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Abstract
Smart water meters will soon provide real-time access to

instantaneous water usage in many homes, and disaggrega-
tion is the problem of deciding how much of that usage is
due to individual fixtures in the home. Existing disaggrega-
tion techniques require additional water sensing infrastruc-
ture and/or a manual characterization of each water fixture,
which can be expensive and time consuming. In this paper,
we describe a novel technique called WaterSense to perform
fixture-level disaggregation using only a handful of inexpen-
sive motion sensors. WaterSense automatically infers how
many fixtures are in each room, and how much water each
fixture uses. We evaluate the system using a 7-day in-situ
evaluation in 2 diverse multi-resident homes with a total of
10 different water fixtures and 467 fixture events and observe
that our approach achieves 86% classification accuracy in
identifying individual water fixture events and 80-90% ac-
curacy in determining the water consumption of individual
water fixtures.

Categories and Subject Descriptors
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Keywords
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1 Introduction
The world’s usable water supply is decreasing at a faster

rate than it can be replenished. Household water conser-
vation is important to ensure sustainability of fresh water
reserves, to save energy from water treatment and distribu-
tion, and to prevent fresh water habitats from being affected
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through excessive water use [3]. Residents have a number of
practical options to conserve water, ranging from replacing
high flow toilets and showers with low flow replacements,
to reducing water usage for daily activities such as brushing
teeth or washing dishes. To make informed decisions that
maximize water savings, households first need a detailed un-
derstanding of how much water is used by each appliance
and water fixture in the home.

Water utilities are increasingly installing smart water me-
ters that provide real-time access to household water con-
sumption, and 31 million smart water meters are expected
to be installed by 2016 [2]. However, these meters are in-
stalled at the water mains and only provide aggregate water
usage, primarily for billing purposes. Disaggregation is the
problem of deciding how much of that usage is due to indi-
vidual fixtures in the home. For high flow appliances such
as washing machines, dishwashers, and sprinklers, existing
flow trace techniques can be used to uniquely identify their
usage time and water consumption [13]. However, monitor-
ing the usage of multiple sinks, toilets, showers, and other
fixtures that produce similar rates of flow in a home setting,
is challenging. For this reason, existing disaggregation tech-
niques require additional sensing on the water piping infras-
tructure, and/or a manual characterization of each water fix-
ture [7, 8, 9, 11]. These techniques can be expensive, difficult
to deploy, and time consuming.

In this paper, we present the WaterSense system that per-
forms fixture-level disaggregation of smart water meter data
using only simple motion sensors. Motion sensors are inex-
pensive ($5 each for X10 motion sensors [4]), easy to install,
and already prevalent in many homes as part of home se-
curity or home automation systems. WaterSense does not
require any additional sensing infrastructure on the water
pipes or fixtures, and disaggregates fixtures in an unsuper-
vised manner that does not require the collection of training
data. The WaterSense technique is based on two basic in-
sights: 1) fixtures with similar flow signatures (e.g. identical
toilets) are often in different rooms, and 2) fixtures in the
same room often have different flow signatures (e.g. a toi-
let vs. bathroom sink). Based on these insights, WaterSense
clusters all water usage events based on both flow signatures
and motion sensor signatures, and each of these clusters rep-
resents a unique water fixture in the home. One limitation of
this technique is that it is not likely to differentiate two identi-
cal fixtures in the same room, such as double sinks in a bath-
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Figure 1. WaterSense uses a three tier inference algo-
rithm to find 1) water flow events 2) clusters of flow vol-
umes that often co-occur with certain motion sensors,
and 3) different types of fixtures in the same room.

room. However, such distinctions may also be less important
for the purpose of water conservation decisions. We use a
novel Bayesian clustering algorithm to create robust clusters
despite noise in the motion sensor data caused by both wire-
less packet loss and multiple residents moving in multiple
rooms simultaneously. We deployed the WaterSense system
in two different, natural home environments for 7 days each
and found that the system can disaggregate flow at the water
mains to individual fixtures with an average 86% classifica-
tion accuracy.

2 Related Work
Several approaches have been proposed in the literature

to infer fine-grained water fixture use in homes. The most
basic approach is to use flow signatures, such as flow rate,
flow duration or, in the case of high flow appliances such as
washing machines and sprinklers, patterns of flow to iden-
tify types of fixtures and appliances [13]. However, flow
signatures alone cannot disambiguate between different in-
stances of identical sinks, toilets, or showers in the same
home. Fogarty et al. [7] use microphones installed in a
basement to classify water fixture use, and achieve good ac-
curacy in identifying high consumption appliances, but low
accuracy in differentiating between different instances of the
same fixture category. Another recent approach [11] uses vi-
bration sensors on pipes to disaggregate total flow measured
at a central location in a novel, unsupervised manner. Both
of these techniques, however, require additional sensing of
the water infrastructure, which may require access to pipes
in crawl spaces or walls. Furthermore, microphones and ac-
celerometers are more power intensive than motion sensors
and would either have a short battery life or would require
wired power.

Froehlich et al. [8] avoid extensive sensing by using a
single water pressure sensor that samples at 500Hz, plugged
into a free spigot or water outlet in the home. However, this
approach requires significant training data on the order of
several days in a real world setting [9] to achieve high ac-

curacy in inferring individual water fixture events. Our ap-
proach is an unsupervised technique that does not require
training data.

3 WaterSense System Design
In this section, we describe both the underlying sensing

components and the three tier inference approach used by
WaterSense to infer fixture-level water usage from the wa-
ter flow data stream and occupancy data streams. The Wa-
terSense algorithm uses a three tier approach, as seen in fig-
ure 1, and the sensor components shown in figure 2. In
Tier I, we perform edge detection on the water flow data
stream, matching rising edges and falling edges to compute
a sequence of water flow events. In Tier II, we present an
algorithm that groups flow events based on the motion sen-
sors with which they often co-occur. A key challenge is that
motion sensor data is very noisy due to (i) false positives
from multiple residents moving in different rooms simulta-
neously, and (ii) false negatives from low sensitivity on the
PIR sensors or wireless packet loss. To address these chal-
lenges, we design a Bayesian approach that we call ELoc
that uses both instantaneous and historical co-occurence of
a each flow volume with each motion sensor. Finally, in Tier
III, we differentiate the fixtures in each room into different
types based on flow signatures.

Throughout this section, we will explain each of the sys-
tem components in terms of an example involving two simul-
taneous toilet flush events. The data trace from the events is
shown in Figure 3: the top three graphs show motion sensor
data from the kitchen and two bathrooms, and the bottom
graph shows the total flow levels that must be disaggregated.
In this example, Tier I detects four edges with flow rates
of 0.3 and 0.6 kl/hour, respectively, and identifies them as
two different flow events. Tier II assigns the two water flow
events to two different bathrooms based on their temporal
proximity to motion sensor data in the two rooms, as well as
the historical correlation between these flow rates and these
motion sensors. Tier III identifies both flow events as toilets
using the flow volume and duration.

3.1 Physical Sensor Components
Our WaterSense approach requires a water flow meter at

the whole house water input line, and also motion sensors
in each room that contains water fixtures. In our home de-
ployments, we use a Shenitech Ultrasonic water flow meter
[1] that uses the Doppler effect to measure the velocity and
resulting flow of water through the pipeline. The flow meter
reports instantaneous water flow (in cubic meters per hour)
at a frequency of 2Hz using the home’s Wifi connection to
transmit data. We expect that utility water flow meters be-
ing deployed in a large scale [2] in homes will have a similar
setup. Figure 2(a) shows the installation of the flow meter in
one of our home deployments. In addition to the flow meter,
WaterSense requires at least one motion sensor in each room
containing water fixtures. In our deployments, we use off the
shelf X10 motion sensors [4] inside rooms to detect occu-
pancy, as seen in figure 2(b). The X10 motion sensors send a
binary ON message whenever motion is seen with a minimal
damping interval of 7 seconds between ON messages.



(a) Water Flow meter (b) Motion Sensor (c) Contact Switch for Ground
Truth

Figure 2. WaterSense uses a single flow sensor at the water mains (a) and motion sensors (b). Sensors were placed on
fixtures for evaluation purposes only (c).

3.2 Tier I: Detecting Water Flow Events
The goal of Tier I is to transform the raw water flow time

series F(t) (in kl/hour) from our flow monitor to a sequence
of timestamped water flow events W containing events of the
form Wi = (sti,endi, fi), where sti and endi denote the start
and end timestamps of the event, while fi denotes the mean
flow rate during event Wi. Tier I uses the Canny edge detec-
tion algorithm [6] on time series F(t) to compute a sequence
of timestamps Et when potential edges are present. The edge
value Ev

i for a given edge timestamp Et
i is then computed as

the difference between the median flow rate of the time inter-
vals after and before the edge timestamp given by equation 1
below.

Ev
i = |median(F(Et

i : Et
i+1))−median(F(Et

i−1 : Et
i ))| (1)

The rising and falling edges from E are partitioned into
two separate sets RE and FE respectively, matched using a
min cost bipartite matching approach the Hungarian algo-
rithm [12]). We set each edge value to its absolute value
when we partition the edges to rising and falling edges. The
edge weight between a rising edge REi and a falling edge
FE j is defined to be −log(pi j), where pi j is the match prob-
ability, obtained assuming a normal distribution on the rela-
tive difference between rising and falling edges:

pi j = N ((REv
i −FEv

j )/min(REv
i ,FEv

j ),0,σ) (2)

Additionally, we ensure that rising edges occur before
falling edges in each match, and that edges from two dif-
ferent water flow events are not matched with each other.
Specifically, we set pi j to 0 if (i) REt

i > FEt
j, or (ii)

min(F(REt
i : FEt

j)) <= βREv
i . Currently, we set parame-

ters σ = 0.3,β = 0.5 that works well across multiple homes.
Any unmatched sink edges whose corresponding ON or OFF
edges coincide with a flush event, are mapped accordingly
to a feasible higher flow event of opposite polarity, if such
an event is detected. From the resulting matches (RE,FE),
we compute water flow events Wi = (sti,endi, fi) by setting
sti = REt

i , endi = FEt
j, and fi = mean(REv

i ,FEv
j ). Dura-

tions Ti for each water flow events Wi are also computed as
endi− sti for use in the subsequent inference tiers.

In our example data trace in Figure 3, Tier I infers two
distinct water flow events for the two toileting events in bath-
room 1 and bathroom 2, with different start and end times. It
does this by detecting two rising and two falling edges each
with flow rates of 0.62 kl/hour and 0.32 kl/hour respectively.

3.3 Tier II: Creating Room Clusters
The goal of Tier II is to assign a room r̂i ∈ M to each

water flow event Wi computed in Tier I, using both Wi and
the set M of relevant motion sensor data streams as input;
we design the ELoc Bayesnet shown in figure 5 to make this
room assignment. In our current approach, we only consider
motion sensors in rooms containing water fixtures. Going
back to our example data trace in Figure 3, Tier II correctly
assigns water flow events W1 and W2 inferred by Tier I to
bathroom 1 and bathroom 2 respectively. However, this as-
signment is not intuitive just from figure 3 alone; both bath-
room 1 and bathroom 2 are occupied during the two flush
events. Tier II first clusters all water flow events based on
their duration and flow rate value, and then computes how
likely these clusters are to co-occur with the M motion sen-
sor data streams. Event W1 with a duration of 54 seconds and
flow rate of 0.62 kl/hour belongs to a (0.6 kl/hour, 40 second)
cluster that is more likely to be in bathroom 1 than bathroom
2; similarly, the other 0.32 kl/hour flush event is more likely
to co-occur with the bathroom2 based on long term evidence.
The ELoc Bayesnet, which uses both the instantaneous oc-
cupancy evidence from motion sensors, and also the histor-
ical room to flow signature likelihoods, accurately assigns
the flush events to the two bathrooms. On the other hand,
when multiple water fixtures such as flushes across multiple
rooms do have closer flow signatures, such as the two 0.5-
0.7 kl/hour flushes in Home 2, the Bayesnet can still use the
immediate occupancy evidence to match motion sensors to
flow events with high accuracy.

In the Bayesnet shown in figure 5, ri denotes the room
of water flow event Wi. Di encapsulates the temporal dis-
tance between event Wi and the |M| motion sensors, while
ci ∈ C is a hidden variable that denotes the flow signature
cluster to which the current event Wi belongs. Each motion
sensor stream Ms consists of a sequence of timestamps when
motion sensor s transmitted an ON event to our base sta-
tion. We compute room assignments r̂i for each event using
a maximum likelihood approach:

r̂i = argmax
ri

∑
ci

P(ri|ci).P(Wi|ci).P(ci).P(Di|ri) (3)

We first describe how the variables Di and the set of wa-
ter flow clusters C are computed, in order to obtain the three
conditional probabilities required in equation 3 above. Di
is composed of two |M| dimensional binary vectors Di1 and
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Figure 3. A 6 minute data trace from Home 1 shows the water flow data and binary occupancy data from two simulta-
neous flush events. Tier I detects four edges with flow rates of 0.3 and 0.6 kl/hour, respectively, and identifies them as
two different flow events. Tier II assigns the two water flow events to two different bathrooms based on their temporal
proximity to motion sensor data in the two rooms, as well as the historical correlation between these flow volumes and
motion sensors. Tier III identifies both flow events as toilets using the flow volume and duration.

Home #  Number of 
Residents 

Number 
of rooms 
with 
fixtures 

Number of 
sinks and 
flushes 

Pipe 
material 
and width 

Home 1 2 3 5 ¾” Copper 

Home 2 4 3 5 ¾” PEX 

 
Figure 4. Our deployments involved two homes with mul-
tiple residents. Both homes had a kitchen sink and two
bathrooms with both sink and toilet.

Di2, which denote if the minimal temporal distance between
the start time and end time of each water flow event and mo-
tion sensor stream Ms is below a threshold time dT (set to 12
seconds in our current approach):

Ds
i1 = (min(|Ms− sti|)< dT )∀s ∈M (4)

Ds
i2 = (min(|Ms− endi|)< dT )∀s ∈M (5)

We assume independence between the binary vectors Di1
and Di2, and also assume that the room assignment to motion
sensor j is independent of binary vectors Ds

i , when s 6= j.
Applying Bayes rule and our independence assumptions, we
get:

P(Di|ri = j) =
2

∏
k=1

(P(ri = j|D j
ik)∗P(ri = j)|P(D j

ik)) (6)

Currently, we fix the parameter P(ri = j|D j
ik = 1) = 0.9

∀ j,k, i, which works well across multiple homes. We cur-
rently discount P(ri = j) as a constant and set the prior prob-
ability P(D j

ik = 1) to be proportional to the number of ON
events from each motion sensor:
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Figure 5. Our ELoc Bayesnet clusters water flow events
based on both flow volume and co-occurence with motion
sensors.

P(D j
ik = 1) = |M j||(∑

s∈M
|Ms|)∀k, j, i (7)

We compute the set C of flow signature clusters by clus-
tering the water flow event Wi based on two features: the
event duration Ti, and the event value fi. We use quality
threshold (QT) clustering with a fixed relative distance width
of 0.25 on both duration and edge value [10]. QT clustering
makes a hard cluster assignment of qi ∈C to each event Wi.
Thus P(ci|Wi) = 1 when ci = qi and zero otherwise. In the
future, we intend to explore alternative clustering algorithms
with soft cluster assignments for use in the Bayesnet.

Finally, P(ri|ci) is obtained by first assigning events Wi to
rooms rdi using Di alone (rdi = argmaxri P(ri|Di)), and then
computing P(ri|ci) using a frequency count on how many
events from cluster qi are assigned to each of the motion
sensors in M. If we denote the set of events Wi such that
(rdi = j∧qi = x) is true to be RC j,x, and the set of events Wi
such that qi = x to be CLx, then we get the remaining proba-
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(b) Home 2

Figure 6. The water consumption feedback provided by WaterSense for the various fixtures monitored in the two homes
closely matches the ground truth for most high flow fixtures. End users can use such a display to start considering cost
effective ways to conserve water. (B stands for bathroom, K for kitchen, S for sink, and F for flush)

bilities required in equation (3) as:

P(ri = j|ci = x) = |RC j,x|/|CLx| (8)

P(ci = x) = |CLx|/|W | (9)

From equations (6), (7), (8), (9), and our hard clus-
ter assignments for events using QT clustering, we assign
maximum likelihood room labels r̂i using equation (3). In
the future, we propose to learn the parameters for P(ri|ci)
using a non-linear convex optimization algorithm to maxi-
mize the likelihood of observing the sensor data , given by
L = ∏

|W |
i=1 P(Wi,Di). Another interesting direction is to ex-

plore alternative distance vector features Di to potentially
improve accuracy further.
3.4 Tier III: Differentiating Fixture Types

The goal of Tier III is to infer fixture types, such as a
sink or a flush, for each water flow event Wi from Tier I. In
the current simplistic implementation, we first infer a flush
event cluster FL j in each room j, if any, by looking for an
event cluster contained in that room with an average flow
rate greater than 0.3 kl/hour and an average duration greater
than 30 seconds, with an event frequency of at least 10% of
events from the room. Events belonging to this cluster FL j
are assigned as flush events, while the remaining low flow
events are assigned as sinks. The fixture types from Tier III
and the room assignments from Tier II together constitute
unique water fixtures in the home, and we use these assign-
ments to present users with feedback on the time of use of
individual water fixtures distributed around a home. We also
provide users with feedback on total water consumption of
individual fixtures by multiplying the fixture use durations
Ti of each unique water fixture with the corresponding flow
values fi.

4 Evaluation
To evaluate our WaterSense approach, we deploy our sys-

tem in two homes for 7 days each. Both homes had multi-
ple residents, multiple bathrooms, and a wide array of water
fixtures and appliances. Details of the two deployments are
summarized in Figure 4. To execute WaterSense in these
homes, we deployed a single water flow sensor on the water

mains and a motion sensor in each room. In Home 2, one
of the motion sensors in a bathroom malfunctioned during
our week long deployment, so we used a motion sensor in an
adjacent bedroom with a partial view of the bathroom in our
analysis. To evaluate the system, we deployed ZWave con-
tact reed switches [5] , as shown in Figure 2(c) to record the
actual times that each fixture was used. We compute ground
truth water consumption for each fixture by integrating total
water flow into the house when each fixture was used. In
the case of simultaneous toilet and sink events when we do
not observe explicit sink edges, we ignore the short duration
usage of the sink. These cases constitute a small fraction of
events and we do not believe that it significantly changes the
overall water consumption profiles. In this experiment, we
installed ground truth sensors on only 3 sinks and 2 toilets
in each home and only evaluate accuracy for these fixtures.
Other fixtures and appliances were also used during the ex-
periment period, and we observe several anecdotal instances
of fixtures such as the shower or the sprinkler system being
inferred in these homes. However, we currently limit our
evaluation only to those ground truth events observed from
the ZWave system. Ground truth events that do not change
the total water consumption of the house are ignored, since
they do not affect the water consumption feedback to the end
user. In the future, we intend to expand our evaluation to a
larger set of fixtures and appliances.

The true and estimated water consumption levels for each
fixture are shown in Figure 6. The order of the fixtures is
sorted based on their actual flow. WaterSense estimated wa-
ter flow at each fixture with a median accuracy of 81.5% in
Home 1 and 89.9% in Home 2. More importantly, how-
ever, WaterSense preserves the relative ordering of fixtures
in terms of maximum consumption; it correctly indicates, for
example, which sink or toilet causes the most water usage.
End users can use the output of WaterSense to understand
what the high consumption fixtures in their home are. If
combined with intuitive displays that show users when each
fixture was being used, and in which daily activity, we ex-
pect to provide users with actionable recommendations to
save water, such as leaving the sink closed while washing
or brushing, or providing low flow replacements for certain
showers and flushes. For example, in Homes 1 and 2, res-
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K S 8 0 0 8 1 

B1 S 1 19 0 2 0 

B1 F 0 1 49 0 0 

B2 S 3 1 0 16 2 

B2 F 0 0 0 1 14 

 

(a) Home 1

Fixtures K S B1 S B1 F B2 S B2 F 

K S 81 10 0 3 0 

B1 S 7 78 0 5 0 

B1 F 1 0 85 0 5 

B2 S 0 1 0 6 0 

B2 F 0 0 2 1 13 

 

(b) Home 2

Figure 7. WaterSense accurately classifies water flow events for most of the monitored water fixtures across the two
homes as seen in the fixture level confusion matrices. Confusion between fixtures of the same type in different rooms is
common due to overlapping occupancy. Confusion between fixtures of different types, such as a sink and a flush, due to
overlapping flow signatures, is less common. (B stands for bathroom, K for kitchen, S for sink, and F for flush)

idents might be able to infer that it might be most efficient
to replace the high flow toilet in bathroom 1, while in Home
2, residents can also infer that replacing the high flow toilet
in bathroom2 would have about the same effect as using the
sinks in bathroom1 and the kitchen more efficiently with a
better understanding of how they are used.

Figure 7 shows the confusion matrix for classifying indi-
vidual fixture usage events. We observe that classification
accuracy is high for the majority of fixtures in the home.
Most misclassifications that did occur were due to simultane-
ous occupancy in multiple rooms from fixtures with similar
flow signatures, such as high confusion between sink usage
in the kitchen and bathroom2 in Home 1. In Home 1, we find
zero confusion between the flush fixtures in the two bath-
rooms even in the presence of simultaneous occupancy as
seen in the example data trace in Figure 3, while in Home 2,
there is about 7% confusion between the two flush fixtures.
The reason is that in Home 1, the two flush fixtures have a
larger difference in flow signatures (0.3 and 0.6 kl/hour flow
rates), while in Home 2, the two flush fixtures have simi-
lar flow signatures of 0.6-0.7 kl/hour; the Bayesnet in Home
2 relies more heavily on the noisy instantaneous occupancy
than in Home 1, resulting in slightly more errors. In general,
these misclassifications do not cause significant degradation
in water consumption accuracy because they are infrequent
and roughly symmetric across the diagonal, and so they often
cancel each other out.

5 Conclusions and Future Work
In this paper, we present an unsupervised approach to in-

fer the fine-grained fixture level breakdown of water con-
sumption in homes by effectively combining cheap occu-
pancy sensors and whole house water flow meter data. Our
approach shows significant promise in an early evaluation
carried out in two homes over 7 days each, and is able to
accurately infer both the time of use and water consumption
of individual fixtures. In the future, we expect to build upon
the existing approach by performing an extensive evaluation
of our system that includes ground truth sensing on fixtures
such as the shower, washing machine, and dishwasher to ad-
dress potential challenges posed due to simultaneous fixture
use from these high consumption fixtures. There are also im-
provements to be made in our inference approach, including
fixture identification in Tier III, alternative temporal distance

features used in the bayesnet, and additions to the algorithm
to handle simultaneous or compound flow events. It would
also be interesting to consider non-binary PIR sensors that
report the actual intensity of infrared changes, as opposed to
the existing binary motion sensors; with non-binary PIR sen-
sors, it would be possible to perform a joint clustering of the
flow rate and the infrared intensity, to achieve higher accu-
racy in identifying individual fixtures within a room, and also
better disambiguate cases where there is simultaneous occu-
pancy in multiple rooms. With these additions, we expect
our WaterSense approach to be a viable approach to provide
fine grained water consumption information and recommen-
dations to end users to help conserve water.
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