
Research Article
HealthNode: Software Framework for Efficiently Designing and
Developing Cloud-Based Healthcare Applications

Ho-KyeongRa ,1HeeJungYoon ,1SangHyukSon,1JohnA.Stankovic,2andJeongGilKo 3

1Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-Gun,
Daegu, Republic of Korea
2Computer Science, University of Virginia, Charlottesville, VA, USA
3Software and Computer Engineering, Ajou University, Yeongtong-gu, Suwon, Republic of Korea

Correspondence should be addressed to JeongGil Ko; jgko@ajou.ac.kr

Received 19 January 2018; Accepted 1 March 2018; Published 19 April 2018

Academic Editor: Andrea Gaglione

Copyright © 2018Ho-Kyeong Ra et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the exponential improvement of software technology during the past decade, many efforts have been made to design remote
and personalized healthcare applications. Many of these applications are built onmobile devices connected to the cloud. Although
appealing, however, prototyping and validating the feasibility of an application-level idea is yet challenging without a solid
understanding of the cloud, mobile, and the interconnectivity infrastructure. In this paper, we provide a solution to this by
proposing a framework called HealthNode, which is a general-purpose framework for developing healthcare applications on cloud
platforms using Node.js. To fully exploit the potential of Node.js when developing cloud applications, we focus on the fact that the
implementation process should be eased. HealthNode presents an explicit guideline while supporting necessary features to achieve
quick and expandable cloud-based healthcare applications. A case study applying HealthNode to various real-world health
applications suggests that HealthNode can express architectural structure effectively within an implementation and that the
proposed platform can support system understanding and software evolution.

1. Introduction

*e advancement of Internet of *ings (IoT) applications
has allowed various data points collected from a large
number of heterogeneous devices to be gathered in a single
repository for application development. Naturally, the dis-
tributed nature of these systems concentrates on the cloud
infrastructure for achieving novel application designs with
the support of integrated data processing and effective re-
source management.

In particular, healthcare-related IoT applications have
developed to the point where it not only preserves the safety
and health of individuals but also improves how physicians
deliver care. Using smart and mobile devices, healthcare IoT
allows the delivery of valuable data to users and lessens the
need for direct patient-physician interaction.

Despite their attractiveness, however, implementing such
cloud-based applications is not in any way trivial. *is is
especially true for a large number of nontechnical researchers

in the healthcare domain. While health and IoT domains
are being revolutionized in convergence, designing an effec-
tive cloud application asks the researchers to know various
technical domains from the server operation, local and web-
application languages, to data communication protocols. For
example, for efficient web development, developers typically
require knowledge of up to five different programming lan-
guages, such as JavaScript, HTML, CSS, a server-side language
such as PHP, and SQL.

For overcoming these challenges, a recently introduced
software platform called Node.js [1] has gained a significant
amount of traction in the developer communities. Specifically,
Node.js is a scalable single-threaded server-side JavaScript
environment implemented in C and C++ [2]. Developers can
build scalable servers without using threading but rather by
using a simplified model of event-driven programming that
uses callbacks to signal the completion of a task [3]. Owing to
its simplicity, industry leaders such as Microsoft [4], IBM [5],
Netflix [6], PayPal [7], and Walmart [8] have integrated the

Hindawi
Mobile Information Systems
Volume 2018, Article ID 6071580, 12 pages
https://doi.org/10.1155/2018/6071580

mailto:jgko@ajou.ac.kr
http://orcid.org/0000-0002-2342-6296
http://orcid.org/0000-0003-0506-185X
http://orcid.org/0000-0003-0799-4039
https://doi.org/10.1155/2018/6071580

support of Node.js into their cloud platforms. Notwith-
standing the recent developments, Node.js’s approach in
developing web applications has made it an attractive alter-
native to more traditional platforms such as Apache +PHP
and Nginx servers.

One of the many benefits of using Node.js is its archi-
tecture that makes it easy to use as an expressive, functional
language for server-side programming [9]. Although it may
be trivial to perform development in Node.js once a de-
veloper fully comprehends the language, there are many
obstacles prior to being able to implement real cloud-based
applications for beginners. For example, Node.js requires
multiple initialization steps, such as the configuration of the
HTTP package and route.js, which guides where the request
is routed. Due to the framework being relatively young and
the software yet reaching maturity, developers still face the
lack of documentation support and can face troubles in
receiving support from the development community.

To the best of our knowledge, there has not yet been
a Node.js software design or implementations guideline
documentation, where developers are influenced to create
well-structured healthcare applications. Nevertheless, for
software developers, the fact that organizing the program
design with solid boundaries is crucial in a successful real-
world deployment. Designing an ad hocmodel will stimulate
logical complexity and cause difficulties in maintaining and
updating the application over time. Moreover, without
a sturdy guideline documentation, it takes a significant
amount of time and needless effort even to configure the
primary application development environment.

In this paper, we present a practical solution for imple-
menting cloud-based healthcare applications by providing
a framework called HealthNode, which consists of (1)
a software design and (2) essential APIs and implementation
guidelines for prototyping. We specifically emphasize on
healthcare applications rather than other types of applications
because Node.js is capable of supporting the complex re-
quirements that healthcare applications ask, which are the
needs to support multiple patient-doctor connections, ex-
change medical data with a unified language and data format,
and allow reusability of the developed medical components.
Nevertheless, we put as one of our future work to expand
HealthNode to be applicable for other applications.

To simplify the use of Node.js, our software de-
sign helps developers to easily observe data flow, create
modules, and add in functions even without detailed
descriptions, which Node.js lacks. We use a top-down
approach that structures our software design with a hier-
archy of modules and a divide-and-concur approach that
organizes the tasks for each module. *e top-down ap-
proach helps developers to observe application flow from
the main module, which acts as the main class in Java, to
other submodules in a top-down manner. It is essentially
the breaking down of the application development to gain
insight into its compositional sub-modules. *e divide-and-
concur approach breaks down each module into submodules
that specify target tasks for each module. *is tactic also
enables multiple developers to work on different portions of
the application simultaneously.

To guide the development of cloud-based healthcare
applications using Node.js, we provide APIs and a guideline
that constructs the skeleton of essential components within
the implementation. We focus primarily on the back end of
the server, which contains the core operational functions.
Our envision is that HealthNode would overall influence in
developing cloud-based healthcare applications.

*e contributions of this work can be summarized in
three-fold:

(i) A software design that tackles the challenges of
maintaining and updating cloud applications de-
veloped using Node.js. *is design layout will
support the resulting application to comprise well-
defined, independent components which lead to
better maintainability. In addition, new capabilities
can be added to the application without major
changes to the underlying architecture.

(ii) APIs and implementation guideline that provides
explicit, but straightforward instructions for de-
veloping general-purpose Node.js prototype. *is
guideline instructs how to (1) create prototypes by
using a limited set of APIs, (2) divide modules and
organize function, (3) allow a client communicate to
a server, (4) utilize cloud application database, and
(5) handle uploading and downloading files.
*rough this guideline, developers can focus on
implementing application logic.

(iii) Examples of healthcare application that open the
possibilities for a new structure of healthcare to be
developed. Our software design and guideline can
be the basis for developing a variety of cloud-based
healthcare applications. We provide examples of
systems that can be enabled by our work.

In Section 2, we discuss some of the technical challenges
of implementing cloud applications using Node.js. We in-
troduce the overall structure of Node.js architecture, li-
braries, modules, and functions that make up Node.js
applications, as well as HealthNode’s software design in
Section 3. In Section 4, we present our guideline that in-
structs the implementation procedures for developing
cloud-based healthcare applications and introduce couple
potential applications where our work can be applied in
Section 5. Finally, we position our work among others in
Section 6 and conclude the paper in Section 7.

2. Challenges

Technically, for developing a cloud-based healthcare ap-
plication using Node.js, there are many materials both
online and offline for users to easily get a start on building
a software environment. However, based on our experiences,
the level of these tutorials mostly remains in the beginner
level, and due to its relatively new life cycle, it is fairly
difficult to identify the information required to perform
more advanced tasks. Furthermore, practical troubles that
typically arise within this development phase include the
lack of (1) a formal software structure, (2) fundamental

2 Mobile Information Systems

guidelines for advanced functionality implementation, and
(3) real-application examples. We use the remainder of this
section to discuss the importance of such support and the
challenges that application developers can face due to such
limitations.

2.1. Usability. *ere is an active community that supports
Node.js. More developers watch the repository of Node.js at
GitHub than other recently trending software environments.
Nevertheless, Node.js is relatively new compared to tradi-
tional web-application frameworks such as ASP.NET.
*erefore, naturally, in contrast to these older frameworks,
Node.js lacks documentation and examples on how to
structure the overall implementation. Due to a small number
of easy-to-follow guidelines, Node.js is not commonly used
to its full capability where developers can create data ex-
change applications for connected infrastructure such as IoT
applications. An ideal application should allow clients to
submit data to a server and the server to respond back to the
clients to fully utilize the cloud computation power.

2.2. Feasibility. For beginners to use Node.js for imple-
menting a fully functioning prototype, it takes a significant
amount of time and effort to feasibly set up the basic ap-
plication environment, properly route incoming and out-
going information, and format the overall application
structure. Ideally, to catalyze the development of various
cloud applications, this process should be simple to both
understand and implement.

2.3. Maintainability and Extensibility. In designing the back
end of a cloud application using Node.js, existing tutorials
often promote examples using only a single module con-
taining all the possible functions, regardless of system de-
sign. Using a single module limits the tasks to be distributed
to other modules and therefore diminishes advantages of
designing an organized implementation. Although Node.js
supports building a hierarchy of multiple modules, ad hoc
plans of software structuring at the hierarchy level can cause
increased logical complexity without solid boundaries be-
tween heterogeneous modules. Moreover, to maintain and
update applications efficiently, proper documentation is
essential. However, documenting within a single module or
multiple ad hocly planned modules can add additional
burden to the code review process. To support these issues,
a software design with an organized structure of modules
will not only help developers in designing their software but
also benefit them in maintaining their applications. Fur-
thermore, such a repository of modules can ultimately
benefit the application to be more conveniently extensible
over time.

3. Architecture

*is section first describes the overall structure of the
Node.js architecture, libraries, modules, and functions that
make up a typical Node.js application. We then present

HealthNode design that uses a top-down approach and the
divide-and-conquer strategy, which are both the essence of
any software development.

3.1. Background

3.1.1. Architectural Description of Node.js. Well known for
its event-based execution model, the Node.js platform ar-
chitecture uses a single thread for executing application code
which simplifies application development. However, heavy
calculations and blocking I/O calls that are executed in the
event thread prevent the applications from handling other
requests. Node.js tackles this issue by using event loop and
asynchronous I/O to remain lightweight in the face of data-
intensive, real-time applications [10]. *e Node.js execution
model is different to the thread-based execution model
where each client connection is processed by a separate
thread. Overall, the platformmust coordinate data input and
output adaptably and reliably over a different range of
distributed systems.

3.1.2. Libraries and Modules of Node.js. Node.js comes with
an API covering low-level networking, basic HTTP server
functionality, file system operations, compression, andmany
other common tasks. Moreover, the available external li-
braries of Node.js can add more capability in a module form.
*e modules are delivered by public or private package
registries. *e packages are structured according to the
CommonJS package format and can be installed with the
Node Package Manager (NPM) [11].

Our software design works off the Express library, which
is one of the Node.js packages that support the rapid de-
velopment of Node.js cloud application [12]. It helps set up
middlewares to respond to HTTP requests, specifies
a routing table which is used to achieve various action based
on the HTTPmethod and URL and allows to present HTML
pages based on passing arguments to templates dynamically.
Other than public libraries, local modules also can be ref-
erenced either by file path or by name. Unless the module is
the main module, a module that is referenced by a name will
map into a file path.

3.1.3. Functions of Node.js. In programming, a function is
defined as the portion of code that performs a specific task
with series of statements. It has a capability of accepting data
through parameters for a certain task and returning a result.
In Node.js, a function requires extra implementation for
routing requests. To support the ease of routing, the Express
package enables the capability to create middleware func-
tions. Middleware functions allow setting up a routing path
in one line. In addition, middleware functions are only
accessible by clients and are not accessible by back-end
computation functions. For example, when a client sub-
mits and requests data to the server, one of the middleware
functions is triggered, and output is returned to the client.
For accessing data, middleware functions only access data
through shared objects or a library such as MongoDB.

Mobile Information Systems 3

3.2. HealthNode. We now detail two software design pro-
cesses that make up HealthNode. �e top-down approach
helps developers to couple and decouple modules while the
divide-and-conquer approach guides developers to divide
the task into simpler modules while enabling multiple
module developments concurrently. We use the top-down
approach �rst and then the divide-and-conquer approach in
the latter step so that the roles between the modules are �rst
de�ned before tasks are assigned to each of the roles. Al-
though both of these techniques are commonly used in other
types of web and application developments, to the best of our
knowledge, there has not been a foundational software
design that supports Node.js implementation structure.

3.2.1. Top-Down Approach. �e top-down and bottom-up
approaches play a key role in software development. �e
top-down approach is a standard inheritance pattern which
decomposes a system to gain insight into subsystems. Each
subsystem is then re�ned in yet greater detail in many
additional subsystem levels until the entire speci�cation is
reduced to base elements. �is process continues until the
lowest level of the system in the top-down hierarchy is
achieved. In a bottom-up approach, the base elements of the
system are �rst speci�ed. �ese elements are then linked
together to form larger subsystems until a complete top-level
system is constructed. Using the bottom-up approach may
be bene�cial for implementing �rst-level systems for early
testing. However, the bottom-up approach is not suited
particularly for our software design due to its requirement of
permitting space to grow. Since our study focuses on pro-
totyping, which requires a continuous update, it must be
easy to add and couple modules. However, the bottom-up
strategy does not allow this, and over time, organization and
maintenance issues may exist.

In the software design of HealthNode, a hierarchy
structure creates a connection between modules that sup-
ports data �ow. Figure 1 visualizes how HealthNode maps
the top-down perspective by starting from the main module
and initializing submodules. Each submodule can also have
multiple child submodules with external packages. In the

main module, a shared component such as a database is
initialized, and necessary submodules are coupled.

�e top-down approach is e�ective when the application
idea is clear, and the system design is ready prior to
implementation. Looking at Figure 1, a top-down design
concentrates on designing vertical hierarchy levels and uses
couples to connect data �ow. �e coupling process happens
during the period when modules are added. �is process
�nishes when the submodule is ready to be used after testing
and connecting to a higher module. In addition, the coupling
process can be used for sharing child submodules. In cases
when already implemented child submodule is required by
other submodules, each of the submodules can couple to
preimplemented child submodule to avoid redundancy.
During implementation, coupling is used to create a weak
connection between modules. In other words, a submodule
is allowed to use a child submodule only once during
implementation. �e decoupling process can be easily done
due to the weak connection between all the modules.

�e decoupling process supports maintaining and
extending the application over time. When a particular
submodule expands, in such case as having two di�erent
tasks, the submodule needs to be decomposed. To de-
compose a module, the decoupling process closes the
connection between the higher submodules to the current
module. �is will lead the decoupling process to stop
allowing higher modules to use the current submodule.
Overall, the coupling and the decoupling process is com-
pleted by initializing and removing the connection between
modules and submodules.

3.2.2. Divide and Conquer. Divide and conquer is a concept
of recursively breaking down a system into two or more
subsystems until these become simple enough to be labeled
directly.�e outputs to the subsystems are then combined to
provide an output to the highest system.

�e divide-and-conquer approach is di�erent than the
top-down approach in a sense that the top-down approach
de�nes hierarchy levels while the divide-and-conquer
method focuses on horizontally dividing a task in each

Client

Main
module

Sub
module

Child
submodule

Child
submodule

Child
submodule

Child
submodule

Child
submodule

Sub
module

Sub
module

Libraries Database

External
devices

Output

SerialPort.write()

String queryServer JSON format

...

...

...

...

Divide-and-conquer approach (task)

To
p-

do
w

n
ap

pr
oa

ch
 (r

ol
e)

Figure 1: HealthNode software design.

4 Mobile Information Systems

level to specify a task. �e higher the module level is, the
application design uses task characteristics to divide modules.
�e lower the module level is, the design concentrates on the
functionality of highermodules’ basic requirements.Moreover,
in HealthNode’s software design, the divide-and-conquer
process also reduces redundancy by dividing a module into
groups of reusable and unique task-oriented functions. Since
one of the functions or middleware functions within the higher
module uses submodules, the divide-and-conquer technique
can be easily applied using one or two lines of code.

4. Implementation

In this section, we present the implementation components
of HealthNode and a step-by-step guideline that instructs
the implementation procedures for developing Node.js
cloud applications using the proposed framework. Figure 2
shows a general application execution �ow from users to
clients and then from clients to a server. We focus on the
core components located at the back end of the server and
the communication components that are used between the
clients and the server. Note that we do not look into the
details of the server’s front end, since there are many existing
examples of front-end frameworks available [13–15].

In HealthNode, the proposed implementation guideline
follows �ve essential steps:

(1) A hierarchy structure is set up between modules.
(2) A function is placed on each of the modules to be

used for computation.
(3) A middleware function is added into the function,

which directly communicates to a client.
(4) During the initialization process of the mainmodule,

database information is con�gured to be used
throughout the implementation process.

(5) �e client prepares the communication procedures
for testing.

Speci�cally, we describe the implementation details of
structuring the hierarchy of the back end, operations that

take place in the modules, and the communication process
between the client and the server in detail using the fol-
lowing subsections. We will use code snippets to present
usage implementations for the concepts in HealthNode.

4.1. Hierarchy. In the main module, all of the necessary
libraries required for application development are imported
during the initialization stage. As the sample implementa-
tion on lines 1 to 10 in Listing 1 shows, the Express Library,
along with supporting libraries, is �rst imported to construct
a hierarchical structure of the application along with en-
abling most of the HTTP utilities. �e MongoDB library is
then imported to be used for creating a connection between
the back-end server and the database.

�e main module and the submodules are connected
through a coupling process as exempli�ed on lines 20 and 21
in Listing 1. Commonly required libraries are shared using
parameters during coupling process. �e coupling process
allows a client to access the submodule method. Following
the top-down approach, although conventional Node.js
application allows methods in the main module, Health-
Node recommends methods to be exclusively in the sub-
modules to avoid design complexity. Having functions in the
main module can cause documentation and maintenance
issues due to its limited role of initializing the core tasks. In
contrast, submodules can couple to and call functions in the
child submodule as shown on lines 25 to 30 in Listing 1.
When calling functions in the child submodule, parameters
with information can be passed to acquire necessary in-
formation. All modules are coupled with only one or two
lines of code, which allows for a simple decoupling process
for extending the application when needed. �is procedure
is the �rst principle in the divide-and-conquer process.

4.2. Module. As Figure 3 shows, each of the submodules
contains initialization blocks and functions that include
libraries to be used within the current submodule. Note that
each function consists of multiple middleware functions. For
the function to be part of a module, it requires each function
to be exported as illustrated through Listing 2 (lines 1 to 5). A
middleware function is required when a client needs to
communicate to a server. �e module containing a function
without middleware functions usually sits as the lowest child
submodule unless it requires assistance from lower level
child submodules. In other words, if the function is only
used for the back-end computation and called by a higher
submodule, the function is accessible by calling the function
name such as “ChildSubModuleFunction” as Listing 2 shows
on lines 17 to 22. �e function can further process com-
putation tasks with the data received through a function
parameter. Each submodule requires at least one function
that may only have a computation task or have both
computation task and middleware functions.

4.3. Middleware Functions. As Listing 3 shows, a middle-
ware function can be added to a function. Each middleware
function contains REQUEST and RESPONSE parameters.

User
Client

(Web browser /
mobile application)

Server

User Server

URL URL

Static HTML
Static page

Request

Back-end
processing

Response

Client
(Web browser /

mobile application)

Figure 2: Location of HealthNode in a general cloud application.

Mobile Information Systems 5

REQUEST and RESPONSE is a basic operation and key feature
for enabling the communication between the clients and the
server. When clients need information, a mobile application
or a web browser sends a REQUESTmessage to the server. A
request message is sent in the form of a query string. During
the REQUESTmessage processing, the body of the REQUEST is
primarily used. �e message is then unpacked by using the
“stringfy” API function from the “querystring” library. After
unpacking the query, the message is translated into values of
an object. Values of an object are used for executing tasks or
computation. To execute tasks, middleware functions can
also call functions offered through other modules to process
back-end computation tasks. In addition to the back-end
computation, external executables, such as compiled ma-
chine learning algorithms, can also be executed using the
“child_process” library as shown on lines 1 to 8 in Listing 4.
Additionally, lines 10 to 20 in Listing 4 show an example of
using the “SerialPort” library from the NPM, so that the
development boards enabled with serial communication can
be controlled by the WRITE command and output data.
Furthermore, REQUEST can be used to receive file-level data.
By using “fs” library, an incoming file can be processed and
saved to a particular location (cf. lines 26 to 35 in Listing 4).

Each REQUEST from the clients is answered at the server
using a RESPONSE. Specifically, RESPONSE has the role of
returning messages and is in the form of JavaScript Object
Notation (JSON) message. In JSON messages, heteroge-
neous information can be stored as an object. Within the
object, there is a collection of <field name,data> pairs and
there can be a single object or an array of objects. �ese
objects can be placed on the JSON message for exchange.
Once the JSON message prepares necessary information for
the client, information is sent back to the client by using the
WRITE function as we present in Listing 5.�e uploaded file
can be accessed from the client by using the “fs” library
shown on lines 41 to 49 in Listing 4.

4.4. Database. To provide or store information, having
a database is also essential. We specifically chose to support
MongoDB inHealthNode. In contrast toMySQL,MongoDB

uses dynamic schemas, which means that records can be
created without first defining the structure [16]. In Mon-
goDB, three basic (yet important) operations are INSERT,
FIND, and DELETE. To access the database, the “MongoDB”
library is initialized in the main module and shared with the
submodules. Prior to any database operation, a connection is
established by using the CONNECT function along with the
URL and port number of the database server. With the
established connection, query string information can be
inserted, deleted, or used for finding data as we show an
example in Listing 6. For updating documents in the da-
tabase, the documents are replaced by using DELETE and
INSERT commands.

4.5. Client. Communicating with the server from a client is
also an essential operation. For mobile applications, typi-
cally, the communication between the client and the server is
accomplished by using a web browser or HTTP library. For
a web browser, the client retrieves or sends information by
using POSToperation with string query. Specifically, the web
browser uses JavaScript to embed information in string
query and requests POST to the server. After sending RE-
QUEST, a RESPONSE from the server is returned to the client
in JSONmessage format. As presented in Listing 7, the JSON

Initialization
(libraries, child submodules)

Functions
(accessed by modules)

Middleware functions
(accessed by clients)

Module

Figure 3: General structure of a module.

(1) //Necessary libraries and variables

(2) var express = require(express);

...
(9) var mongoClient = require(mongodb).MongoClient;

(10) var mongoDBuri = mongodb://localhost:27017/database
...

(20) //Coupling sub modules
(21) require(./SubModuleONe.js)(app, mongoClient,mongoDBuri);

...
(25) //Coupling to child sub-module and its function

(26) var ChildSubModule = require(./ChildSubModuleOne).FunctionName;
...

(29) //Inside of fuction or method call child sub-module function
(30) ChildSubModule(data);

LISTING 1: Initializing libraries, submodules, and child.

6 Mobile Information Systems

message is parsed into readable objects and accessed by
a client web browser. In a mobile application, specifically for
androids, the Apache HTTP library is used to simulate the
web browser. �e POST operation in mobile applications
works similarly as that of the web browser.

4.6. HealthNode API. For designing the API set, we gathered
general requirements from a number of previous works on
health and home monitoring projects [17, 18] and imple-
mented necessary methods for the HealthNode API. �e API
uses and extends the Express library which allows developers
to add necessary methods by following the conventional
Express implementation rules [12]. We include a library for
Android mobile and web browser applications to commu-
nicate with the HealthNode server applications. Both mobile
and web applications API enables sending JSONmessages and
files by accessing middleware functions on the server. �e
HealthNode APIs can be installed using the NPM install
commands. Starting the server and importing basic libraries
such as “MongoDB” and “fs” are already managed by simply
importing the API. Other than the previously mentioned li-
braries, APIs also use the existing “SerialPort” library to
communicate with external development boards such as an
externally connected Arduino or Raspberry Pi.

4.7. Security. �e security of data exchange between a server
and a client can be protected using Transport Layer Security
(TLS), which is a well-known protocol that provides privacy
and data integrity. By following the Express API on TLS,

HealthNode can enhance the security during data exchange.
Moreover, the privacy of patient health information is
password protected. When a developer implements the data
exchange process, login function needs to be used prior to
requesting data from the server. For example, an Android
application or a web browser client can request data from the
server after obtaining login approval.

5. Case Study-Based Evaluation

�ere are various types of cloud-based healthcare applications
that can take advantage of HealthNode’s software design and
implementation guidelines. Such examples include applica-
tions that simply log information to the cloud through the
web, exchange medical or healthcare information between
mobile devices, or execute physical component actuation
through a local network. In general, HealthNode supports the
fundamental requirements for developing of cloud applica-
tions. �ese requirements include sending/receiving data,
constructing a database to store information, calling external
executables for machine learning algorithms, and ensuring
space for the application to be expanded.

In this section, we evaluate HealthNode by providing
possible application scenarios of how our software design
and implementation guideline can be used for different
mobile-cloud application development. Note that the case
studies benefit from HealthNode due to the framework
(1) following intuitive design strategies which help external
field members to understand the system design and enhance
the medical features of the system, (2) containing a practical

(1) module.exports = function(app, mongoClient,mongoDBuri){

(2) app.post (/method , function(req, res){

(3) //Method contents
(4) });

(5) };
...

(17) function ChildSubModuleFunction(data){
(18) //Use data

(19) info = Information ;
(20) return info

(21) }
(22) exports.ChildSubModuleFunction = ChildSubModuleFunction;

LISTING 2: Structure of a middleware function and child submodule function.

(1) var querystring = require(querystring);
(2) app.post(/method , function(req, res){

(3)
(4) var postObjectToString = querystring.stringify(req.body);

(5) var postObject = querystring.parse(postObjectToString);
(6) //Data on Info is accessed from post object(query string)

(7) var Info = postObject[Info];
(8) ...

LISTING 3: Example of middleware function.

Mobile Information Systems 7

set of medical application-related methods which allows
the developer to utilize or alter the given functions to
complete cloud-based health application implementation,
and (3) allowing these applications to communicate with
external sensing systems.

5.1. Case Study: AsthmaGuide. To evaluate HealthNode’s
design and framework, we use one of our previous works,
AsthmaGuide [17], as a case study. AsthmaGuide is
a monitoring system for asthma patients in which a smart-
phone is used as a hub for collecting indoor and outdoor
environmental information and physiological data. Specif-
ically for indoor environments, we use Sensordrone [19] to
measure information of the patient’s surroundings such as
the temperature, humidity, and air quality. For outdoor
environmental data, we use a national database to gather

information of air quality, pollen count, and asthma index.
Furthermore, we collect physiological data from the patients
by collecting their lung sounds using an electronic stetho-
scope, and present questionnaires that patients fill out
manually on an Android application.�e data collected over
time is then displayed through a cloud web application for
both patients and healthcare providers to view.

By utilizing HealthNode, AsthmaGuide first gathers re-
quirements, and consequently, each of the requirements is
placed into a designated role level with the top-down approach
and assigned a job with the divide-and-conquer approach as
shown in Figure 4. �e requirements are directly linked with
middleware functions in which each requirement is responsible
for exchanging data between the client and the server.

Figure 4 also shows the list of 26 middleware functions
that are required to implementAsthmaGuide.�esemiddleware

(1) //Execute external program or classifier

(2) var querystring = require(child_process).executable;

...
(4) app.post(/method , function(req, res){

(5) executable(./execProgram + testFile , function(err, stdout, stderr){
(6) //output is on stdout

(7) }
(8) });

...
(10) //For serialport

(11) var SerialPort = require(serialport);
(12) var Readline = SerialPort.parsers.Readline;

(13) var port = new SerialPort(/dev/ttyUSB0 ,{baudrate: 9600 });
(14) var parser = port.pipe(Readline({delimiter: \r\n }));

(15) //Getting data from external board
(16) parser.on(data , function(data){

(17) console.log(data);
(18) });

(19) //Sending data to external board
(20) port.write(some data);

...
(26) //File upload/download

(27) var fs = require(fs);
...

(30) //File upload:
(31) app.post(/uploads , function(req, res) {

(32) fs.readFile(req.files.fileU.path, function(err,data){
(33) var dirname = /file/dir/location ;

(34) var newPath = dirname + /uploads/ + req.files.fileU.originalname;
(35) fs.writeFile(newPath, data, function (err){

...
(41) //Access file on server:

(42) app.get(/uploads/:file , function(req, res){
(43) file = req.params.file;

(44) console.log(File requested: + file);

(45) var dirname = /file/dir/location ;
(46) var img = fs.readFileSync(dirname + /uploads/ +file);

(47) res.writeHead(200, { Content-Type : image/jpg });
(48) res.end(img, binary);

(49) });

LISTING 4: Calling child submodule function, controlling external development board using serial communication, and managing file exchange.

8 Mobile Information Systems

functions provide necessary results back to a web browser or
a mobile device while accepting incoming data from clients.
Each of the middleware functions is mapped to the
HealthNode design pattern accordingly to the categorized
alphabetic letter. All middleware functions are prebuilt into
HealthNode and are accessible by importing the HealthNode
library. �e library implementation follows the HealthNode
design pattern, and a developer can reference the imple-
mentation as well as add the middleware functions to en-
hance their application.

For example, when a patient needs to upload his or
her collected indoor and outdoor environmental data as
well as physiological data to the server, middleware func-
tions such as “Patientlogin,” “PatientRetrieveZipCode,”
“PatientRetrieveCountryCode,” “PatientInsertData,”
“FileUploadImageFile,” “FileUploadWaveFile,” “Classi-
fyLungSound,” and “GeneratePatientAdvice” are used. Note
that “ClassifyLungSound” and “GeneratePatientAdvice” are
AsthmaGuide application-specific functions. During mobile
or web-application implementation, the AsthmaGuide

developer calls the needed middleware functions to request
and insert data to the server. Besides these simple data
upload operations, AsthmaGuide requires far more methods
when the system starts interchanging information between
a patient and a healthcare provider. �erefore, HealthNode
can help reduce the burden of developers by easing the
development complexity in the process of implementing and
maintaining cloud applications.

5.2.CaseStudy:SmartHomeAutomationFramework. Another
case study that we apply HealthNode on is a system called
the Smart Home Automation Framework (SHAF) [18]. IoT
covers a various network of physical objects with actuation
and sensing embedded units. Under the hood, the com-
munication between devices is connected through multiple
network protocols. One of the domains that take advantage
of IoT is home automation. Home automation uses different
types of network protocols such as Wi-Fi, Bluetooth, and
ZigBee. However, existing home equipment often requires

(1) module.exports = function(app, mongoClient,mongoDBuri){

(2) app.post(/method , function(req, res){

(3) res.write(Response back);
(4) res.end();

(5) });
(6) };

LISTING 5: Example of responding to REQUEST.

(1) module.exports = function(app, mongoClient,mongoDBuri){
(2) app.post(/method , function(req, res){

(3) mongoClient.connect(mongoDBuri, function(err, database){
...

(11) collection = database.collection(testingCollection);
(12) //Instead of insert other functions(delete, find) works also

(13) collection.insert(postObject, function(err, records){});

LISTING 6: Example of MongoDB INSERT operation.

(1) <script>

(2) var data_server = http://localhost/methodName ;
(3) var requestInfo = {requestInfo: data };

(4) var receivedData = {receivedInfo: };
(5) $(document).ready(function(){

(6) $.post(data_server, requestInfo).done(function(data){
(7) objArr = JSON.parse(data);

(8) if(objArr !=){
(9) $.each(objArr, function(key1, obj){

(10) receivedData.receivedInfo = obj[receivedInfo];
(11) });

LISTING 7: Example of requesting to the server from a web browser.

Mobile Information Systems 9

network communication-enabled power plugs or devices
that hold a unique communication protocol speci�ed by
a manufacturer. While these types of equipment typically
follow a standard communication capability, each device is
limited to communicate only within the same network
protocol. �e goal of SHAF is to resolve issues that can be
raised due to such limitations.

Speci�cally, SHAF targets to provide and maintain
a comfortable and healthy living environment for patients.
For example, the surrounding temperature is a critical
metric for those who are sensitive to cold or hot tempera-
tures such as people with chronic health conditions, given
that extreme (than normal) temperatures can aggravate
various symptoms. Figure 5 illustrates an example of SHAF
monitoring and actuating the smart home by using the
HealthNode framework.We use Raspberry Pi with ZigBee as
a smart central server and an Arduino with ZigBee as sensor
nodes. For SHAF ZigBee communication, multihop com-
munication is enabled for larger homes. �e server accepts
incoming JSON queries where a client can request sensor
readings or operate an actuation unit. While our current
client application is implemented on Android andWindows
smartphones, any programming languages that can support
JSON message requests can communicate with the smart
home’s central server.

SHAF’s server should have the capability of handling
requirements or multiple middleware functions such as
“AddSensor,” “RemoveSensor,” “RefersehSensorReadings,”
“ActuateSensor,” “LearnHomeUsage,” “AutonomusMode,”
and “HealthyLivingEnvironmentMode.” Although the quantity
of the middleware functions is not large, the use of
HealthNode allows for easier software maintenance since it
instructs task-speci�c submodules rather than one large

module. During maintenance, the developer couples and
decouples the submodule by changing one or two lines of
code. Speci�cally, using HealthNode’s software design, we
structure the architecture of SHAF so that it contains three
submodules (e.g., patient, caregiver, and sensor manager).
Followed by the architecture, multiple middleware functions
are implemented. For example, the patient and the caregiver
submodules are accessed from the mobile or web browsers
by using JSON message requests. When there is a request,
one of the middleware function returns the result to the
client followed by the database operation. �e server also
logs up-to-date sensing and actuation values by using the
“SerialPort” library and middleware function in the sensor
manager submodule. Furthermore, stored data can be used
by a child submodule with a machine-learning algorithm for
automatic environment con�guration based on a user’s

A. StartServer
B. DoctorRegister
C. DoctorRegisterCheck
D. DoctorLogin
E. DoctorCommentPatient
F. DoctorRetriveComments
G. DoctorRetriveCommentsOfAPatient
H. PatientRegister
I. PatientRegisterCheck
J. PatientLogin
K. PatientRetriveDataByDate
L. PatientRetriveAllData
M. PatientRetrieveMostRecentData

Server

Main
(A)

Doctor
(B~G)

Patient
(H~R)

Advice generator
(Y)

Classifier
(X)

File manager
(T~W)

Alert sender
(Z)

Client

DatabaseLibraries

Divide task

Ro
le

 le
ve

l

N. PatientRetrieveAdvice
O. PatientRetrieveZipCode
P. PatientRetrieveCountryCode
Q. PatientInsertData
R. PatientRetriveCommentsFromDoctor
S. EnviromentRetriveInfo
T. FileUploadImageFile
U. FileUploadWaveFile
V. FileUploadMp4File
W. FileUploadRetrieveFile
X. ClassifyLungSound
Y. GeneratePatientAdvice
Z. SendAlert

Figure 4: Designing AsthmaGuide according to HealthNode design pattern.

Smart home central server

HealthNode

Smart home

Smartphone

Actuation and
sensing units

Figure 5: Communication map of SHAF.

10 Mobile Information Systems

preference. Note that all of the middleware functions are
prebuilt into HealthNode and are accessible by importing
the HealthNode library.

6. Related Work

Existing Node.js applications are spread across various fields
of study including IoT or web [20–25], medical [26, 27],
transportation [28], and environmental [29] domains. To
develop a well-structured application using Node.js, Frees
[30] proposes a way to overcome many challenges in teaching
web development by placing Node.js in the computer science
curriculum. He presents a semester-long, 14-week course
outline to allow students to fully understand the use of Node.js
and be able to apply it for web development. Although Node.js
is easily utilized compared to standard techniques, Node.js still
requires a strong background before it can be used to its full
capacity. Understanding Node.js development merely at
a surface level will result the application to stay simple and be
more prone to mistakes and difficulties in maintaining the
application over time. A study by Ojamaa and Düüna [31]
stated that mistakes are more common with Node.js appli-
cations because programmers lack the extensive experience of
writing JavaScript application.

Many attempts have been made to solve this issue. *ere
are existing books [9, 32–38] and online tutorials [39, 40]
that go into the depths of using Node.js. Although these
sources provide extensive guidelines, there has not been
a straightforward software design that allows developers to
get a complete picture of the Node.js programming structure
for general-purpose application prototype.

7. Conclusion

Healthcare applications are emerging at an exponential rate,
and application systems in the remote healthcare application
domain are becoming critical sectors in IoT research. As
Node.js becomes a well-used essential tool for developing
cloud-based applications, we propose HealthNode, which is
a general-purpose framework for developing healthcare
applications on cloud platforms using Node.js. *e principal
goals of HealthNode are to provide explicit software design,
API, and guidelines to achieve quick and expandable cloud-
based healthcare application. We specifically tailor Health-
Node for healthcare applications due to a significant potential
for addressing many of the challenges of providing accessible,
cost-effective, and convenient healthcare. With development
support systems such as HealthNode, we envision that the
development of mobile-connected application systems will
inevitably increase in the healthcare domain.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported in part by the DGIST R&D Program
of theMinistry of Science, ICTand Future Planning (18-EE-01),
the Global Research Laboratory Program through the
National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT and Future Planning
(NRF-2013K1A1A2A02078326), the DGIST Research and
Development Program (CPS Global Center) for the project
“Identifying Unmet Requirements for Future Wearable De-
vices in Designing Autonomous Clinical Event Detection
Applications”, and theMinistry of Trade, Industry and Energy
and the KIAT through the International Cooperative R&D
Program (no. N0002099; Eurostars-2 Project SecureIoT).

Supplementary Materials

We have included an NPM installable supplementary in
which a developer can install the library and execute the
developer’s application using Node.js. *e supplementary
folder also consists of Android and Web client source codes
for uploading data and getting results back from the server.
(Supplementary Materials)

References

[1] Joyent Inc., Node.js, http://www.nodejs.org/, 2016.
[2] R. R. McCune, Node.js paradigms and benchmarks, Striegel,

Grad OS, 2011.
[3] S. Tilkov and S. Vinoski, “Node.js: using javascript to build

high-performance network programs,” IEEE Internet Com-
puting, vol. 14, no. 6, pp. 80–83, 2010.

[4] Microsoft, Microsoft azure, https://www.azure.microsoft.
com/en-us/develop/nodejs/, 2016.

[5] IBM, Node.js @ ibm, https://www.developer.ibm.com/node/,
2016.

[6] Netflix, Node.js in flames, http://www.techblog.netflix.
com/2014/11/nodejs-in-flames.html, 2014.

[7] PayPal, Paypal node sdk, http://www.paypal.github.io/paypal-
node-sdk/, 2016.

[8] Joyent Inc., Node.js at walmart: introduction, https://www.
joyent.com/developers/videos/node-js-at-walmart-introduction,
2016.

[9] P. Teixeira, Professional Node.js: Building Javascript Based
Scalable Software, John Wiley & Sons, Hoboken, NJ, USA,
2012.

[10] T. Capan, Why the hell would i use node. js? a case-by-case
tutorial, 2015.

[11] Node Package Manager, Npm, https://www.npmjs.com/, 2016.
[12] Express, Express api, http://www.expressjs.com/en/4x/api.html,

2017.
[13] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page

application using angularjs,” International Journal of Com-
puter Science and Information Technologies, vol. 6, no. 3,
pp. 2876–2879, 2015.

[14] N. Jain, P. Mangal, and D. Mehta, “Angularjs: a modern mvc
framework in javascript,” Journal of Global Research in
Computer Science, vol. 5, no. 12, pp. 17–23, 2015.

[15] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce,
“Twitter bootstrap and angularjs: frontend frameworks to
expedite science gateway development,” in Proceedings of the

Mobile Information Systems 11

http://downloads.hindawi.com/journals/misy/2018/6071580.f1.zip
http://www.nodejs.org/
https://www.azure.microsoft.com/en-us/develop/nodejs/
https://www.azure.microsoft.com/en-us/develop/nodejs/
https://www.developer.ibm.com/node/
http://www.techblog.netflix.com/2014/11/nodejs-in-flames.html
http://www.techblog.netflix.com/2014/11/nodejs-in-flames.html
http://www.paypal.github.io/PayPal-node-SDK/
http://www.paypal.github.io/PayPal-node-SDK/
https://www.joyent.com/developers/videos/node-js-at-walmart-introduction
https://www.joyent.com/developers/videos/node-js-at-walmart-introduction
https://www.npmjs.com/
http://www.expressjs.com/en/4x/api.html

2013 IEEE International Conference on Cluster Computing
(CLUSTER), p. 1, Indianapolis, IN, USA, September 2013.

[16] MongoDB, Mongo db and mysql compared, https://www.
mongodb.com/compare/mongodb-mysql, 2016.

[17] H.-K. Ra, A. Salekin, H.-J. Yoon et al., “AsthmaGuide: an
asthma monitoring and advice ecosystem,” in Proceedings of
the 2016 IEEE Wireless Health, pp. 128–135, Charlottesville,
VA, USA, October 2016.

[18] H.-K. Ra, S. Jeong, H. J. Yoon, and S. H. Son, “SHAF: framework
for smart home sensing and actuation,” in Proceedings of the
2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA),
p. 258, Daegu, Republic of Korea, August 2016.

[19] Sensorcon, Your smartphone can do much more with sen-
sordrone, http://www.sensorcon.com/sensordrone, 2014.

[20] Y. Jiang, X. Liu, and S. Lian, “Design and implementation of
smart-home monitoring system with the internet of things
technology,” in Lecture Notes in Electrical Engineering,
pp. 473–484, Springer, Berlin, Germany, 2016.

[21] H. Lee, H. Ahn, S. Choi, andW. Choi, “*e sams: smartphone
addiction management system and verification,” Journal of
Medical Systems, vol. 38, no. 1, pp. 1–10, 2014.

[22] T. Steiner, S. Van Hooland, and E. Summers, “Mj no more:
using concurrent wikipedia edit spikes with social network
plausibility checks for breaking news detection,” in Proceedings
of the 22nd International Conference on World Wide Web
companion, pp. 791–794, Rio de Janeiro, Brazil, May 2013.

[23] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas,
“Proximity: a real-time, location aware social web application
built with node.js and angularjs,” in Proceedings of the Mobile
Web Information Systems: 10th International Conference,
MobiWIS 2013, Paphos, Cyprus, August 2013.

[24] S. K. Badam and N. Elmqvist, “Polychrome: a cross-device
framework for collaborative web visualization,” in Proceedings
of the Ninth ACM International Conference on Interactive
Tabletops and Surfaces, ITS’14, pp. 109–118, New York, NY,
USA, September 2014.

[25] T.-M. Grønli, G. Ghinea, and M. Younas, “A lightweight ar-
chitecture for the web-of-things,” in Mobile Web Information
Systems, pp. 248–259, Springer, Berlin, Germany, 2013.

[26] J. Kim, E. Levy, A. Ferbrache et al., “MAGI: a Node. js web
service for fast microRNA-Seq analysis in a GPU infrastructure,”
Bioinformatics, vol. 30, no. 19, pp. 2826-2827, 2014.

[27] T. Di Domenico, E. Potenza, I. Walsh et al., “Repeatsdb:
a database of tandem repeat protein structures,” Nucleic Acids
Research, vol. 42, no. D1, pp. D352–D357, 2013.

[28] A. Nurminen, J. Järvi, and M. Lehtonen, A Mixed Reality In-
terface for Real Time Tracked Public Transportation, Helsinki
Institute for Information Technology (HIIT), of Aalto Uni-
versity and University of Helsinki, Helsinki, Finland, 2014.

[29] K.-L. Wang, Y.-M. Hsieh, C.-N. Liu et al., “Using motion
sensor for landslide monitoring and hazard mitigation,” in
Intelligent Environmental Sensing, pp. 111–127, Springer,
Berlin, Germany, 2015.

[30] S. Frees, “A place for Node.js in the computer science cur-
riculum,” Journal of Computing Sciences in Colleges, vol. 30,
no. 3, pp. 84–91, 2015.

[31] A. Ojamaa and K. Düüna, “Security assessment of Node.js
platform,” in Proceedings of the Information Systems Security:
8th International Conference, ICISS 2012, Guwahati, India,
December 2012.

[32] A. Mardan, “Publishing Node.js modules and contributing to
open source,” in Practical Node.js, pp. 261–267, Springer,
Berlin, Germany, 2014.

[33] G. Rauch, Smashing Node.js: JavaScript Everywhere, JohnWiley
& Sons, Hoboken, NJ, USA, 2012.

[34] J. R. Wilson, Node.js the Right Way, Pragmatic Programmers,
Dallas, TX, USA, 2014.

[35] C. Gackenheimer, Node. js Recipes: A Problem-Solution Ap-
proach, Apress, New York, NY, USA, 2013.

[36] C. J. Ihrig, Pro Node.js for Developers, Apress, New York, NY,
USA, 2013.

[37] M. *ompson, Getting Started with GEO, CouchDB, and
Node.js, O’Reilly Media Inc., Newton, MA, USA, 2011.

[38] S. Pasquali, Mastering Node.js, Packt Publishing Ltd.,
Birmingham, UK, 2013.

[39] TutorialsPoint, Node.js-express framework, http://www.
tutorialspoint.com/nodejs/nodejs_express_framework.htm, 2016.

[40] M. Kiessling, Node beinner book, http://www.nodebeginner.
org/, 2016.

12 Mobile Information Systems

https://www.mongodb.com/compare/mongodb-mysql
https://www.mongodb.com/compare/mongodb-mysql
http://www.sensorcon.com/sensordrone
http://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
http://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
http://www.nodebeginner.org/
http://www.nodebeginner.org/

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

