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ABSTRACT
With the transformation to smarter cities and the development

of technologies, a large amount of data is collected from sensors

in real-time. �is paradigm provides opportunities for improving

transportation systems’ performance by allocating vehicles towards

mobility predicted demand proactively. However, how to deal with

uncertainties in demand probability distribution for improving the

average system performance is still a challenging and unsolved task.

Considering this problem, in this work, we develop a data-driven

distributionally robust vehicle balancing method to minimize the

worst-case expected cost. We design an e�cient algorithm for

constructing uncertainty sets of random demand probability distri-

butions, and leverage a quad-tree dynamic region partition method

for be�er capturing the dynamic spatial-temporal properties of

the uncertain demand. We then prove equivalent computationally

tractable form for numerically solving the distributionally robust

problem. We evaluate the performance of the data-driven vehicle

balancing framework based on four years of taxi trip data for New

York City. We show that the average total idle driving distance is

reduced by 30% with the distributionally robust vehicle balancing

method using quad-tree dynamic region partition method, com-

pared with vehicle balancing solutions based on static region parti-

tions without considering demand uncertainties. �is is about 60

million miles or 8 million dollars cost reduction annually in NYC.
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1 INTRODUCTION
�e number of cities is increasing worldwide and the transformation

to smarter cities is taking place, which brings an array of emerging

urbanization challenges [26]. With the development of technolo-

gies, we are able to collect, store, and analyze a large amount of data

e�ciently [17]. Intelligent transportation system is one example,

in which sensing data collected in real time provides us opportuni-

ties for understanding spatial-temporal human mobility pa�erns.

For instance, tra�c speed [2], travel time [3, 19], passengers’ de-

mand model of taxi network [25], and road transportation network

e�ciency [32] are inferred and measured.

Researchers have been working on various approaches to im-

prove the performance of transportation systems. Resilience prop-

erties of dynamical networks are analyzed for distributed routing

policies [7, 8]. Smart parking systems that allocate and reserve park-

ing space for drivers [14], routing and motion planning problems for

mobile systems [20, 33] have been proposed. By considering future

demand predicted with data when making current decisions, opti-

mal vehicle balancing strategies have many advantages compared

with approaches that do not balance vehicles from a system-wide

coordination perspective. Vehicle balancing methods reduce the

number of vehicles needed to serve all passengers with mobility-

on-demand systems [29, 35, 36] and bike-sharing systems [30], or

reduce customers’ waiting time [29, 36] and taxis’ total idle dis-

tance [23] with the same number of empty vehicles. However, the

limit knowledge we have about demand and mobility pa�erns [13]

a�ect the performance of vehicle balancing strategies, and mak-

ing real-time decisions under demand model uncertainties is still

a challenging and unsolved task. Although robust optimal solu-

tion shows its advantage in worst-case scenarios compared with

non-robust approaches [1, 21, 22], there is still trade-o� between
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the system’s average performance and the worst-case performance

with a probabilistic guarantee [24].

In this work, we integrate the process of gathering actionable

information from data and designing decision-making objectives

and constraints for vehicle balancing problems of ride-sharing ser-

vice, to ensure real-time resource-allocating e�ciency from the

perspective of expected cost. It is di�cult to obtain an explicit

true probability distribution of the random demand purely based

on data without prior knowledge, therefore, we minimize the ex-

pected vehicle balancing cost under a set of possible probability

distributions of demand learned from data. Distributionally ro-

bust optimization techniques have been developed for minimizing

expected cost under the worst-case probability distributions of

random parameters for linear programming (LP), semi-de�nite pro-

gramming (SDP) problems [10, 15], and linear controllers [28] in

the literature. But there is no real-time distributionally robust vehi-

cle balancing approach for complex transportation networks with

uncertain demand probability distributions predicted from data yet.

We design a computationally tractable distributionally robust

dynamic vehicle balancing method under uncertainties about the

probability distributions of demand. An e�cient algorithm for con-

structing an uncertainty set of the probability distributions based

on data is proposed by utilizing a structural property of the covari-

ance of the random demand. A quad-tree dynamic region partition

method is used for the �rst time, and shown to improve perfor-

mance in the experiments. We then prove an equivalent convex

optimization form of the non LP or SDP form of distributionally

robust vehicle balancing problem, and guarantee both average per-

formance of the system and computational tractability. Finally, we

evaluate the average vehicle balancing costs of the distributionally

robust solutions based on real data.

�e contributions of this work are

• We take explicitly the ambiguity of demand probability dis-

tribution into account when minimizing vehicle balancing

cost. We design a data-driven dynamic distributionlly ro-

bust vehicle balancing model to optimize the expected cost

over the worst-case distribution of demand, and analyze

its applications in taxi dispatch, autonomous mobility-on-

demand and bike balancing. Previous vehicle balancing

work either focuses on one speci�c probability distribu-

tion or aims to �nd a robust solution for a single value of

worst-case demand.

• For the �rst time, we design a quad-tree dynamic region

partition method and an e�cient algorithm to construct

an uncertainty set of probability distributions that be�er

captures the spatial-temporal correlations of demand un-

certainties based on data.

• We derive a computationally tractable form to numerically

solve the distributionally robust problem.

• We evaluate the average cost obtained by adopting the

distributionally robust vehicle balancing solutions based

on four years taxi trip data of New York City, and show that

the average total idle distance is reduced by 10.05% with

static grid region partition. With the quad-tree dynamic

region partition, the average total idle distance is reduced

by 20% more. �is is about 60 million miles or 8 million

dollars gas cost reduction annually compared with non-

robust solutions.

�e rest of the paper is organized as follows. �e distribution-

ally robust vehicle balancing problem is proposed in Section 2.

An e�cient algorithm for constructing distributional uncertainty

sets based on spatial-temporal demand data and a dynamic region

partition method are designed in Section 3. An equivalent com-

putationally tractable form of the distributionally robust vehicle

balancing problem is proved in Section 4. We show performance

improvement in experiments based on a real data set in Section 5.

Concluding remarks are provided in Section 6.

2 DYNAMIC DISTRIBUTIONALLY ROBUST
VEHICLE BALANCING

In this section, we propose a distributionally robust vehicle balanc-

ing problem based on dynamic spatial region partitions. �e goal

includes balancing vehicles for e�cient service and reducing the

total costs, such as vehicles’ total idle distance or the total number

of vehicles sent to other regions. By considering possible probabil-

ity distributions of demand predicted from data, we take explicitly

the ambiguity of demand probability distributions to guarantee the

average system performance. Previous work either assumes an

explicit demand distribution [29, 30, 35, 36] or aims to �nd a robust

vehicle balancing solution for a single value (not a probability dis-

tribution) of worst-case demand [22–24, 29] for static spatial region

partitions. �e generalization of the vehicle balancing problem

formulation in this work is also explained in Subsection 2.2. A list

of parameters and variables in the problem formulation is shown

in Table 1.

We assume that one day is divided into K time intervals in-

dexed by t = 1, 2, . . . ,K in total. Vehicle balancing or re-balancing

decision is calculated in a receding horizon process, and at time

t , empty vehicles are allocated towards demand with time index

(t , t + 1, . . . , t + τ − 1) respectively. Each τ discrete time slots

(t , t+1, . . . , t+τ −1) is indexed by k = 1, 2, . . . ,τ when we calculate

a vehicle rebalancing solution, and the e�ect of current decisions

to the future re-balancing cost is involved. Only the solution of

k = 1 for time t is implemented, while the solutions for remaining

time slots are not materialized. A�er one empty vehicle arrive at its

dispatched region, a local controller will assign the vehicle to pick

up a passenger existing in this region’s request queue according to

greedy algorithms (e.g., shortest path). When the time horizon rolls

forward by one time step from t to (t + 1), information about uncer-

tain demand is �rst updated, and vehicle locations and occupancy

status are observed again. Examples of receding horizon resource

allocation applications include economic power dispatch [21], taxi

dispatch [23], autonomous mobility-on-demand [36], etc.

2.1 Problem Formulation
We assume that the number of region partitions in the city is either

static or changing arbitrarily with time, use superscript k to denote

time, and space is partitioned to nk regions (nodes) at time k . Each

region j has rkj > 0 predicted total amount of demand (e.g., number

of passengers for a mobility-on-demand system) during time k ,

where j = 1, . . . ,nk , k = 1, . . . ,τ . We consider rk ∈ Rn
k

as a
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random vector instead of a deterministic one. To model spatial-

temporal correlations of demand during every τ consecutive time

slots, we de�ne the concatenation of demand sequences as

rc = (r1, r2, . . . , rτ ) nc =
τ∑

k=1

nk .

We assume that F ∗ is the true probability distribution of the random

vector rc , i.e., rc ∼ F ∗.
We denote by a non-negative matrix Xk

the decision matrix

at time k , where Xk ∈ Rn
k×nk
+ , and Xk

i j ≥ 0 is the number of

vacant vehicles sent from region i to region j (or node i to node

j) at time k according to demand and service requirements. For

notational convenience, we de�ne a set of decision variables as

X 1:τ = {X 1, X 2, . . . X τ } ∈ Dc , where Dc is the convex domain

of decision variables de�ned by constraints. If we have the true

probability distribution of demand rc ∼ F ∗, then minimizing the ex-

pected cost of allocating vehicles in the city is de�ned as a stochastic

programming problem:

min.

X 1:τ
Erc∼F ∗

[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc , (1)

where J (X 1:τ , rc ) is a cost function of allocating vehicles according

to decisions X 1:τ
under demand rc .

However, in many applications we only have limited knowledge

about the true distribution F ∗. Moreover, problem (1) is computa-

tionally demanding, not suitable for a large-scale dynamic supply

balancing problem in smart cities in general. �e knowledge of

random demand rc is restricted to a set of independent and ran-

dom samples—historical or streaming demand data, according to

an unknown distribution F ∗. We assume that the true lower, upper

bound, mean and covariance information lie in a neighborhood

of their respective empirical estimates, a common assumption of

learning and data-driven problems [10, 15]. In Section 3 we will

design an algorithm of calculating the set F such that F ∗ ∈ F with

a high probability. We then consider the following distributionally

robust problem to minimize the worst-case expected cost as a ro-

bust form of problem (1). In the rest of this section we will de�ne

concrete forms of objective function and constraints.

min.

X 1:τ
max

F ∈F
E

[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc . (2)

2.1.1 Service quality metric function JE . We de�ne V k
j ∈ R+,

Ok
j ∈ R+ as the number of vacant and occupied vehicles at region

j before balancing or re-balancing at the beginning of time k , re-

spectively, and V k ,Ok ∈ Rn
k

+ . When receding the time horizon,

we always �rst update real-time sensing information, such as GPS

locations and occupancy status of all vehicles, and V 1 ∈ Rn
1

+ and

O1 ∈ Rn
1

+ are provided by real-time data. We denote Ski > 0 as the

total amount of vehicles available within region i during time k

with dispatch decision {X 1, . . . ,Xk }

Ski =
nk∑
j=1

X k
ji −

nk∑
j=1

X k
i j +V

k
i > 0, k = 1, . . . , τ ,

V k+1

i =

nk∑
j=1

Pkv, jiS
k
j +

nk∑
j=1

Qk
v, jiO

k
j , k = 1, . . . , τ − 1,

Ok+1

i =

nk∑
j=1

Pko, jiS
k
j +

nk∑
j=1

Qk
o, jiO

k
j , k = 1, . . . , τ − 1,

(3)

where Pkv , P
k
o ,Q

k
v ,Q

k
v ∈ R

nk×nk+1

are region transition matrices:

Pkv, ji (Pko, ji ) describe the probability that a vacant vehicle starts from

region j at the beginning of time interval k will traverse to region i
and being vacant (occupied) at the beginning of time interval (k+1);

similarly, Qk
v, ji (Qk

o, ji ) describe the probability that an occupied

vehicle starts from region j at the beginning of time interval k will

traverse to region i and being vacant (occupied) at the beginning

of time interval (k + 1). �e region transition matrices are learned

from historical data, and satisfy

nk∑
j=1

Pkv,i j + P
k
o,i j = 1,

nk∑
j=1

Qk
v,i j +Q

k
o,i j = 1.

Balancing the supply-demand ratio across the network is one

type of service quality metric in power resource allocation [21], taxi

dispatch [23] and autonomous mobility on demand systems [35].

Hence, we aim to minimize the di�erence between the local and

global demand-supply ratio for τ time intervals

τ∑
k=1

nk∑
i

�������

rki

Ski
−

∑nk
j=1

rkj∑nk
j=1

Ski

�������
. (4)

However, function (4) is not concave of the random parameters

rk , not computationally tractable as an objective function for (2).

Hence, in this work, we consider a service quality function JE

JE (X
1:τ , rk ) =

τ∑
k=1

nk∑
i=1

*
,

aikr
k
i

(Ski )
α

+
-
, (5)

where aik > 0, i = 1, . . . ,nk , k = 1, . . . ,τ are positive constants

denoting region priorities, α > 0 is a power parameter that is de-

signed according to the service requirement. In particular, When

aik = 1, i = 1, . . . ,nk , k = 1, . . . ,τ , α > 0 is a close to 0, the

objective function (5) approximates the objective (4) [22], and mini-

mizing (5) means a balancing vehicle objective. With the de�nition

of Ski as (3), JE is a function concave (linear) in rk and convex in

X 1:τ
that has the decision variables on the denominator.

2.1.2 Cost of balancing and re-balancing. Besides minimizing

service quality function (5), we also consider minimizing the costs

(such as idle distance) by sending vacant vehicles according to Xk
.

Given a spatial network structure during time k , we de�neW k ∈

Rn
k×nk

as the weight matrix that describes the cost of sending one

vehicle among regions for time k according to the network model.

For instance, whenW k
i j is the approximated distance to drive from

region i to region j, the en route idle distance is considered as the

cost for allocating one empty vehicle. WhenW k
i j = 1, the cost of

re-balancing a vehicle between any region pair (i, j ) is identical

that the total number of vacant vehicles balanced between all pairs

of (i, j ) is considered as the total cost. �e across-region balancing

cost according to Xk
is

JD (Xk ) =
nk∑
i=1

nk∑
j=1

Xk
i jW

k
i j . (6)

�e distance every vehicle can travel is bounded, because of the

speed limit during time k and tra�c conditions—during congestion

hours, the distance each vehicle can go to pick up a passenger
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Parameters of (8) Description

nk and τ the number of regions at time k and model predicting time horizon

rc ∈ R
nc ∼ F ∗, F ∗ ∈ F the concatenated demand vector with unknown distribution function F ∗ for k = 1, . . . ,τ

W k ∈ Rn
k×nk

weight matrix,W k
i j is the distance from region i to region j

Pkv , P
k
o ,Q

k
v ,Q

k
o region transition matrices from time k to (k + 1)

V 1 ∈ Nn
1

the initial number of vacant taxis at each region provided by GPS and occupancy status data

O1 ∈ Nn
1

the initial number of occupied taxis at each region provided by GPS and occupancy status data

mk ∈ R+ the upper bound of distance each taxi can drive idly for picking up a passenger at time k

Mk ∈ Rn
k×nk

the structural constraint matrix that restricts Xk
i j = 0 for far away regions

α ∈ R+ the power on the denominator of the objective function

β ∈ R+ the weight factor of the objective function

Variables of (8)

Xk
i j ∈ R+ the number of taxis dispatched from region i to region j during time k

V k ∈ Rn
k

+ the number of vacant taxis at each region before dispatching at the beginning of time k

Ok ∈ Rn
k

+ the number of occupied taxis at each region before dispatching at the beginning of time k

Sk ∈ Rn
k

+ the number of vacant taxis at each region a�er dispatching at time k

Table 1: Parameters and variables of taxi dispatch problem (8).

should be shorter than normal hours. Assume that the idle distance

upper bound for a vehicle at time k ismk > 0, provided by tra�c

speed monitors and forecasting models [2], [31], the distance from

region i to region j is disti j . We denote a structural constraint

matrix Mk ∈ Rn
k×nk

, such that Mk
i j = 0 when disti j 6 mk

, and

Mk
i j = 1 otherwise. �en the following constraint

Xk ◦Mk = 0, Xk
i j > 0 (7)

indicates a solution satis�es that Xk
i j = 0 for disti j > mk

, i, j =

1, . . . ,nk . Here ◦means Schur or entry-wise product. Both JD (Xk )

in (6) and constraint (7) are linear of Xk
.

We aim to balance vehicles with minimum idle distance, and

de�ne a weight parameter β of two objectives JD in (6) and JE
in (5). With constraints (3) and (7), we consider the following

distributionally robust vehicle balancing problem under uncertain

probability distributions of random demand

min.

X 1:τ ,S1:τ ,V 2:τ ,O2:τ
max

F ∈F
E



τ∑
k=1

*.
,
JD (Xk ) + β

nk∑
i=1

rki

(Ski )
α

+/
-


s.t. (3), (7),

(8)

where X 1:τ , S1:τ ,V 2:τ ,O2:τ
denote variables and O2, . . . ,Oτ (V 1

and O1
are given by sensing information) respectively. �e above

problem (8) cannot be immediately translated into an LP or SDP

form. Only the service requirement JE has decision variables on

the denominator and directly related to the random demand rk ,

balancing cost JD and all the constraints are linear of the variables

and not functions of rk . Hence, we only need to �nd an equivalent

convex form for JE under F ∈ F .

2.2 Generalization of Problem Formulation
Reducing the dependency of the average performance of so-
lutions on the accuracy of demand model: Problem (8) is one

example of a distributionally robust vehicle balancing problem

that does not restrict the speci�c distribution of random demand.

For instance, for queuing models, the average number of waiting

customers in the queue is related to the demand-supply ratio or

supply-demand ratio for a stable queue [16]. Considering a balanced

demand-supply ratio is considering to balance the average num-

ber of waiting customers intuitively. Robotic mobility-on-demand

systems [34, 35] usually assume a queuing model to describe the

passenger arrival rate at region i is λki . When calculating the arrival

rate for one time interval from historical data, λki equals the total

number of requests appearing in one time interval, or rki in this

work. Mean and covariance of the estimation of λki still exist when

calculating this arrival rate λki via data. Hence, when a mobility-

on-demand system can be described by a queuing model, solving

problem (8) provides a solution for balancing vehicles for λki in a

range instead of a deterministic value. �erefore, we do not restrict

the demand model to satisfy a speci�c distribution and we reduce

the dependency of the average performance of solutions to the

accuracy of demand model.

Similarly, bicycle balancing and re-balancing problems also re-

quire that the demand-supply ratio of each station is restricted

inside a range in order to provide a certain level of service satis-

faction [30]. While adjusting the range of demand-supply ratio or

supply-demand ratio back and forth is computationally expansive,

when we �nd a feasible solution of (8), the demand-supply ratio of

each region should not be far away from the global demand-supply

ratio, and fall in a range around the global level. Hence, when the

objective is to make the demand-supply ratio of each region all be

inside some range without knowing the feasible upper and lower

bounds of the range, solving (8) that makes the local ratio all close

to the global ratio and will reach an equivalent objective without

selecting the range manually.

Balancing vehicles for carpooling or heterogeneous vehi-
cle service: We consider a single type vehicle balancing problem
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(for instance, each individual empty vehicle is considered to have

the same ability) under formulation (8). When each vehicle in the

system has a di�erent service ability, for instance, when the capac-

ity of one vehicle is C1 = 1, C2 = 2, C3 = 3 or C4 = 4, we denote

Ok
l,i as the number of vehicles with capacity Cl before dispatch at

region i , and Xk
l,i j as the number of vehicles that should go from

region i to region j. �en the total number of available seats or

supply is Ski =
4∑
l=1

Cl *
,
Ok
l,i +

nk∑
j=1

Xk
l, ji −

nk∑
j=1

Xk
l,i j

+
-
. With this num-

ber Ski , objective function JE de�ned as (5) is still concave in rk ,

convex in Xk
l , l = 1, 2, 3, 4. �e balancing cost function (6), con-

straints about region transition (3) and idle distance bound (7) can

be modi�ed accordingly and still be convex of decision variables.

Under this scenario, with a modi�ed de�nition of total supply at

each region, the vehicle balancing model (8) is generalizable for

carpooling or heterogeneous capacity vehicle balancing problems.

With periodically re-balancing vehicles every hour or 30-minutes, a

lower level matching between passengers and vehicles within each

region will assign one vehicle to several requests according to its

capacity. A hierarchical carpooling framework with higher layer

distributionally robust vehicle balancing and a lower layer routing

or matching process is a venue for future work.

3 EFFICIENT DISTRIBUTIONAL SET
CONSTRUCTION ALGORITHM

We design an e�cient algorithm for constructing the uncertainty set

F of probability distributions in problem (8), with spatial-temporal

data that provides information about the true distribution F ∗ of rc .

While theoretical bound of the distributional set is too conservative

in practice, empirical estimates according to con�dence regions of

hypothesis testings are acceptable in portfolio management prob-

lems [5, 10]. However, vehicle trip or trajectory data is usually

large-scale spatial-temporal data, and how to e�ciently extract

information of mobility demand is a challenging task. Considering

the computational cost of building a distributional set for every

consecutive τ time slots (the demand prediction and vehicle balanc-

ing time lengths) of one day, we leverage the structure property

of the covariance matrix of rc to develop an e�cient construction

algorithm for set F . Furthermore, to re�ect the spatial-temporal

dynamic properties of demand and index regions e�ciently, we

build our distributional set based on a dynamic space partition

method.

3.1 Distributional Set Formulation
We denote one sample of vector rc (t ) = (r t , r t+1, . . . , r t+τ−1) at

date dl as r̃c (dl , t ), a vector of demand at each region for time

{t , t + 1, . . . , t +τ − 1}, t = 1, . . . ,K of each day. For each t , samples

from N days r̃c (d1, t ), r̃c (d2, t ), . . . , r̃c (dN , t ) are independent.We

aim to construct a uncertainty set F (t ) that describes possible

probability distributions of rc (t ) based on the support, mean and

covariance of random samples of rc (t ). We omit t for the following

problem de�nition when there is no confusion. Possible probability

distributions of a random vector rc is related to a hypothesis testing

H0 given a data set of rc : given mean µ0 and covariance Σ0, test

statistics γ1, γ2, with probability at least 1 − αh , the random vector
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. 
. 
. 
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t=1,  τ=3,  
time window (1,2,3) 

t=2,  τ=3, 
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Figure 1: �e process of calculating Σ̂ ∈ Rn×n , n =
∑K
t=1

nt

when receding time horizon. When index moves from t = 1

to t = 2, only entries in matrix Σ̂ shown in blue are new and
necessary for calculating Σ̂c (t ), t = 2.

rc satis�es that [10]

H0 :(r̃c − µ0)
T Σ−1

0
(r̃c − µ0) 6 γ1,

(r̃c − µ0) (r̃c − µ0)
T � γ2Σ0.

(9)

Without prior knowledge about the support, the true mean, covari-

ance, constructing set F based on data is an inverse process of a

hypothesis testing—calculating threshold values such that (9) is an

acceptable hypothesis by the data set. �e problem of constructing

F is de�ned as:

De�nition 3.1. Problem 1. Given a dataset of rc , �nd the values

of r̂c,l , r̂c,h , r̂c , Σ̂c , γ B
1

and γ B
2

, with probability at least 1 − αh with

respect to the samples, the true distribution of rc is contained in

the following distributional set F

F (r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1
,γ B

2
)

={(E[rc ] − r̂c )
T Σ̂−1

c (E[rc ] − r̂c ) 6 γ
B
1
,

E[(rc − r̂c ) (rc − r̂c )
T

] ≤ γ B
2
Σ̂c , rc ∈ [r̂c,l , r̂c,h]}

(10)

where r̂c,l and r̂c,h is the lower and upper bound of each entry of

the demand vector, respectively.

We then design Algorithm 1 (a list of parameters in Table 2) to cal-

culate the bootstrapped [6] estimations of r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1
,γ B

2

for every rc (t ), t = 1, 2, . . . ,K , that makes H0 in (9) acceptable and

consistent with the data.

3.2 Reducing Computational Complexity
Because F (t ) is a function of time index t , the dimension of r̂c , Σ̂c
is decided by the number of dynamic regions and prediction hori-

zon, which can be large for spatial-temporal transportation data

collected in smart cities. However, the mean and covariance matri-

ces for t , t +1, . . . , t +τ have overlapping components: for instance,

r̂c (t ) and r̂c (t + 1) both include estimated mean values of demand

during time (t + 1, t + 2, . . . , t + τ − 1). Hence, instead of always

repeating the process of calculating a mean and covariance value

for τ time slots together for each index t , the key idea of reducing

computational cost of constructing F (t ), t = 1, . . . ,K is to calcu-

late the mean and covariance of each pair of time slots of the whole

day only once. �en pick up the corresponding components needed

to construct r̂c (t ) and Σ̂c (t ) for each index t .
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r̃c (dl , t , Ip ) one sample of rc (t ) according to sub-dataset Ip , records of date dl
r̂c ∈ R

nc
, Σ̂c ∈ R

nc×nc
the estimated mean and covariance of vector rc

r̂c,l , r̂c,h the estimated lower and upper bound of vector rc
γ B

1
, γ B

2
the bootstrapped thresholds for accepting hypothesis testing (9)

αh signi�cance level of a hypothesis testing

Table 2: Parameters of Algorithm 1.

Speci�cally, we de�ne the whole day demand vector as r =

(r1, r2, . . . , rK ) ∈ Rn ,n =
K∑
t=1

nt , i.e., a concatenated demand vector

for each time slot of one day. And we denote r̂ as the estimated

mean of the random vector r . To get all covariance component for

each index t , the process is: at t = 1, calculate the covariance of

rc (1), store it as Σ̄
[1:n1,1:n1

]
; and every time when rolling the time

horizon from t to t + 1, only calculate the covariance matrix entries

between τ pairs of (r t+τ−k , r t+τ ), k = 0, . . . ,τ − 1 and store the

result as

Σ̄
[n[1,t+τ−1]

:n[1,t+τ ],n[1,t+τ−k ]
:n[1,t+τ−k+1]

]

=Σ̄
[n[1,t+τ−k ]

:n[1,t+τ−k+1],n[1,t+τ−1]
:n[1,t+τ ]

]

=cov(r t+τ−k , r t+τ ),

(11)

where n[1,t+τ ] =
∑t+τ
j=1

nj , the subscript [b1 : b2,b2 : b1] means

entries from the b1-th to the b2-th rows and b2-th to the b1-th

columns of matrix Σ̄ as explained in Figure 1.

�en we have Algorithm 1 that describes the complete process of

constructing distributional sets. Given vehicles’ service trajectories

or trips data, we count the total number of pick up events during

one hour at each region as total demand. If the given data set is

the arriving time of each customer at di�erent service nodes of

a network, then the total number of customer appeared in every

service node during each unit time is the demand. When categorical

information such as normal days or holidays/special event days of

one year, di�erent weather conditions or a combination of di�erent

contexts is available, indexed as Ip ,p = 1, 2, . . . , P , we cluster the

data set as subsets �rst.

For step 3(1), the process of picking components from the mean

and covariance matrices of the whole day demand is

r̂c (t , Ip ) = r̂[n[1,t−1]
:n[1,t+τ−1]

]
(Ip ),

Σ̂
j
c (t , Ip ) = Σ̂

j
[n[1,t−1]

:n[1,t+τ−1],n[1,t−1]
:n[1,t+τ−1]

]

(Ip ).
(12)

For the j-th re-sampled subset S j (t , Ip ), the mean and covariance

matrices are E[rc ] = r̄
j
c (t , Ip ) and E[rcr

T
c ] = Σ̄

j
c (t , Ip ), respec-

tively. For step 3(2), according to the de�nition of F in (10), we

get γ
j
1
(t , Ip ) by the following equation

γ j
1
(t, Ip )

=[r̄ jc (t, Ip ) − r̂c (t, Ip )]
T Σ̂−1

c (t, Ip )[r̄
j
c (t, Ip ) − r̂c (t, Ip )].

(13)

According to de�nition (10), the le� part of the inequality related

to γ B
2

satis�es that

E[(rc − r̂c ) (rc − r̂c )T ]

=E[rc rTc ] − r̂cE[rTc ] − E[rc ]r̂Tc + r̂c r̂
T
c = Σ̄c − r̂c r̂Tc .

ALGORITHM 1: Algorithm for constructing distributional sets

Input: A data set of spatial-temporal demand
1. Demand aggregating and sample set partition
Partition space, aggregate demand of each region for each time t , cluster

demand vector samples according to categorical information Ip , and

denote S (Ip ), S (t, Ip ) as a sample set of the whole day demand and

demand at time t of category Ip , p = 1, . . . , P , respectively.

2. Bootstrapping mean and covariance matrix
A signi�cance level 0 < αh < 1, the number of bootstrap time NB ∈ Z+.

for j = 1, . . . , NB do
Re-sample S j (Ip ) = {r̃ (d1, Ip ), . . . , r̃ (dN , Ip ) } from S (Ip ) with

replacement, calculate the mean r̄ j (Ip ) and covariance Σ̄j (Ip ) of the whole

day demand vector of set S j (Ip ) as (11).

end for
Get the bootstrapped mean covariance, and support of the whole day

demand vector (i = 1, . . . , Kn)

r̂ (Ip ) = 1

B

B∑
j=1

r̄ j (Ip ), Σ̂(Ip ) = 1

B

B∑
j=1

Σ̄j (Ip ),

r̂i,l (Ip ) =mind r̃i (d, Ip ), r̂i,h (Ip ) =maxd r̃i (d, Ip ), for all samples

r̃ (d, Ip ) in the subset S (Ip ).
3. Bootstrapping γ B

1
and γ B

2
for each time index t

for each subset S (t, Ip ) do
for j = 1, . . . , NB do
(1) Get the mean and covariance vector for the j-th re-sampled set,

r̂c (t, Ip ), Σ̂c (t, Ip ), r̄
j
c (t, Ip ), Σ̄

j
c (t, Ip ) as (12).

(2). Get γ j
1
(t, Ip ) and γ j

2
(t, Ip ) by (13) and (14).

end for
Get the dNB (1 − αh )e-th largest value of γ j

1
(t, Ip ) and γ j

2
(t, Ip ) ,

j = 1, . . . , Nb , as γ B
1
(t, Ip ) and γ B

2
(t, Ip ), respectively.

end for
Output: Distributionally uncertainty sets (10).

�en we get γ
j
2

for index (t , Ip ) by solving the following convex

optimization problem

min.

γ2

γ2

s.t Σ̄
j
c (t , Ip ) − [r̂c (t , Ip )][r̂c (t , Ip )]

T ≤ γ2Σ̂c (t , Ip )
(14)

3.3 Dynamic Space Partitioning
A grid �le [27] is a static data structure that divides the underlying

space into a grid of adjacent cells. �ese cells have equal dimen-

sions. Each cell stores spatial objects, (e.g., total number of vehicle

requests), within its boundaries. �e number of objects in each cell

is unbounded. Vehicle balancing approaches based on static spatial

partitions has reduced total idle driving distance of all taxis in the

network and increased service fairness level [22, 23, 35]. However,

when we capture the reality of spatial and spatial-temporal vehicle

balancing problems like the taxi requests we address in this paper,
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we can easily notice that those requests are dynamic. �is dynamic

nature spans both the space and time. For example, suburbanites

tend to go to their business in the metropolitan area in the morning

and return in the a�ernoon. �is makes vehicle requests in down-

town higher in the a�ernoon. �is pa�ern might change depending

on the occurrence of other events, (e.g, a state fair, or a football

game).

�is leads to the following two major challenges. (1) It is not

only necessary to index those mobility requests, but also to re�ect

their spatial-temporal dynamic properties on the employed index.

(2) It is also a real burden to do that while achieving high e�ciency.

Since the grid structure enforces a �xed partitioning schema with

�xed boundaries regardless of the data distributions, we build our

solution based on a di�erent but dynamic index structure, the quad-

tree [12].

�e quad-tree [12] is known as a dynamic hierarchical data

structure, where the space is recursively decomposed into disjoint

equal-sized partitions. Each non-leaf node has 2
d

children, where

d is the number of dimensions, typically d = 2 for modeling the

spatial dimensions. For spatial data, a non-leaf node A that covers a

rectangle determined by ((xmin ,ymin ), (xmax ,ymax )) is spatially

divided into adjacent disjoint nodes: ((xmin ,ymin ), (xmid ,ymid )),
((xmid , ymid ), (xmax ,ymax )), ((xmid , ymin ), (xmax , ymid )), and

((xmin ,ymid ), (xmid ,ymax )), where xmid = avд(xmin , xmax ) and

ymid = avд(ymin ,ymax ). A leaf node stores a maximum of M
points or items which are within its boundaries. If the number

of items exceeds the threshold, the node splits. �e quad-tree is

unbalanced, but it has good support for skewed data. Practically,

real-world spatial data sets are highly skewed.

Both the quad-tree and grid �les can be classi�ed as space parti-

tioning techniques, as opposed to data partitioning techniques (e.g.,

R-tree [18]). �e advantage of using a quad-tree to index the de-

mand locations is that a quad-tree provides data-sensitive clustering

while partitioning the underlying space and time. It is also e�cient

in handling data sparseness which occurs when some regions have

dense data points, (i.e., pick up requests), and others have few. In

addition, unlike the static and �xed partitions produced by the grid

structure, the partitions produced by quad-tree are dynamic de-

pending on the distribution of the underlying data set. �is means

for the same given space if the data points changed, the resultant

regions from quad-tree partitioning will vary in shapes, sizes, and

numbers.

Here, we leverage a 3d-quad-tree. Two dimensions are used to

store the taxi pickup locations and the third represents the time

of the day, i.e., the three dimensions for partitioning data include

(latitude, lonдitude, time−interval ). �e time dimension is divided

into �xed time intervals to provide a fair comparison with the grid

structure, and the (latitude, lonдitude ) dimensions are partitioned

according to the non-leaf node split process described above. In

the experiments we use various values of time intervals to show

the e�ect of �xed time interval partitioning on the quality of the

modeling process, or the uncertainty of the distribution function of

the random demand vector.

In this work, we evaluate a dynamic space partition method us-

ing a quad-tree that is compatible with the distributionally robust

vehicle balancing problem (8) and the distributional set construc-

tion, Algorithm 1. �e quad-tree based method further reduces idle

distance according to experiments.

4 COMPUTATIONALLY TRACTABLE FORM
In this section, we derive the main theorem of this work — an equiv-

alent computationally tractable form of the distributionally robust

optimization problem (8) via strong duality. Only JE (X
1:τ , rc ) part

of problem (8) is related to the random demand rc . �e objective

function of (8) is convex over the decision variables and concave

(linear) over the random parameter, with decision variables on the

denominators. �is form is not a linear programming (LP) or a

semi-de�nite programming (SDP) problem examined by previous

work [4, 5, 9]. Hence, the form of JD (Xk ) keeps the same and the

process of deriving a standard convex optimization problem that

equivalent to problem (8) is mainly to analyze the JE (r
k ,X 1:τ ) part,

as shown in the following theorem.

Theorem 4.1. �e distributionally robust resource allocation prob-
lem (8) with a distributional set (10) is equivalent to the following
convex optimization form

min. β (v + t ) +
τ∑

k=1

JD (Xk )

s.t.
[
v + (y+

1
)T r̂c,l − (y−

1
)T r̂c,h

1

2
(q − y − y1)

T

1

2
(q − y − y1) Q

]
� 0

t > (γ B
2
Σ̂c + r̂c r̂

T
c ) ·Q + r̂

T
c q

+

√
γ B

1
‖Σ̂1/2

c (q + 2Qr̂c )‖2
aik

(Ski )
α
6 yki , y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T ,

y1 = y
+
1
− y−

1
, y+

1
,y−

1
,y > 0, Q � 0

X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc .

(15)

Proof. See Appendix 7.1.

Speci�cally, with the constraints of problem (8) to represent the

constraint X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc in (15), we have a computa-

tionally tractable form for the distributionally robust taxi dispatch

problem (8).

5 EVALUATIONS WITH TAXI TRIP DATA
We evaluate the performance of the distributionally robust vehicle

balancing framework (8) considered in this work based on four

years of taxi trip data in New York City(NYC) [11]. Information for

every record includes the GPS coordinators of locations, and the

date and time (with precision of seconds) of pick up and drop o�

locations, as summarized in Table 3. We construct distributional

uncertainty sets according to Algorithm 1, solve (15), the equivalent

convex optimization form of problem (8) to get vehicle balancing

solutions across regions. A�er reaching the dispatched regions,

we assume that drivers pick up the nearest passenger, and add

this inside region idle distance to the across-region idle distance of

all taxis for calculating the total idle distance. We use taxi opera-

tional data for experiments because this data set is public, contains
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Taxi Trip Data

Collecting Period Data Size Record Number

01/01/2010-12/31/2013 100GB 700 million

Data Format

Trip Information Time Resolution Trip Locations

Start and end points Second GPS coordinates

Table 3: New York city data used in this evaluation section.

γ B
1

γ B
2

NB = 10 n = 50,τ = 2 0.739 5.24

NB = 100 n = 50,τ = 2 0.368 2.47

NB = 1000 n = 50,τ = 3 0.013 1.56

NB = 5000 n = 50,τ = 6 0.012 1.49

Table 4: Comparing thresholds γ B
1

and γ B
2

for di�erent NB
and dimensions of rc

information about peoples’ mobility pa�ern, and we show the ad-

vantage of vehicle service provided according to our framework by

bridging the gap between demand data to a balanced supply. �e

application of our framework does not need to be restricted to taxis,

it can be autonomous mobility-on-demand systems [36], or bike

sharing, depending on what kind of demand data is available. Bal-

ancing autonomous vehicles with a predicted demand probability

distribution in a city outperforms other vehicle dispatch algorithms

such as nearest-neighbor or collaborative taxi dispatch algorithm

in the literature, as compared based on NYC data [36]. �ough not

considering any prediction uncertainties, applying the estimation

of future demand to make decisions still improves mobility ser-

vice systems’ performance. Hence, we only compare our method

that considers uncertainties of demand probability distributions

with the method of using the predicted demand model as the true

demand model in this section.

How does the number of samples a�ect the distribution
set: We partition the map of NYC into di�erent number of equal-

area grids to compare the values of γ B
1

and γ B
2

of Algorithm 1.

Algorithm 1 captures information about the support, the �rst and

second moments of the random demand, αh = 0.1. We show the

value of γ B
1

and γ B
2

with di�erent values of sample number NB
and the dimension of rc (τn) in Table 4. When the value of NB
is increased, values of γ B

1
and γ B

2
are reduced, which means the

volume of the distributional set is smaller. For a large enough NB ,

the value of τn does not a�ect γ B
1

and γ B
2

much.

5.1 Performance of Distributionally Robust
Solutions

To compare the average performance of di�erent methods, we use

the idea of cross-validation from machine learning. All data is sepa-

rated as a training subset for constructing the uncertain distribution

set and a testing subset for comparing the true vehicle balancing

costs for each time of testing. We compare three vehicle balancing

methods, include the distributionally robust framework (8), the

robust method of [24], and the non-robust method with the average
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Figure 2: �e average cost of cross-validation tests for the
distributionally robust solutions via solving (15) (”DRO”
line), two types of uncertainty sets of the robust solutions
(lines SOC and Box) and non-robust solutions.

requests number during each unit time as the demand model [23]

(equivalent to the passenger arrival rate of a queueing model in each

unit time [35, 36]). �e optimal cost of each method is a weighted

sum of the demand-supply ratio mismatch error and estimated total

idle driving distance. For each testing sample rk from the data set,

we use the demand-supply ratio mismatch error (4) to measure

how well the optimal solution balances the vehicle toward the true

supply. �e idle distance of each taxi between two trips with pas-

sengers is approximated as the distance between one drop-o� event

and the following-up pick-up event.

We compare the average costs of cross-validation tests in Fig-

ure 2. �e average costs show the performance when we applying

the optimal solution of each method to balance taxis under all

testing samples of rc aggregated from weekdays’ data from 5pm-

8pm. �e minimum average cost of a second-order-cone (SOC)

robust solution [24] is close to the average cost of the distribution-

ally robust solutions of (15). �ey both use the �rst and second

moments information of the random demand. In particular, the

average demand-supply ratio mismatch error is reduced by 28.6%,

and the average total idle driving distance is reduced by 10.05%, the

weighted-sum cost of the two components is reduced by 10.98%

compared with non-robust solutions.

In Figure 2, robust solutions with the box type of uncertainty

set and the SOC type of uncertainty set provide a desired level of

probabilistic guarantee — the probability that an actual dispatch

cost under the true demand vector being smaller than the optimal

cost of the robust vehicle balancing solutions is greater than (1−ϵ ).
However, they do not directly minimize the average performance of

the solutions and we need to tune the value of ϵ and test the average

cost. �e horizontal lines show the average cost of distributionally

robust solutions and non-robust solutions, since these costs are

irrelevant to ϵ . �e average cost of solutions of (15) is always

smaller than costs of robust balancing solutions based on the box

type uncertainty set, which only uses information about the range

of demand at each region. �is result indicates that the second order

moment information of the random variable should be included for

modeling the uncertainty of the demand and calculating an optimal

solutions. �e distributionally robust method (8) directly provides

a be�er guarantee for the average performance under uncertain

demand, and the SOC robust method designed in [24] provides a
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Figure 3: One-hour Interval�ad-Tree for Taxi Pickups

Figure 4: Half-hour Interval�ad-Tree for Taxi Pickups

probabilistic guarantee for the worst-case performance at a single

point of the demand space.

5.2 Grid Partition Compared with�ad-Tree
Partition

As provided in Figure 3, the quad-tree covers from −75.37 to −73.29

for longitude and from 40.11 to 41.04 for the latitude in New York

city area. �e time in this �gure is divided into one-hour intervals.

Figure 4 gives a snapshot for the quad-tree partitions when we

change the time dimension to be in 30-minute intervals, which is

di�erent from the one-hour quad-tree in Figure 3. �e red dots

in both �gures represent taxi-requests distributed over the space

and time of the day. We �xed the time interval as 2 hours down

to 15 minutes as shown in Table 5, and get di�erent partitions

on (longitude, latitude) dimensions. We then use demand vectors

a�er these partitions to calculate the uncertain set of probability

distributions for 5-8pm of weekdays, to show the e�ect of time-

interval length on the quality of the quad-tree.

Table 5 shows the comparison of γ B
1

and γ B
2

values with a dy-

namic quad-tree partition method and a static simple equal-area

grid partition method for di�erent values of time interval t . When

the values are smaller, the volume of the uncertainty set is smaller.

A�er region partition and pick-up events aggregation, the demand

of each hour is predicted by directly calculating the average of

all training data. For the following experiments, we use the same

values of τ = 4, Ns = 1000, and αh = 0.1.

Grid �ad-Tree Change Rate

t = 2 h, γ B
1

0.016 0.021 31.25%

t = 2 h, γ B
2

1.73 2.05 18.50%

t = 1 h, γ B
1

0.0130 0.0110 −15.38%

t = 1 h, γ B
2

1.56 1.35 −13.46%

t = 50 m, γ B
1

0.0128 0.0107 −16.41%

t = 50 m, γ B
2

1.53 1.32 −13.73%

t = 40 m, γ B
1

0.0125 0.0102 −18.40%

t = 40 m, γ B
2

1.49 1.26 −15.44%

t = 30 m, γ B
1

0.0121 0.0095 −21.49%

t = 30 m, γ B
2

1.46 1.21 −17.12%

t = 20 m, γ B
1

0.0119 0.120 0.84%

t = 20 m, γ B
2

1.41 1.48 4.96%

t = 15 m, γ B
1

0.0120 0.123 2.50%

t = 15 m, γ B
2

1.40 1.50 7.14%

Table 5: Comparison of γ B
1

and γ B
2

values with a dynamic
quad-tree partition method and a static equal-area grid par-
tition for di�erent time intervals t , where unit ”h” means
hour and ”m” means minute. Change Rate is calculated via
(VQuad−T ree − VGrid )/VGrid , where V{ · } means the values in
the corresponding column.

Region division Grid �ad-tree change rate

t = 1h 7.63 × 10
4

6.62 × 10
4

13.1%

t = 30m 6.84 × 10
4

5.47 × 10
4

20.0%

Table 6: Comparison of average total idle distance (week-
days 5pm-8pm) with distributionally robust dispatch solu-
tions by solving (15) (equivalent form of (8)).

According to the results of t = 2 h and t = 1 h shown in Table 5

for weekdays’ demand data from 5pm to 8pm, we conclude that the

granularity of time also a�ects demand prediction accuracy. When

the length of one time instant is appropriate, the quad tree partition

method improves the accuracy of demand prediction. �e volume

of uncertainty sets shrink, with smaller γ B
1

and γ B
2

values when we

use the quad tree partition method, according to the results when

t = 50 m, t = 40 m, and t = 30 m. However, when the length of

one time instant is too short, predicting demand based on the quad

tree method is worse than that based on the simple equal-area grid

partition. �e values of γ B
1

and γ B
2

for time lengths t = 20 m and

t = 15 m show that the values of γ B
1

and γ B
2

are increased by quad

tree partition.

In Table 6, we compare the average total idle distance with dis-

tributionally robust dispatch solutions by solving (15) (equivalent

form of (8)), based on equal-area grid region partition and quad-tree

region partition methods. For a �xed time interval of 1 hour, quad-

tree region partition method can reduce average total idle distance

by 13.1%, and for a �xed 30-minutes interval, the reduction rate is

20%. �is is about a 30% or 60 million miles reduction of total idle

distance or 8 million cost reduction annually for all taxis in NYC,

compared with the method of balancing taxis in the city with aver-

age requests number that does not consider demand uncertainties.

By partitioning the regions with a data-sensitive quad-tree method



ICCPS 2017, April 2017, Pi�sburgh, PA USA Fei Miao et al.

from the beginning, the distributional set be�er captures the spatial-

temporal properties of demand. �e performance of the data-driven

vehicle balancing method is then signi�cantly improved.

6 CONCLUSION
Vehicle balancing strategies coordinate vehicles to fairly serve cus-

tomers from a system-wide perspective, and reduce total idle dis-

tance to serve the same number of customers compared with strate-

gies without balancing. However, the uncertain probability dis-

tribution of demand predicted from data a�ects the performance

of solutions and has not been considered by previous work. In

this paper, we design a data-driven distributionally robust vehicle

balancing method to minimize the worst-case average cost under

uncertainties about the probability distribution of demand. �en

we design an e�cient algorithm to construct a distributional set

given a spatial-temporal demand data set, and leverage a quad-tree

dynamic region partition method to be�er capture the dynamic

properties of the random demand. We prove an equivalent com-

putationally tractable form of the distributionally robust problem

under the constructed distributional set. Evaluations show that the

average demand-supply ratio mismatch error is reduced by 28.6%,

and the average total idle driving distance is reduced by 10.05%,

compared with non-robust solutions. With quad-tree dynamic re-

gion partitions, the average total idle distance is reduced by 20%

more. In the future, we will design hierarchical vehicle balancing

strategies for heterogeneous vehicle networks.

REFERENCES
[1] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim. Measuring the robustness of

a resource allocation. IEEE Transactions on Parallel and Distributed Systems,
15(7):630–641, July 2004.

[2] M. Asif, J. Dauwels, C. Goh, A. Oran, E. Fathi, M. Xu, M. Dhanya, N. Mitrovic,

and P. Jaillet. Spatiotemporal pa�erns in large-scale tra�c speed prediction.

IEEE TITS, 15(2):797–804, 2014.

[3] R. K. Balan, K. X. Nguyen, and L. Jiang. Real-time trip information service for a

large taxi �eet. In Proceedings of the 9th MobiSys, pages 99–112, 2011.

[4] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of
Operations Research, 23(4):769–805, 1998.

[5] D. Bertsimas, V. Bupta, and N. Kallus. Data-driven robust optimization. Operations
Research, (arXiv: 1401.0212), 2015.

[6] E. Bradley. Bootstrap methods: Another look at the jackknife. �e Annals of
Statistics, 7(1-26), 1979.

[7] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. Frazzoli. Robust distributed

routing in dynamical networks–part i: Locally responsive policies and weak

resilience. IEEE TAC, 58(2):317–332, Feb 2013.

[8] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. Frazzoli. Robust distributed

routing in dynamical networks–part ii: Strong resilience, equilibrium selection

and cascaded failures. IEEE TAC, 58(2):333–348, Feb 2013.

[9] F. A. Cuzzola, J. C. Geromel, and M. Morari. An improved approach for con-

strained robust model predictive control. Automatica, 38(7):1183–1189, 2002.

[10] E. Delage and Y. Ye. Distributionally robust optimization under moment uncer-

tainty with application to data-driven problems. Operations Research, 58(3):595–

612, 2010.

[11] B. Donovan and D. B. Work. Using coarse gps data to quantify city-scale trans-

portation system resilience to extreme events. In Transportation Research Board
Annual Meeting, July 2015.

[12] R. A. Finkel and J. L. Bentley. �ad trees a data structure for retrieval on

composite keys. Acta informatica, 4(1):1–9, 1974.

[13] R. Ganti, M. Srivatsa, and T. Abdelzaher. On limits of travel time predictions:

Insights from a new york city case study. In Proceedings of the 2014 IEEE 34th
International Conference on Distributed Computing Systems, ICDCS ’14, pages

166–175, 2014.

[14] Y. Geng and C. Cassandras. New ”smart parking” system based on resource

allocation and reservations. IEEE Transactions on Intelligent Transportation
Systems, 14(3):1129–1139, 2014.

[15] J. Goh and M. Sim. Distributionally robust optimization and its tractable approx-

imations. Operations Research, 58(4-part-1):902–917, 2010.

[16] D. Gross. Fundamentals of queueing theory. John Wiley & Sons, 2008.

[17] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A

vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7):1645 – 1660, 2013.

[18] A. Gu�man. R-trees: A dynamic index structure for spatial searching. SIGMOD
Rec., 14(2):47–57, June 1984.

[19] J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson, and A. Bayen. Evaluation of

tra�c data obtained via GPS-enabled mobile phones: �e Mobile Century �eld

experiment. Transportation Research Part C, 18(4):568–583, 2010.

[20] L. Kiet, K. Walid, and B. Alexandre. On learning how players learn: Estimation

of learning dynamics in the routing game. In Proceedings of the 7th ICCPS, pages

1–10, Los Alamitos, CA, USA, 2016. IEEE Computer Society.

[21] A. Lorca and A. Sun. Adaptive robust optimization with dynamic uncertainty

sets for multi-period economic dispatch under signi�cant wind. In Power Energy
Society General Meeting, pages 1–1, 2015.

[22] F. Miao, S. Han, S. Lin, and G. J. Pappas. Robust taxi dispatch under model

uncertainties. In 54th CDC, pages 2816–2821, 2015.

[23] F. Miao, S. Han, S. Lin, J. A. Stankovic, H. Huang, D. Zhang, S. Munir, T. He, and

G. J. Pappas. Taxi dispatch with real-time sensing data in metropolitan areas:

A receding horizon control approach. IEEE Transactions on Automation Science
and Engineering, 13:463–478, April 2016.

[24] F. Miao, S. Han, S. Lin, Q. Wang, J. Stankovic, A. Hendawi, D. Zhang, T. He,

and G. J. Pappas. Data-driven robust taxi dispatch under demand uncertain-

ties. submi�ed, preprint can be found at h�p://www.seas.upenn.edu/ miaofei/taxi-
journal.pdf.

[25] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Pre-

dicting taxi-passenger demand using streaming data. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1393–1402, Sept 2013.

[26] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris. Smarter cities

and their innovation challenges. Computer, 44(6):32–39, June 2011.

[27] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. �e grid �le: An adaptable,

symmetric multikey �le structure. ACMTransactions on Database Systems (TODS),
9(1):38–71, 1984.

[28] B. P. G. V. Parys, D. Kuhn, P. J. Goulart, and M. Morari. Distributionally robust

control of constrained stochastic systems. IEEE Transactions on Automatic Control,
61(2):430–442, Feb 2016.

[29] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus. Robotic load balancing for

mobility-on-demand systems. Int. J. Rob. Res., 31(7):839–854, June 2012.

[30] J. Schuijbroek, R. Hampshire, and W.-J. van Hoeve. Inventory rebalancing

and vehicle routing in bike sharing systems. To appear, European Journal of
Operational Research, 2016.

[31] B. L. Smith, B. M. Williams, and R. K. Oswald. Comparison of parametric and

nonparametric models for tra�c �ow forecasting. Transportation Research Part
C: Emerging Technologies, 10(4):303 – 321, 2002.

[32] H. Terelius and K. H. Johansson. An e�ciency measure for road transportation

networks with application to two case studies. In CDC, pages 5149–5155, 2015.

[33] J. Tumova, S. Karaman, C. Belta, and D. Rus. Least-violating planning in road

networks from temporal logic speci�cations. In Proceedings of the 7th ICCPS,

pages 17:1–17:9, 2016.

[34] C. Yuan, J. �ai, and A. M. Bayen. Zubers against zly�s apocalypse: An analysis

framework for dos a�acks on mobility-as-a-service systems. In Proceedings of
the 7th ICCPS, 2016.

[35] R. Zhang and M. Pavone. Control of robotic mobility-on-demand systems. Int. J.
Rob. Res., 35(1-3):186–203, Jan 2016.

[36] R. Zhang, F. Rossi, and M. Pavone. Model predictive control of autonomous

mobility-on-demand systems. In ICRA, 2016.

7 APPENDIX
7.1 Proof of �eorem 4.1

Proof. We have
aik

(Ski )
α > 0 and rc > 0 by the de�nitions of

JE in (5) and the demand model, then for any vector y ∈ Rnc ,

y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T
that satis�es 0 <

aik
(Ski )

α 6 yki ,

we also have

0 6
∑τ
k=1

nk∑
i=1

aik rki
(Ski )

α 6 y
T rc ,

and the second inequality strictly holds when all

aik rki
(Ski )

α = y
k
i , for

i = 1, . . . ,nk , k = 1, . . . ,τ . �e constraints of problem (8) are
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independent of rc , hence, for any rc , the minimization problem

min.
X k

β
τ∑

k=1

nk∑
i=1

aikr
k
i

(Ski )
α
+

τ∑
k=1

JD (Xk )

s.t X [1,τ ], S[1,τ ],V [2,τ ],O[2,τ ] ∈ Dc

is equivalent to

min.
X k

βyT rc +
τ∑

k=1

JD (Xk )

s.t.

aik

(Ski )
α
6 yki , y ∈ R

nc ,

y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T ,

X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc

(16)

In this proof, we use the objective function of problem (16). In

particular, only the part ofyT rc is related to rc , and we �rst consider

the following maximization problem

max

rc∼F ,F ∈F
E[yT rc ] (17)

By the de�nition of problem (8) and problem (16), only the ob-

jective function includes the random vector rc , and is concave of rc ,

convex of Xk
for k = 1, . . . ,τ . �e distributional set F constructed

by Algorithm 1, the domain of y, X 1:τ
, S1:τ

, V 2:τ
, and O2:τ

are

convex, closed, and bounded sets. Hence, problem (17) satis�es the

conditions of Lemma 1 in [10], and the maximum expectation value

of yT rc for any possible rc ∼ F where F ∈ F equals the optimal

value of the problem

min.

Q,q,v,t
v + t

s.t. v > yT rc − r
T
c Qrc − r

T
c q, ∀rc ∈ [r̂c,l , r̂c,h]

t > (γ B
2
Σ̂c + r̂c r̂

T
c ) ·Q + r̂

T
c q

+

√
γ B

1
‖Σ̂1/2

c (q + 2Qr̂c )‖2

Q � 0.

(18)

Hence, we �rst analytically �nd the optimal value of problem (18).

Note that the �rst constraint about v is equivalent to v > f (r∗c ,y),
where f (r∗c ,y) is the optimal value of the following problem

max.

rc
yT rc − r

T
c Qrc − r

T
c q

s.t. r̂c,l 6 rc 6 r̂c,h .
(19)

For a positive semi-de�nite Q , the optimal solution of problem (19)

exists. �e Lagrangian of (19) under the constraint y+
1
,y−

1
> 0 is

L (rc ,y
+
1
,y−

1
) =yT rc − r

T
c Qrc − r

T
c q + (y+

1
− y−

1
)T rc

− (y+
1
)T r̂c,l + (y−

1
)T r̂c,h .

When Q � 0, the supreme value of the Lagrangian is calculated via

taking the partial derivative over rc , let ∆rcL = 0, and

sup

rc
L (rc ,y

+
1
,y−

1
) =

1

4

(q − y − y1)
TQ−1 (q − y − y1)

− (y+
1
)T r̂c,l + (y−

1
)T r̂c,h ,

y1 =y
+
1
− y−

1
, y+

1
,y−

1
> 0.

�en the �rst inequality constraint of problem (18) for any r̂c,l 6
rc 6 r̂c,h is equivalent to

v >
1

4

(q − y − y1)
TQ−1 (q − y − y1)

− (y+
1
)T r̂c,l + (y−

1
)T r̂c,h .

By Schur complement, the above constraint is

[
v + (y+

1
)T r̂c,l − (y−

1
)T r̂c,h

1

2
(q − y − y1)

T

1

2
(q − y − y1) Q

]
� 0

Together with other constraints, the equivalent convex optimization

form of problem (8) is problem (15). �
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