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ABSTRACT
Nowadays, increasing number of smart services are being devel-
oped and deployed in cities around the world. IoT platforms have
emerged to integrate smart city services and city resources, and
thus improve city performance in the domains of transportation,
emergency, environment, public safety, etc. Despite the increasing
intelligence of smart services and the sophistication of platforms,
the safety issues in smart cities are not addressed adequately, espe-
cially the safety issues arising from the integration of smart services.
�erefore, CityGuard, a safety-aware watchdog architecture is de-
veloped. To the best of our knowledge, it is the �rst architecture
that detects and resolves con�icts among actions of di�erent ser-
vices considering both safety and performance requirements. Prior
to developing CityGuard, safety and performance requirements
and a spectrum of con�icts are speci�ed. Sophisticated models
are used to analyze secondary e�ects, and detect device and en-
vironmental con�icts. A simulation based on New York City is
used for the evaluation. �e results show that CityGuard (i) identi-
�es unsafe actions and thus helps to prevent the city from safety
hazards, (ii) detects and resolves two major types of con�icts, i.e.,
device and environmental con�icts, and (iii) improves the overall
city performance.

CCS CONCEPTS
•Computing methodologies → Modeling and simulation; •
Computer systems organization → Embedded and cyber-
physical systems; •Applied computing → Service-oriented ar-
chitectures;
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1 INTRODUCTION
With the increasing prevalence and development of smart cities,
the intelligence and complexity of smart services and platforms
have been growing rapidly. Various smart services in di�erent
domains, such as, transportation, environment, energy, and emer-
gency management have been separately deployed to improve city
operation and human experiences. For example, a smart energy ser-
vice [17] distributes power optimally and saves idle energy, and a
smart taxi service [13] dispatches taxis to minimize passenger wait
time. To further increase smart city capabilities, there is a need for
integration of multiple smart devices and services. Smart city IoT
platforms, such as IBM Watson IoT [3], ORACLE [5], KM4City [8],
and others are built to integrate smart services working under the
same system, making the communication and data sharing among
them possible and convenient.

However, to date, most of existing smart cities do not consider
safety control in the context of integrated smart services, especially
in terms of con�icts among them. Not enough a�ention is paid to
the potential safety con�icts caused by con�icting actions taken by
di�erent smart services. For example, assume a smart tra�c service
redirects vehicles from a highway to another road near a residential
area to relieve tra�c congestion. Now a higher concentration
of CO will be released in the residential area. Assume that the
smart tra�c service is aware of this problem and regulates tra�c
accordingly. Now assume, there is a chemical factory nearby the
residential area which also releases CO gas but is monitored to
guarantee that CO release is under safe limits. However, with this
new action of diverting tra�c, the total concentration of CO now
exceeds safe limits. �is results in unsafe air quality, and a�ects the
health of people living in this area. Also, although the two services
maintain the safety requirement (i.e., keeping CO release below
safety threshold) individually, their concurrent operations violate
the safety requirements cumulatively. �us, it causes a con�ict.
Safety maintenance in a smart city is extremely important and
challenging.

Even though some smart services have individual sophisticated
decision-making processes that consider safety requirements, there
still exist inevitable con�icts between smart services in smart cities
because of the following reasons:

• Most of the existing smart services are developed and used
independently by di�erent stakeholders including govern-
ments, commercial enterprises, and individuals. Also, the
individual services usually have varied levels of sophistica-
tion and a�ention on safety requirements, which may be
unaware of or inconsistent with each other.



IoTDI 2017, April 2017, Pi�sburgh, PA USA M. Ma et al.

Figure 1: CityGuard in the Smart City

• In most cases, the safety requirements from services only
consider the primary e�ects (e.g., minimize congestion)
while ignoring secondary e�ects on the environment (e.g.,
air pollution), thus violating safety requirements.

• �e safe actions de�ned by smart services may not always
be safe for a smart city when considering (i) the e�ects
of those actions over a time interval, an area and (ii) the
actions taken by other services.

• Devices and services might be updated over time without
notifying other services. Even though services may have
pre-de�ned safety requirements and rules to avoid con�icts,
new con�icts may arise as smart services evolve over the
long term.

Hence, a safety-aware watchdog architecture, called CityGuard,
is created to detect and resolve the con�icts from multiple smart
services in a smart city (see Figure 1). Generally, the smart city
is constructed of two main parts, (i) an infrastructure layer with
sensors and actuators and (ii) a so�ware layer consisting of IoT
platforms and individual smart services. CityGuard is designed
to be a middle layer with sophisticated safety requirements that
is embedded between the infrastructure layer and services them-
selves. CityGuard intercepts the actions from smart services, de-
tects whether potential con�icts exist ahead of time and provides
resolution whenever possible.

1.1 Challenges
�e key challenges in building a safety watchdog for smart cities
arise from the following three aspects.

1.1.1 Defining Safety Requirements in Smart Cities. In order to
keep a safe environment, rigorous and consistent speci�cations of
the safety requirements for both a smart city and its smart services
are important. However, it is di�cult to integrate all the safety
requirements from all services, because they are de�ned under
their own contexts with di�erent granularity. Furthermore, another
challenge is how to de�ne safety requirements in the watchdog
considering all the competing objectives of the smart city.

1.1.2 Detecting Conflicts of Smart Services. Detecting and re-
solving the con�icts of smart city services are both signi�cant and
di�cult for the following reasons.

• �e e�ects of an action are hard to predict in a complex
city environment, especially the secondary e�ects, which
are also likely to violate city safety requirements.

• In addition to direct con�icts, there are indirect con�icts.
Indirect con�icts result from concurrent operations of mul-
tiple actions, each of which is safe individually, but be-
comes con�icting when performed simultaneously.

• E�ects of actions last over varying time intervals and areas
and con�icts may arise during those overlapping intervals.

1.1.3 Implementation. Due to the extremely complex function-
alities of a smart city, it is challenging to integrate all the smart
services and implement a watchdog architecture like CityGuard.
�e implementation must be able to predict the e�ects of actions
with reasonable accuracy. Presumably, a combination of mathemat-
ical models, environmental models, human behavioral models, and
heavy use of simulators will all be needed to detect and resolve
con�icts.

1.2 Contributions
To the best of our knowledge, CityGuard is the �rst work to build
a safety-aware watchdog for detecting and resolving con�icts be-
tween services to address city safety requirements with three major
underlying contributions.

1.2.1 Specification and Definition of Safety Requirements and
Conflicts. CityGuard speci�es a set of safety requirements and
identi�es a broad spectrum of con�icts in smart cities that are
aware of the objectives of smart services.

1.2.2 Detection of Conflicts. CityGuard detects di�erent types
of con�icts by intercepting actions ahead of time, analyzing the
details of the actions, and then running simulations to predict
potential con�icts within a temporal and a spatial range. �is
paper focuses on con�ict detection, especially for environmental
con�icts. In addition, con�ict resolution with priority-based rules
are provided.

1.2.3 Simulation and Evaluation on the Smart City. Based on
the real data collected from New York City, a smart city simulator,
namely CityGuard SUMO, is built with an emphasis on the do-
mains of transportation, environment, and emergency services to
demonstrate potential con�icts in a real city. Simulation is done in a
controlled se�ing. Ten types of smart services are implemented and
then distributed to 20 major locations in the simulated Manha�an,
(i.e. 200 smart services are running in parallel). Each component of
CityGuard is evaluated by comparing results from the following 3
scenarios: (i) city without smart services, (ii) city with smart ser-
vices, and (iii) city with smart services and CityGuard. �e results
show that CityGuard helps smart services running under safety and
performance requirements by identifying and preventing unsafe
actions as well as detecting and resolving con�icts.

In regards to city safety, CityGuard prevents up to 20 tra�c
collisions caused by the 10 services within an hour interval, and
saves up to 101% waiting time for emergency vehicles. In terms
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of city performance, CityGuard increases air quality by 73.7% and
decreases vehicle waiting time by 35% over a baseline system (e.g.,
city operating without CityGuard).

2 CITY SAFETY AND CONFLICT
In order to fully understand CityGuard and its scope, in this section,
we de�ne terms related to the safety requirements, the e�ects of
actions from services, and the spectrum of con�icts that are being
considered.

2.1 Safety Requirements
2.1.1 Coverage. City safety generally involves safety for the

environment and humans. Environmental Safety includes main-
taining the quality of air, water, noise, and weather and safety of
property. For example, actions taken by a service should not result
in air, water, or noise pollution, or street lights should be kept on
at night in crime-prone areas. Human Safety refers to protect-
ing citizens from any dangerous or unhealthy situation (e.g., road
accidents).

Consequently, the overall Smart System Safety means that all the
smart services running in a city must neither bring danger to the
environment or citizens, nor con�ict with each other. For example,
autonomous vehicles are not allowed to hit pedestrians or cause
environmental damage. Also, a smart tra�c service and a smart
emergency service should not try to turn the same tra�c light to
green and red simultaneously.

2.1.2 Context. In the complex and dynamic se�ing of real time
smart cities, safety and performance requirements need to be aware
of context, i.e., they need to accommodate special circumstances,
because rigid/static safety requirements can result in unwarranted
/ catastrophic consequences. For example, assume a transportation
domain service sets the highest tra�c capacity of a street, street A
to 100 to avoid congestion (i.e., a performance metric) although the
street may accommodate more vehicles for a short time. However,
when there is a �re on a nearby street, street B vehicles may have to
evacuate through street A (i.e., for safety). In this circumstance, the
performance requirement of maintaining tra�c capacity in street
A should be aware of the safety requirement of street B. �us the
safety and performance requirements should be context aware.

2.1.3 Emphasis. As another complication, range and frequency
of temporal and spatial entities should also be considered when
specifying unsafe situations. For example, the tra�c congestion
lasting for 5 min might not be considered as an unsafe situation,
but the one lasting for 1 hour is unsafe.

2.2 E�ects of Actions from Services
2.2.1 Primary and Secondary E�ects. A�er an action is taken,

it has a series of e�ects on the city. A primary e�ect relates to the
main purpose of the action. For example, to control the noise level
in a school area, the noise control service does not allow trucks
to go through the school area during the day and redirects them
to a nearby residential area. �e primary e�ect of this action is
the reduction of the noise level in the school area during day time.
However, this action may result in one or more secondary e�ects.
For example, in this case, the tra�c volume of the nearby residential

Table 1: Examples of con�icts of services in smart cities

Category Type Example

Device Opposite Pedestrian service turn a tra�c signal to green, while Tra�c Con-
gestion Service turn the same tra�c signal to red.

Device Numeric Tra�c Service set the speed of autonomous vehicles to be 70 mph;
Safety Service set the speed of them to be 60 mph.

Device Duration
Emergency service keeps the tra�c lights green for 10 minutes to
allow ambulances to move faster while tra�c congestion service
needs it to turn red every 2 minutes.

Environ-
ment Single

Air quality control service redirect the tra�c to reduce air pollu-
tion, but cause serious tra�c congestion on the other road, level
of which exceeds safety requirement.

Environ-
ment Opposite While emergency service tries to evacuate an area, tra�c conges-

tion service directs more vehicles there.

Environ-
ment Additive

Event service caused a certain level of noise below threshold,
emergency service caused a level of noise below threshold, but
the additive level is above threshold.

Environ-
ment

Depen-
dent

Tra�c service can only direct vehicles to street 1 a�er the water
pipe leak is resolved by emergency service.

area may increase as some tra�c is redirected from the school area.
Such secondary e�ects may have a serious in�uence on the city
environment, which may violate the city safety requirements.

2.2.2 Spatial and Temporal Range. Most e�ects of actions are
not limited to a single location at a single time. Instead, the e�ects
have spatial and temporal ranges of in�uence, which need to be
considered when detecting con�icts. Following the above example,
since trucks have to drive on other roads when passing through
this area, the trucks will have an e�ect on the tra�c on these roads
and the added tra�c may cause congestion (i.e., a violation of a
performance requirement) for several hours. Also, an increased
volume of trucks on a particular day may result in increased release
of air pollutants causing air pollution (i.e., a violation of a safety
requirement).

2.3 Spectrum of Con�icts
�e potential con�icts of smart cities are categorized as device and
environmental con�icts as exempli�ed in Table 1.

2.3.1 Device Conflicts. When more than one action is taken on
the same device simultaneously, if these actions are inconsistent
with each other, they have a device con�ict. In particular,

• if these actions have opposite directions, but the same
numeric parameters, it is an opposite device con�ict;

• if these actions have di�erent numeric parameters and
these parameters cannot be satis�ed at the same time, it is
a numeric device con�ict;

• if these actions have the same direction and parameters,
but have di�erent durations of application that cannot be
satis�ed at the same time, it is a duration device con�ict.

2.3.2 Environmental Conflict. Besides the direct con�icts on
shared devices, services are also prone to indirect con�icts caused
by unsafe or contrasting e�ects on the environment (resulting from
one or more actions). �is is de�ned as an environmental con�ict.
Environmental con�icts can be categorized into four classes as
follows:

• When the set of e�ects on the environment of a single
action causes the state of the city to exceed a safety thresh-
old or violate one/more safety requirements, it results in a
single environmental con�ict.
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Figure 2: CityGuard Running in a Smart City

• When the additive e�ects on the environment from two
or more safe actions exceed the safety thresholds or vio-
late one/more safety requirements, it results in an additive
environmental con�ict.

• When the e�ects of multiple actions are opposite on the
environment and are not approved to happen by the safety
or performance requirements, it results in an opposite envi-
ronmental con�ict.

• When the e�ect of one action is the prerequisite of another
action, i.e., multiple actions need to be performed sequen-
tially or concurrently, but the previous one is not taken, it
results in a dependent environmental con�ict.

3 SYSTEM OVERVIEW: CITYGUARD
CityGuard is a safety watchdog built between the smart services
and the infrastructure layers (see Figure 1). CityGuard executes
as a feedback loop as shown in Figure 2. Variables V1 through Vm
monitor city states, and services S1 through Sn use the monitored
data to choose actions. CityGuard intercepts the actions, decides if
there is a device, environment, or both con�icts based on the safety
and performance requirements. Unsafe actions and con�icts are
detected and resolved through CityGuard. Safe actions are taken in
the city and cause the change of city states, which triggers actions
from smart services again. As a result, the goal is that only safe
actions are executed in the city. However, CityGuard does not
guarantee safety, but rather signi�cantly improve it as shown in
the evaluation.

�e internal structure of CityGuard is shown in Figure 3. �ere
are 4 important components in CityGuard, City Safety and Perfor-
mance Requirements (CSPR), City State and Service Action (CSSA),
Pre-processing, and Con�ict Detection and Resolution (CDR). Algo-
rithm 1 shows how the components are executed.

3.1 Safety and Performance Requirements
Component

�e safety and performance requirements component provides the
rules for CityGuard to monitor all the actions. It has three modules:
(i) principles, (ii) requirements, and (iii) updating requirements.
All principles and requirements are de�ned and speci�ed by city
personnel. CityGuard integrates them into the safety checking
components.

To start with, CityGuard follows a set of principles to maintain
safety requirements. For example, it might contain,

• Any action of a service should not violate prede�ned city /
individual service safety requirements.

• A safety requirement is a function of location and time
with conditions.

• When there is a con�ict between di�erent safety require-
ments, follow the city objectives.

CityGuard works with the safety and performance requirements
speci�ed by a particular smart city that is running CityGuard. For
example, important safety and performance requirements for a
smart city might include (i) Noise levels should be below the following
thresholds, community/school (Day 50 db, night 45 db), Mall/working
zones (Day 60 db, night 50 db), Highway (Day 70 db, night 55 db); (ii)
Actions taken by transportation services should not cause collision of
vehicles ; and (iii) emergency vehicles should not wait for more than
10seconds at any intersection.

�ese requirements, de�ned in English by the city, are inte-
grated and translated to formal metrics in CityGuard manually.
For example, the above requirements can be translated to (i) R1:
Noise (Location,Time ) < xdb, (ii) R2: Num(collision) < 0 and (iii)
R3: waitinдTime (E) < 10s .

Since the mapping between actions and safety requirements is
not always straightforward, CityGuard simulates and analyzes the
e�ects of an action on the metrics and therefore decides if it is a safe
action by examining if the metrics are within their requirements.

Furthermore, with new services added and situations changed in
the city, safety and performance requirements are also added and
updated.

3.2 Real City State and Service Action
Component

City state and service action is considered as the interface of City-
Guard to services and cities. It obtains real city states and passes
them to CityGuard SUMO in the CDR, obtaining a consistent view
of states in the real city and the simulated city. Meanwhile, it
also stores and provides the in-coming actions from services and
on-going actions in cities.

3.3 Pre-Processing Component
When an action Ai is intercepted by CityGuard, it contains infor-
mation to direct an actuator, which is also the source for CityGuard
to analyze potential con�icts. Usually, an action has the following
information, Device Number indicates a unique numerical identi�er
of the actuator on which the action is supposed to be taken. Service
Number indicates a unique numerical identi�er of the service that
issues the action. Act is the expected action or e�ect, which depends
on the functions of the services and could be a change in states, loca-
tions, or send a warning or message, etc. Duration is the requested
duration of this action. Some actions are continuous actions and
need to be acted on for a certain time, while some actions are just
one time actions. Pre-conditions indicate the pre-conditions of the
action, mainly pointing to the essential concurrent or sequential
actions. �e format is <ActionID, Con/Pre>.

In a pre-processing phase, CityGuard checks the above action in-
formation and deals with any missing information. Device number
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Figure 3: CityGuard Structure (Pre-Processing intercepts and checks the safety of the single action, Conflict Detection & Reso-
lution detects con�icts among actions a�er Pre-processing, and City Safety & Performance and Real City & Service Action store
the safety requirements and city states, respectively. Section III describes each component in detail.)

Figure 4: E�ects of Actions Taken in the Smart City Over
Time

and service number are easy to tell from the source and destination
of the action. All acts are assumed to be contained in the action in-
formation, otherwise, it cannot be executed by the actuator. Unless
speci�ed, the duration is treated as 0 if it is missing on the action
information. It is a reasonable way to deal with missing duration
because even if a continuous action is being treated as a one-time
action, it still has an e�ect on the city performance, which will be
detected by the environmental con�ict detection procedure.

A�er intercepting the actions, CityGuard also needs to consider
the timing of the actions. CityGuard de�nes three types of actions
based on their action and e�ect times, including In-coming actions,
On-going actions, and Past actions. An In-coming action is one just
being intercepted and going to be checked by CityGuard. An on-
going action is the one that has been already checked by CityGuard
and is running. Because it is still using the device, the in-coming
action which wants to take di�erent action on that device may be
con�icting with it. A past action is the one that has been taken and
�nished. �ough it may still have an e�ect on the city, its e�ects are
re�ected by the city environmental states. �erefore, CityGuard

does not track these actions any more. For example, in Figure 4,
at T2, A1 is an on-going action, A2 and A3 are in-coming actions.
�ereby, all of A1, A2 and A3 may be con�icting and need to be
checked by CityGuard. However, at T4, when A4 comes in, there is
no on-going action, then CityGuard only needs to check if T4 is a
safe action in terms of the single action environmental con�ict.

As a result, three key parameters are retained by CityGuard,
i.e., In-coming actions {Ai , ...,An }, On-going actions, and the City
States {V1, ...,Vi−1}.

�ree steps are performed in the pre-processing,
Step 1: Intercept actions and obtain their key information.
Step 2: Check single actions’ safety by running them in City-

Guard SUMO. Send back unsafe actions with warnings to their
services. ((1)(2) in Figure 3)

Step 3: Check Device Number of in-coming and on-going actions,
then send the actions with same device number to DCDR because
they have a potential device con�ict. Pass the other actions to the
ECDR. ((3) in Figure 3)

A�er pre-processing, all the actions sent to the con�ict detection
components are safe single actions.

3.4 Con�ict Detection and Resolution
Component

Con�ict Detection and Resolution Component consists of 4 sub
components, i.e., CityGuard SUMO, Device Con�ict Detection and
Resolution (DCDR), Environmental Con�ict Detection and Resolu-
tion (ECDR), and an Overall Resolver (OR).

CityGuard SUMO is the central component of the CDR which is
used by both DCDR and ECDR to simulate the e�ects of actions
on a real city. �e solution uses the Simulation of Urban MObility
(SUMO) [7], a tra�c simulation that models inter-modal tra�c
systems including road vehicles, public transport, and pedestrians.
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Algorithm 1: CityGuard
input :Action Set {Ak }
output :Safe Action Set {A′k }
initialize :CityState {Vk }, SimulationState {SVk }, Requirement {Rk }, SimuStep = 0
while {Ak } != 0 do

Pre-Processing:
for action = 1: length({Ak }) do

{SVk } = {Vk };
for SimuStep = 1 : n do

{SV ′k } = CityGuardSUMO (Ak , {SVk });
fFC = SafeCheck {SV ′k }, {Rk };
if fFC == 1 then

A′k = Resolve(Ak );
end

end
end
DevcieConflict:
fDC = DeviceCheck ({A′k });
if (fDCi j == 0)‖ (fDCi j == 1&&Ai == Aj&&Dur (Ai ) = Dur (Aj )) then

go to EnvironmentCon�ict
end
if fDCi j == 1 then

if Ai == −Aj then
A′k = Resolve(Ai , Aj )

end
if Ai + Aj > Rk then

A′k = Resolve(Ai , Aj )
end
if Dur (Ai )! = Dur (Ai ) then

A′k = Resolve(Ai , Aj )
end

end
EnvironmentConflict:
{SVk } = {Vk };
for SimuStep = 1 : n do

{SV ′k } = CityGuardSUMO (A′k , {SVk });
fEC = check ({SV ′k }, {Rk });
if fEC == 1 then

A′k = Resolve(Ai );
end
if Ef (Ai ) == −Ef (Aj ) then

A′k = Resolve(Ai , Aj )
end
if Ai ← Aj && exist(Aj ) == 0 then

A′k = Resolve(Ai )
end

end
{A′k } = OverallResolver{A′k };

end

By implementing smart services and simulating real city scenarios
in SUMO, CityGuard SUMO plays an important role to test the
primary and secondary e�ects of actions. To do this, there are
di�erent Physical Models (PM) in CityGuard SUMO to simulate
the primary and secondary e�ects of actions. For example, the
tra�c - air PM knows how the numbers and speeds of di�erent
types of vehicles a�ect emissions (e.g., CO, HC, PM) quantitatively.
As a result, the secondary e�ects on environments of actions from
transportation services are obtained.

Before executing, CityGuard inputs into the simulator the same
states of the city where actions are going to be taken. �en, it runs
one or multiple actions in this scenario into a future time interval.
New states of the city a�er taking these actions are sent back to
DCDR and ECDR, where the decisions of detection and resolution
con�icts are made. SUMO also has models to simulate accidents.

3.4.1 Device Conflict Detection and Resolution Component. �is
component is shown in the le� part of CDR in Figure 3. �ree
types of device con�icts are processed using di�erent detectors and

resolvers with corresponding models. Once potential device con�ict
actions are received by DCDR, their acts are sequentially checked
by opposite, duration, and numeric con�ict detection modules with
the steps described below.

Step 1: Following the logic de�ned in Section II, DCDR compares
the given actions to detect if they are (i) opposite, (ii) with di�erent
numeric requests, or (iii) the same. Accordingly, proceed to Steps 2
through Step 4.

Step 2: If they are (i) opposite, call the opposite con�ict resolver,
which makes a decision according to ORR.

Step 3: If they are (ii) with di�erent numeric requests, whether
they are con�icting depends on if they can be taken at the same time,
which is simulated in CityGuard SUMO. If one action with the larger
numerical request actually tolerates the others, there is no numeric
con�ict because all of the actions can be satis�ed. Otherwise, the
numeric resolver is called for decision making according to ORR.

Step 4: If they are (iii) the same, compare their durations. If
durations are the same, there is no device con�ict between/among
them and the actions are sent to ECDR; If durations are di�erent,
similar to Step 3, actions are simulated, and tolerance is checked.
A longer duration is accepted by its resolver if they are tolerant.
Otherwise, a decision is made according to ORR.

Step 5: All actions with a marked decision from DCDR are sent
to ECDR.

3.4.2 Environmental Conflict Detection and Resolution Compo-
nent. All the actions received by this component (shown on the
right side of CDR in Figure 3) from the Pre-processing and DCDR
components are sent to run in CityGuard SUMO for N steps to
see their combined e�ects on the environment (see (6) in Figure 3).
�rough analyzing performance results from CityGuard SUMO and
checking with the safety and performance requirements, ECDR
detects three types of environmental con�icts with following steps.

Step 1: Check if their additive e�ects con�ict with the city re-
quirements, which includes the situations when simulated states
exceed required thresholds and when forbidden unsafe cases hap-
pen. If so, then there is an additive con�ict. �e additive resolver is
called.

Step 2: With the results from CityGuard SUMO, the environmen-
tal opposite con�icts are detected by comparing the primary e�ects
detected from pre-processing component with the combined e�ects
from ECDR. If there is an opposite con�ict detected, actions are
sent to the corresponding resolvers. If these opposite e�ects on
the environment violates safety requirements, a resolver resolves
it according to ORR. Otherwise, the resolver decides whether to
resolve it or not based on the context of the system.

Step 3: In the dependent con�ict detection model, pre-conditions
of actions are checked.

Step 4: All marked actions are sent to the overall resolver.
A�er DCDR and ECDR, there is a set of actions with marked tem-

porary decisions. If a single action violates the safety requirements,
it is rejected in the pre-processing stage. However, actions which
are detected to have a device con�ict or an environmental con�ict
receive a temporary decision from each part, respectively. In these
cases the �nal decision is made from the Overall Resolver. It is
necessary for two reasons, (i) generally, DCDR and ECDR proceed
in parallel and don’t intervene with each others’ decisions, and (ii)
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it is able to avoid rejecting both actions accidentally. For example,
actions rejected by one component because of con�icting with an-
other action, which may also end up with a rejection in another
resolver in next step. With an overall resolver, a �nal decision is
made by considering the decisions from all the resolvers.

In the Overall Resolver, there is a set of actions with temporary
decisions marked for �nal decision making. Actions approved
by both DCDR and ECDR are considered as safe actions and can
proceed in the real city. Actions with both device and environment
con�ict rejections are rejected along with a rejection message sent
back to their services. Furthermore, actions marked rejection by
ECDR are considered as unsafe actions to be rejected, while actions
marked with a device con�ict rejection are re-checked to see if they
still have con�icts with other approved actions. If not, it is viewed
as a safe action as well. Otherwise, it is rejected.

In addition, resolvers in the DCDR and ECDR sub-components
follow the Overall Resolution Rules (ORR) for decision making. �ere
are two principles, priority-based and performance-based, to make
decisions when it concerns con�icting actions from multiple ser-
vices.

First, di�erent domains have a priority based on their importance
to the city, giving services from each domain the same priority. An
example priority is Safety > Emergency > Environment > Tra�c.
However, di�erent cities may value di�erent domains.

Second, actions of the services from the same domain are decided
by their performances in CityGuard SUMO. In the pre-processing
component, each action is tested in the simulation and comes back
with a performance result. If two actions in the same domain
con�ict with each other and they are not unsafe, the one with
be�er performance is accepted while the other one(s) is rejected.

4 SIMULATION AND EVALUATION
CityGurad is evaluated using a smart city simulator, which is ex-
tended from SUMO, a transportation simulator. �e evaluation uses
a real map of one-half of Manha�an, New York City and generates
simulated scenarios based on real data. Ten smart services from
the domains of transportation, emergency, and environment are
implemented and installed in 20 major locations. �ese services are
listed in Table 2. Due to the limitations of SUMO, only services from
the above domains are implemented. However, these are examples
of the most common smart services running in real cities and are
both representative and important.

4.1 Initialization and Metrics of Simulation
In order to simulate the performance of CityGuard in a real city
environment, to start with, real city data from Manha�an is ana-
lyzed. From Tra�c volume counts of New York city data [4], the
tra�c volumes from 160 streets in Manha�an during 2013-2014 are
obtained. It is calculated from the data set that the average tra�c
volume for all streets is 105,397 vehicles and 658 vehicles per street
per hour, making the in-coming vehicle rate as 5.5s per vehicle.

In order to generate a scenario closest to the real tra�c pa�ern in
Manha�an, three steps are performed to con�gure the simulation.
First, we selected the average tra�c volume data of Manha�an
from 8:00 am to 2:00 am to generate the tra�c data stream in the
simulation. Second, the tra�c streams for main streets of New York

Figure 5: Simulated Manhattan with 10 services running at
20 di�erent locations (denoted as red points).

city, such as the Bowery, Allen Street, and Broadway, are set based
on their own average tra�c volume per street. Finally, stream data
for other streets follow the average volume for the entire Manha�an
area, i.e. the in-coming rate of 5.5 s/vehicle is used. In this way, the
lower half of Manha�an including 102 streets and 454 tra�c lights
are used as the platform for all simulations in the evaluation.

Furthermore, important safety and performance metrics are
chosen for evaluation, as shown in Table 3. �e �rst four met-
rics are obtained from internal models of SUMO, indicating the
transportation safety and performance. For instance, the possibil-
ity of a collision happening increases when the density of tra�c
increases and the distance between vehicles shrinks. Meanwhile,
these metrics when applied to emergency vehicles also indicate
the performance of the emergency domain. Moreover, mean speed,
waiting number and waiting time per lane are measured for trans-
portation performance. Noise, CO, HC and PMx are measured for
environmental performance and are considered as safety metrics.

For the evaluation, the requirements shown in Table 4 are as-
sumed to be speci�ed for the smart city.

To be�er understand the complexity and scope of con�icts,
the pre-processing component is �rst evaluated in isolation. �is
demonstrates the spatial and temporal e�ects of individual service.
Next, the overall CityGuard is evaluated.

4.2 Overall Evaluation
4.2.1 Pre-processing. In the Pre-processing component, single

actions are intercepted and their primary and secondary e�ects on
the environment are simulated to see if there is any violation of
safety or performance requirements.

Spatial and temporal ranges of action e�ects are tested by City-
Guard SUMO on 10 services in 20 locations. At �rst, the city is
simulated without services and the metrics for all the streets near
the services are recorded as the baseline. Each service is simulated
individually in di�erent locations, and the same states are recorded
and compared with the baseline. If the variance is above 5%, it is
viewed as an e�ect on the streets from this action. In this way, the
number of blocks away from the service block that are a�ected by
the action is identi�ed for each service in all locations. Similarly,
how long the e�ects last on the environment are also monitored.

�e results are shown in Table 5, the �rst column are the met-
rics, the second column lists services running with and without
CityGuard, the third column is when there are no services at all,
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Table 2: Services running in Simulated Manhattan

No. Service Domain Description

S1 Congestion Service Transportation Its purpose is to minimize tra�c congestion. When the waiting number of vehicles on the lane exceeds 50% of its total tolerance, it will
adjust the tra�c signal to release congestion.

S2 Pedestrian Service Transportation Its purpose is to minimize waiting time of pedestrians. When more than 2 pedestrians press crossing bu�on, it will shorten their waiting
time by adjusting tra�c signals.

S3 Vehicle Navigator Transportation Its purpose is to release vehicles from tra�c congestion. When there is a tra�c congestion or closed lane causing a vehicle waiting for
a long time, it will call the re-route function to choose the next shortest path to its destination.

S4 Air Pollution Control Environment Its purpose is to control air quality level with emphasis on the CO and HC gas released by vehicles on streets. It will limit the number
and speed of vehicles when air pollution level is high by adjusting tra�c signal and sending speed request to vehicles directly.

S5 PM2.5/PM10 Control Environment Similar to S4 with emphasis on the PM2.5 and PM10 in the air.
S6 Waste Management Environment Its purpose is to manage waste in cities by sending out waste pickup vehicles regularly.

S7 Noise Control Environment Its purpose is to control noise pollution causing by tra�c. When noise level exceeds its threshold, it will control the number of vehicles
going through related streets and redirect vehicles on the streets by adjusting tra�c signals.

S8 Event Service Environment Its purpose is to ensure smooth operation of a city event by blocking the lanes nearby the event.
S9 Accident Service Emergency Its purpose is to take the �rst action to block the adjacent areas of a tra�c accident.

S10 Emergency Service Emergency Its purpose is to minimize the waiting time of emergency vehicles. When there is an emergency vehicle waiting in the lane, it will
adjust the tra�c signal to let it go through immediately.

Table 3: Metrics for Evaluation of City Performance:
S=Safety and P=Performance Metrics

Name Description

Jam (P) Number of cases when a vehicle can not continue because there was
no space on the next lane

Yield (P) Number of cases when a vehicle is unable to cross an intersection
where it did not have priority

Collision (S) Number of cases when a vehicle violated its minimal distance
requirement in relation to its leader vehicle

Wrong Lane(S)
Number of cases when a vehicle was unable to move because it could
not continue its route on the current lane and was unable to change
to the correct lane

Mean Speed (P) �e mean speed of the vehicles on the speci�c lane (km/h)

Waiting Number (P) �e number of vehicles waiting on the lane, a speed of less than 0.1
m/s is considered a wait.

Waiting Time (P) �e time that a vehicle waits on the lane
Noise (S) �e noise emi�ed by the vehicles on the speci�c lane (dB)

CO (S) �e complete amount of CO emi�ed by the vehicles on this lane
during the actual simulation step (mg)

HC (S) �e complete amount of HC emi�ed by the vehicles on this lane
during the actual simulation step (mg)

PMx (S) �e complete amount of PMx emi�ed by the vehicles on this lane
during the actual simulation step (mg)

and S1 to S10 are the data from just one service running. Following
insights are obtained from the results that are presented Table 5.

When one service improves one aspect of city, its secondary
e�ects may have a negative in�uence on other metrics. If not
controlled, this in�uence may exceed the safety and performance
requirements.

When there is no CityGuard, actions from 5 services cause colli-
sions, which a�ect city safety signi�cantly and even create more
serious secondary e�ects. �ese collisions are prevented by City-
Guard. Meanwhile, the number of jam and yield violations also
exceeds the threshold of safety requirements, which are highlighted
in Table 5. However, with control of CityGuard, jam and yield from
all actions are controlled under the safety requirement.

Another key metric for safety performance, waiting time of
emergency vehicles (Row 8), is increased signi�cantly by 8 services
, exceeding the threshold of safety requirements. With CityGuard it
is controlled to under 10s. For example, waiting time of emergency
vehicle is reduced from 19.3s to 9.3s by CityGuard, improving the
performance by 101%.

It is important to notice, that in these 8 cases, comparing the per-
formance of other metrics when CityGuard runs with no services in
the city, it improves the city’s performance, i.e., services’ functions
are not a�ected by CityGuard. For example, air pollution service

Table 4: City Safety Requirements

Transportation:
• Actions should not cause collisions of vehicles.
• Vehicles should not be directed to travel in the wrong direction or to blocked roads.
• Tra�c signal lights should follow safety logic.
• Vehicles from orthogonal directions should not cross an intersection simultaneously.
• Actions should not increase tra�c congestion by more than 10% .
• Actions should not increase Yield by more than 15% .
• Actions should not increase waiting time of emergency vehicles by more than 10%
• �e number of waiting vehicles in a lane should be less than the maximum vehicle

capacity of the lane.
Emergency:

• Emergency vehicles should not wait for more than 10s at a intersection.
• Emergency vehicles should not be directed to a blocked lane or area.

Environment:
• Action should not create more than 50 dB noise per lane.
• Action should not emit more than 50 mg CO per lane.
• Action should not emit more than 1 mg HC per lane.
• Action should not emit more than 0.2 mg PMx per lane.

(S4) increases the waiting time of emergency vehicles to 15s without
CityGuard and to 10s with CityGuard, and where, CO are 7.8mg
and 7.6mg, respectively. Comparing with 11.74mg of CO release
without any service, S4 with CityGuard improves the air quality. As
a result, with CityGuard, air quality is improved without a�ecting
emergency vehicles. In some cases, service performance on one or
two metrics is compromised with CityGuard because some of its
unsafe actions are rejected. However, CityGuard’s role here is to
obtain a safe environment while helping services improve the city.
For example, in column S1, waiting time for normal vehicles is 98.5
seconds without CityGuard, while 100.2 with CityGuard. �ough
this performance is compromised by 2 seconds, it still improve
the transportation performance comparing with the one without
service (121.82 seconds). Most importantly, the waiting time for
emergency vehicles decreases from 11.5 to 10 comparing the results
without and with CityGuard, consequently S1 is controlled to work
under safety requirements.

If a service does not violate requirements at all, it will not be
a�ected by CityGuard, such as S3 and S6.

Some additional observations from these simulations are:
• �e ranges of spatial and temporal e�ects vary by functions

of services and locations. For example, Event Service (S8)
usually has a longer e�ect time than the Congestion Service
(S1). E�ect range at Location 15 is always larger than that
at Location 20.
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Table 5: E�ects on City with single services running

Metrics No S S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Jam No CG 102 100 422 60 102 68 102 84 402 222 290
CityGuard - 100 110 60 102 68 102 84 86 120 120

Yield No CG 192 230 400 178 226 190 194 210 622 530 598
CityGuard - 218 212 178 200 190 194 198 202 196 218

Collision No CG 0 0 4 0 2 0 0 0 4 4 6
CityGuard - 0 0 0 0 0 0 0 0 0 0

Wrong Lane No CG 22 22 40 6 14 12 22 20 82 42 46
CityGuard - 20 20 6 14 12 22 20 20 20 20

Mean Speed No CG 11.28 12.36 10.29 13.64 9.8 10.1 11.28 12.21 8.98 9.14 9.11
CityGuard - 13.22 11.1 13.64 10.6 11 11.28 13.5 10.89 10.7 8.99

Waiting Number No CG 1.66 0.71 5 0.72 2.1 2.21 1.67 1.7 4.71 3.98 1.89
CityGuard - 0.73 1.7 0.72 1.8 1.91 1.67 1.65 1.69 1.8 1.86

Waiting Time No CG 121.82 98.60 311.7 101.5 150.1 149.4 121.9 136.1 141.3 157.6 181.4
CityGuard - 100.2 130.97 101.5 129.41 134.87 121.9 123.1 131.8 137.2 134.7

Waiting Time (E) No CG 9.5 11.50 13.3 10.93 15 13.5 9.5 15.3 17.1 19.3 3.2
CityGuard - 10 9.4 10 10 9.6 9.5 10 9.8 9.6 3.41

Noise No CG 33.34 34.98 40.12 32.1 31.5 32.5 33.34 17.6 37.6 39.6 39.4
CityGuard - 32.14 35.6 32.1 30.93 31.1 33.34 18.7 35.6 35.1 39.6

CO No CG 11.74 10.85 16.9 10.65 7.8 7.41 11.74 11.61 13.4 14.11 13.8
CityGuard - 10.75 12.4 10.65 7.6 7.31 11.74 10.71 12.31 13.13 12.3

HC No CG 0.49 0.46 0.71 0.48 0.23 0.29 0.49 0.51 0.69 0.91 0.65
CityGuard - 0.46 0.53 0.48 0.22 0.27 0.49 0.46 0.64 0.69 0.56

PMx No CG 0.08 0.07 0.12 0.69 0.05 0.03 0.08 0.08 0.11 0.17 0.11
CityGuard - 0.07 0.09 0.69 0.05 0.03 0.08 0.08 0.1 0.13 0.09

(1)Without CityGuard (2)With CityGuard

Figure 6: Performances of tra�c at the intersection between
Bowery and Kenmare with and without CityGuard. Yel-
low and red objects denote regular and emergency vehicles.
With CityGuard, there are higher tra�c �ow, less conges-
tion, and emergency vehicles are prioritized for faster travel
time.

• �e e�ects are more signi�cant on the streets of the inter-
section where services run, rather than the neighboring
streets.

• �e Accident Service (S9) has the largest average spatial
e�ect range of up to 5.6 blocks while the Noise Service (S7)
has the lowest one of 0.8 blocks. �e average e�ect range
for all 10 services is 2.3 blocks.

• Temporal e�ects of di�erent services vary signi�cantly not
only by service type and locations, but also by the speci�c
contexts of the events. For example, the e�ect range of
services is larger in area and longer in time when the tra�c
density is heavier.

4.2.2 Device Conflict. A�er Pre-procesing, actions on the same
device (S1, S2, S4, S5, S7 and S10) are sent to the component of

DCDR. Device Con�icts detected between each two of them in 1
hour are shown in Table 6, which indicates how many times Service
A (services in the column) is triggered and how many times it is
con�icting with Service B (services in the row). For example, the
third item in the second row, ”20313/42048” indicates that out of
the 42048 times Service S1 is triggered, 20313 times it has a con�ict
with service S2.

It is demonstrated that (i) con�icts occur very frequently in the
city, e.g., 20313 con�icts happened between S1 and S2 and 31312
times between S1 and S4. (ii) Percentages of device con�icts are
very high, e.g., device con�icts between S1 and S3 is 74.5% while
that between S7 and S2 is 68.6%.

Device con�icts can cause serious consequences in the city if
there is no prevention. For instance, in Figure 6, without CityGuard,
actions from emergency service and tra�c congestion service are
con�icting, causing serious tra�c congestion. More importantly,
an emergency vehicle is trapped by this congestion. �is violates
safety requirements.

4.2.3 Environmental Conflict. In the environmental con�ict com-
ponent, integrated e�ects of concurrent actions are tested in simu-
lated Manha�an. �e relationship between environmental con�icts
detected and the number of services running in the city is analyzed.
N services are randomly chosen for 50 times and average perfor-
mance is recorded. Performance of representative metrics for safety
and performance, i.e. number of collisions, number of jams, CO air
pollution, and tra�c waiting time per lane are shown in Figure 7,
leading to the following observations.

• Generally, with the growing number of services running in
the city, e�ects on the environment become worse if there
is no safety protection mechanism.

• �e number of collisions increase signi�cantly when more
than 7 services are running together, which seriously vio-
lates city safety. However, there is no collision with City-
Guard.
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Table 6: Pairwise Device Con�icts Detected in 1 hour

S1 S2 S4 S5 S7 S10
S1 - 20313/42048 31312/42048 102/42048 291/42048 3043/42048
S2 20313/54475 - 108/54475 62/54475 653/54475 5321/54475
S4 31312/42588 108/42588 - 79/42588 439/42588 4987/42588
S5 102/745 62/745 79/745 - 110/745 311/745
S7 291/952 653/952 439/952 110/952 - 422/952
S10 3043/8217 5321/8217 4987/8217 311/8217 422/8217 -

(1) Number of collisions (2) Number of jam

(3) Maximum CO of lane (4) Waiting time

Figure 7: Comparison of Service E�ects on Environment
with and without CityGuard

• Similar to the number of the collisions, the number of
Jams is also a�ected by the number of services running,
which can be controlled under a performance threshold
with CityGuard running.

• Although waiting time is not a�ected as drastically as other
metrics, it is seen from Figure 7 (4) that CityGuard can help
the city to obtain a relatively stable performance with in-
creasing number of services. When the number of services
is 10, the waiting time is improved by 35%.

• CityGuard improves Air quality (as measured by emission
of CO) over services without CityGuard by 51.3% when 5
services are running, and by 73.7% when 10 services are
running.

�e total number of con�icts detected are summarized by 20
locations of services in Figure 8. In all locations, environmental
con�icts have the highest percentage, which usually is at most
twice the percentage of device con�icts and as much as 4 times as
single unsafe actions. Moreover, the number of con�icts vary from
location to location. �e busier and larger an intersection is, the
more con�icts occur there.

5 DISCUSSION AND LIMITATIONS
Safety-aware con�ict detection and resolution are critical and com-
plicated issues in smart cities, which is di�cult to be solved at once.

Figure 8: Number of con�icts detected from each location

CityGuard is a watchdog solution to dynamically improve the safety
of smart cities by focusing on actions that impact the environment
and act across services. It does not and we argue fundamentally,
cannot apriori guarantee complete safety due to the dynamics and
uncertainty in the real world. It is a general architecture which can
be integrated into any Smart City IoT platform. Being the �rst work
of its kind, CityGuard has limited scope in the following issues.

Safety Requirements: In this paper, it is assumed that actions
and requirements that are integrated with CityGuard have a uni-
form format. For example, it is assumed that actions provide nec-
essary information, i.e., device, act, duration, and pre-condition(s).
�e mapping of actions to the safety and performance requirements
were performed manually, because the existing safety rules of cities
are de�ned in English by di�erent government departments. �ere
are no tools to translate them into code automatically. However,
this manual mapping process doesn’t a�ect the generalizability of
CityGuard. Also, if new requirements arise, the module called City
Safety & Performance Requirement can update the requirements
maintained in CityGuard and detect con�icts using the new re-
quirements (See Figure 3). In the future, we will explore ways to
specify requirements and algorithmically map actions to require-
ments. In this case, semantic token extraction techniques for textual
interventions [19] can be useful.

Con�ict Detection and Safety: Simulating the primary and
secondary e�ects of an action, CityGuard checks the e�ects with the
city-wide safety requirements to check if there is a con�ict among
actions. Many such con�icts are found and resolved. However,
some smart services have their own internal safety requirements
not directly visible to CityGuard. CityGuard cannot always detect
the safety violation of internal safety requirements of a service un-
less they impact the environment in a negative manner as speci�ed
in the city-wide requirements. �erefore, although currently City-
Guard’s goal is to signi�cantly improve the safety of a city, safety
violations can still occur. Ideally, in the future, as services are added
to a city, all the internal safety requirements should be exported
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and compared to the city wide requirements. Any con�icts here
should also be resolved.

Con�ict Resolution: Currently, CityGuard focuses on the
methods for con�ict detection rather than providing a compre-
hensive solution for con�ict resolution. Only prede�ned priority
based resolvers are used to resolve con�icts once they are detected.
However, in real scenarios, con�ict resolutions can be much more
challenging and might require considering several contextual fac-
tors. �e list of such factors includes, but is not limited to, the
importance of the action (i.e., that causes con�ict) and its service,
the e�ects on the environments and human beings, the cost of rejec-
tion, the optimal combinations of con�icting actions, dynamically
changing objectives, etc. �us, a comprehensive solution of con�ict
resolution demands further research.

Simulation: In the current implementation of CityGuard, the
selection of applications and the accuracy of con�ict detection
rely on the accuracy of the SUMO simulation and its embedded
models. �is is reasonable as (i) SUMO has been widely used to
provide simulations on city mobility with sophisticated physical
models developed in research and used in practice for over 15 years
(as described in Section 6); (ii) SUMO is only an example tool for
CityGuard, which can be updated, combined, or replaced with more
sophisticated models/simulators once they are available; (iii) �e
evaluations in this paper are limited yet realistic to illustrate how
we detect con�icts and improve a city’s safety and performance.
�e approach for con�ict detection in CityGuard is sophisticated
enough to be applied in other domains once accurate models of
those domains are available.

Human Factors: When CityGuard simulates the potential
primary and secondary e�ects of actions during its assessment
phase, it assumes that the people (i.e., citizens) and the devices
comply with the recommended actions. Decisions to accept or
reject actions are based on these assumptions. However, the city
state evolves based on what actually happens in the city, e.g., a
person may not follow the advice or an unexpected / unprecedented
event may occur. CityGuard includes a feedback loop to monitor
and react to this situation.

Privacy and Security: Privacy and security are of great signif-
icance to a smart city. As they are out of the scope of this paper, a
brief discussion below highlights the key issues.

�ere are potentially many di�erent privacy policies in the smart
services and for the city as a whole. Policies themselves might
con�ict with each other or be violated due to actions from services.
When actions are taken by services, CityGuard can be extended to
match those potential actions with city wide privacy policies and,
therefore, detect potential policy con�icts, dynamically. In other
words, the core concepts found in CityGuard can be applied to
privacy. If services export their privacy policies then conceptually
a general policy con�ict detection between the city and a service
can be detected at installation time.

�ere are two main levels of security issues in the context of this
work, which are the security of smart services and the security of
CityGuard itself. �e security of smart services should be main-
tained by themselves. However, if a service has been a�acked and
it is taking erroneous actions, CityGuard helps in avoiding some
safety violations because those erroneous actions might con�ict
with the safety requirements known to CityGuard and therefore be

blocked. In addition, there are ways that CityGuard itself can be
a�acked, such as approving unsafe actions, blocking actions from
other services, se�ing higher priority for the service, etc. �erefore,
security mechanisms must be included in CityGuard prior to real
deployment.

6 RELATEDWORK
6.1 IoT Platforms for Smart Cities
�ere are several commercially available IoT platforms for smart
cities, such as, IBM Watson IoT [3], Azure IoT suite from Microso�
[2], Intel IoT platform [6], and AWS IoT from Amazon [1]. �ey
provide support for se�ing up IoT infrastructure customized to ap-
plication requirements. �ey address di�erent aspects of potential
city-level IoT infrastructure, including but not limited to, scalability
of sensing and actuator modules, real-time response, cloud support
for IoT, real-time stream analytics, raw data storage, data driven
dynamic applications, and network and data security. Although
such IoT platforms can be utilized for developing scalable smart city
services, they consider smart city applications as independent enti-
ties. Hence, they don’t focus on the integration of services and its
subsequent complexity (e.g., concurrency and con�icts). While the
existing IoT platforms provide support for safeguarding connected
devices, networks, data transmissions and data accessibility of the
IoT infrastructure, none of them addresses the safety challenges
introduced by integration of systems/services (e.g., con�icting oper-
ations, policy violations, and con�icting e�ects of services). To the
best of our knowledge, we are the �rst to formulate and develop a
safety-aware architecture for detecting and resolving potential
con�icts in the context of smart cities.

6.2 Safety in Automation Systems
Safety issues have been well studied in Automation systems. Stan-
dards and rules for functional safety of automation systems have
been made, such as IEC 61508 and ISO 26262 [10], which de�ne
functional safety for automotive equipment applicable throughout
the lifecycle of all automotive electronic and electrical safety-related
systems. �ey support the product development from hardware,
so�ware and system levels, and provide safety analysis. �ese stan-
dards can be very helpful when extended to the development of
single smart services in smart cities. However, there are no rules
for interactions or con�icts among services/systems.

�ere is some research on the functional safety among multi-
agents in automation systems, such as building automation and
control systems. �e authors in [16] focus on the functions af-
fecting people’s safety, security and health while maintaining the
functional safety and system security of both the network nodes
and the communication protocols. Resendes et al. present a survey
on the con�ict detection and resolution in home and building au-
tomation systems [20]. Pallo�ino et al. propose a cooperative policy
for con�ict resolution in multi-vehicle systems, which rests on the
assumption that all agents are cooperating by implementing the
same tra�c rules [18]. �ese integrated systems are only within
the domains of transportation, homes, and buildings. However,
functional safety in smart cities is much more complicated as it
involve multiple domains, di�erent types of services and drastically
large numbers of actuators.
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6.3 Con�ict Detection and Resolution
�ere are some existing systems to detect dependencies across mul-
tiple human centric CPS systems. Munir et al. focus on detecting
dependencies across interventions generated by di�erent human-in-
the-loop apps (e.g., health apps) [14]. �ey use simulated apps and
structured metadata from each app. �ey rely on a physiological
simulator [9] to approximate potential e�ects of an intervention.
Preum et al. developed Preclude, a system to detect con�icts in
textual health advice generated from smart phone health applica-
tions and health websites [19]. While they provide a taxonomy of
con�icts in health advice and solution to detect di�erent types of
con�icts, their approach is focused on textual interventions only.

Another relevant system is DepSys that aims at detecting depen-
dencies from multiple smart home apps [15]. It is a utility sensing
and actuation infrastructure speci�cally designed for smart homes
that detects, and resolves con�icts among multiple smart home apps
by addressing multiple dependencies. SIFT [11], a safety centric
programming platform, detects whether apps running in an IoT
environment conform to safety policies and whether apps result in
logical con�ict with each other. Although it detects logical con�icts
(equivalent to opposite con�ict of CityGuard) using rule based ap-
proach, it does not consider di�erent nuances of detecting con�icts
/ policy violations, e.g., e�ects, secondary e�ects, emphasis, and
conditions, and it is not applied to inter-services problems.

Our previous work proposed a comprehensive typology of con-
�icts and a watchdog architecture for con�ict detection and reso-
lution in the context of smart city applications [12]. It identi�es
di�erent characteristics of smart city services that contribute to
potential con�icts in smart cities, e.g., uncertainty, real-time, dy-
namic behavior of services, spatio-temporal constraints, duration
and scale of e�ects. It focuses on the runtime device con�ict detec-
tion and detect con�icts by imposing pseudo-services on historical
data.

6.4 City Simulator
SUMO [7] is an open source microscopic tra�c �ow simulation,
which can import net/map and tra�c demand modeling compo-
nents. It has been utilized in several tra�c �ow related research,
such as vehicular communication, route choice and dynamic navi-
gation tra�c light algorithms emission and noise modeling person-
based Intermodal tra�c simulation In our work, SUMO is used
as a smart city simulator with help of Tra�c Control Interface
(TraCI) [21], a technique for interlinking road tra�c and network
simulators. With TraCI, the behavior of vehicles during simulation
runtime can be controlled and thus the in�uence of actions on the
simulated city are be�er understood.

7 CONCLUSION
CityGuard, a safety-aware novel watchdog architecture for de-
tecting and resolving con�icts in a smart city is developed and
evaluated. CityGuard is safety-aware as it focuses on maintaining
safety requirements by detecting and resolving con�icts before they
occur. In doing so, CityGuard also considers the context of potential
con�icts and resolves con�icts to maximize performance metrics.
CityGuard is able to simulate the primary and the secondary e�ects
of the actions performed by services, detect and resolve con�icts

among those actions, and thus improve safety. Evaluations are
performed using a simulation of part of New York City with 10
smart services located in 20 places. Using 6 safety metrics and 5
performance metrics, the evaluation shows that CityGuard is able
to minimize safety violations, and improve overall city performance
when compared to baseline methods.
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