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Abstract—Firefighters’ safety is a critical problem and a
major issue is the lack of reliable indoor firefighter localization.
State of the art approaches have failed to provide an automatic,
accurate and reliable solution to localize firefighters in harsh
environments. This paper presents a novel system to achieve
this goal, by combining pedestrian dead reckoning with a
recently emerging breadcrumb system. Our solution includes a
new collaborative localization algorithm that contains a novel
marginalization scheme and can improve the location accuracy
of firefighters. We fully implement the algorithm in a complete
system and conduct experiments in both an office building and
in a simulated firefighting scene that involved a real fire and
professional firefighters. Evaluation results from a 400 meter-
long trace demonstrate that our approach significantly reduces
the average and maximum firefighter location error to 1.4%
and 2.7% of the total distance, respectively.

Keywords-Breadcrumb system; indoor localization; relative
measurement graph;

I. INTRODUCTION

Our society relies on a multitude of public safety per-
sonnel, e.g., firefighters. While firefighters protect our lives
in many respects, they often place themselves in danger
when dealing with fires. The September 11 attacks in New
York killed 343 American firefighters [1]. If we could know
the accurate locations of firefighters in real time, it would
help incident commanders to warn them of invisible dangers
ahead, and may even allow injured firefighters to be rescued.
While previous work has taken initial steps towards this goal,
in practice it is still limited to vocal reports which requires
the involvement of firefighters [2]. The communication qual-
ity is another critical issue [3], and some solutions also suffer
from long setup time (typically 1-2 hours) while establishing
new base stations as anchor nodes [4]. Other solutions
rely on floor plans or other environmental information to
minimize the error accumulation of using a Pedestrian Dead
Reckoning (PDR) approach [5].

The specific characteristics of the indoor localization
problem in a firefighting scenario consist of two aspects.
First, harsh and complicated environments add practical
constraints: (1) there usually is no reliable power supply in
the building during the fire, (2) there is low ambient light,
(3) smoke and (4) heat. Second, compared to consumer-

Figure 1. System overview.

oriented applications, rescue tasks have unique requirements:
(1) energy is not a main concern; (2) firefighters have to
carry professional equipment, such as an air respirator, fire
hose and axe and other equipment; (3) they have to focus on
rescue tasks; and (4) their locations need to be accessible to
themselves and their on-site commanders outside the build-
ing. A more detailed analysis of requirements and system
architecture consideration for first responder systems can
be found in [6]. Imagine, however, that we have a quickly
deployable on-site wireless sensor network (WSN) that is
able to connect firefighters to outside incident commanders
and help localize firefighters. Such a system has the potential
to overcome the difficulties above.

But how can we deliver such a real time WSN-assisted
indoor localization system? Most existing generalized lo-
calization methods only address part of the problem. For
example, most infrastructure-based methods [7]–[9] assume
that sensor nodes have been pre-installed or need to be
manually deployed before they are used for localization. The
challenge is that pre-deployed sensor nodes are probably not
working any more due to fire, explosion, collapsed walls, and
so forth [3]; what may also not be working are the WiFi
and cellular stations in the building [10]. Solutions where



firefighters manually deploy sensor nodes distract them from
their primary fire fighting and rescue work and hamper their
safety as well.

In recent years, a promising solution called the bread-
crumb system [10]–[12] was proposed to transmit users’
physiological parameters that measure life critical func-
tions to an incident commander reliably in real time. Each
firefighter carries multiple breadcrumbs (sensor nodes) in
his breadcrumb dispenser and a breadcrumb is automati-
cally deployed whenever a communication connection to
the breadcrumb chain gets weak, establishing a dynami-
cally emerging wireless sensor network. Breadcrumbs are
deployed as a firefighter enters so they are not burned
up ahead of time. If they get burned up later then new
ones are automatically dropped as firefighters walk around.
Motivated by this recent development, we create a solution
to achieve an automatic and accurate indoor localization
system and reliable communication system at the same time
by combining a breadcrumb system, a conventional PDR
approach, and a new localization algorithm. Firefighters are
passive with respect to localization, thus the system does not
affect their primary tasks. A system overview is shown in
Fig. 1.

The main contributions of this paper include:

• A new collaborative localization algorithm is created
that is efficient and can run in real-time. It permits
incremental updates to location estimates and provides
error estimations. Its solution leverages measurements
from a breadcrumb system and a PDR system.

• The localization algorithm is fully implemented and
integrated into a complete real-time indoor localization
system that does not require firefighters’ involvement.

• To the best of our knowledge, we provide the first
experiment on communication and localization using
a breadcrumb system where real fire, smoke and pro-
fessional firefighters are used.

• One evaluation of the system is from indoor traces of
400 meters. The results demonstrate that our approach
reduces the average firefighter location error to 5.6
meters and the maximum error to 10.9 meters, which
implies a promising error factor of only 1.4% and 2.7%
of total distance. These results outperform a baseline
based solely on PDR. Overall, the evaluation results
show that our solution successfully achieves region-
level accuracy and is robust in complicated real-world
indoor environments.

The remainder of this paper is organized as follows. We
compare our work with the state of the art in Section II.
Then an overview of the system design is presented in Sec-
tion III. The collaborative localization method is described
in Section IV. The implementation and evaluation results
are shown in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

Localizing firefighters is challenging when they are in
large commercial buildings or complicated industrial build-
ings that generally aren’t accommodating to standard GPS
technology. The current standard approach for firefighter
localization is based on vocal communication. In fact,
vocal communication is used in almost all first response
applications via standard communication devices like P25
systems [2]. Firefighters report their approximate positions
to the incident commander periodically, sometimes with
positions stated as stairways or near particular windows.
This method is highly problematic due to the chaotic envi-
ronment. To make it worse, the communication is often lost
when firefighters go to higher floors or enter basements [3],
and subsequently firefighters can no longer be localized.

The Department of Homeland Security is seeking for
techniques to assist indoor firefighter localization. For in-
stance, WPI proposed to use fire trucks as temporary base
stations when the firefighters arrive at the site and adopt the
traditional triangulation approach, but this method suffers
from a long setup time of between one to two hours [4].
Honeywell proposed to use foot-mounted sensors to collect
step data and estimate the position of firefighters. However,
the accuracy of the approach is unsatisfactory since firefight-
ers change their step distances in different environments and
errors accumulate. Furthermore, the localization process fails
when communication is interrupted.

Academic and industry research has taken important
steps towards accurate indoor localization using various
approaches which can be classified into two classes:
infrastructure-based and infrastructure-free. The first class
utilizes WiFi, lights or other pre-installed devices to localize
users. For example, [13] proposed a WiFi based localization
system using Synthetic Aperture Radar (SAR) to emulate
large antenna arrays on commodity mobile device. The
device can be located with a median error of 39 cm in three
dimensional space. [14] presented a solution based on visible
light. They use polarization to encode location information
of light sources, so that flicking can be avoided. However,
pre-installed infrastructure would probably not work any
more due to fire, explosion, collapsed walls, and so forth
[3].

The second category does not require pre-installed indoor
infrastructure. For instance, the No.1 rank of 2015 Microsoft
Indoor Localization competition [15] achieved 20 cm local-
ization accuracy using a HDL-32E high definition LIDAR
with typical accuracy of 2 cm [16]. Although accurate,
LIDAR devices are too expensive and suffer performance
degradation in smoky environments. Similarly, ultrasonic-
based and depth-perception-based techniques may face the
problem that the environment’s temperature exceeds sensor’s
operating range. The change rate of speed of sound is
approximately 1%/5.7◦C. Affected by the heat and temper-



ature variation in the on-fire building, readings of ultrasonic
ranging become less reliable in the non-homogeneous envi-
ronment.

Researchers have also explored using the Pedestrian dead
reckoning (PDR) for firefighter localization. However, it
is well known that PDR suffers from error accumulation
and cannot achieve long term accuracy. To cope with
this problem, it is natural to calibrate the result of PDR
with some form of landmarks. For instance, [17] shows a
promising civilian unsupervised indoor localization solution
that combines dead reckoning with landmarks naturally
existing in buildings identified by signatures on multiple
sensing dimensions. [5] describes how to combine PDR with
the floor plan to eliminate the location error. However, as
mentioned before, all types of pre-installed devices cannot
guarantee their availability when the building is on-fire.
Moreover, we argue that it is not reasonable to assume that
the floor plan, especially an up-to-date floor plan, is available
for each building.

More recently, a breadcrumb system has been proposed
to help improve the communication between firefighters and
incident commanders. The National Institute of Standard and
Technology first proposed the use of dynamically dropping
sensor nodes to form a relay network [3], and [10] pro-
vides the first systematic design for breadcrumb systems
with extensive real-world experiments. Then a series of
related problems have been addressed, such as optimized
collaboration strategy for multiple firefighters [11], delay
tolerant networking (DTN) when all firefighters run out
of breadcrumbs [18], and handling the body shadowing
effect in narrow spaces [12]. However, to the best of our
knowledge, so far there is not yet a holistic solution for
firefighter localization using a breadcrumb system.

We also note that there have been work on combining
PDR with wireless sensor networks (WSN) [7]–[9]. For
example, [7] proposed a WSN-aided PDR solution with a
hip-mounted IMU. The Euclidean distance measurements
to anchor nodes are fused with PDR outputs through an
extended Kalman filter. However, all these existing works
assume that the location of sensor nodes are fixed and the
topology of the sensor network is unchanged. But in our
system, breadcrumbs themselves are deployed automatically
from a dispenser with only estimated positions. In addition,
the topology of breadcrumb chains is dynamically changed.
Breadcrumbs may be burned up, destroyed by a collapsed
wall, kicked by firefighters in the darkness, etc. As a result,
adding, removing and moving breadcrumbs are frequent.
These factors no doubt make the problem much more
challenging.

III. SYSTEM DESIGN

We present the design details of our proposed system in
this section. The ultimate goal is to localize firefighters in
an unfamiliar building with region-level accuracy. In our

system, each firefighter is equipped with a foot-mounted
PDR unit and carries breadcrumbs in the dispenser. The
PDR unit is to estimate the displacement as a firefighter
moves. The breadcrumb system is used to relay data and
also provide relative distance measurements among system
nodes (breadcrumbs and firefighters). By collecting all these
position related measurements, a collaborative localization
algorithm is applied, which gives the position estimations
for both firefighters and breadcrumbs.

A PDR consists of an accelerometer and a gyroscope,
which keeps track of the acceleration and angle velocity
over time. By using inertial dynamic equations combining
with the zero-velocity update error correction [19], [20], the
PDR outputs a firefighter’s displacement estimation between
any two time points.

As firefighters move, breadcrumbs are dropped on the
ground, generating a chain to relay data from firefighters to
the base station outside the building. The data could be fire-
fighters’ vital signs, voices, pictures or location information.
Meanwhile, a breadcrumb estimates the relative distance
between itself and another system node (another breadcrumb
or a dispenser) by using the receive signal strength indicator
(RSSI).

By collecting all these relative position related measure-
ments through the breadcrumb chain to the base station, a
relative measurement graph (RMG) is built, where bread-
crumbs as well as firefighters are nodes, and measurements
are the edges. Then a novel collaborative localization al-
gorithm is applied to the RMG to estimate the positions
of firefighters and breadcrumbs. The algorithm is highly
scalable, which allows nodes to join and leave the graph
dynamically. This is because once a change occurs, only
related nodes’ positioning information needs to be updated.

Firefighters always work in groups for rescuing or putting
out the fire. The analysis and model of incident scene
mobility can be found in [21] and [22]. It is forbidden to
act alone, especially in poor visibility area. When in the
on-fire building, firefighters rely on breathing apparatus to
breath. Generally, a fully filled oxygen tank provides about
20 to 30 minutes of air supply (depending on the firefighter’s
physique and activity intensity). If the task last hours,
firefighters would need to retreat and replace their oxygen
tanks. After the fire, firefighters also need to check the
burned plots for several times to prevent rekindle. Therefore,
firefighters will go through the same place several times.
Our previous works have addressed the coordinated deploy-
ment problem to achieve efficient and balanced deployment
scheme in a group of firefighters [10], [11]. [23] studied the
relay placement problem in polymorphous network which
is also related to the deployment scheme. In this work, we
focus on the collaborative localization problem when using
breadcrumb systems.

A key factor that boosts our system is to leverage the po-
sition correlation between firefighters and breadcrumbs. On



one side, breadcrumbs can be used to “calibrate” firefighters’
position estimation. On the other side, a firefighter can
strengthen the position correlation between two breadcrumbs
by new measurements provided by the PDR when the
firefighter goes from one breadcrumb to the other.

IV. COLLABORATIVE LOCALIZATION

We describe the collaborative localization algorithm in
this section. A relative measurement graph (RMG) is defined
as G = (V,E, F ), where V is the vertex set, including
all interested nodes to be localized; E is the edge set,
representing the measurement relationship between nodes;
and F is the mapping E → (Z,P ), where Z is the set of
all the measurements and P is the set of the error (noise)
covariance matrices of the measurements. Assume there are
totally n nodes in a breadcrumb network, Node i’s location
is xi = [xi, yi, zi]

T (i = 1, · · · , n).
The position of the base station is assumed to be known

(obtained via GPS). There are two types of measurement in
breadcrumb system: the relative position measurement and
the relative range measurement. PDR units provide relative
position measurements. Consider a moving firefighter who
drops two consecutive breadcrumbs i and j. Let ζij denote
the noisy relative position measurement given by the PDR
unit, and ωij is the measurement noise. Then the relative
position measurement between i and j is modeled as

ζij = xi − xj + ωij

The other measurement is a relative range measurement.
In the breadcrumb system, the relative range between two
nodes is estimated by the RSSI distance estimator. Let
rij denote the relative range measurement and γij the
measurement noise between Node i and Node j, then the
relative range measurement is modeled as

rij = ‖xi − xj‖+ γij

All the above measurements can be written in a uniform
formula as

zij = h(xi,xj) + εij (1)

where zij is the noisy measurement, εij is the measurement
noise, and h(·) is the measurement function. For binary
relative position measurement, h(xi,xj) = xi − xj + εij .
For binary relative range measurement, h(xi,xj) = ‖xi −
xj‖+ εij .

A. Estimation on Relative Measurement Graph

The estimation problem on RMG with linear measure-
ments is discussed in [24], [25]. Assume there are m relative
position measurements about the n nodes in the breadcrumb
network, denoted as ζij = xi − xj + εij ∈ R3, (i, j ∈
{1, · · · , n}), where εij ∈ R3 is the random error vector
with zero mean. Let x denote all the positions of the n
nodes x = [xT1 ,x

T
2 , · · · ,xTn ]T ∈ R3n, z denote all the noisy

measurements z = [ζT1 , ζ
T
2 , · · · , ζTm]T ∈ R3m, and ε denote

the measurement noises ε = [εT1 , ε
T
2 , · · · , εTm]T ∈ R3m. The

uncertainty of a measurement is represented by a covariance
matrix Pk = E[εkε

T
k ] ∈ R3×3, (k = 0, · · · ,m). Then the

measurement equation can be written as

z = ATx + ε (2)

where A = A ⊗ I, A is the incidence matrix of the
measurement graph G, I is the 3× 3 identity matrix, and ⊗
denotes the Kronecker product.

An example of one base station and three breadcrumbs
is shown in Fig. 4. The solid red circle represents the
base station whose position is known. The hollow black
circles represent deployed breadcrumbs. The edges are the
relative position measurements. The measurement noises are
annotated on the corresponding edges. The corresponding
equation is listed below the graph. The incidence matrix A
of graph G is a n×m matrix, where one row corresponds to
one node and one column corresponds to one edge, which
indicates if a node is involved in an edge (measurement) and
what the direction it is. For example, edge e4 (measurement
ζ4) involves Node 2 and Node 3, and the direction is from
Node 2 to Node 3. This corresponds to A24 = I and
A34 = −I.

The position vector x can be partitioned into an anchor
node variable vector xr (in the example, the position of the
base station) and a non-anchor node variable vector xb (in
the example, the positions of the 3 deployed breadcrumbs).
The incidence matrix can also be partitioned to an anchor
node matrix Ar and a non-anchor node matrix Ab. Then (2)
can be rewritten as

z̄ = ATb xb + ε (3)

where z̄ = z−ATr xr. Obtaining an estimate of xb becomes
a classical estimation problem, which can be solved by
Best Linear Unbiased Estimator (BLUE) [26]. The best
estimate of xb in the linear combination space of all the
measurements is uniquely determined by x̂b in the following
linear system

Lx̂b = b (4)

where L = AbP−1ATb is called G’s Kirchhoff Matrix, b =
AbP−1z̄ and P is a block diagonal matrix consisting of all
the covariance matrices Pk of εk, (k = 1, · · · ,m). BLUE
has the smallest variance for the estimation error xb − x̂b
among all linear estimators [26]. The covariance matrix of
the estimation errors is given by

Σ = E[(xb − x̂b)(xb − x̂b)
T ] = L−1 (5)

However, BLUE has several disadvantages when being
applied to the breadcrumb system. First, the computation
complexity of BLUE is very high. Assuming there are n
nodes, m measurements, and a constant number of anchors
in the network, the computational complexity for Σ is



Figure 2. The hardware prototype. Figure 3. Breadcrumb system in action.
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Figure 4. An RMG example.

T (Σ) = O(n2m) since T (L) = T (P−1) + T (AbP−1) +
T ((AbP−1)ATb ) = m + nm + n2m = O(n2m) and
T (L−1) = n3. And the complexity for calculating the
estimation is T (x̂b) = O(n2m) since T (x̂b) = T (L−1) +
T (b) + T (L−1b) = (m+ nm+ n2m+ n3) + nm+ n2 =
O(n2m). The solution does not scale since the compu-
tational complexity depends on the measurements number
m which is very large in practice (m � n). Second,
BLUE follows a one-time calculation scheme. When the
measurement graph is changed, all previous calculations
need to be re-executed. Such changes include new generated
measurements and nodes leaving or joining the network,
which are common in the breadcrumb system. Third, there
are relative ranging measurements, which are non-linear,
in the breadcrumb network, while BLUE assumes all the
relative measurements are linear. Fourth, there are mobile
nodes, i.e. firefighters, in the breadcrumb system. However,
BLUE only considers static RMG.

To address the above issues, we describe a novel method
based on an electrical analogy. It has a lower computation
complexity, follows an incremental computation scheme,
does not require all the relative measurements to be linear,
and supports mobile nodes.

B. Incremental Estimation on Generalized Electrical Net-
work

Rescue tasks may last a few hours and produce a large
amount of measurements. Therefore, the number of mea-
surements m will be much larger than the number of nodes
n. To reduce the computational complexity and allow nodes
joining, leaving and moving in the network, we use a novel
computation scheme that analogizes the graph G into a
circuit and utilizes electrical laws to compute x̂b and Σ
incrementally.

It has been shown in [25] that a relative measurement
graph G = (V,E, F ) is analogous to a generalized electrical
network (GEN) G = (V, E ,F), where V is the node set the
same as in G, E is the edge set the same as in G, and
F : E → R is an edge function that assigns each edge ek a
matrix valued resistance Rk which is numerically equal to

the measurement error covariance matrix Pk in the graph
G.

The proof of the analogy between a RMG and a GEN can
be found in [27]. Below we briefly explain the underlying
idea. In BLUE, the estimate x̂i is a linear combination of
all related measurements, i.e., x̂i = ΣkJikzk, where Jik ∈
R3×3 is a weight matrix. As a whole, BLUE minimizes
trace(cov((x − x̂))) = trace(ΣkJkPkJ

T
k ). On the other

hand, the Thomson’s Principle [27] in multidimensional
situation states that if flow Jk (any function of an edge) of a
graph satisfy Kirchhoff’s Laws, the flow uniquely minimizes
the graph’s energy dissipation, i.e., trace(ΣkJkRkJ Tk ).
Since BLUE gives the result of minimum energy dissipation,
the Kirchhoff’s Laws holds in graph G. Therefore, RMG
is analogous to GEN, where Pk is analogous to a general
resistance Rk, and weight matrix Jk is analogous to a
generalized current.

The Kirchhoff’s Current Law holds in the GEN. A gener-
alized current J is defined as a 3× 3 matrix associated with
an edge with certain direction. For each node in V , the net
generalized current flowing out or into that node is 0.

The Kirchhoff’s Voltage Law holds in the GEN as well. A
generalized voltage potential difference Uij between Node
i and Node j is defined as a 3× 3 matrix Uij = Rij ×Jij .
For any loop in the G, the sum of the generalized voltage
potential difference in the clockwise or the counterclockwise
direction is 0. If there are currents or voltages imposed to the
GEN, each node is associated with a voltage potential. The
anchor nodes are considered being connected to the ground
without a resistance. For example, the location of the base
station is assumed to be known without uncertainty, and thus
its voltage potential is 0.

Fig. 5 shows the GEN analogy of the RMG example
in Fig. 4. The resistances are numerically equal to the
corresponding measurement error covariance matrix of the
the edges. The Kirchhoff’s Current and Voltage Laws are
also illustrated in the figure.

Let Σii denote Node i’s estimation covariance matrix,
i.e., the ith diagonal block element of covariance matrix
Σ. Σii is numerically equal to the effective resistance Reff

i



between Node i and the ground in G [25]. To calculate Σii,
we impose an identity generalized current I to Node i. Then
Node i’s voltage potential Uii is numerically equal to Reff

i

Uii = Reff
i × I = Σii

Let’s define the GEN G imposed by an identity current
I on Node i as Node i’s Identity Current Graph, denoted
as Gi. Let U

(i)
jj represent the voltage potential of Node j

in Gi. Let Φi = [U
(i)T
11 ,U

(i)T
22 , · · · ,U(i)T

nbnb ]T denote the
nb voltage potential variables in Gi. Then with Kirchhoff’s
Current Law, the current balance equation for each node can
be written as

LΦi = Hi (6)

where Hi = [0,0, · · · , I, · · · ,0]T ∈ R3nb×3, 0 is the
3 × 3 zero matrix and I is the 3 × 3 identity matrix.
L ∈ R3nb×3nb , (i, j ∈ {1, 2, · · · , nb}) and

Lij =





∑
l∈V

P−1il (or P−1li ) if i = j and eli ∈ E
− ∑
i,j∈V

P−1ij (or P−1ji ) if i 6= j and eij ∈ E

0 if eij /∈ E .
(7)

Given that L = AbP−1ATb and Σ = L−1, it is not hard to
show that L is equal to L in (4).

In (6), only one identity current graph is considered. If
all the identity current graphs are considered together, i.e.,
Gi for i = 1, 2, · · · , nb, then we have

LΦ = H (8)

where Φ = [Φ1,Φ2, · · · ,Φnb
] is the voltage potential vari-

able matrix and H = [H1,H2, · · · ,Hnb
] = I ∈ R3nb×3nb .

The solution of (8) is

Φ = L−1 = Σ

Considering the definition of U, it can be seen that
the covariance matrix Σij between Node i and Node j
is numerically equal to Uij of Node i in Node j’s Gj .
Since Σ is a symmetric matrix, it is also equal to the
voltage potential Uji of Node j in Node i’s Gi. Moreover,
b = [bT1 , · · · ,bTnb

]T in (4) can be built directly as follows

bi =
∑

eij∈E
P−1ij [ζij + cj ], (9)

cj =

{
xj if Node j is an anchor node
0 ∈ R3×1 otherwise (10)

By using (4) and (5), the node position estimations and
the corresponding error covariance matrix can be derived.

The advantages of the analogy method are threefold. First,
comparing with the BLUE method, the analogy method
reduces computational complexity for constructing the ma-
trix L from O(mn2) to O(m), and the matrix b from
O(nm) to O(m). After building the matrices b and L,
the computational complexity for x̂b is O(n2), and the

1 2
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Figure 5. The GEN analogy of the RMG example. For Node 2, the
Kirchhoff’s Current Law holds: P−1

1 (U1 − U2) + P−1
2 (U2 − U1) +

P−1
3 (U4 −U2) + P−1

4 (U2 −U3) = 0. And for the right side loop of
Node 2, 3 and 4, the Kirchhoff’s Voltage Law holds: P3J3 + P4J4 +
P5J5 = 0.

complexity for Σ is O(n3) since the main complexity comes
from the matrix inversion L−1. Second, it maps the local-
ization problem to a circuit’s Kirchhoff’s matrix calculation
problem. This not only makes the localization problem more
intuitive, but also brings all the laws from circuit field to
the localization field. Finally, since the Kirchhoff’s matrix
explicitly reflects a network’s topology, when the topology
changes (node joining/leaving, or measurements generated),
only the corresponding elements of the Kirchhoff matrix
are affected. This incremental computation scheme perfectly
fits with the breadcrumb system which has many dynamic
changes.

C. Operations on GEN

In the breadcrumb network, there are many dynamic
changes, including new measurements being generated, new
nodes joining the network, and existing nodes leaving the
network. To avoid re-computing all the values when changes
happen, we define three operations on the GEN, so that we
only need to modify the equations for the involved nodes.

1. AddMeasurement. When a new measurement ζij is
generated, if Node i and Node j are both non-anchor nodes,
according to Kirchhoff’s Current Law or (7), updates are
done using the following equations
[

Lii Lij
Lji Ljj

]
=

[
Lii Lij
Lji Ljj

]
+

[
P−1ij −P−1ij
−P−1ji P−1ji

]

[
bi
bj

]
=

[
bi
bj

]
+

[
P−1ij ζij
P−1ji ζji

]

(11)

If Node u is an anchor node, update

Ljj =Ljj + P−1ji
bj =bj + P−1ji (ζji + xi)

(12)

When a node joins or leaves the network, it only affects
the node and its neighbors. Next we define an operation to
handle this kind of event.

2. AddNode. If a node joins the network with some mea-
surements to some already existing nodes, use the following



operation to first allocate new rows and columns to L and
b for the new node

L =

[
L 0
0 0

]
,b =

[
b
0

]
(13)

Then we apply the AddMeasurement operation on each
newly introduced measurement.

3. DeleteNode. If a node leaves the network, its infor-
mation need to be safely forgotten. This process is called
marginalization. From the perspective of probability, it is
P (A) =

∫
f(A,B)dB where A is the variable to keep and

B is the variable to drop. If we have

x̂b =

[
x̂1

x̂π

]
,Σ =

[
Σ11 Σ1π

Σπ1 Σππ

]
(14)

where Node 1 is the node to be deleted and the subscript π is
a block index that refers to all the other indexes (except 1).
Then the delete operation on x̂b and Σ is to simply delete
the corresponding rows and columns

x̂b = x̂π,Σ = Σππ (15)

For L and b, before the deletion

L =

[
L11 L1π

Lπ1 Lππ

]
,b =

[
b1

bπ

]
(16)

According to the relation between L and Σ specified in (5),
and the relation between b and x̂b given by (4), the delete
operation is

L =Lππ − Lπ1L
−1
11 LTπ1

b =bπ − Lπ1L
−1
11 b1

(17)

D. Non-linear Measurements

In the breadcrumb system, the relative measurements
output by PDR is linear, while the ranging measurements
based on two nodes’ RSSI are non-linear. Next we extend
the GEN method to the non-linear case.

The relative measurement (1) can be expanded by Taylor
series at x̂ij to the first order as z̃ij = h(x̂ij) + H(xij −
x̂ij)+εij , where z̃ij is the linear approximation for zij , and
H is the derivative of measurement function h(·).The three
operations are modified as follows.

1. AddMeasurement+. According to the information
filter [28]–[30] , the AddMeasurement operation, i.e., (11)
is extended to

Lz = Lz + HTP−1z H (18)

bz = bz + HTP−1z (z− h(x̂) + Hx̂) (19)

where Lz represents the sub-matrix of L that contains the
elements of involved nodes. This is similar for the vector bz .
Pz is the error covariance matrix of involved measurement
errors. x̂ is the latest position estimate and the point that

the derivative function is evaluated on. For example, for a
relative ranging measurement between Node i and Node j

Lz =

[
Lii Lij
Lji Ljj

]
,H =

[
hij
−hij

]

where

hij =
(x̂i − x̂j)

T

‖x̂i − x̂j‖+ εij

According to (7) and (9), we can also build L and b directly

Lij =





∑
l∈V

hTilP
−1
il hil if i = j and eli ∈ E

− ∑
i,j∈V

hTijP
−1
ij hij if i 6= j and eij ∈ E

0 if eij /∈ E .

(20)

bi =
∑

eij∈E
hTijP

−1
ij (zij − h([x̂Ti , x̂

T
j ]T ) + H[x̂Ti , x̂

T
j ]T )

(21)
For the relative ranging measurements, h([x̂Ti , x̂

T
j ]T ) =

‖x̂i − x̂j‖. For relative position measurements,
h([x̂Ti , x̂

T
j ]T ) = x̂i − x̂j and hij = I ∈ R2×2. In

the second case (linear measurements), (20) and (21)
degrade to (7) and (9).

2. AddNode+. In the non-linear case, when a node joins
the network with some measurements, we still first add new
rows and columns like (13). But then the AddMeasurement+
operation is used on each new measurements, instead of
AddMeasurement.

3. DeleteNode+. The DeleteNode+ operation remains the
same as DeleteNode. Since we still need to delete the
corresponding rows and columns, i.e., (15) holds, and after
linearization (4) and (5) hold as well.

E. Mobile Nodes

To take the mobility of firefighters into consideration, we
need to extend the relative measurement graph model. An
extended relative measurement graph (ERMG) is defined
based on relative measurement graph (RMG). The difference
is that a vertex in an ERMG is a state which is identified
by the node ID and the timestamp. This means the same
firefighter is treated as different vertices at different time
stamps in the ERMG. Then the movement of a firefighter
would be seen as adding and deleting states successively
through the three operations described in Section IV-D.
Since breadcrumbs are stationary once deployed, they do
not need to be treated as different nodes at different times.
So they are identified by their node IDs. An example is
shown in Fig. 6.

At timestamp 1, there are 3 breadcrumbs in the network:
Node 1, Node 2 and Node 3. In Fig. 6a, at timestamp
2, a firefighter Node 4.2 joins the network and produces
new measurement z5 and z6 with Node 1 and Node 3
respectively. The AddNode+ measurement is used to update
the ERMG to reflect these changes. In Fig. 6b, the firefighter
moves to a new position and the state changes from Node 4.2
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(a) A firefighter (Node 4) joins in the ERMG
at timestamp 2.
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(c) The firefighter continue moves and finally
leaves the ERMG at timestamp 5.

Figure 6. An ERMG example.

to Node 4.3. New measurements z7, z8 and z9 are generated.
The relative position measurement z10 measured by the PDR
unit connects the old state Node 4.2 with the new state
4.3. We first apply the AddNode+ operation to add the new
state 4.3. Then the old state Node 4.2 is deleted through the
DeleteNode+. In Fig. 6c, the firefighter leaves the network.
The delete operation is used to to delete the Node from the
network. In each moment, once L and b are updated, the
position estimation x̂b and the covariance matrix Σ can be
calculated according to (4) and (5).

F. The Discussion and Analysis of the Breadcrumb Local-
ization System

The GEN method is deduced based on the electrical
laws and gives the same result (estimate and covariance
matrix) as BLUE. BLUE and the GEN method are equivalent
mathematically. In fact, the incremental computation scheme
can be derived by analyzing the structure of matrices in
(4) as well. But the circuit analogy provides more insights
of the decomposition operations. In GEN, the Kirchhoff’s
Laws vividly reveal the relationship of measurements and
covariance matrices which is not so intuitive to see through
BLUE. Based on the meaning of L and b, we can build
three operations to add measurements, add nodes and delete
nodes more easily.

The beauty of the breadcrumb localization system is four-
fold. First, it does not rely on any pre-installed infrastructure.
The breadcrumbs are deployed in a “just-in-time” manner,
and the PDR unit works as a self contained module. Second,
the system solves not only the localization problem, but
also the communication problem. The location information
is now able to reach both the base station and all the team
members (breadcrumbs/firefighters) in a more confident way.
Third, in the system, all nodes are highly correlated. The
benefit of this is that any new positioning information which
only involves limited number of nodes can be propagated
to the whole network. This helps the localization to be
converged quickly. Fourth, the breadcrumbs on the ground
are fixed, which means the trace of their error covariance
matrix, representing the position mean square error, can only

be decreased as more and more measurements are brought
in by firefighters or generated by themselves. Therefore,
the breadcrumbs can work as landmarks to “calibrate”
firefighters’ position estimation when they pass by.

In practice, the world is not clean. There are accurate
measurements and non-accurate measurements. The third
and the fourth properties in the above can enlarge the effect
of both accurate measurements and non-accurate measure-
ments. Therefore, we should differentiate the non-accurate
measurements from accurate measurements, and then either
drop them or lessen their effect. For example, a firefighter
has physical limitation (e.g. the maximum speed is less
than 5m/s). If any measurement breaks this limitation, we
can simply drop it. Another example is that sometimes a
measurement is generated with lots of noise. Then we should
associate this measurement with an error covariance matrix
having a large trace value, which will weaken its impact to
the whole system.

Beside the good features, we are also interested in the
error bound of the breadcrumb localization system. By
embedding the ERMG of a breadcrumb network into a
infinite generalized electrical lattice, we can determine the
bound of the estimation error [24]. The scaling laws for the
covariance matrix of the estimation error for an ERMG are
listed in Table IV-F. The error bound of covariance matrix
of the estimation error Σ for an ERMG of a breadcrumb
network. dio denotes the Euclidean distance between Node
i to reference node o. The covariance matrices of relative
measurement errors satisfy ‖Pmin‖ ≤ ‖P‖ ≤ ‖Pmax‖.
αj , βj , (j = 1, 2, 3) are constants determined by the struc-
ture of the ERMG. It can be seen that in a one-dimensional
lattice, the covariance matrix of estimation error (effective
resistance) grows linearly with the distance between nodes.
In a three-dimensional lattice, the effective resistance is
bound by constants.

Dim. Bound of Σi

R1 α1dio‖Pmin‖ ≤ ‖Σi‖ ≤ β1dio‖Pmax‖
R2 α2 log(dio)‖Pmin‖ ≤ ‖Σi‖ ≤ β2 log(dio)‖Pmax‖
R3 α3‖Pmin‖ ≤ ‖Σi‖ ≤ β3‖Pmax‖
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In practice, the RMG of most wireless sensor networks,
such as the breadcrumb network, can be embedded in a two
or three dimensional lattice, which means the covariance
matrix of estimation error would grow as the logarithm of
graphical distance. Considering that the accumulated error of
a PDR module grows linearly with the total travel distance
(which is usually longer than the graphical distance), after
a certain point, the firefighter would obtain better location
estimate by utilizing the interactions with breadcrumbs than
merely using the PDR module. However, the constants
also affect the performance of the system. In Section V,
we conduct several experiments to evaluate the proposed
solution.

V. EVALUATION

We have built a prototype of our system to localize fire-
fighters in harsh indoor environments. The system hardware
is shown in Fig. 2 which includes a breadcrumb dispenser,
multiple breadcrumbs, a base station, and a PDR unit.
The PDR unit is placed in the boot of the user. Fig. 3
shows a firefighter wearing a full set of equipment. The
communication is all based on 2.4GHz chips and the Zigbee
protocol. Please refer to [10] for using the Zigbee stack and
2.4 GHz based hardware instead of lower frequencies like
900 MHz. Floor plans are not required by our system.

In this section we validate our system with several ex-
periments. Section V-A presents the results of localization
and the interactions between firefighters and breadcrumbs.
Section V-B reports an in-field experiment conducted in a
simulated on-fire industrial building to evaluate the overall
system and study the impact of fire and smoke. Section
V-C summaries feedback from professional firefighters and
lessons learned from the experiments.

A. Interactions and Localization Accuracy

Experimental Setup. A series of experiments are con-
ducted on the 4th floor of an office building. Fig. 9a displays
the floor map. We set the right up-most corner as the starting
of the experimental trace. The base station is placed at
this point. The circular trajectory is also illustrated in the
figure and has a total length of 400 (100 × 4) meters. Six
breadcrumbs are automatically deployed as a user walks
anti-clockwise along this trace and returns to the starting

point. Then this user continues walking along this trace
three more times. The initial positions of breadcrumbs are
calculated from the PDR component attached to the shoes of
the users. The user’s device interacts with the breadcrumbs
after they are deployed. The positions of the user and
breadcrumbs are recorded throughout the experiment.

Goals. The goal of these experiments is to study the
interactions between firefighters and breadcrumbs, as well
as validate the benefits of utilizing them to assist local-
ization. Interactions include encounter events and relative
measurements between firefighters and breadcrumbs. We
also compare the localization performance of our proposed
method with PDR-based method.

Results. Fig. 7 shows an example of RSSI values between
the user and one breadcrumb during the experiment. We can
observe three peaks of the RSSI value. When an encounter
(a user passes by a breadcrumb) happens, the RSSI value is
higher than −40dB which implies the distance between the
user and the breadcrumb is about or less than 1 meter. In the
following experiments, we define these points as the ground
truth of encounters between the user and breadcrumbs. We
adopt the approach used in [31], in which the RSSI values
are analyzed and points with local optimum are considered
as the positions where encounters occur.

Fig. 9b shows the estimated trajectory when the PDR
component utilizes the breadcrumb system for communica-
tion purposes only, but not for localization assistance. It is
clear that the trajectory displayed at the command center
completely lost the user (firefighter) and the location error
at the end of the trace is more than 35 meters. Using PDR
without the help from the breadcrumb system may result in
huge cumulative error.

Fig. 9c displays the estimated trajectory using our ap-
proach. The PDR module is the same one used in 9b and
the data is collected in the same experiment. We observe
that the shape of the trajectory is much better preserved
compared with the PDR approach. This is important for
incident commanders to issue correct orders to firefighters
when emergencies happen.

Localization accuracy is the main evaluation metric in our
system. We describe the average results of eight traces and
one representative trace of a user, in order to show how
our approach helps improve localization accuracy. Fig. 12
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Figure 9. Estimated trace during the 400 meter experiment.
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Figure 10. Field experiment.

shows the location error of the user as he encounters
the breadcrumbs during the representative trace. First, we
observe that the location error increases to 7.3 meters after
the first round. The location error is already 5.4 meters when
the user deploys the second breadcrumb. It is mainly because
PDR is subject to cumulative errors. Second, the location
error oscillates for the remaining rounds, which implies that
breadcrumbs provide considerable help to bound the location
error of the user. The average error along this 400 meter
long trace is 5.5 meters, and the maximum location error is
10.4 meters, which indicates that our approach leads to the
location error of 2.5% of the total distance. This is quite a
promising result and acceptable in firefighting applications.
Fig. 13 shows the location error of the user in all eight traces.
We find the same trend in all cases, the average of average
location error is 5.6 meters, and the average of maximum
location error is 10.9 meters, which implies a promising
1.4% and 2.7% error for the total distance.

We also study the convergence of the proposed solution.
Fig. 11 draws a representative example of the location error
of a breadcrumb with varying number of measurements.
We observe that the estimation error increase slightly at the
beginning. This is reasonable since the total travel distance
is still short at the beginning and the PDR module is more
accurate than the relative range measurements for the mo-

ment, i.e. PPDR ≤ PRSSI . Therefore, with the generation
of more relative range measurements, the location error may
raise slightly for this unstable stage. With the increase of the
travel distance, more breadcrumbs are deployed, the network
dimension is changed from R to R2, so a significant error
reduction is observed between 750 to 1,250 measurements.
The best location accuracy is between 1,000 to 1,500 mea-
surements. The result agrees with the RMG convergence
property analyzed in [25] which states that after a certain
point, considering more measurements will only marginally
improve the quality of the estimate. Note that both relative
range measurements and relative position measurements are
included. The former are obtained by analyzing the RSSI
value of communication packets. The latter are the PDR
readings reported by the PDR units periodically. Therefore,
it is easy to collect thousands of measurements in practice.

B. In-field Experiments

Experimental Setup. We also perform experiments on
the 3rd floor of a firefighting building in cooperation with
Suzhou Fire Department. Fig. 10d displays the floor map.
To simulate a real scene, an actual fire is setup to produce
smoke, flames and heat. A smoke bomb is also used to
produce extra smoke so that the smoke volume is similar
to a real situation. The base station is located close to the
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right entrance. Two firefighters are equipped with our system
and behave as usual under normal rescue tasks (shown in
Fig. 10a), including searching and fire extinguishing. Bread-
crumbs are deployed automatically along their trajectory
(depicted in Figure 10c). We also measure the impact of
heat and smoke on RSSI by placing two breadcrumbs at
both sides of fire and assess their communication quality.
To better present the results, we decrease the transmission
power in this experiment. The RSSI between two bread-
crumbs from 1 meter to 5 meters are recorded.

Goal. The goal of the in-field experiment is to validate
the system robustness in real-world firefighting scenes and
demonstrate that our proposed indoor localization system
works in complicated environments. We evaluate the envi-
ronment factors such as heat and smoke on the system, from
the RSSI values.

Results. As one of the most important factors in a
firefighting application, the impact of fire is evaluated. As
shown in Fig. 8, the solid line is obtained according to the
RSSI-ranging model in the same building without fire. The
dashed line is the RSSI curve with fire on the scene. It can
be seen that fire (presumably heat) affects RSSI significantly.
The accuracy of ranging calculated from RSSI drops as
the distance becomes larger. Together with the result of the
encounter experiment (shown in Fig. 7), it can be seen that
relative range measurements within 1.5 meter are relatively
accurate. Encounter events are still easy to detect. Moreover,
the result implies that RSSI may be a good indicator to
monitor the changes in the network. For example, if the
RSSI between a pair of breadcrumbs varies suddenly, it
may indicate the movement of breadcrumbs or change of
surrounding environments. By analyzing the RSSI changes
between breadcrumbs, we may infer the precise reason and
claim that this region has already been on fire and is no
longer safe for firefighters to pass through.

C. Lessons Learned

We also collect valuable feedback from firefighters in
the in-field experiment. The motivation and requirement
analysis of our work are recognized by the firefighters.
They especially appreciate the automatic and infrastructure-
free design. However, they also proposed several issues to
consider.

The first problem is caused by water. Although the
breadcrumbs are designed to be waterproof (IP67), we did
not expect the problem caused by plashes. The firefighters
report that in some cases there would be as deep as 30cm
to 40cm water accumulated on the ground. This could be
problematic since the current breadcrumb system uses the
Zigbee protocol whose frequency is 2.4GHz and radio wave
at 2.4GHz can be absorbed by water easily. They also
report that plashes usually are on the ground floor and the
basement. Using foam to replace water for firefighting is
gradually becoming a common practice so its impact needs
to be studied.

Firefighters also expressed concern on accidentally kick-
ing breadcrumbs. However, when the visibility is low due to
smoke and low ambient light, firefighters will use a so-called
“trail step” and walk very slowly. In such cases, breadcrumbs
may be stepped on, but less possible to be kicked away for
a long distance. According to the test, the displacement is
usually within 1 to 2 meters if the breadcrumb is accidentally
kicked. Even if a breadcrumb moved to a new position, with
the generation of new measurements, the localization error
can then be reduced subsequently.

VI. CONCLUSION

This paper presents the design, implementation, and eval-
uation of an automatic and accurate localization system, mo-
tivated by the important needs on firefighter safety. All pre-
vious work failed to provide an automatic, accurate, and re-
liable solution to localize firefighters in harsh environments.
This paper proposes a novel system to achieve this goal,
by combining pedestrian dead reckoning with a recently
emerging breadcrumb system. We described the details of
a novel collaborative localization algorithm that leverages
the interaction between dispensers and breadcrumbs. We
fully implemented this system, and compared our solution
to pedestrian dead reckoning. Evaluation results show that
our approach reduces the maximum firefighter location error
and outperforms the alternative solution. In addition, on-
field experiments by professional firefighters prove that our
system is robust and functions well in complicated and harsh
environments.
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