
t-kernel: Providing Reliable OS Support to Wireless Sensor
Networks

Lin Gu
Department of Computer Science

University of Virginia

lingu@cs.virginia.edu

John A. Stankovic
Department of Computer Science

University of Virginia

stankovic@cs.virginia.edu

Abstract
The development of a reliable large-scale wireless sen-

sor network (WSN) is very difficult because of resource con-
straints, energy budget, and demanding application require-
ments. Three OS features—OS protection, virtual memory,
and preemptive scheduling—can significantly improve the
reliability of WSN systems and facilitate developing com-
plex WSN software. However, due to the lack of hardware
support for privileged execution and address translation, it is
impossible to implement these features with traditional OS
design techniques. To solve this problem, we design a new
OS kernel, the t-kernel, to perform extensive code modifi-
cation at load time. The modified code and the OS work in
a collaborative way supporting the aforementioned features.
Having implemented the t-kernel on MICA2 motes, we eval-
uate its performance by measuring the overhead and execu-
tion speed. We analyze the CPU utilization of sensor net-
work applications, and verify that, though CPU-bound tasks
execute 1.5–3 times as long as in native mode, application
performance under typical workloads does not noticeably de-
grade. The t-kernel significantly enhances developers’ abil-
ity to design reliable and sophisticated sensor networks, and
includes several new design techniques, such as efficient bi-
nary translation on highly constrained sensor nodes, differ-
entiated virtual memory without repeatedly writable swap-
ping devices, and the protection of the OS from application
errors without privileged execution hardware.

Categories and Subject Descriptors
D.4.7 [Operating systems]: Organization and Design

General Terms
Design, Reliability, Performance

Keywords
Wireless Sensor networks, OS Protection, Virtual Mem-

ory, Binary Translation, Low-Power Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’06, November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00

1 Introduction
Many wireless sensor networks (WSNs) are based on

mote-class devices, e.g., the Berkeley motes [21]. These
devices include low-power microcontrollers and very small
amounts of data memory (3KB–10KB RAM). Energy effi-
ciency and cost are very important factors so we will con-
tinue to see highly constrained devices for many WSNs—
likely with increasingly small form factors. While some
WSNs will indeed migrate to more expensive and capable
devices, this migration does not diminish the need for in-
expensive devices. For example, if costs were not such an
important factor then we would not see that today more than
98% of all processors are embedded microcontrollers.

Even though each device has limited CPU, memory and
energy, systems being built with large numbers of these
devices, often running in an unattended manner, can be
quite sophisticated. Currently, the OS’ support to appli-
cation development and run-time execution is very limited.
OS protection (protect the OS from application errors), vir-
tual memory, and preemptive scheduling are three features
that can significantly improve WSN systems’ reliability and
lower the development cost. But it is difficult to provide
these features on sensor nodes. The reason is that many mi-
crocontrollers do not provide related hardware support, e.g.,
privileged execution and virtual address translation.

We design a new OS kernel, the t-kernel, to support the
aforementioned features using a load-time modification ap-
proach. The kernel modifies the necessary native instructions
when it loads the application’s instructions and dispatches
them for execution. Without assuming advanced hardware
support or a trusted compiler, the modified program guar-
antees OS control against faulty application code, performs
preemption at 16 priority levels, and supports a 64KB virtual
memory space over 4KB physical memory. With the inher-
ent advantages that these mechanisms impart, the t-kernel
raises the level of system abstraction visible to application
programmers.

Promoting the reliability of real-world WSN systems, the
t-kernel is a novel solution in a particular design context. It
has multiple contributions to the research on system software
design for WSNs, including efficient binary translation with
very small memory, efficient software based virtual memory,
and OS protection without memory protection or privileged
execution hardware.

The paper is organized as follows. Section 2 analyzes
the requirements and examines why stronger OS support is

necessary for WSNs. Section 3 states the assumptions and
briefly describes the t-kernel’s approach. Then, Section 4 de-
tails the design of the t-kernel, followed by Section 5 which
introduces the implementation on a widely used WSN plat-
form. Section 6 evaluates the performance of the t-kernel.
After Section 7 discusses related work, Section 8 lists the
limitations of the t-kernel and briefly discusses future work.

2 Motivation
To generalize major application requirements and illus-

trate the need for advanced OS features, we study two real-
world scenarios and illustrate the difficulties researchers en-
counter when developing high-quality WSN systems.

Scenario 1: OS control
The Extreme Scaling [10] project studies large-scale

WSNs of more than 1,000 nodes. Such a network can be de-
ployed by aircraft in an inaccessible area and operate in an
unattended manner. For maintenance, it is essential to guar-
antee that the nodes always respond to wireless control re-
quests, such as reprogramming commands. However, such a
guarantee turns out to be difficult to accomplish because the
OS and application share the same memory space and have
the same privilege. A faulty application can grab the CPU
and prevent the OS from processing any control requests.

In this scenario, we see an interference between the OS
kernel and application code. As a solution, the Extreme
Scaling project employs a sanity operation by hardware—
a grenade timer automatically restarts the sensor node peri-
odically [10]. After restarting, the boot loader listens to the
wireless channel before executing application code. Periodic
restarts ensure that the administrators can reprogram the net-
work, but complicate application design because the applica-
tion must expect and handle such periodic rebooting. More-
over, it has a fairly coarse control granularity. Not wanting a
node to restart too frequently, we tend to set a longer grenade
timer interval. This means that, in a relatively long time be-
tween two restarts, the OS control is not guaranteed.

Scenario 2: memory shortage
VigilNet [18] is a large-scale surveillance network per-

forming target tracking and classification. For adaptive op-
erations in realistic environments, it has more than 30 mid-
dleware services (e.g., fault-tolerant routing, power manage-
ment, and signal processing) and consists about 40,000 lines
of code. However, the sensor nodes in VigilNet have only
4KB RAM, which by no means can support what the appli-
cation needs.

In this scenario, the application requires more resources
than the hardware platform provides. A possible solution
is for the designers to re-use the data memory—to analyze
when portions of memory are not used any more and as-
sign them to functions currently running. However, such a
programmer-controlled memory overlay scheme is a depre-
cated method because it is application specific, inefficient,
and error-prone. Some recent sensor nodes have 8KB–10KB
RAM, but memory scarcity is still limiting the development
of sophisticated WSN software.

The two scenarios discussed above illustrate difficulties
programmers encounter while developing large-scale real-
world WSN applications. In PCs and servers, these problems
do not exist because the hardware is much more advanced.
For example, the PC hardware supports privileged instruc-

tions. Hence, the OS can control the computer periodically
by exclusively handling clock interrupts.

If the OS supports OS protection and virtual memory,
the difficulties illustrated in these two scenarios are neatly
solved. In addition, preemptive scheduling can provide a ve-
hicle to significantly improve the quality of signal process-
ing and communication, which are important operations in
WSNs. These observations motivate us to design the t-kernel
to support these three features, and the former two, OS pro-
tection and virtual memory, are the focus of this paper.

Traditionally, the three OS features mentioned above rely
on advanced hardware support—privileged instructions, vir-
tual address translation, and memory protection. Such hard-
ware support is absent on many microcontrollers used for
WSNs. In the past few years, some high-end sensor nodes
have scaled up with the technology progress to employ
better processors or co-processors. Examples include the
BTnode (ATmega128L, 240KB external SRAM), the Star-
gate (XScale, 64M RAM), and the Intel Mote (ARM or
XScale, 32M RAM) [3, 30]. However, many low-end sen-
sor nodes still stay with simple hardware without advanced
architectural features [10, 12, 26]. This is also true for some
recent microcontrollers designed specifically for sensor net-
works.

One important reason for the lack of advanced hard-
ware features is sensor nodes’ very low power consump-
tion. While a Pentium 4 processor can easily consume
90W power, and a CrossBow Stargate core consumes about
1W [28], some low-end sensor nodes have a power budget
of only 0.06W. When energy efficiency is emphasized, the
system designer prefers to use simple hardware and barely
enough memory. Even when high-end sensor nodes are used,
it is not unusual that the designers incorporate low-end sen-
sors to form a hybrid network [22].Besides energy efficiency,
the requirements of small form factor and low cost also con-
tribute to the modest hardware configuration of very-low-
power sensor nodes [27, 22]. SRAM often occupies a large
area and uses a significant transistor count in a System-on-
Chip (SoC) processor. For example, the SRAM in a high-end
embedded processor (Intel XScale) uses 60% of the area and
90% of the transistor count [6]. In a low-end microcontroller,
SRAM can account for 76% of the transistor count [8]. Cur-
rently, the form factor has not been an as severe constraint as
energy. However, if the RAM size keeps increasing, it may
become a serious concern very soon.

In general, with energy, form factor, and cost being em-
phasized considerations, it is undesirable, if not impossible,
to upgrade the hardware configuration. Hence, the technol-
ogy development does not diminish the class of low-end sen-
sor nodes featuring simple hardware and very low power
consumption. This class of platforms include many widely-
used sensor nodes, including RENE, MICA, MICA2, ExS-
cal, MICAz, and so on.

While the hardware is modest, the application require-
ments are demanding. In a realistic environment, a sensor
network with energy-and-cost-efficient sensor nodes needs
to be a distributed, fault-tolerant, and adaptive network per-
forming a wide range of services, including topology con-
trol, routing, aggregation, network management, power man-
agement, security, and maintenance [18, 13, 10]. Inevitably,
there is a wide gap between the application complexity and

the hardware simplicity. This is the intrinsic reason for the
difficulties illustrated in the two scenarios discussed before.

3 Assumptions
Compared to PC industry, microcontrollers used in WSNs

and embedded systems have a much wider variety. To en-
sure wide platform support and facilitate future porting, we
choose the following assumptions on the hardware.
• Assumption R: Reprogrammable—The system allows

writing data into some memory space and executing it.
• Assumption E: External nonvolatile storage—Low-

power, nonvolatile, and relatively large-capacity external
storage is available, and it supports fast and repeated read
operations (read-friendly).

• Assumption M: Memory—A certain amount of RAM is
available. Hence, we are excluding embedded proces-
sors with only registers. To facilitate efficient indexing
and swapping, we recommend no less than 4KB physi-
cal memory be available.

From now on, we call computer systems that meet these three
assumptions REM computers. They represent a wide range
of systems in the area of WSNs and, generally, embedded
systems. Also, in the rest of the paper, we use flash as a rep-
resentative of nonvolatile storage, but the discussions apply
to general read-friendly nonvolatile storage devices.

4 Design
This section introduces the design of the t-kernel. First,

we give a high-level description of the t-kernel and define
terminology in Section 4.1. Then Section 4.2 and 4.3 dis-
cuss the CPU control and virtual memory in detail. Finally,
Section 4.4 discusses the interface between the kernel and
application.
4.1 Overview

There are three sources of challenges in designing t-kernel
for a REM computer: stringent resource constraints, possi-
bly write-unfriendly (limited erasure/write cycles) external
nonvolatile storage (e.g., flash), and lack of hardware fea-
tures (e.g., privileged execution). With these challenges, it
is impossible to use traditional OS design techniques to im-
plement OS protection, virtual memory, and preemptions on
REM computers. A new design is needed.

Figure 1(a) shows the hardware and software components
in a WSN platform, henceforth called a host node. The ap-
plication is a binary program in the sensor node’s instruction
set, and resides in the external flash. After initializing its
own working environment, the t-kernel loads and modifies
the instructions in the application, and dispatches the modi-
fied instructions for execution.

We roughly define a small block of consecutive instruc-
tions in the application as a code page. When the control flow
reaches a new code page, the t-kernel reads that page from
the flash and modifies some of its instructions to assure they
run on the host node in a collaborative manner. We call such
a process naturalization, and the modified code naturalized
instructions, or natins. Naturalization is one type of binary
translation. We use this term to denote the instruction-level
code modification the t-kernel performs on a small-memory
platform to significantly enhance system abstraction. During
naturalization, only a fraction of instructions in the appli-
cation code are changed to different types and numbers of

Host node

Program memory

External flash

Physical
RAM

Processor

Application

Natin space

Kernel space

natin pagenatin page

natin page

Interrupt handlers space

Code
modification

(a) Host node

External flash

Naturalizer

DispatcherRAM

Interrupt
handlers

Paging

Program
memory

(b) Structure of t-kernel

Figure 1. The host node and t-kernel

instructions. Most of the natins are the same as their corre-
sponding instructions in the application code. Natins form a
new, collaborative “naturalized program”, which guarantees
not to compromise the host node, and, hence, is trusted and
executed without restrictions.

Blocks of natins are organized into a natin page of a fixed
size (256 bytes on MICA2). Natin pages reside in the natin
space in the program memory. When one natin branches to
or calls an address in the application, the t-kernel helps trans-
fer the control flow. An address in the application is called a
VPC (virtual program counter), which is defined by a com-
piler or a programmer. Meanwhile, we call an address in
the naturalized program an HPC (host program counter). If
there is no natin page for the destination VPC, the t-kernel
reads the corresponding code page and naturalizes it, then
transfers control flow to the HPC (in the new natin page)
corresponding to the destination VPC. This procedure im-
plies that naturalization is an incremental, on-the-fly process.
Usually, a natin page is naturalized only once. An exception
is the “bridging” process, to be discussed in Section 4.2.2,
which re-writes some branch destination addresses.

The t-kernel module shown in Figure 1(a) can be fur-
ther dissected into several components, as illustrated in Fig-
ure 1(b). The dispatcher controls the execution of the natins
and some t-kernel routines (such as sanity check routines).
When new application code is reached, it invokes the nat-
uralizer to perform code modification. The paging module
interacts with various memory and storage devices on the
host node. It handles swapping in and out among the RAM,
the program memory, and the external flash.

4.2 Naturalization and CPU control
CPU control and OS data integrity are two aspects of OS

protection. The former means the OS kernel must be able to
take hold of the CPU to execute, and the latter means that
the kernel must execute with valid data. In this section, we
introduce the naturalization process and explain how it guar-
antees OS control. The kernel data protection is introduced
in Section 4.3 with virtual memory.
4.2.1 Kernel/application transitions

Traditionally, the CPU control is guaranteed by privilege
support and clock interrupts. However, many microcon-
trollers used by sensor nodes do not have privilege support.
The application can disable interrupts and occupy the CPU
for an arbitrarily long time.

The t-kernel’s approach is to modify the application pro-
gram so that the naturalized program yields CPU to the ker-
nel frequently. The dispatcher keeps track of the current VPC
and dispatches the corresponding natin page. The VPC be-

gins with the starting address of the application. When a
natin page is executed, it guarantees a return to the dispatcher
with information about the next VPC.

To guarantee that the execution of a natin page returns to
the dispatcher, the naturalizer modifies all branching instruc-
tions, including branch instructions, calls, returns, and skip
instructions. As an example, on the Berkeley MICA2 plat-
form, an unconditional branch, “jmp DEST”, is modified as
follows.

push r31; save r31
push r29; save r29
in r29, 0x3f; acquire CPU’s state flags
push r29; save CPU’s state flags
push r30; save r30
push r28; save r28
ldi r31, DEST3; load bits 24-31 of DEST
ldi r30, DEST2; load bits 16-23 of DEST
ldi r29, DEST1; load bits 8-15 of DEST
ldi r28, DEST0; load bits 0-7 of DEST
jmp homeGate; jump to homeGate

Here DEST0 - DEST3 are byte0 - byte3 of the destination
VPC, and homeGate points to the welcomeHome routine in
the dispatcher. The welcomeHome routine retrieves the des-
tination VPC (DEST in this example) from r28–r31, seeks
for a natin page that services this destination VPC, creates a
new natin page if no suitable one exists, and transfers control
flow to the start address (HPC) of the natins corresponding
to the destination VPC.

natin pageApplication code

ALU instructions

branch

ALU instructions

branch

ALU instructions

ALU instructions

ALU instructions

ALU instructions

K-A transition

A-K transition

A-K transition

A-K transition
Ignored instructions

Entry point

Entry point

Entry point

K-A transition

K-A transition

Page description Miss

Figure 2. Application code page and natin page

When the kernel has prepared the natin page servicing a
destination VPC, the dispatcher needs to transfer the con-
trol flow to the entry point—the HPC in the natin page that
corresponds to the destination VPC. A straightforward so-
lution similar to traditional context switching is to restore
register r28–r31 and machine state flags from the stack, and
then point HPC to the entry point. This method is used
in some binary translation systems on high-power comput-
ers. However, three concerns—RAM size, performance, and
code density—lead us to adopt a different approach.

First, the RAM size is small. Hence, we cannot put all
the information about the destination addresses in RAM. In-
stead, we store it on the natin pages themselves.

Second, in a natin page, there can be multiple entry points
corresponding to multiple VPCs (see Figure 2). To improve
performance, we do not want to look up the accurate position
of an entry point from the natin page, because it takes a few
dozen instructions. Instead, we prefer to directly jump to the
natin page. Hence, we prefix each entry point in a natin page
with “cascading branch” logic—it checks if this entry point
services the destination VPC, and continues to execute if it

does; otherwise, it jumps to the next entry point. Therefore,
the seek for a matching entry point is conducted by a cascad-
ing branch chain on a natin page. The cascading branches
have to use at least one register, thus we cannot restore reg-
isters in the kernel, but have to do it in the natin page, after
the cascading branch chain matches an entry point.

Third, to increase code density, we prefer not to put all
the register-restoring instructions in the natin page.

Considering all the above concerns, the t-kernel adopts
the following procedure for returning to application code:

1. r29 = destination VPC’s last 6 bits (by kernel)
2. restore r28 (by kernel)
3. Register indirect jump to the natin (by kernel, using r30--r31)
4. Restore r30 (by natins)
5. Execute the cascading branch chain (by natins)
6. Restore the status register, r29, and r31 (by natins)

When jumping to the natin page, the t-kernel makes sure
there is no ambiguity on the high bits of the destination VPC.
Hence, a match on the low bits in r29 ensures a hit. At step
5, the cascading branch chain stops when there is a match
(hit). If the cascading branch chain does not match any entry
point, it jumps back to kernel.

Illustrated in this design, multiple constraints interact and
make the t-kernel adopt a protocol different than traditional
kernel traps/returns to jump back and forth between the ker-
nel and the application. The invocation of kernel services
and the returning to the application logic involve a variable
sequence of instructions distributed in the kernel and natin
pages collaborating to perform a search on the cascading
branch chain. To be clear, we call such a process a kernel
transition, and, specifically, a transition from application to
kernel or from kernel to application an A-K transition or a
K-A transition, respectively (Figure 2).
4.2.2 Branch regulating

After modifying branching instructions to A-K transi-
tions, the kernel is guaranteed to get hold of the CPU
very frequently. However, the transitions involve overhead
and can significantly reduce the computation speed because
branch instructions are common. In one test, we observe
that unoptimized A-K transitions slow down a program by
30 times. To promote performance, the t-kernel performs a
bridging process to directly link the branch source and des-
tination. The A-K transitions and the bridging process form
a technique called branch regulating in the t-kernel. With
branch regulating, the execution speed of branch instructions
is accelerated, but no loops in the application could take hold
of the CPU infinitely. Hence, the CPU control by the OS is
guaranteed.

The t-kernel classifies the transitions into several types
and handle them differently. One type of A-K transitions,
called “town transitions”, is designed to speed up branches.
The first time a town transition occurs for a specific VPC,
the dispatcher invokes the naturalizer to perform the bridg-
ing operation: the naturalizer modifies the A-K transition
at the source natin page to be a direct jump to the corre-
sponding HPC. Bridging is similar to “fragment linking”
and “translation chaining” in other binary translation sys-
tems. However, in the t-kernel, the bridging operation han-
dles backward taken branches (branches with the destination
VPCs no larger than their own VPCs) differently than for-
ward branches (branches with larger destination VPCs than
their own VPCs). Backward taken branches are modified to

0

5

10

15

20

25

30

35

40

Blin
k

Blin
kTas

k

CntT
oL

ed
s

CntT
oL

ed
sA

ndRfm

CntT
oR

fm

Osc
ill

os
co

pe

Osc
ill

os
co

peR
F

Sen
se

Sen
se

Ligh
tT

oL
og

Sen
se

Tas
k

Sen
se

ToL
ed

s

Sen
se

ToR
fm

Tin
yD

BApp

Surg
e

Application

N
um

be
r

of
 in

st
ru

ct
io

ns

MIBB
MIBBTB

Figure 3. Branch density of WSN applications

increment an 8-bit system counter, and, if the counter reaches
zero, call a special sanity check routine in the kernel before
jumping to the destination HPC. Hence, for every 256 back-
ward taken branches, one calls the kernel’s sanity check rou-
tine, and yields the CPU to the kernel.

Among branching instructions, most of the branches (e.g.,
conditional branches and relative jumps) are modified to be
town transitions. Their execution speed is close to that in na-
tive instructions when the branches are forward, and slower
when they are backward taken branches. In typical WSN
programs, we expect branches to be frequent, but backward
taken branches are much less frequent. We analyze dy-
namic traces collected by Avrora [33] for 14 commonly seen
TinyOS applications, and show in Figure 3 the mean num-
ber of instructions before a branch instruction is executed.
These applications range from simple Blink to more complex
SenseToRfm and Surge with sensing and radio communica-
tion. Two metrics, MIBB (Mean Instructions Before Branch)
and MIBBTB (Mean Instructions Before Backward Taken
Branch), are shown in the figure. The MIBB for the applica-
tions vary from 6 to 8 instructions, indicating that branch in-
structions are frequent. However, backward taken branches
are much less frequent. The profiling shows that the appli-
cations execute 26–36 instructions before a backward taken
branch. With such a low frequency, the overhead of branch
regulating is kept low, and we accelerate the overall execu-
tion speed of branches by making the common case fast.
4.2.3 HPC/VPC look-up

When the dispatcher sees a new branch, or when the
branch target’s VPC is decided at run time (e.g., register
indirect jumps), the dispatcher needs to find the HPC that
corresponds to the destination VPC. Because the naturalizer
performs code modification page by page following the ex-
ecution order, the topology of the naturalized program be-
comes different than the original application program. The
emphasis on execution speed prohibits the t-kernel from re-
organizing the natin pages, and the resource constraints pro-
hibit reserving space for application code that has not been
executed. The code density is also changed after code modi-
fication. For these reasons, there is no linear relationship be-
tween the VPCs and HPCs. An efficient VPC-to-HPC look-
up algorithm is a critical part in the kernel design.

The t-kernel performs the look-up at three levels, illus-
trated in Figure 4. The slowest, but most reliable level, is at
the program memory itself. Each VPC is hashed to a number
of natin pages, and each natin page’s cascading branch chain
tests all the entry points in the page. Hence, the t-kernel

Hit --
execute

VPC

VPC Look-aside
buffer

2-associative VPC table

Kernel space

Natin space

Interrupt handlers

128K physical program
memory

Miss --
search the

hashed
area

Hit --
execute

Miss -- look at 2-
associative VPC

table

Miss -- return to kernel

Hashed natin pages

Figure 4. Three-level loop up for a VPC

looks up the natin page that services the VPC by looking
at all the possible natin pages and checking whether any of
them services the VPC. At the middle level, the kernel main-
tains a 2-associative VPC table, indexed by 8 bits in the VPC
address, in RAM. Using only two bytes, each entry contains
a tag for matching the high VPC bits, a frequency field, and
a natin page index number. As an associative table, it offers
a moderate speed and low miss rate. The fastest level is a
VPC lookaside buffer. It is a direct-mapped buffer of 4-byte
entries indexed by several bits of the VPC (6 bits in the cur-
rent implementation). Direct-mapped, the lookaside buffer
is fast, but has a higher miss rate than the 2-associative VPC
table.

The sizes of the 2-associative VPC table and the lookaside
buffer are configurable. Section 5 gives the numbers used in
the implementation on MICA2.

4.3 Differentiated virtual memory
The t-kernel provides a virtual memory space much

larger than the physical data memory to the application.
The virtual-physical memory address translation, boundary
check, and memory swapping are handled by natins without
virtual memory and exception hardware.
4.3.1 Memory areas

It is a challenge to support fast virtual memory accesses
without hardware support. Most virtual memory systems
provide a flat memory space, and virtual addresses in the
space are translated by the virtual memory hardware. REM
computers, however, do not assume such hardware. Alterna-
tively, if we use software interpretation to translate the ad-
dresses at run time, the execution speed of memory accesses
becomes very slow.

To efficiently support a large virtual address space, the
t-kernel defines three types of memory areas with different
attributes, and differentiates memory accesses to these areas
to make the common case fast.
• Heap memory: swappable and relocatable.
• Stack memory: relocatable but not swappable. For effi-

ciency, this memory area is physically contiguous.
• Physical address sensitive memory (PASM): not swap-

pable and not relocatable.
Consequently, we call the virtual memory in the t-kernel
differentiated virtual memory (DVM). The specification of
these memory areas in the naturalized virtual memory space

Heap memoryStack memory

Physical
address
sensitive
memory

0xFFFF0x10000x1000x0

Figure 5. Example of virtual data memory configuration

is configurable for specific systems. Figure 5 shows an ex-
ample of memory configuration of a 64KB virtual memory
space.
4.3.2 Differentiated of memory accesses

The DVM treats memory accesses to different memory
areas differently. Most of the memory accesses are accesses
to local variables, temporary variables, parameters, and reg-
ister saves and restores. All these happen in the stack mem-
ory area. Hence, the t-kernel does not swap data in the stack
memory area out, and optimizes stack memory accesses to
make them execute very fast. Some instructions (e.g., push,
pop) execute at native speed. Accesses to the PASM area is
also at native speed since the virtual and physical addresses
are the same.

Accesses to the heap memory area can be quite slow.
The t-kernel maintains a buffer of data frames in RAM.
Each of the data frame corresponds to a page of minimum
page size (16 Bytes) in the heap memory area, as well as
a control block. The control block contains a tag identify-
ing its starting address in the virtual memory, a frequency
field, and some flags. When the t-kernel handles a heap ac-
cess, it searches the data frames beginning from the data
frame where the last heap memory access was performed,
and swaps in data frames from the external flash if necessary.
An optimization is included to map the heap area statically
to the data frame area for small-heap programs. It is worth
mentioning that the DVM uses no page or segment tables in
RAM, thus minimizing memory overhead.
4.3.3 Kernel data integrity

As mentioned in Section 4.2, the integrity of kernel data
is an important aspect of OS protection. Maintaining ker-
nel data integrity involves a number of trade-offs and design
choices. We briefly describe some key components here.

The t-kernel shares a common stack with the application,
and maintains its state information in a kernel heap. Because
the stack is shared, the t-kernel does not trust any data stored
in the stack before the kernel transition happens. Instead,
when a kernel transition happens, it establishes a new stack
on top of the current stack for its execution. The kernel heap,
on the contrary, is a memory area dedicated to kernel, and the
naturalizer does not map any virtual memory address into
this area. Hence, logically, both the kernel stack and kernel
heap are isolated from the application memory space. Mea-
sures are taken to prevent accidental application errors from
writing the kernel heap. For example, the naturalizer makes
sure the growth of the stack cannot invade the kernel heap,
and that the application cannot misuse the return addresses
in the stack to jump outside the naturalized program.
4.3.4 Swapping

Swapping is a grand challenge because the limited era-
sure/write cycles of the external flash, and the scarcity of the
physical memory. Hence, its design principles and swap-
ping policy are different than those for traditional hard disks.
Specifically, the design space of traditionally virtual memory
systems has two major dimensions: space and speed, known

as the slogan “as large as the hard disk, and as fast as RAM”.
The t-kernel must consider another dimension: longevity—
the same number of swap-outs, if directed to different pages,
can either succeed or destroy the flash. As a result, the pag-
ing module in the t-kernel optimizes to reduce the number of
swap-out’s, resulting in an unbalanced number of effective
swap-in’s and swap-out’s. This policy slightly increases the
swap-out overhead, but significantly extends the lifetime of
the flash. Our technical report contains details of the swap-
ping system in the t-kernel [16]. We highlight here that, dif-
ferent from flash file systems and flash drivers with wear-
leveling, this design optimizes for swapping activities, and
uses only 32 bytes in RAM.

4.4 Kernel/application interface
While an application can run on a host node without any

knowledge about the kernel, there are circumstances where
the application desires to interact more closely with the ker-
nel. For example, the application need to call the kernel’s
scheduler to perform preemptive priority scheduling. To fa-
cilitate such an interaction, the TinyOS uses function calls to
make the OS and application communicate with each other.
However, the t-kernel has separate kernel and application
spaces, and the function calls cannot cross the boundary be-
tween them.

The t-kernel provides a communication interface between
the kernel and the application to facilitate such interaction.
This interface comprises system calls, event triggering, and
interrupt handling. System calls are made by the applica-
tion to the kernel to invoke system services. The t-kernel
designates a set of special virtual program addresses as sys-
tem call entry points, and the naturalizer modifies calls to
these addresses to transitions into the kernel. After perform-
ing a system service, the kernel notifies the application via
an event triggering interface implemented as a software in-
terrupt. The kernel generates the software interrupt, and the
application handles it, thus connecting the kernel and ap-
plication logic. The t-kernel implements a shared memory
mechanism, to support the data exchange between the kernel
and application.

Some of the lowest level events are hardware interrupts.
Hence, the same event triggering mechanism is used to han-
dle interrupts, except that the event handler is not triggered
by the software interrupt, but a hardware interrupt. The event
handler for an interrupt can be at a low level, directly ma-
nipulating the hardware, or at a higher level, leaving part of
the logic to be performed by the kernel. This design gives
the application developers maximum flexibility for interrupt
handling.

We use radio communication to illustrate the interaction
of the kernel and the application. The kernel and the ap-
plication collaborate to conduct radio communication. Such
collaboration can be at a very low or relatively high level. At
the very low level, the t-kernel provides a byte-level inter-
face which allows the application to give an outgoing byte
to and receive an incoming byte from the kernel. When a
radio interrupt (an SPI interrupt on MICA2) occurs, the ker-
nel only reads and writes the radio transceiver’s data regis-
ter, and triggers the byte-level event (SPI interrupt handler
on MICA2) in the application for the new incoming byte.
The application conducts the major tasks, including byte pro-

cessing, transceiver controlling, framing, packet parsing, and
traffic regulating, in its event (interrupt) handler. At the byte
level, the application handles interrupts at about 2.5KHz on
MICA2 motes. At this interrupt rate, the packet sending
and receiving works reliably, though the radio throughput is
slightly lower than that in native mode.

Note that the kernel itself supports radio communication
in order to respond to wireless control requests. Hence, much
of the byte-level processing code in the application is dupli-
cate to the kernel’s code. As an alternative, the application
can elect to collaborate with the kernel at a higher level, us-
ing the frame-level service provided by the kernel. The ap-
plication issues a system call to request the kernel to send a
packet frame. The kernel transmits the packet, then triggers
the application’s packet level event handler. At this level, the
application handles interrupts at the same frequency as the
packet sending rate. The performance is comparable to that
in native mode (refer to Section 6.4).

It is worth noting that the load-time code modification
implies that the execution of the application has a warm-
up stage. When new code pages are first loaded and exe-
cuted, the naturalization process performs flash I/O to fetch
instructions and write natin pages, resulting in a slow exe-
cution speed. This naturalization overhead is also involved
when one type of interrupts fire for the first time. As a re-
sult, the handling of the first few interrupts can be very slow.
For time-sensitive interrupts, such as radio interrupts, this
warm-up delay means that the first few interrupts may not
be handled in time. However, as more interrupts of the same
type occur, and the interrupt handler becomes naturalized,
the load-time overhead is not involved any more, and inter-
rupt handling becomes very fast. As work in progress, sup-
port for real-time tasks has been partially implemented in the
t-kernel, including the pre-naturalization of functions, and
mechanisms to pin data frames and natin pages in the data
and program memory. In the future, time-sensitive interrupts
can use the real-time support to eliminate warm-up delay.

Though preemptive scheduling is not a focus of this paper,
it is worth mentioning that scheduling is an important sys-
tem service provided by the kernel, and has significant im-
pact on the quality of signal processing and communication
services. Branch regulating and DVM make the naturalized
program use more CPU cycles than the original application,
and therefore increase the CPU utilization. However, the in-
creased CPU utilization does not necessarily affect the time
accuracy of sampling and communication when preemptive
priority scheduling is used. Without preemptive scheduling,
long computation tasks would affect the time-sensitive tasks
even when the overall CPU utilization is low.

5 Implementation
We have implemented the t-kernel for the ATmega128L

microcontroller, which is broadly used in many WSN plat-
forms [3, 10, 21]. We have tested t-kernel on MICA2 fam-
ily motes, including MICA2, XSMv1, and ExScal motes, as
shown in Figure 6(a). Table 1 lists specifications of the hard-
ware and system parameters for the t-kernel on MICA2. We
intend to release the t-kernel to the WSN research commu-
nity, and are currently improving it for TinyOS compatibility.
Both the kernel and the test data, including the kernel bench-
mark programs (refer to Section 6), will be made available.

(a) Hardware platforms

0x10FF

0x100

0x0

0x1000

0x1080
Kernel heap

Stack memory

Physical address
sensitive memory

Data frames

I/O buffer and
temporary data

Reserved

Kernel space
0x16200-0x1FFFF

Natin space
0x200-0x161FF

Interrupt handlers
0x0-0x1FF

4K physical RAM
128K physical

program memory

(b) Physical memory structure

Figure 6. The t-kernel implementation

Hardware Data RAM 4KB
parameters External flash 512KB

Program memory 128KB
OS parameters Virtual memory 64KB

Data frame 64 frames
Lookaside buffer 64 entries
2-associative VPC table 256 entries
System stack 1KB
I/O buffer 516 bytes

Source code Total 15,312 lines
Binary Total 28,864 bytes

Naturalizer 14,000 bytes
Dispatcher 5,020 bytes
Paging module 6,172 bytes

Table 1. System characteristics

The implementation on MICA2 motes supports 64KB of
virtual data memory (16 times the physical memory). The
configuration of the virtual memory space is shown in Fig-
ure 5, and the organization of the physical memory is shown
in Figure 6(b). Empirical study leads us to choose bits 2-7
of the VPC to index VPC lookaside buffer, and bit13-bit6 to
index the 2-associative VPC table.

As listed in Table 1, the kernel code occupies 28KB of the
128KB program memory. The t-kernel reserves 1KB RAM
for stack space. According to our study on one of the largest
WSN applications [18], the stack usage seldom reaches 512
bytes. The t-kernel reserves 516 bytes for system I/O buffer,
mainly used for flash I/O.

6 Performance evaluation
In this section, we present the performance results of t-

kernel on the Berkeley MICA2 platform. We first measure
the overhead of the kernel, including kernel transitions and
the DVM. Then we evaluate the relative execution time of
a set of kernel benchmark programs, and assess the slow-
down of computational tasks. We verify our estimation by
examining the execution speed of a TinyOS application un-
der typical and stressed workloads. After that, we study the
performance of radio communication, and analyze energy
efficiency. We compare the t-kernel’s performance with an
interpretation based virtual machine. Finally, we verify OS
protection against a number of application errors.

When conducting the evaluation tests, we take measures
to avoid variance introduced by different hardware and dif-
ferent environments. The former affects the calculation of
CPU cycles, and the comparison between the t-kernel and
the native mode; the latter may affect the quality of wireless
communication. In this section, all execution times (absolute

Type of branch Cost (cycle)
Forward branch, taken 5.0
Forward branch, not taken 4.0
Backward branch, taken 21.2
Backward branch, not taken 4.0
Relative jump, forward 3.0
Relative jump, backward 19.2

Table 2. Overhead of branches

Name Numberof Native Cycle t-kernel Cycle
accesses (sec.) (sec.)

mem.stack 8388608 5.63 2 17.24 7
mem.heap 8388608 N/A N/A 28.14 16
mem.swap 1024 N/A N/A 1.93 180857
mem.none 8388608 3.39 N/A 8.98 N/A

Table 3. Memory access performance

or relative) specified are averages of three or more runs. The
deviation of the execution times in these runs are less than
1% of the execution time unless otherwise specified.

6.1 Overhead of kernel transitions
The kernel transitions and DVM are major sources of

overhead impacting the execution speed of an application.
We discuss the overhead of kernel transitions in this section.
The overhead of DVM is discussed in Section 6.2.

We use several measurement programs written in assem-
bly to study the overhead of kernel transitions. The results
are reported in Table 2. The forward branches execute a fixed
sequence of of natins. Hence, the overhead in cycles is de-
terministic. The overhead of backward taken branches varies
(refer to Section 4.2.2), and is an average number taking into
consideration the amortized cost of the sanity check routine.
As the table shows, the backward taken branches have a rel-
atively high overhead. However, forward branches execute
for only 3–5 CPU cycles. Hence, we enhance the overall
performance of branches by making the common case (for-
ward branches) fast.

6.2 Overhead of naturalized virtual memory
First, we use a group of assembly programs to measure

the speed of native and naturalized memory accesses. Specif-
ically, iter.mem accesses memory in the stack area using reg-
ister indirect addressing with offset, which is the slowest
stack area memory access in the t-kernel. iter.heap accesses
the heap memory area without incurring swapping. iter.swap
sweeps 16KB of the virtual memory space (from 0x2000 to
0x6000) with steps of 16 bytes to ensure there is a page fault
for each memory access and a swap-out for some of them. To
isolate the execution time of non-memory instructions and
quantitatively assess the execution time of various memory
accesses, we also measure the execution time of a program
iter.nomem which has the same program structure, but no
memory access instructions. Table 3 summarizes the evalua-
tion results.

We notice that the heap access time has a large variance.
When there is swapping, a heap access can take 180,857 cy-
cles (25.80ms). According to our test, it takes the t-kernel
25.73ms, on average, to perform an erase/write operation on
the external flash. Hence, the swap-out time is dominated
by the I/O latency. This is a similar situation to traditional
virtual memory where a disk I/O operation costs hundreds
of thousands of CPU cycles. In the meantime, memory ac-

Name Function Application
am Active messaging Network protocol
amplitude Signal processing Sensing
eventchain Event dispatch All TinyOS apps.
timer Timer event dispatch Periodic tasks
readadc Read analog sensor Sensing applications
crc CRC calculation Network protocol
lfsr Random number Various applications

Table 4. Kernel benchmark programs

0

5

10

15

20

25

am amplitude crc eventchain lfsr readadc timer

N
um

be
r

of
 V

P
C

s

0

2

4

6

8

10

C
od

e
ex

pa
si

on
 r

at
io

Avg. VPCs per page

Code expansion ratio

Figure 7. Code expansion of kernel benchmark programs

cesses to the stack memory area are very fast. Again, we op-
timize the overall performance by making the common case
(stack access) fast.

6.3 Assess application-level performance
The measurement programs can accurately measure the

overhead, but they do not represent typical instruction mix in
WSN applications. To the authors’ best knowledge, bench-
mark research for WSNs is still in an early stage [20]. With-
out an existing standard benchmark set, we compile a group
of kernel benchmark programs representing typical activities
in a WSN, as listed in Table 4. All these programs’ core part
are extracted from existing WSN applications that have been
deployed and tested. For comparison, all these programs are
written in TinyOS’ programming language – nesC [14], and
are compiled with the same compiler settings 1. We evalu-
ate the kernel benchmark programs on code expansion ratio,
naturalization cost, and relative execution time (the ratio of
the execution time on the t-kernel to that in native mode).

Naturalization expands the code size because of branch
regulating, DVM, and the cascading branch chain. Figure 7
shows the average number of VPCs per natin page, and the
corresponding code expansion ratio. Both the code expan-
sion and the variance of the expansion ratios are a known
phenomena in binary translation systems. For example, the
IBM DAISY system expands code size 1–21 times [11]. But
the t-kernel performs a more complex task of providing an
enhanced system abstraction.

In the naturalization process, the kernel involves over-
head for reading and parsing application instructions, writ-
ing natin pages, and patching destination HPCs when per-
forming bridging operations. Dominating these naturaliza-
tion overhead is time for the flash I/O, which is directly re-
lated to the number of natin page writes. Interestingly, we
find that naturalization cost for the kernel benchmark pro-
grams varies from 22 to 51 natin page writes per kilobyte of
application code. This approximately translates to 590ms–
1380ms of naturalization time for one kilobyte of applica-

1The build process only changes several linker parameters to
relocate the “.data” and “.bss” memory sections.

Relative execution time of kernel benchmark programs

0

0.5

1

1.5

2

2.5

3

3.5

am amplitudeeventchain timer readadc crc lfsr

Program

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 n
at

iv
e

Figure 8. Performance of kernel benchmark programs

tion code. Naturalization is a complex process, and we are
still in the process of investigating the cause of such a large
variance.

Figure 8 compares the relative execution time of the ker-
nel benchmark programs. The execution time on the t-kernel
includes the time for naturalization. Different programs’ per-
formance differ noticeably, due to the different branch den-
sity and frequency of heap accesses in the programs. The rel-
ative execution times range from to 1.53 (amplitude) to 3.03
(readadc). An interesting observation is a fairly high relative
execution time (2.6) for crc even though it has no heap ac-
cesses. It is due to a combination of “sbrs” (skip if bit in a
register is set) and “rjmp” (relative jump) instructions close
to the end of a natin page, which makes efficient handling
impossible. Showing an example of application code that is
inefficient for the t-kernel, it also suggests an opportunity for
code optimization if we have a t-kernel compiler.

Overall, we expect CPU-bound computation to have a rel-
ative execution time of 1.5–3 on t-kernel, corresponding to a
slowdown of 0.5–2 times. This is a noticeable instruction-
level overhead in both execution time and energy consump-
tion. However, most of current sensor network applications
are not CPU-bound. Hence, the users of an application do
not necessarily observe a slow-down at the application level.
Energy-wise, upgrading hardware to provide the same func-
tionality as the t-kernel also increases the power consump-
tion. Depending on the hardware technology and the embed-
ded application, the t-kernel may prove to be more energy
efficient in some areas in the design space.

With energy efficiency studied in Section 6.5, we focus
on execution speed in this section. To determine whether
the computation slowdown is acceptable, we examine the
CPU utilization, denoted as µ, of WSN applications. For
this purpose, we cannot use the kernel benchmark programs
because, as computational tasks, they are designed to have
µ = 1. We use Avrora to profile the same applications as
those in Figure 3. The result is shown in Figure 9. We
find that, without exception, the applications spend more
than 92% of CPU time in idle mode. This result is not
surprising— many WSN applications are intrinsically I/O
bound. Obviously, with µ < 0.1, using 1.5–3 times CPU
cycles does not noticeably degrade the applications’ perfor-
mance. The execution on the t-kernel should not show any
slow down except for naturalization cost.

Generally, for mote-class sensor nodes running typical
applications, memory and energy, not CPU cycles, are scarce
resources and often the bottleneck of system performance.

0%

20%

40%
60%

80%

100%

Blin
k

Blin
kT

as
k

Cnt
ToL

ed
s

Cnt
ToL

ed
sA

nd
Rfm

Cnt
ToR

fm

O
sc

ill
os

co
pe

O
sc

ill
os

co
pe

RF

Se
ns

e

Se
ns

eL
ig

ht
ToL

og

Se
ns

eT
as

k

Se
ns

eT
oL

ed
s

Se
ns

eT
oR

fm

Tin
yD

BApp

Su
rg

e

Application

C
P

U
 i

d
le

 r
at

io

Figure 9. CPU idle ratio of TinyOS applications

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Size of computation (x 1,000 instructions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

C
PU

 U
til

iz
at

io
n

t−kernel
TinyOS
CPU utilization

Figure 10. Execution Time and CPU utilization under
different workloads

Consequently, a mechanism that moderately slows down the
speed, but provides better service, is useful. Based on this
observation and the performance data, we believe t-kernel’s
overhead is acceptable.

To verify this claim, we test t-kernel with a sensor net-
work application, PeriodicTask, which posts and executes
computation tasks when timer events occur. Most of the
sensor network applications periodically wake up, poll sen-
sors, and communicate with other nodes (transmit or lis-
ten). Hence, the PeriodicTask application captures the typi-
cal work mode of WSNs. Note that existing TinyOS appli-
cations, like those listed in Figure 9, have very small µ. Triv-
ially, these applications run as smooth on the t-kernel as on
TinyOS. To probe the limit of t-kernel, we vary the amount
of computation in each task to examine typical and stressed
workloads.

In this experiment, we set the timer to fire every 30ms, and
configure the computation tasks to contain 5,000 to 70,000
instructions, corresponding to µ = 0.02,0.04, . . . ,0.34. Fig-
ure 10 shows the execution time of 300 computation tasks of
different computation sizes on TinyOS and on the t-kernel.
For all the computation sizes, the deviation of execution time
is less than 5%.

When µ < 0.3, we observe that the execution time on the
t-kernel is slightly longer because of naturalization cost. Ex-
cept for that, the execution of PeriodicTask on the t-kernel
does not show noticeable difference from that on TinyOS.
When µ > 0.3, the PeriodicTask still runs well functionally,
but experiences a degraded performance in execution time.

This experiment reveals characteristics of the t-kernel’s
region of operation. With a relatively large µ (e.g., µ > 0.3),
the overhead of the t-kernel is exhibited at the application
level, and users observe operations of a WSN application
slow down. The extreme case (µ = 1) is shown in the eval-

uation of the kernel benchmark programs, which run 1.5–3
times as long as in native mode. Whether or not the appli-
cation still works depends on the application’s property. Ap-
plications requiring functional correctness (e.g., computing a
large prime) may tolerate the slow down. Applications with
time requirements fail, or experience performance degrada-
tion. Generally, we do not consider the area with µ > 0.3 as
a recommended region of operation for the t-kernel.

On the other hand, t-kernel is suitable for applications
with a relatively light workload (e.g., µ < 0.1). In this re-
gion, applications run on the t-kernel without experiencing
noticeable performance degradation at the application level.
As shown in 9, light workload is the common case for WSN
applications. Hence, we believe the region of operation of
the t-kernel covers a wide range of WSN applications.

Note that the CPU utilization is not the only factor decid-
ing whether an application works on the t-kernel. The vari-
ance of the CPU utilization may stress a “stage” of the com-
putation, and, when the slowdown in that stage breaks the
application’s timing assumptions, the application may fail.
Section 8 discusses timing assumptions in further detail.

The benefits of the t-kernel, on the other hand, is obvious.
Now the WSN developers can take advantage of the powerful
features—reliable OS protection, expanded virtual memory
space, and preemptive task scheduling—on very-low-power
sensor nodes. In the experience of developing and deploying
WSN systems in the past few years, we observe that these
features are so desirable that the benefits by far outweigh the
cost in most situations.

6.4 Radio communication
In this section, we evaluate the performance of radio com-

munication on the t-kernel by studying one-hop communica-
tion, which is the foundation of networking, and involves
a number of components in the system. We compare the
link-layer performance of the t-kernel to that of TinyOS. For
this purpose, we write a communication application in nesC
to broadcast wireless packets at certain intervals. On the
t-kernel, the application invokes the frame-level service to
transmit packets. We use a “sender” mote to send packets,
and a base station to receive packets. In order to test the
throughput at high sending rates, the application disables the
listening and backoff mechanisms at MAC layer. The packet
reception ratio is calculated against all packets supposed to
be sent.

We use three settings with varying intervals—50ms,
500ms, and 5,000ms—to represent different traffic loads as
measured by packet rate. For each setting, we study the
average packet reception ratio of three or more runs. The
deviation of the packet reception ratio for each setting is
less than 5%. The shortest interval is 50ms, representing a
scenario of high packet rate (20pkt/sec). With this setting,
both the t-kernel and TinyOS deliver most of the packets
successfully—99.8% in the native mode and 93.9% with the
t-kernel. Based on our observation, at least one packet is
lost due to the warm-up delay, when the code to handle radio
interrupts and the packet framing is being naturalized and ex-
periences a warm-up delay. But we have not quantitatively
analyzed how many packets are lost in the warm-up stage.
The intervals 500ms and 5000ms represent moderate packet
rates—2pkt/sec and 0.2pkt/sec, respectively. With these set-

tings, both the t-kernel and TinyOS deliver more than 95%
of the packets.

The performance data shows that the t-kernel performs
nearly as efficiently as native code (TinyOS) at a moder-
ate packet rate. Based on our observation of existing WSN
applications, a moderate packet rate is a common case in
WSNs.

6.5 Energy efficiency
On current very-low-power sensor nodes, the t-kernel

transforms the simple hardware into a platform that supports
OS protection, virtual memory, and preemptive scheduling.
An interesting question is whether this technology will still
be useful when the hardware technology improves in the fu-
ture. In Section 2, we listed energy budget, form factor, and
cost as limiting factors against upgrading hardware of very-
low-power computers. In this section, we study the energy
efficiency in further detail.

To enhance the system abstraction, we can either use a
software approach, such as the t-kernel, or upgrade the hard-
ware (e.g., increase the RAM size). Both approaches in-
crease the power consumption compared to the basic hard-
ware configuration. However, they reflect different trade-offs
and are more efficient than the other approach in different ar-
eas of the design space. We introduce the major variables in
the energy consumption of a WSN system, then study sev-
eral design points in the space to show where the t-kernel
performs better than the alternative approach with enhanced
hardware and where it does not. Following that, we list some
observations which make us believe that the t-kernel will
prove a flexible and scalable solution for some application
systems in the future.

The power consumption of a sensor node, denoted as P,
depends on a number of variables. To save energy, the sen-
sor nodes in many WSN systems enter a low-power sleep
mode, until they are awakened by timer interrupts or external
events [15, 18, 19]. When awakened, the sensor node may
be computing (active mode) or waiting (idle mode). The idle
mode typically has lower power consumption than the ac-
tive mode. The sleep mode leakage power is the ultimate
limit on the lifetime of a sensor node. We denote the average
active-mode current as Iactive, the idle-mode current as Iidle,
and the average sleep-mode current as Isleep. Typically, Iactive
and Iidle are much larger than Isleep. We call the fraction of
the time spent in non-sleep modes the duty cycle, denoted
as fduty, and call the ratio between the time in active mode
and the time in non-sleep mode the CPU utilization, denoted
as futilization. When a system runs the t-kernel, the system
performs extra flash writes. We denote the average energy
consumed by one flash page I/O to be E f . Flash I/O only
happens in non-sleeping mode. We denote the average num-
ber of flash page writes (swap-outs) per second in non-sleep
mode as N f . Assuming the battery voltage is v, we approxi-
mate the average power consumption with the following for-
mula
P = v(fduty · (futilization · Iactive +(1− futilization) · Iidle)+(1−
fduty) · Isleep)+N f ·E f

This approximation does not consider some factors of sec-
ondary importance. Both the active-mode and sleep-mode
currents have variations depending on the activities (e.g.,
whether the radio is on or off), ambient temperature, and the

battery status. We assume that such variations are captured
by the averaging process. For example, if the radio transmis-
sion increases the active current by 10mA for 10ms in every
second, the average active-mode current increases by 0.1mA.
The energy for flash I/O depends on the erasure block size
and the writing method. The variable E f represents the aver-
age energy cost.

With the formula for the average power consumption, we
examine several points in the design space. The system en-
ergy consumption depends on the hardware technology, the
fabrication process, the power management scheme, and the
workload. The numbers used below represent some reason-
able design points, but a different platform can certainly have
different numbers. Many of the numbers are based on ex-
perimental results on MICA2 and ExScal sensor nodes and
the VigilNet application. A surveillance network similar to
the VigilNet may constitute a design point where v = 3V ,
Iactive = 15mA, Iidle = 10mA, Isleep = 100µA, fduty = 0.01,
futilization = 0.05, N f = 0, and E f = 1.2mJ. The average
power consumption is 0.6mW.

We can enhance the complexity of the microcontroller to
support privileged instructions and expand the RAM size to
64KB, in order to provide the enhanced system abstraction.
The additional hardware logic, particularly, the expanded
RAM component, slightly increases Iactive and Iidle, and sig-
nificantly increases Isleep. As another design point, suppose
Iactive = 16mA, Iidle = 11mA, and Isleep = 120µA. The av-
erage power consumption becomes 0.69mW, 14.8% higher
than the MICA2 with 4K RAM.

In contrast, the t-kernel provides the enhanced system ab-
straction without increasing Iactive, Iidle, or Isleep. However,
it increases the CPU utilization, and introduces additional
flash I/O. Suppose that the application runs 3 times as long
on the t-kernel as in native mode, and N f = 1. We have
P = 0.63mW , which consumes 4.5% more energy than the
basic MICA2, but 9% less than the upgraded hardware with
64K RAM. Hence, at this design point, the t-kernel is more
energy efficient.

On the other hand, the t-kernel can be less energy efficient
than enhanced hardware in some areas in the design space.
For example, when the application’s memory accesses have
low locality, the DVM thrashes, and the application slows
down further. Thrashing dramatically increases the energy
consumption. Suppose there are 10 swap-outs per second
when the sensor node is in non-sleep mode. The average
power consumption becomes 0.74mW, which is 6.6% higher
than the 64KB-RAM sensor node.

Generally, upgrading hardware increases the all-time
power consumption of a sensor node, while the t-kernel in-
creases the active mode power consumption, but keeps the
idle and sleep mode power consumption at the same level as
the basic hardware. Several observations, listed below, make
us believe the t-kernel’s approach will prove to be a flexible
and scalable solution for some applications.
• Lowering the duty cycle is an important technique to

extend system lifetime. Many systems seek to let sensor
nodes spend more and more time in sleep mode.

• With the same technology, the leakage power of SRAM
increases with its size. Unless the system can turn off
part of the memory structure and discard the data stored

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Execution time (x 100 millium cycles)

N
u

m
b

e
r

o
f

u
n

iq
u

e
 V

P
C

s

Blink
Sense
Surge

Figure 11. Number of unique VPCs executed in three
applications

in it, the leakage current consumes energy throughout
the lifetime of a sensor node.

• The activities in many WSN systems are highly repet-
itive after the initialization stage. We use Avrora [33]
to collect dynamic traces of the Blink, Sense, and Surge
applications for 2.2 billion cycles. They represent WSN
programs with increasing complexity. We analyze the
unique addresses (VPCs) accessed per 100 million cy-
cles. As shown in Figure 11, the sizes of the unique
VPCs decrease after the initial stage, and stay fairly
stable after that. The repetitive activities performed by
a stable set of code result in a stable working set and
should keep the swapping rate low.

• Flash I/O is an energy-hungry operation on MICA2
motes. However, if we examine other available prod-
ucts and the projected future development, the flash I/O
is very likely to become a relatively “lightweight” op-
eration in energy consumption on a sensor node, com-
pared to communication [29]. Computation is also
“lightweight” in energy consumption.

Based on these observations, we believe that the t-kernel
will continue to be a preferred approach for some applica-
tions. By keeping the hardware simple, the t-kernel gives
future system designers the flexibility of applying low-power
hardware designs to WSN systems. By limiting the overhead
to be within the active-mode time, it improves the scalabil-
ity of energy-efficiency as the systems lower the duty cycle
and extend the system lifetime. By taking advantage of the
repetitive operations in WSN applications, it keeps the soft-
ware overhead within a reasonable range. In the future, an
optimizing compiler for the t-kernel can further reduce the
overhead, and expand the area in the design space where the
t-kernel outperforms the upgraded hardware in energy effi-
ciency.

Note that manual memory management can be more ef-
ficient than virtual memory in both speed and energy con-
sumption, when the physical memory can hold the working
set, and the memory access pattern is known. For example,
the VigilNet system uses a memory overlay scheme to reuse
memory areas, taking advantage of the knowledge on the
state transitions of the application. However, manual mem-
ory management has a high programming cost, coarse gran-
ularity, and strong application dependence. Automating the
memory swapping used in manual overlay schemes, virtual
memory is a more general solution.

0

10

20

30

40

50

60

70

80

0 1002003004005006007008009001000

Number of lists to be sorted

Ex
ec

ut
io

n
tim

e
(S

ec
on

d)

t-kernel

Mate

Figure 12. Execution time of insertion sort

6.6 Comparison to the virtual machine ap-
proach

Virtual machines can also provide enhanced abstraction
not directly supported by hardware. Using an interpretation
based virtual machine is a much simpler way to implement
OS protection and virtual memory. The reason that the t-
kernel does not elect to use an interpretation based approach
is for extensibility and performance.

Maté is a virtual machine on TinyOS, and interprets a
stack based bytecode language [25]. Implemented on sev-
eral mote platforms including MICA2, Maté is possible to
be extended to support “functionality equivalent of the ben-
efits a virtual memory system brings” Hence, it is instruc-
tive to compare it with the t-kernel. It is worth noting that
this comparison is limited and is meant to stress some point
to illustrate the difference between code modification and
interpretation. In fact, Maté can be re-constructed to be
an application-specific VM by incorporating custom func-
tions [25]. The functions can implement complex algorithms
inside the VM and execute them at native speed, then Maté
would significantly outperform the t-kernel, just like what we
have shown with the kernel benchmark programs running in
native mode. However, the custom functions essentially in-
troduce application code into the OS, and make the system
reliability dependent on the quality of those functions. Be-
cause this is a situation the t-kernel aims to avoid, we com-
pare the t-kernel to the basic Maté.

We study Maté’s performance with an insertion-sorting
program, which is a common choice for sorting small-data
sets, and is used in WSNs (e.g., VigilNet). Figure 12 plots
the performance of insertion sort in the t-kernel and in ba-
sic Maté. Note that, for a customized Maté with the sort-
ing operation implemented as an opcode, Maté would run
close to native speed and be several times faster than the t-
kernel. Hence, this comparison uses Maté in a suboptimal
mode. The purpose is to analyze the pros and cons of the
modification-based and interpretation based approaches.

The data shows that, for 0 list, Maté runs faster than the
t-kernel. With 100 lists, the t-kernel has a moderate increase
in execution time when the number of lists increases from
0 to 100. It is caused by the load-time naturalization over-
head when new application code is used. After that, the
execution time increases very slowly. On the other hand,
Maté shows a consistently larger increase of execution time.
When the number of lists increases, the initial naturalization
cost is amortized by the repeated use of natin pages, and the
modification-based approach becomes one order of magni-
tude faster than the virtual machine approach.

The t-kernel supports the hardware’s instruction set, and
code modification has high load-time overhead for natural-
ization, but very low run-time overhead. Hence, it is con-
venient to implement new hardware drivers, algorithms, and
network protocols with the microcontroller’s instruction set,
and execute them on the t-kernel. In contrast, Maté supports
a bytecode language, and interprets instructions at run time.
Due to limited resource, it is hard to perform sophisticated
virtual machine optimization on MICA2 motes. Hence, it
has almost no load-time overhead, but a fair amount of run-
time overhead. Meanwhile, high-level bytecode instructions,
such as sending a packet, is very efficient in Maté because
they can usually be mapped to a few operations each of
which corresponds to a function in native instructions. In
fact, the t-kernel and virtual machines work at different levels
and can work together to benefit from each other’s strengths.

6.7 Resistance to application faults
Without OS protection, when a serious program fault

engenders an application error, a sensor node may crash,
loosely defined as a situation when the sensor node is not
able to respond to system commands any more. The t-kernel
is resistant to application faults. This means that the t-kernel
always control the sensor node despite application errors,
i.e., application errors do not compromise the OS. On the
other hand, the errors may compromise the application itself,
and make the application exhibit wrong behavior.

We have tested a number of “wild” programs with left
recursion, pointer errors, bad return addresses, bad branch
destination, invalid instructions, bad array index, and infi-
nite loop. With memory errors (e.g., left recursion, bad array
index), the sensor node may crash when critical data is over-
written. However, the t-kernel handles the wrong memory
addresses as if they were valid memory accesses. For con-
trol errors (e.g., bad return address, infinite loop) the kernel
checks the control flow to make sure it directs to an entry
point in a natin page, and the natin pages invoke kernel ser-
vices frequently (branch regulating). Hence, when applica-
tion error happens, the OS’ operation is not affected and crit-
ical system services, such as wireless reprogramming, are
still operative if they are implemented in kernel space.

7 Related work
The work on the t-kernel is related to, but distinct from,

many research areas including embedded OS, virtual ma-
chines, network program distribution, binary translation, and
software fault isolation.

Besides TinyOS [21], a number of OS’s have been devel-
oped for WSNs and networked low-power systems. MAN-
TIS and Contiki are two recent projects providing multi-
thread support on MICA2 motes [4, 9]. Not supporting vir-
tual memory, both systems consider RAM a highly limited
resource, and neither guarantees OS protection. Recently,
Han et al. developed SOS, an OS that supports dynamically
loaded modules [17]. The current implementation of SOS
does not support OS protection.

Labrosse et al. designed µC/OS and it has evolved for
years and reached the maturity of an industry-quality real-
time multitasking embedded OS [24]. In the smallest con-
figuration, it can be reduced to 2KB code and 200 bytes
data, not including the stack space. However, when com-
ponents providing advanced functionalities are included, the

code and data sizes increase significantly. In a typical config-
uration allowing 10 tasks, the data size becomes 3K, not in-
cluding the stack. Hence, ATmega128 class microprocessors
cannot actually leverage all the benefits provided by such
an RTOS after “porting”. This is a common problem with
module based “configurable” OS’s—a decent set of features
are only practically available when the platform has enough
resources to accommodate all the corresponding modules.
WSN applications require rich features, but have scarce re-
sources, therefore rendering such solutions less useful.

We have studied the virtual machine approach with Maté
(Bombilla) [25] in Section 6.6. Other virtual machines in-
clude MagnetOS [2], whose “single system image” unifies
the whole network as one distributed machine, and Sensor-
Ware [5], which disseminates “script” code over the network.
Kwon et al. developed a mobile agent platform called Actor-
Net [23]. ActorNet provides a virtual execution environment
including virtual memory. As explained in Section 6.6, these
virtual machines are different than the t-kernel. For example,
the ActorNet uses a Scheme-like language, and the virtual
memory does not distinguish memory areas.

Reijers et al.[32] designed a scheme for code distribution
on the EYES platform. Unlike virtual machines, Reijers’
network-distributed code is not interpreted, but “patched”
into the program memory. The patching re-constructs a new
application program, but does not provide enhanced system
abstraction for the new program.

Binary translation systems have been used for a number
of purposes [1, 7]. The code modification process in the t-
kernel is one special type of binary translation that performs
page-based, single-instruction modification to provide an en-
hanced system abstraction. However, due to the very dif-
ferent design context, most of the algorithms in traditional
binary translation systems cannot be used in the t-kernel.

Providing a “safe” execution environment, the approach
closest to the t-kernel is sandboxing in software fault isola-
tion [31, 34]. They both modify part of untrusted code at
program load time. However, these two methods are signif-
icantly distinct in many ways. For example, sandboxing’s
major target is to regulate memory accesses. In contrast, the
t-kernel has a much more ambitious goal of providing en-
hanced abstraction that hardware does not support. Sandbox-
ing relies on virtual memory hardware, but does not provide
functionalities beyond the hardware’s abstraction, while the
t-kernel establishes a virtual memory mechanism on hard-
ware platforms that do not support it.

8 Limitations and future work
The t-kernel is designed to target applications where the

energy budget is tight, the CPU utilization is low, and the
application requirements are relatively high. It is not suitable
for all WSN systems. In this section, we list some limitations
of the t-kernel, and discuss future work.

One important reason for the constraints on REM com-
puters is their very low power consumption. We notice
that the development of the energy technology is, in gen-
eral, much slower than the computing technology. However,
if technological breakthroughs make it possible to supply a
large amount of energy with a small form-factor battery set,
much of the resource constraints can be removed, and much
of the t-kernel’s overhead becomes unnecessary. A similar

argument is true when the energy scavenging technology can
supply sufficient power to the sensor nodes.

Development of low power memory, including SRAM,
DRAM, FRAM (Ferroelectric RAM), and flash, is another
direction of technology progress that can change the trade-
offs in the very-low-power design context. Though we
have not seen DRAM being widely used in mote-class de-
vices, low-power SRAM chips have been on the market. If
technology breakthroughs make large RAM structures much
cheaper, smaller, and lower in power consumption, the ben-
efit of the t-kernel may become less significant. On the
other hand, with the development of FRAM and low-power
flash, the cost of t-kernel should also keep decreasing. More-
over, the emergence of MRAM (Magnetic RAM), a non-
volatile, low-power, and high-speed RAM, may replace both
the SRAM and flash on current sensor nodes. Overall, the
memory technology certainly will have an impact on the de-
sign context of the t-kernel, and will change the tradeoffs and
the balance in the design.

The code modification process and virtual memory swap-
ping introduce unpredictable latencies to the instruction exe-
cution time. Even when the CPU utilization is low, this may
be a problem when the application programmers make im-
plicit timing assumptions. For example, if the programmer
writes a loop to wait 1 microsecond for the hardware, the
loop may execute for 2.5 microseconds on the t-kernel. We
have tested a number of TinyOS applications on the t-kernel.
The complexity of the applications range from the simplest
“Blink” application to multi-hop flood routing applications.
The routing application utilizes multiple, nested interrupts
(SPI, ADC, clock, etc.). We found some applications (e.g.,
CntToRfm) failed when we set the timer to fire at a relative
high rate (e.g., 50Hz). The reason is that some low-level
modules have implicit timing assumptions. After modify-
ing such low-level modules, all these applications work cor-
rectly. As mentioned in Section 4.4, the t-kernel design has
preparation for real-time support. Combined with a real-time
task specification mechanism to be developed in the future,
the kernel real-time support will eliminate the problem of
implicit timing assumptions.

Similar to traditional virtual memory systems, thrashing
significantly reduces system performance. Besides execution
time, energy efficiency is a concern in WSN systems. In Sec-
tion 6.5, we have discussed one example in which the swap-
ping makes t-kernel consume more energy than the upgraded
hardware approach. Generally, when a program’s working
set is in memory, there are very few swaps. An inspection on
the application code indicates that the working set of Blink,
Sense, and Surge corresponds to 21%—40% of the program.
If the working set cannot reside in the physical memory, the
designer must be very prudent to use the t-kernel because
thrashing may happen. Similarly, if the frequently accessed
data items cannot be held by the data frames in RAM, the
t-kernel must perform frequent swapping, and the energy ef-
ficiency may be worse than the upgraded hardware approach.
Because virtual memory is still a new concept in WSN sys-
tems, we cannot find and study “typical” programs using vir-
tual memory and analyze the locality and the working set for
data. This is one limitation of this work. As a future work,
we plan to adapt the VigilNet application to use virtual mem-
ory, and study its behavior [18].

Other directions of future work include real-time specifi-
cations and an optimizing compiler for the t-kernel. As men-
tioned before, they can further enhance the t-kernel’s perfor-
mance.

9 Acknowledgments
This work is supported in part by NSF grant CCR-

0098269 and CCR-0325197, the MURI award N00014-01-
1-0576 from ONR, and the DARPA IXO offices under the
NEST project (grant number F336615-01-C-1905). Special
thanks to Sang H. Son, John Heidemann, Yingmin Li, and
Ronghua Zhang for their help in this work.

10 References
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent

dynamic optimization system. ACM SIGPLAN Notices, 35(5):1–12,
2000.

[2] R. Barr, J. Bicket, D. Dantas, B. Du, T. Kim, B. Zhou, and E. Sirer.
On the need for system-level support for ad hoc and sensor networks.
In ACM Operating Systems Review, volume 36, pages 1–5, Apr. 2002.

[3] J. Beutel, O. Kasten, F. Mattern, K. R02mer, F. Siegemund, and
L. Thiele. Prototyping wireless sensor networks with BTnodes. In
Proc. of 1st European Workshop on Wireless Sensor Networks (EWSN
2004), pages 323–338, Berlin, Germany, Jan. 2004.

[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han. MANTIS OS: An embedded
multithreaded operating system for wireless micro sensor platforms.
ACM/Kluwer Mobile Networks and Applications (MONET), Special
Issue on Wireless Sensor Networks, 10(4):563–579, Aug. 2005.

[5] A. Boulis, C. Han, and M. Srivastava. Design and implementation
of a framework for programmable and efficient sensor networks. In
Proc. of Intl. Conf. on Mobile Systems, Applications, and Services
(MobiSys), pages 187–200, San Francisco, CA, May 2003.

[6] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K. E. Velarde, and M. A. Yarch. An embedded 32-b mi-
croprocessor core for low-power and high-performance applications.
IEEE Journal of Solid-State Circuits, 36(11):1599–1608, Nov. 2001.

[7] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson. The Transmeta code morphing software: Using spec-
ulation, recovery, and adaptive retranslation to address real-life chal-
lenges. In Proc. of the Intl. Symp. on Code Generation and Optimiza-
tion, pages 15–24, San Francisco, CA, 2003.

[8] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister. Energy and
performance considerations for smart dust. In Intl. Journal of Parallel
and Distributed Sensor Networks, pages 121–133, Dec. 2001.

[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proc. of the
29th Annual IEEE Conf. on Local Computer Networks, pages 455–
462, Tampa, FL, Nov. 2004.

[10] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design
of a wireless sensor network platform for detecting rare, random, and
ephemeral events. In Proc. of the 4th Intl. Conf. on Information Pro-
cessing in Sensor Networks (IPSN’05), pages 497–502, Los Angeles,
CA, 2005.

[11] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic bi-
nary translation and optimization. IEEE Transactions on Computers,
50(6):529–548, June 2001.

[12] V. Ekanayake, C. K. IV, and R. Manohar. An ultra-low-power proces-
sor for sensor networks. Proc. of the 11th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages
27–36, Oct. 2004.

[13] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. In Proc. of the
5th ACM/IEEE Conf. on Mobile Computing and Networking, pages
263–270, Seattle, WA, 1999.

[14] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Proc. of Programming Language Design and Implementa-
tion, pages 1–11, San Diego, CA, June 2003.

[15] L. Gu and J.A.Stankovic. Radio-triggered wake-up for wireless sensor
networks. Real-Time Systems 29(2-3), pages 157 – 182, Mar. 2005.

[16] L. Gu and J. A. Stankovic. t-kernel: A translative OS kernel for sensor
networks. In UVA CS Tech. Report CS-2005-09, 2005.

[17] C. Han, R. Kumar, R. Shea, E. Kohler, and M. B. Srivastava. A dy-
namic operating system for sensor nodes. In Proc. of the 3rd Intl.
Conf. on Mobile systems, Applications, and Services, pages 163–176,
Seattle, Washington, June 2005.

[18] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, G. Zhou, J. Hui, and B. Krogh. VigilNet:
An integrated sensor network system for energy-efficient surveillance.
ACM Trans on Sensor Networks, 2(1):1–38, 2006.

[19] J. Heidemann and W. Ye. Energy conservation in sensor networks at
the link and network layers. USC/ISI Tech. Report ISI-TR-2004-599,
2004.

[20] M. Hempstead, D. Brooks, and M. Welsh. TinyBench: The case for
a standardized benchmark suite for tinyos based wireless sensor net-
work devices (poster). In Proc. of the 29th Annual IEEE Conference
on Local Computer Networks, pages 585–586, Tampa, FL, Nov. 2004.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. In Proc. of the 9th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 93–104, Cambridge, MA, Nov. 2000.

[22] W. Hu, V. N. Tran, N. Bulusu, C.-T. Chou, S. Jha, and A. Taylor. The
design and evaluation of a hybrid sensor network for cane-toad moni-
toring. In Proc. of the 4th Information Processing in Sensor Networks
(IPSN 2005), pages 503–508, Los Angeles, CA, Apr. 2005.

[23] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha. ActorNet: An
actor platform for wireless sensor networks. In Proc. of the 5th Intl.
Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS),
Hakodate, Japan, May 2006.

[24] J. Labrosse. MicroC/OS-II, the real-time kernel, 2nd edition. ISBN
1-57820-103-9.

[25] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proc. of
the 2nd USENIX/ACM Symp. on Network Systems Design and Imple-
mentation (NSDI), Boston, MA, May 2005.

[26] J. Lifton, M. Broxton, and J. A. Paradiso. Experiences and direc-
tions in pushpin computing. In Proc. of IEEE/ACM Conf. on Infor-
mation Processing in Sensor Networks (IPSN/SPOTS’05), pages 416–
421, Los Angeles, CA, Apr. 2005.

[27] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In ACM Intl.
Workshop on Wireless Sensor Networks and Applications, pages 88–
97, Atlanta, GA, Sept. 2002.

[28] C. B. Margi, V. Petkov, K. Obraczka, and R. Manduchi. Characteriz-
ing energy consumption in a visual sensor network testbed. In Proc.
of the 2nd Int. IEEE/Create-Net Conf. on Testbeds and Research In-
frastructures for the Development of Networks and Communities (Tri-
dentCom 2006), March 2006.

[29] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power
data storage for sensor networks. In Proc. of IEEE/ACM Conf. on
Information Processing in Sensor Networks (IPSN/SPOTS’06), pages
374–381, Nashville, TN, Apr. 2006.

[30] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel. The Intel
Mote platform: a bluetooth-based sensor network for industrial mon-
itoring. In Proc. of the 4th Intl. Symp. on Information Processing in
Sensor Networks (IPSN’05), pages 437–442, Los Angeles, California,
2005.

[31] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack. Up-
grading transport protocol using untrusted mobile code. In Proc. of
the 19th ACM Symp. on Operating Systems Principles, pages 1–14,
Bolton Landing, NY, Oct. 2003.

[32] N. Reijers and K. Langendoen. Efficient code distribution in wireless
sensor networks. In Proc. the 2nd ACM Intl. Conf. on Wireless Sensor
Networks and Applications, pages 60–67, San Diego, CA, 2003.

[33] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable sensor network
simulation with precise timing. In Proc. of the 4th Intl. Conf. on In-
formation Processing in Sensor Networks (IPSN’05), pages 477–482,
Los Angeles, CA, 2005.

[34] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. of the 14th ACM Symp. on
Operating Systems Principles, pages 203–216, Asheville, NC, Dec.
1993.

