corresponding SaSTL statements are presented with a
high demand for aggregations specified for Aarhus in Table VI.
Basically, AR1 to AR5 specify that when there is an event,
there is a different level of safety requirements on the traffic
under different circumstances. For example, AR2 focuses on
the areas nearby an event, AR3 focuses on the safety of school
with an event, and R4 considers the effects from extreme
weather conditions. AR5 has a big picture on all schools across
the city when a large cultural event is happening.

2) Performance: The monitoring results from Aarhus are
shown in Figure 9. The percentage of satisfaction equals to the
number of requirement satisfied days divided by 60 days. The
following are observations on the requirements and monitoring
results.

● Comparing the monitoring results on AR1 and AR2, AR1
has a much lower satisfaction rate. It also leads to a higher
and reliable satisfaction rate.

● Comparing to AR2, for the same events, AR3 moves its
focus on the area nearby schools. The results, however,
are lower than AR2. It means that events have more in-
fluence on the school areas, which should draw attention
from the city managers. Students should reduce or avoid
activities during this time when there is an event going
on nearby.

● During 11am to 2pm, the overall performance on all five
requirements are worst, even less than 50%. It is actually

the time period right after a morning event or before
an afternoon event. The monitoring results help the city
managers have a better view of the distribution of effects
from events.

● We also find that the satisfaction rate is very high (almost
100%) after 8pm. The reasons for that are the schools
are usually closed at that time, and most of cultural and
library events happen during the day. In other cities or
events, the distribution will be different. However, the
SaSTL monitor is general enough to help citizens and
managers detect it.

The evaluation on Aarhus shows how the SaSTL monitor
helps the city to understand the effects on the city from events
and make better plans for events. Usually, areas with an event
get caught up in complicated situations, such as paralyzed
traffic, long queues with a large amount of people, emergencies
and accidents. Therefore, playing back and analyzing the city
data during events is extremely important for cities to avoid
emergency situations for future events.

VIII. COVERAGE ANALYSIS

We compare the specification coverage on 1000
quantitatively-specified real city requirements between
STL, SSTL, STREL and SaSTL. The study is conducted by
graduate students following the rules that if the language
is able to specify the whole requirement directly with one
single formula, then it is identified as True. To be noted,
another spatial STL, SpaTeL is not considered as a baseline
here, because it is not applicable to most of city spatial
requirements. SpaTeL is built on a quad tree, and able to
specify directions rather than the distance.

STL is only able to specify 184 out of 1000 requirements,
while SSTL and STREL are able to formalize 431 require-
ments. SaSTL is able to specify 950 out of 1000 requirements.
In particular, we made the following observations from the
results. First, 50 requirements cannot be specified using any
of the four languages because they are defined by complex
math formulas that are ambiguous with missing key elements,
relevant to the operations of many variables, or referring to a
set of other requirements, e.g. “follow all the requirements
from Section 201.12”, etc. Secondly, SSTL, STREL and
SaSTL outperformed STL in terms of requirements with spa-
tial ranges, such as “one-mile radius around the entire facility”;
Third, SSTL and STREL have the same coverage on the
requirements that only contain a temporal and spatial range.
Comparing to SSTL and SaSTL, STREL can also be applied
to dynamic graph and check requirements reachability, which
is very useful in applications like wireless sensor networks, but
not common in smart city requirements; Fourth, the rest of the
requirements (467 out of 1000) measure the aggregation of a
set of locations, which can only be specified using SaSTL.

IX. RELATED WORK

Monitoring spatial-temporal properties over CPS execu-
tions has been initially investigated in [35], [36], where the
authors introduced a spatial-temporal event-based model for
monitoring CPS. In this model, events are labeled with time
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Table VI: Safety and Performance Requirements for Aarhus

Requirement SaSTL
AR1 If there is an event, the traffic level nearby should always be better than Moderate. Event→ ⧈D ◻[0,3] xtraffic > Moderate

AR2 If there is an event, the average traffic level nearby should always be better than
Moderate and the maximum traffic level nearby should be better than Safe.

Event→ ⧈D ◻[0,3] (Aavg

([0,1],⊺)
xtraffic > Moderate ∧Amax

([0,1],⊺)xtraffic >
Safe)

AR3 If there is an event, the average traffic near the school (3km) should always be
better than Moderate and the maximum traffic level should be better than Heavy.

Event→ ⧈D ◻[0,3] (Aavg

([0,1],⊺)
xtraffic > Moderate ∧Amax

([0,1],⊺)xtraffic >
Heavy) ∧ School

AR4 If there is an event and the weather is rainy or snowy heavily, the average traffic
level around school should be better than Heavy Event∧Humidity > 50%→ ⧈D◻[0,3] (Aavg

([0,1],⊺)
xtraffic > Heavy)∧School

AR5 With big cultural events going on the city, over the city, 80% schools’ average
traffic volume nearby (3km) should always be better than Moderate. Event→ CD ◻[0,3] (Aavg

([0,1],⊺)
xtraffic > Moderate) ∧ School > 80%

and space stamps. These events can be triggered by actions,
exchange of messages or physical changes. A centralized
monitor is then responsible to process all these events. Their
approach provides an algorithmic framework enabling a user
to develop manually a monitor, but they do not provide any
spatial-temporal specification language.The literature instead
offers several logic-based specification languages to reason
about the spatial structure of concurrent systems [37], medical
images [38], and the topological [39] or directional [40] as-
pects of the interacting components. However, these logics are
not practical for monitoring CPS, because they are generally
computationally complex [40] or even undecidable [41].

Specification-based monitoring of spatial-temporal proper-
ties over CPS executions has become practical only recently
with SpaTeL [42] and SSTL [12]. SpaTeL extends the Signal
Temporal Logic [11] (STL) with the Tree Spatial Superpo-
sition Logic (TSSL) [43], [44]. TSSL classifies and detects
spatial patterns by reasoning over-quad trees, suitable spatial
data structures that are constructed by recursively partitioning
the space into uniform quadrants. The notion of superposition
in TSSL [44] provides a way to describe statistically the
distribution of discrete states in a particular partition of the
space and the spatial operators corresponding to zooming in
and out in a particular region of the space. By nesting these
operators, it is possible to specify self-similar and fractal-
like structures [45] that generally characterize the patterns
emerging in nature such as the electrical spiral formation
in cardiac tissues [46]. The procedure allows one to capture
very complex spatial structures, but at the price of a complex
formulation of spatial properties, which are in practice only
learned from some template image.

SSTL [12] extends STL with several spatial operators (i.e.,
somewhere, everywhere, and surround). The SSTL semantics
operates on a weighted undirected graph, where the weight
on each edge represents the distance between two nodes. The
Spatial Temporal Reach and Escape Logic (STREL) [13], [14]
generalizes SSTL, by introducing two new spatial operators,
(reach and escape), which are able to express the same spatial
operators of SSTL. Furthermore, while SSTL can be applied
only on static weight undirected graphs, STREL can be applied
also to dynamic networks. However, both SSTL and STREL
do not support spatial aggregation operators that we show to
be an important feature for monitoring smart cities.

X. CONCLUSION

In this paper, we present a novel Spatial Aggregation Signal
Temporal Logic to specify and to monitor requirements of
smart cities at runtime. We develop an efficient monitoring

framework that optimizes the requirement parsing process and
can check in parallel a SaSTL requirement over multiple
data streams generated from thousands of sensors that are
typically spatially distributed over a smart city. SaSTL is a
powerful specification language for smart cities because of its
capability to monitor the city desirable features of temporal
(e.g., interval), spatial (e.g., PoIs, range) and their complicated
relations (e.g. always, everywhere, aggregation) between them.
More importantly, it can coalesce many requirements into
a single SaSTL formula and provide the aggregated results
efficiently, which is a major advance on what smart cities do
now. The development of 5G and 6G could better support the
monitoring and communication among sensors, services and
the city center. We believe it is a valuable step towards de-
veloping a practical smart city monitoring system even though
there are still open issues for future work. Furthermore, SaSTL
monitor can also be easily generalized and applied to monitor
other large-scale IoT deployments at runtime efficiently. In the
future, we will explore its capability to specify and monitor
other properties and requirements (e.g., security and privacy).
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APPENDIX

1. Preliminaries on Signal Temporal Logic
The syntax of an STL formula ϕ is usually defined as

follows,
ϕ ∶∶= µ ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◊(a,b)ϕ ∣ ◻(a,b) ϕ ∣ ϕU(a,b)ϕ.
We call µ a signal predicate, which is a formula in the form

of f(x) ≥ 0 with a signal variable x ∈ X and a function f ∶
X → R. The temporal operators ◻, ◊, and U denote “always",
“eventually" and “until", respectively. The bounded interval
(a, b) denotes the time interval of temporal operators.

Below we present the formal definition of STL Boolean
semantics. To informally explain the STL operations, formula
◻(a,b)ϕ is true iff ϕ is always true in the time interval (a, b).
Formula ◊(a,b)ϕ is true iff ϕ is true at sometime between
a and b. Formula ϕ1U(a,b)ϕ2 is true iff ϕ1 is true until ϕ2

becomes true at sometime between a and b.

(ω, t) ⊧ µ ⇔ f(x) > 0
(ω, t) ⊧ ¬ϕ ⇔ (ω, t) ⊧ ϕ
(ω, t) ⊧ ϕ1 ∧ ϕ2 ⇔ (ω, t) ⊧ ϕ1 and (ω, t) ⊧ ϕ2

(ω, t) ⊧ ◻(a,b) ⇔ ∀t ∈ (a, b), (ω, t) ⊧ ϕ
(ω, t) ⊧ ◊(a,b) ⇔ ∃t ∈ (a, b) ∩T, (ω, t) ⊧ ϕ
(ω, t) ⊧ ϕ1UIϕ2 ⇔ ∃t′ ∈ (t + a, t + b) ∩T, (ω, t′) ⊧ ϕ2

and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧ ϕ1

Next, we present the formal definition of STL quantitative
semantics.

ρ(x ∼ c, ω, t) = πx(ω)[t] − c
ρ(¬ϕ,ω, t) = −ρ(ϕ,ω, t)
ρ(ϕ1 ∧ ϕ2, ω, t) = min{ρ(ϕ1, ω, t), ρ(ϕ2, ω, t)}
ρ(◻Iϕ,ω, t) = min

t′∈(t,t+I)
ρ(ϕ,ω, t′)

ρ(◊Iϕ,ω, t) = max
t′∈(t,t+I)

ρ(ϕ,ω, t′)

ρ(ϕ1UIϕ2, ω, t) = sup
t′∈(t+I)∩T

(min{ρ(ϕ2, ω, t
′),

inf
t′′∈[t,t′]

(ρ(ϕ1, ω, t
′′))})

2. Proofs

Theorem 1 (Soundness, restate). Let ϕ be an STL formula, ω
a trace and t a time,

ρ(ϕ,ω, t, l) > 0 ⇒ (ω, t, l) ⊧ ϕ
ρ(ϕ,ω, t, l) < 0 ⇒ (ω, t, l) /⊧ ϕ

Proof. We prove the first property ρ(ϕ,ω, t, l) > 0 ⇒
(ω, t, l) ⊧ ϕ by induction:

First we show the soundness property hold for the predicate
ϕ ∶= µ. In this case, we have ρ(ϕ,ω, t, l) = f(x). Therefore,
if ρ(ϕ,ω, t, l) > 0 we have f(x) > 0, that is, (ω, t, l) ⊧ ϕ.

Case ϕ = ¬ϕ′: We have ρ(ϕ,ω, t) = −ρ(ϕ′, ω, t, l) > 0.
Therefore we have ρ(ϕ′, ω, t, l) < 0, that is, (ω, t, l) /⊧ ϕ′,
which is equivalent to (ω, t, l) ⊧ ϕ by definition.

Case ϕ = ϕ1 ∧ ϕ2: We have ρ(ϕ1 ∧ ϕ2, ω, t, l) =
min{ρ(ϕ1, ω, t, l), ρ(ϕ2, ω, t, l)} > 0. Therefore, we have

ρ(ϕ1, ω, t, l) > 0 and ρ(ϕ1, ω, t, l) > 0. Thus, (ω, t, l) ⊧ ϕ1

and (ω, t, l) ⊧ ϕ2. By definition, we have (ω, t, l) ⊧ ϕ.
Case ϕ = ϕ1UIϕ2: ρ =

max
t′∈(t,t+I)

{min{ρ(ϕ2, ω, t
′, l), min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l)}} > 0. We

have ∃t′ ∈ (t+ I),min{ρ(ϕ2, ω, t
′, l), min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l)} >
0. Therefore, ∃t′ ∈ (t + I), ρ(ϕ2, ω, t

′, l) >
0 ∧ min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l) > 0. Thus, it’s equivalent to

∃t′ ∈ (t+I)∩T, (ω, t′, l) ⊧ ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′, l) ⊧ ϕ1.
By definition, we have (ω, t, l) ⊧ ϕ.

Case ϕ = Aop
D x ∼ c: we have ρ(Aop

D x ∼ c, ω, t, l) > 0, which
indicates op(αxD(ω, t, l)) − c > 0, following the definition, we
have (Aop

D x ∼ c, ω, t, l) ⊧ ϕ.
Case ϕ = CopD ϕ ∼ c when op = max, we have

maxl′∈Ll
D

{ρ(ϕ,ω, t, l′)} > 0, thus, there is at least one
location l ∈ D,ρ(ϕ,ω, t, l) > 0, i.e., (ω, t, l) ⊧ ϕ, there-
fore, max({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}) > c (c ∈ [0,1))
is true, therefore, (ω, t, l) ⊧ Cmax

D ϕ > c. when op = min,
we have minl′∈Ll

D

{ρ(ϕ,ω, t, l′)} > 0, thus, for any loca-
tion, ρ(ϕ,ω, t, l) > 0, i.e., l ∈ D, (ω, t, l) ⊧ ϕ, therefore,
min({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}) > c (c ∈ [0,1)) is
true, therefore, (ω, t, l) ⊧ Cmin

D ϕ ∼ c. When op = sum, we
have δ(⌈c⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) > 0, thus, for at least
⌈c⌉ locations l, we have ρ(ϕ,ω, t, l) ∣ l ∈ LlD > 0, i.e.,
sum({g((ω, t, l) ⊧ ϕ) ∣ l ∈ LlD}) > c is true, therefore,
(ω, t, l) ⊧ Csum

D ϕ > c. Similarly, we can prove when op = avg,
if δ(⌈c × ∣LlD ∣⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) > 0, then (ω, t, l) ⊧
Cavg
D ϕ > c.

Theorem 2 (Correctness, restate). Let ϕ be an STL formula,
ω and ω′ traces over the same time and spatial domains, and
t, l ∈ dom(ϕ,ω), then

(ω, t, l) ⊧ ϕ and ∣∣ω − ω′∣∣∞ < ρ(ϕ,ω, t, l)⇒ (ω′, t, l) ⊧ ϕ

Proof. First, whenever ρ(ϕ,ω, t, l) ≠ 0, its sign indicates the
satisfaction status.

By induction, we have the following cases:
Case ϕ ∶= x ∼ c: We have ρ(ϕ,ω′, t, l) = πx(ω′)[t, l] − c ≥
πx(ω)[t, l] − c − ∣∣ω − ω′∣∣∞ = ρ(ϕ,ω, t, l) − ∣∣ω − ω′∣∣∞ > 0.
Therefore, we have (ω′, t, l) ⊧ ϕ.
Case ϕ ∶= ¬ϕ′: We have ρ(ϕ,ω′, t, l) = −ρ(ϕ′, ω′, t, l). By the
inductive assumption we have ρ(ϕ′, ω′, t, l) < 0. Therefore, we
have (ω′, t, l) ⊧ ϕ.
Case ϕ ∶= ϕ1 ∨ ϕ2: Following the condition, we have
either (ω, t, l) ⊧ ϕ1 holds or (ω, t, l) ⊧ ϕ2 holds. We
also have ρ(ϕ,ω′, t, l) = max{ρ(ϕ1, ω

′, t, l), ρ(ϕ2, ω
′, t, l)}.

If (ω, t, l) ⊧ ϕ1, by the inductive assumption we have
ρ(ϕ1, ω

′, t, l) > 0. Therefore, ρ(ϕ,ω, t, l) > 0. Similarly,
if (ω, t, l) ⊧ ϕ2, by the inductive assumption we have
ρ(ϕ2, ω

′, t, l) > 0. Therefore, we have (ω′, t, l) ⊧ ϕ.
Case ϕ = ϕ1UIϕ2: As (ω, t, l) ⊧ ϕ, there exists t′ that
∀t′′ ∈ (t, t′), ρ(ϕ1, ω, t

′′, l) ≥ ρ(ϕ,ω, t, l) and ρ(ϕ2, ω, t
′, l) ≥

ρ(ϕ,ω, t, l). By the inductive assumption, we have (ω′, t′, l) ⊧
ϕ2 and ∀t′′ ∈ (t, t′), (ω′, t′′, l) ⊧ ϕ1. Therefore, we have
(ω′, t, l) ⊧ φ.
Case ϕ = Aop

D x ∼ c:
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- When op = sum, ρ(φ,ω′, t, l) = sum(αx
D
(ω′,t,l))−c

∣αx
D
(ω′,t,l)∣ ≥

sum(αx
D
(ω,t,l))−c−∑d∈αx

D
(ω,t,l) ∣∣ω−ω′∣∣∞

∣αx
D
(ω,t,l)∣ = ρ(φ,ω, t, l) − ∣∣ω −

ω′∣∣∞ > 0. Therefore, we have (ω′, t, l) ⊧ φ.
- When op ≠ sum, we first show that op(αxD(ω, t, l)) −
op(αxD(ω′, t, l)) ≤ ∣∣ω − ω′∣∣∞. Recall the definition that
αxD(ω, t, l) ∶= {πx(ω)[t, l′] ∣ l′ ∈ LlD and πx(ω)[t, l′] ≠
�}. For any combination of t and l, πx(ω)[t, l] ≤
πx(ω′)[t, l] + ∣∣ω − ω′∣∣∞. As all the items of αxD(ω, t, l)
holds the property, for the operators max, min and avg,
op(αxD(ω, t, l)) − op(αxD(ω′, t, l)) ≤ ∣∣ω − ω′∣∣∞.
Therefore we have ρ(φ,ω′, t, l) = op(αxD(ω′, t, l)) − c ≥
op(αxD(ω, t, l))−∣∣ω−ω′∣∣∞−c = ρ(φ,ω, t, l)−∣∣ω−ω′∣∣∞ >
0, which indicates (ω′, t, l) ⊧ φ.

Case ϕ = CopD ϕ′ ∼ c:
- When op = sum, as ρ(CopD ϕ′ ∼ c, ω, t, l) =
δ(⌈c⌉,{ρ(ϕ′, ω′, t, l′) ∣ l′ ∈ LlD}), we know that
there exists at least ⌈c⌉ different l′ ∈ LlD that
ρ(ϕ′, ω, t, l′) ≥ ρ(CopD ϕ′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞.
By the inductive rule, we have at least ⌈c⌉ different
l′ ∈ LlD that ρ(ϕ′, ω′, t, l′) > 0. Therefore, by the
defintion of ρ(C∑Dϕ′ ∼ c) of we have (ω′, t, l) ⊧ φ.

- Similarly when op = avg, as ρ(CopD ϕ′ ∼ c, ω, t, l) =
δ(⌈c × ∣LlD ∣⌉{ρ(ϕ′, ω′, t, l′) ∣ l′ ∈ LlD}), we know that
there exists at least ⌈c × ∣LlD ∣⌉ different l′ ∈ LlD that
ρ(ϕ′, ω, t, l′) ≥ ρ(CopD ϕ′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞. By the
inductive rule, we have at least ⌈c×∣LlD ∣⌉ different l′ ∈ LlD
that ρ(ϕ′, ω′, t, l′) > 0. Therefore, we have (ω′, t, l) ⊧ φ.

- When op = max, ρ(CopD ϕ′ ∼ c, ω, t, l) =
maxl′∈Ll

D

{ρ(ϕ,ω, t, l′)}. Let l′ be the location
that ρ(ϕ,ω, t, l′) achieves maximum, we have
ρ(ϕ′, ω, t, l′) ≥ ρ(CopD ϕ′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞.
By the inductive rule, ρ(ϕ′, ω′, t, l′) > 0. Therefore, we
have (ω′, t, l) ⊧ φ.

- When op = min, ρ(CopD ϕ′ ∼ c, ω, t, l) =
minl′∈Ll

D

{ρ(ϕ,ω, t, l′)}. We have for every l′ ∈ LlD,
ρ(ϕ′, ω, t, l′) ≥ ρ(CopD ϕ′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞. By
the inductive rule, We have for every l′ ∈ LlD that
ρ(ϕ′, ω′, t, l′) > 0. Therefore, we have (ω′, t, l) ⊧ φ.

Lemma 3 (Complexity of spatial operators, restate). The
time complexity to monitor at each location l at time t the
satisfaction of a spatial operator such as ⧈D, �D, Aop

D , and
Cop
D is O(log(n) + ∣L∣) where L is the set of locations at

distance within the range D from l.

Proof. According to [29], the time complexity to retrieve a set
of nodes L with a distance to a desired location in a range
D from a location l is O(log(n) + ∣L∣). The aggregation and
counting operations of Algorithm 7 and Algorithm 8 can be
performed while the locations are retrieved.

Theorem 6. The time complexity of the SaSTL monitoring al-
gorithm is upper-bounded by O(∣φ∣×Tmax×(log(n)+∣L∣max))
where Tmax is the largest number of samples of the intervals
considered in the temporal operators of φ and ∣L∣max is the

Algorithm 6: SaSTL Boolean monitoring algorithm
MonitorB(ϕ,ω, t, l,G)
Input : SaSTL Requirement ϕ, Signal ω, Time t, Location l, weighted

undirected graph G
Output: Boolean Satisfaction Value
begin

switch ϕ do
Case x ∼ c

return πx(ω)[t, l] ∼ c;
Case ¬ϕ

return ¬ MonitorB (ϕ,ω, t, l,G);
Case ϕ1 ∧ϕ2 ; ▷ See Alg. 4 for an update

return MonitorB (ϕ1, ω, t, l,G) ∧ MonitorB
(ϕ2, ω, t, l,G)

Case ϕ1UIϕ2
Boolean f := True;
for t′ ∈ (t + I) ∩ T do

if Monitor(ϕ2, ω, t
′, l,G) then

f := True;
for t′′ ∈ [t, t′] do

f := f ∧ Monitor(ϕ1, ω, t
′′, l,G);

if (¬f ) then break;
end
if (f ) then return True;

end
end
return False;

Case Aop
D
x ∼ c ; ▷ See Alg. 7

return AggregateB(x, c, op,D, t, l,G);
Case Cop

D
ϕ ∼ c ; ▷ See Alg. 8 and Alg. 5

return CountingNeighboursB(ϕ, c, op,D, t, l,G);
end

end

Algorithm 7: AggregateB(x, op,D, ω, t, l,G)
Function AggregateB(x, c, op,D, ω, t, l,G):

begin
Real v := 0; n := 0;
if op == "min" then v ∶=∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D

do
if op ∈ {min, max, sum} then

v := op(v,πx(ω)[t, l′]);
end
if op =="avg" then

v := sum(v,πx(ω)[t, l′]);
end
n ∶= n + 1

end
if op == "avg" ∧n ≠ 0 then v ∶= v/n ;
if n == 0 then

return True
else

return v ∼ c;
end

end

maximum number of locations defined by the spatial temporal
operators of φ.

Proof. Following Lemma 3, by considering Tmax the worst
possible number of samples that we need to consider for all
possible intervals of temporal operators present in the formula,
and ∣L∣max for the worst possible number of locations that we
need to consider for all possible intervals of spatial operators
present in the formula. When there are two or more operators
nested, the time complexity for one operation is bounded by
O(Tmax (log(n) + ∣L∣max)). As there are ∣φ∣ nodes in the
syntax tree of φ, the time complexity of the SaSTL monitoring
algorithm is bounded by the summation over all ∣φ∣ nodes,
which is O(∣φ∣ Tmax (log(n) + ∣L∣max)).
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Table VII: List of services running in simulated NYC

Service Description
S1: Traffic Service It controls traffic signals in street intersections to relieve congestion and optimize or improve traffic performance.
S2: Emergency Service It requests green traffic signals in order to transport patients in critical conditions to hospitals as soon as possible.
S3: Accident Service It blocks a street where some accident occurs and alert nearby vehicles to detour.
S4: Infrastructure Service It schedules infrastructure check-up and repair appointments.
S5: Pedestrian Service It shortens the pedestrians’ waiting time by adjusting traffic signals when pedestrians wait in the intersection.
S6: Air Pollution Control It adjusts the traffic by adjusting traffic signal and sending speed request to vehicles when CO emission is high.
S7: PM2.5/ PM10 Control It adjusts the traffic when PM2.5/ PM10 emission is high by adjusting traffic signal and sending speed request to vehicles directly.
S8: Parking Service It directs the driver to the nearest parking lot.

S9: Noise Control When noise level exceeds its threshold, it controls the number of vehicles going through related streets and redirect vehicles on
the streets by adjusting traffic signals.

S10: Event Service It ensures operation of a city event by blocking the lanes nearby the event.

Algorithm 8: CountingNeighboursB(x, op,D, ω, t, l,G)
begin

Real v ∶= 0; n ∶= 0
if op == "min" then v ∶=∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D

do
if Monitor(ϕ,ω, t, l,G) ∧ op ∈ {min, max, sum} then

v := op(v,1);
end
if Monitor(ϕ,ω, t, l,G) ∧ op =="avg" then

v := sum(v,1);
end
n ∶= n + 1

end
if op == "avg" ∧n ≠ 0 then v ∶= v/n ;
if n == 0 then

return True
else

return v ∼ c;
end

end

(1) New York (2) Aarhus (3) Chicago

Figure 10: Partial Maps of Chicago, Aarhus and New York
with PoIs and sensors annotated. (The black nodes represent
the locations of sensors, red nodes represent the locations of
hospitals, dark blue nodes represent schools, light blue nodes
represent parks and green nodes represent theaters.)

3. Monitoring Algorithms We presented the details of the
Boolean monitoring algorithms in Algorithm 6 with Algo-
rithm 7 for the aggregation operation and Algorithm 8 for
the counting operation.
4. Smart Services in Simulated NYC In the evaluation
section, we set up the simulator with ten smart services. The
description of these services are presented in Table VII.


