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Abstract—This paper explores direct phone-to-phone com- popular as carriers of mobile sensing platforms for many
munication (via WiFi interface) among vehicles to support mo- reasons. First, their natural mobility increases coverage for
bile sensing applications. Direct communication among drivers’ many participatory and social sensing applications [11], [12].
phones is important in improving data collection efciency and  gecond, our daily commute itself has become a target of
sharing participatory sensing information in an inexpensive man-  any research efforts, such as those that aim to save fuel
ner. We design a practical and optimized communication mech- consumption [13], nd available parking positions [14], avoid

anism for direct phone-to-phone data transfer among drivers' . : o
phones that strategically enables phone-to-phone and/or phone-to- trafc jams or routes in bad condition [15]-{17], or share

WIFiAP communications by optimally toggles the phone between 9€neral road-side events [18]. Research communities have
the normal client and the hotspot modes. We take advantage recently investigated incentive mechanisms [19] to attract more

of the WiFi hotspot functionality on smartphones, and hence smartphone users into mobile sensing, developed solutions to
require neither involvement of participants nor changes to existing  preserve participants' privacy [20], and addressed the sparse

wireless infrastructure and protocols. An analytical model is  deployment problem [21] when mobile sensing systems do not
established to optimize toggling between client and hotspot modes have a suf cient number of participants.

for optimal system ef ciency. We fully implement this system on A dinal . brand of . lica-
off-the-shelf Google Galaxy Nexus and Nexus S phones. Through . ccordingly, we e,nV'Slon a new brand or sensing applica
a 35-vehicle 2-month deployment study, as well as simulation tONS that use driver's phones to share mobile sensory data
experiments using the real-world T-drive 9,211-taxicab dataset, we @mong vehicles as well as with infrastructure servers. We
show that our solution signi cantly reduces data transfer delay ~assume that users will exploit their cellular data bandwidth to
time and maintains over 80% ef ciency under varying system download resultdfrom such servers, such as real-time traf c
parameters. We even achieve 90% for parameter settings of the speed maps. However, they will typically not want the same
latest smartphones. mobile sensing applications to use their cellular communication
for altruistic raw data uploadto the server, since unlimited
I INTRODUCTION data plans are no longer prevalent [22], [23]. Instead, the paper

This paper presents a practical mobile phone sensing sysxplores a WiFi-based approach for uploading the sensor data
tem that utilizes direct phone-to-phone communication bereeded for the service.
tween vehicles to improve performance of mobile participatory \nji.ri pased store and forward of sensed real-time data
sensing applications. Rather than designing a new protocol {ay result in a large latency [24], which motivates optimizing
improve vehicle-to-vehicle and vehicle-to-WiFIAP communi- gata transfer among vehicles as well as between vehicles and
cations (e.g., see work on delay/disruption tolerant networke infrastructure for faster of oading. Current communication
(DTN) [1}-[4], mobile ad-hoc networks (MANET) [5], [6], and techniques on smartphones that support peer-to-peer sharing,
vehicular networks [7}-[9]), we present an optimized phone-t0g,chy as WiFi ad-hoc mode [25] and WiFi Direct [26], have
phone communication scheme that uses only those capabilitiggyn; cant limitations and are not directly usable for mobile
exported to the user on today's smartphones. It strategicallyansing. WiFi ad-hoc is not supported on most popular phones
toggles between the normal (client) and hotspot modes Ofjess rooted or jailbroken and will probably not be in the near
smartphones as would be needed to collect data from phongg re due to economic and political issues [27]. WiFi Direct
and upload to a remote back-end server. It does so withoy,s not designed with opportunistic networking in mind, but
needing to root or jailbreak smartphones, which makes thgies to connect WiFi enabled devices such as printers and
functionality implementable as a third-party phone applicationsameras in a secure way and as easily as possible. User
Moreover, it requires neither involvement of participants nofpyolyement is mandatory for WiFi Direct for security reasons
changes to existing wireless infrastructure and protocols.  2g] Also note that even if WiFi Direct can overcome its

This work is motivated by the proliferation of sensor-mentioned limitations in the near future, the phones still need
equipped smartphones in the past few years. According @ switch between the WiFi Direct “peer mode” (to connect
the International Data Corporation (IDC) Worldwide Quar-directly with other peers also in the peer mode) and the normal
terly Mobile Phone Tracker, it is estimated that 982 millionWiFi client mode (to connect to WiFi APs), as a phone in peer
smartphones will be shipped worldwide in 2015 [10]. Themode is not able to connect to normal WiFi APs to of oad data.
rich set of embedded sensors on smartphones makes mobifleus our method actually generalizes to cover the WiFi Direct
phone sensing an useful paradigm to support many applicationge of scenarios in the future.

that require real-time situation awareness, such as monitoring |, contrast. we utilize a WiFi hotspot switching approach
traf c congestion and commute delays. Vehicles are becoming '



that is compatible with existing WiFi APs as the functionalitiessmartphones. SignalGuru [15] is a software service that relies
needed are supported by the standard Android API and Jasgalely on a collection of mobile phones to detect and predict
Re ection, which does not require users to root or jailbreakhe traf ¢ signal schedule, producing a Green Light Optimal
smartphones. Two phones can establish connections when dBpeed Advisory (GLOSA). These systems rely on WiFi access
of them is in thehotspotmode and the other in thelient  points, since transmitting data through cellular data networks
mode, and a phone can of oad data to access points whds expensive. However, open public WiFi is becoming less
in the client mode. Initial efforts provided proof-of-concept prevalent as more access points are becoming private or secure.
prototypes [28]. Two important questions remain unansweredur paper aims to overcome this drawback by allowing smart
rst, is automatic phone-to-phone data transfer achievable in phones to exchange data in an opportunistic way to maximize
highly mobile vehicular environment? Second, how to switchupload opportunities.
between the hotspot and client modes in an efcient way in - oyr application scenario requires moving wireless nodes
order to minimize the expected wasted time due to phonesnd sometimes information processing in intermittently-
being in incompatible modes? Our paper addresses the abq¥ghnected networks. MANETs and DTNs are therefore im-
questions, and makes the following contributions. portant overlapping elds of research to our paper. For in-
To the best of our knowledge, this is the rst fully stance, CafNet [6] in the CarTel project [18] is a delay-
deployed smartphone-based vehicular mobile sensing sy@lerant stack that enables mobile data muling and allows
tem in which automatic phone-to-phone communicatiorflata to be sent across an intermittently connected network.
is achieved and is compatible with existing wirelessThe CafNet protocols allow cars to serve as data mules,
infrastructure. While social sensing regarding traf ¢ anddelivering data between nodes that are otherwise not connected
daily commutes provides the motivating applications, thigo one another. Similarly, the DieselNet testbed [5] consists
paper is strictly about the mobile communication platformof 35 buses, each with a Diesel Brick, which is based on
needed to support such applications. a HaCom Open Brick computer. MultiNets [31] investigates
An analytical model is established to optimize systenthe switching between WiFi and cellular modes on phones for
parameters in an adaptive fashion to achieve high systegnergy and/or throughput considerations. It is, however, not
ef ciency. We also provide empirical results to supportsuitable for our targeted vehicular mobile sensing/networking
several important design decisions in our system. scenarios because of limited WiFi accessibility in outdoor
We evaluate our analytical model and demonstrate thenvironments and that we do not allow cellular data trans-
performance of our system by providing results frommission due to the constant generation of potentially huge
a real 35-participant 2-month deployment using Googl@mount of sensory data. Other related work in this eld include
Android phones, as well as simulation experiments usingl]-[4]. The main differences of our proposed system over
T-drive 9,211-taxicab dataset [29], [30]. Results show thathis work are two-fold. First, most of them use data mules
our solution signi cantly reduces data transfer delay timefor data collections, instead, we systematically investigate the
and maintains above 80% ef ciency under varying systenperformance of realistic opportunistic networking via direct
parameters, even achieving 90% for parameter settings phone-to-phone communication, which is now possible with
the latest smartphones. most popular mobile devices. Second, while they mainly focus
on the optimization of communication stack to take advantage

discussing related work in Section II, we give detailed problerr‘i)f shc')Ar\tP\I/ehlcle meetlhng tlmes(,jvr\]/e aim to leverage (I:ommonI%/
descriptions in Section Ill. We then present our analyticaPIoen S on smartphones and hence restrict ourselves to what

model and system designs in Section IV and V. We evaluate®” be done with the available stacks.

The remainder of this paper is organized as follows. Afte

our system and solution in Section VI. And nally Section VIl Our work is also related to efforts in the vehicle networking
concludes. community, called VANET, where the goal is usually to in-
crease road safety and transport ef ciency, and provide Internet
Il. RELATED WORK access on the move to ensure wireless ubiquitous connectivity.

Prior work on vehicular mobile sensing and communicatiorResearch challenges in evolving connected vehicle architec-
generally falls into one of two categories: either using phone8ire, such as leveraging street parking to enable vehicular
for data collection and uploading (to back-end servers) withoufiternet access [7] and investigating application-driven inter-
peer-to-peer communication; or using DTN- or MANET- style@nd intra-cluster communication in VANETs [8], has been
vehicle-to-vehicle communication but on dedicated hardwar@€eply investigated. However, in mobile participatory sensing,
instead of phones. We are the rst to offer a fully deployed systhe vehicle-to-vehicle communication problem targets a dif-
tem that leverages both phone-to-phone and phone-to-AP cofg@rent goal: we aim to help participants who rarely approach
munications from vehicle-resident smartphones, customized fd¥ireless access points themselves to deliver their sensory data
the needs of mobile sensing. to the back-end server more quickly. There appears to be

Several pior mobile social sensing sppcatns lveragl SUAONIONENS solon ) 1he VARET regme o provice
smartphones placed in vehicles. For example, the Nericefl

project [16] presents a system that performs rich Sensin%marltphones.. ) o ]

using smart phones that users carry with them in normal Finally, existing communication techniques on smartphones
courses, to monitor road and traf ¢ conditions. The GreenGP#1at support peer-to-peer sharing, such as WiFi ad-hoc [25]
system [13] provides a service that computes fuel-ef cien@nd WiFi Direct [26], have signi cant limitations and are not
routes for vehicles between arbitrary end-points, by exploitinglirectly usable for social sensing. WiFi Ad-Hoc is still not
vehicular sensor measurements available through the On BoatdPported on most popular phones unless rooted or jailbroken
Diagnostic (OBD-II) interface of the car and GPS sensors oAgnd will probably not be in the near future [27]. WiFi Direct is



WiFi AP a communication opportunity, the timer pauses as the phone

s

Internet m—— f L enters transmission mode, and the data exchange starts with the
= other party (phone or back-end server via WiFi AP). When the
e £ communication is terminated due to either data transmission
\9 —————————— < completion or cars moving out of range, the phone goes back
< to its previous mode, with the timer resumed.
As two phones approach each other, if they are both in

hotspot (or client) mode, they cannot communicate until one
of them toggles mode. Similarly, when a phone enters an WiFi
not designed with opportunistic networking in mind, but triesAP coverage area, it cannot of oad data if it's in hotspot mode.
to connect WiFi enabled devices such as printers and camerakerefore, the time durations phones stay in each mode is
in a secure way and as easily as possible [28]. In addition, on@eucial. Under our described model, we are then interested
a phone is set to WiFi ad-hoc or Direct mode to support peein solving theSystem Ef ciency Optimizatioproblem, where
to-peer communication, it is no longer able to connect to WiFBystem Ef ciencys de ned to be, of the entire time duration
APs and of oad data to the back-end servers. Our WiFi hotspahat phones are within communication range with each other
switching approach overcomes these drawbacks and does rfot WiFi APs), the proportion of time when data transfer can
need to root or jailbreak smartphones [28], however, theractually take place. The problem is challenging because the
is still a lack of real deployment for performance evaluationinformation when vehicles meet each other or move into WiFi
especially in highly mobile environment, which incidentally is coverage area is NO& priori. In the next section, we establish
one main contribution of our paper as well. an analytical model for the optimal mode-toggling policy and
provide our solution to optimize important system parameters.

Fig. 1: System model

IIl. SYSTEM MODEL & PROBLEM DESCRIPTION

Our system is aimed to operate in a vehicular mobile
sensing n)étwork where sensorypdata is generated and collected lV‘_ ANA_LYT'CAL FORMULATION & S_OLUT'ON )
from participants' vehicle-resident smartphones, as illustrated In this section, we present the analytical formulation of
in Figure 1. WiFi coverage is only sparsely available withinthe optimal mode-toggling policy for maximizing the total
the sensing area. When a car moves into the coverage area€¥Pected transmission duration in our targeted vehicular phone-
a WiFi access point, the phone transmits its locally stored datg-Phone networks.
to the back-end server via WiFi communications. In addition, 6
we particularly allow phones to communicate with each other
in order to reduce data transfer delays.

While a signi cant car density may be observed in an
urban area, it may not be appropriate to assume that all or
even a large portion of drivers are running our system on their
phones. Instead, we make the more conservative assumption
that only a small fraction of phones are running our system at By grmg g g mm: g
any given time. Hence, it would be unusual for more than two I HS%& Yo ()*+',-(*4$.%'/01
Such phones to be W|th|n each Other's CommunlcauO” rangézlg 2: Proportion of various meeting interval |ength from T-drive
at a time. Therefore, in this work we focus our analysis on dataset.
pairwise encounters between phones, as opposed to optimizing We learn from preliminary experiments that connection
general multi-party communications within phone clustersrarely establishes in highway driving scenarios, regardless of
To demonstrate the validity of our assumption, we recordvhether the two cars are moving towards the same or opposite
the number of vehicles in all meeting events in the T-drivedirections. On the other hand, when two cars meet and move
dataset containing 9,211 taxicabs. We set the transmissidoward the same direction in an urban or residential area, data
range to be 30m, according to our own transmission testsansfer duration typically lasts quite long, which can also
using Google smartphones in vehicles. We nd that pairwiseccur, for example, when the two cars close to each other
encounters make up about 80% of all meeting occurrencepark in the same parking lot or are caught in a trafc jam.
Considering that the scale of this dataset is already quite larg€herefore, in these cases where the transmission duration is
the ratio of pairwise encounters would further increase witteither extremely short or long, the switching of the phones'
less participants in realistic settings. modes does not play a dominating role in system ef ciency.

In our system, as a phone joins the vehicle network, iFigure 2 shows the distribution of car meeting interval lengths
enters the client mode, in which it searches for availabl@ithin the T-drive dataset. We observe that around 46% of

communication opportunities, with either a phone in hotspomeeting events last less than 5 seconds, and less than 1% longer
mode or a WiFi AP. Meanwhile, a timer is started to controfthan 1 minute. Thus, more than 50% of car meeting events are
how long the phone can stay in client mode searching. Wheffound the middle of the distribution and potentially can bene t
the timer expires, the phone switches itself to become §onsiderably from our system.
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WiFi hotspot. The phone then listens for incoming connection I R

attempts from other phones that are in client mode. Similarly, "4 U&HS 1! "#" S #S ¢

another timer is used to switch the phone back to client mode Fig. 3: Hotspot-Client switching cycle

upon expiry. A complete cycle of the hotspot switching procedure is

In either client or hotspot mode, whenever the phone seekecomposed in Figure 3. As seen, a phone switches from
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TABLE [: Case analysis for expected transmission times

client to hotspot mode with an overheadtgfseconds, stays in
hotspot mode for seconds, switches back to client mode with T1= Ett,[M1 t ]
anothertg-second overhead, and then stays in client mode f%h' .

' - , ich can be compyted generically as
s seconds, so on and so forth. Phones can retrieve the optimal 1plit g9 y

mode-switching parameters from a central server. 7 tz('\"l t )dtzdty:

_ For simplicity we assume that the hotspot-to-client and  Now we compute the actual analytical expression Tor
client-to-hotspot switching overheads are the same, con rmeghy the various cases df andt, value ranges.

by our experiments. Given the previous description, the switch-
ing procedure repeats with a period 2t + r + s seconds.
Assuming the vehicle-vehicle and vehicle-AP meeting rate

are and , respectively (+ =1), we have the following .~‘ .~ . . ; o o
optimization objective function, just indicator functions, which we omit in writing for the rest

of the derivations.
FGo) = max (0 T+ To);

in which T; and T, are the expected phone-to-phone ani2 () Next we consider the case whete 2 [0to);t, 2
t

() We rst consider the case wherg;;t; 2 [0O;tp).
t's easily seen thaff (t)f 2(t) 0 for any t. Therefore,
(M]_ t )l(t12[0;to))I(t22[0;to)) = 0: Note that thel's are

S : f “tg + 1). i i =
phone-to-AP transmission durations, respectively. The opth® r). Analyzing the physical process, we have
T . to+r tyifandonlyift, t; to. Then,ifM; to+r t,
mization is over design parametarands. Other parameters we have ;7
are not design parameters.

1
E(M1 t)= =
Let the base functiorf (t) be a periodic function with '

2 (M1t )dtpdty
periodf =2tg+r + s,

tp to
1 z to z to+r
= — (M1 2tg r+ tp)dtadty

go; 0 t to fzr? t1+to :

_ 1, to<t to+r . _ 1 2 1 3, 1 3.

f(t)= > 0 to+r<t 2o+t : = 5z M1 )70 (M1 )7+ (M1 fo )7
1L 2to+r<t 2o+r+s Alternatively if r M, <tg+r, to ensureM; t =

Whenf (t) = 0, the phone is switching between modes;2to+r t2, weneed, 2to+r M;i. Nowt; has two possible
f (t) = 1 indicates that the phone is in hotspot mode, andower boundsti+to and2to+r M. Ifty+tg > 2te+r My,

f(t) = 1 client mode. In our calculation, we assume thatit can be inferred that; > tg+r M4, then,
the switching overhead does not dominate either of the actual £ 1

. . ] M1 t)= = (M1t )dtadty
mode durations, i.er;s >t g. . Zf 2

Upon entering the communication range of each other, the _ 170 t°”(Ml 2o T+ to)disdts

two vehiclesv; andv, are att; andt, withint their respective f2 forr M1 tirto ,
base functiorf (t) periods0 t;;t, < 2tp+r+s. We describe _ 1 M1 t0)2(M1 1) }(Ml r)3|:
the switching patterns of; andv, asf(t) = f(t+ t;) and 2f 2 3

fa(t) = f(t+ ty);t 2 [0;2tg+ r + s), respectively. We then ~ On the other hand it + to < 2to + r My, it can be
denet to be the time since meeting that the phones in twonferred thatt, <to+r My, then,
cars establish connection. It follows that, EM: t)=

1 )= (M1t )dtzdty

t =min ft:f1(t)f2(t) < Og: t1 to
t 1 Zto+r M1 to+r

N7 e

Since two cars can meet at any time, we consideand (M1 2tp r+ tz)dtadty
t, to be uniformly distributed ove0; 2tg + r + s). We useM |

to denote the total time duration in which the two carsand =
Vo are within communication range with each other. It then
follows that the two phones can only establish connection if 1 1
M. t . With these notations, we derive the analytic formula E(My1 t)= >z (M1 to)%to §(M1 nd :
of the expected transmission time

f2 ¢ 2to+r My

1
>rz(M1 to)?(to+ 1 My):

Adding these two together, we thus have,






vehicles are i) within the communication range of each othe(PRR) under varying car speeds, ranging from 10 to 30 mph,
and ii) in compatible modes (i.e., one as a hotspot and the othir recorded. The experiments are repeated on different streets
client), they exchange data until they move out of each other® minimize the effect of external noise.

communication range or complete sharing all their stored data. &

&3]
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B. Design Issues

We next discuss several important issues in our system
design: 1) Adaptive system update; 2) which transport layer
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protocol to use; 3) scheduling during data transfer; 4) Multi- 5 o77 COUH(=26">96."29@ IADB
vehicle communication policy; and 5) learning WiFi AP maps. - 8
. . 45! 4 g7,
1) Adaptive System Updatedn our targeted vehicular : MG ’ T syt st

scenarios, phones enter and leave communication ranges with _

each other or WiFi APs from time to time. Therefore, the (a) Packet reception ratio undép) Pattern of inter-packet latency on
parameterdVl; andM, are not unknown or xed, especially varying speeds (TCP/UDP) both hotspot and client sides.

when the system starts running with no available historical Fig. 5: Empirical results for design decisions.

data. We explain here how these parameters are computed andpagits are shown in Figure 5(a), from which we see

updated dynamically as the system evolves. that UDP results in signi cant packet losses, only receiving

We treat , , My andM; as random variables. Then the about 40% of packets on average under all speeds. We also
optimal values of ands are measure the PRR in the stationary case when two vehicles
hr ;s i=argmaxEw,m,[E( )T1+ E()T2]: are parked near each other. We nd that packet losses rarely

occur, implying that the losses are mainly due to unreliable
"Wireless links in mobile situations. Also, we measure that the
er-packet latency is around 1.5 millisecond for UDP and
millisecond for TCP under all speeds. This result indicates

Initially the distributions of these parameters are unknow
We therefore just make an initial guess at this stage. Then
the system runs, detailed data of the parameters are sent balc

and the corresponding empirical distribution are updated. Thg - yhe qata transfer ef ciency of TCP is comparable to UDP
parametersvl, an%sz(lglg_rtaAssntk)the tmw_;ehlduratlons of t\{\_/o when the Nagle's Delay option is turned off, and the number of
cars, or a car and a Wikl A, being within communication,, .y et received using UDP is only 51% of the number using

range of each other, respectively. Thus, they are a functichop s TCP results in a more ef cient data transmissions,
of car velocity and distance, which is a known constant. Therherefore we chose to use TCP in our system

expectations of and can be estimated b =(N. + Ny)
andN,,=(N.+ Ny), whereN. is the total number of vehicle- 3) Scheduling During Data TransferUpon establishing
to-vehicle meeting events ard,, vehicle-to-AP. Whenever connection between two phones, we can either schedule the
a phone-to-phone connection or a phone-to-AP connection isansfers to take place in a serial manner (e.g., A sends to
established, the velocities of the vehicles are transmitted ar8l then B sends to A), or have them in parallel, i.e., two
eventually will reach the back-end server. As this informatiorseparate threads on each phone, one for sending and the other
accumulates, the empirical distributions of the parameters i®ceiving, so the OS takes care of the lower-level scheduling.
updated. Consequently, a ndw ;s i is generated and then The former approach achieves controlled scheduling, but it is
sent back to the vehicles. As data accumulates, by the ladif cult to decide an appropriate time slot value, and introduces
of large number, the empirical distributions converge to thewitching overhead. For the latter, we need to check whether
true distributions of these parameters, thereftee;t i will  transmission performance is affected and fairness provided.
asymptotically lead to optimal system performance. Therefore, we repeat the two-vehicle experiment with the latter

To disseminate the updated parameters into the network, vi@Proach. The inter-packet delay times on both sides is shown
allow phones to receive this information via the cellular datd" Figure 5(b). We see that the data transfer with two threads
channel. As the amount of data needed for this is negligiblé reasonably fair for both directions—the average inter-packet

compared to other mobile sensing data, the whole network [§t€ncy at the hotspot side is 2.62 ms, only slightly higher
updated immediately with only a tiny extra cost. than the 1.96 ms measured at the other side. Considering that

; . the inter-packet delay is 1.9 millisecond when transferring
2) Transport Layer ProtocolTCP and UDP have their own in_one direction, using two separate threads can improve

strengths and' weaknessgs. To decide which one 10 Use, WR ansmission ef ciency by 69.5%. Thus we choose this
conduct a series of experiments to compare their performan%%proach in our system design

in our system. During each experiment, two vehicles start a
two ends of a long street, and move toward each other at 4) Multi-Vehicle Communication PolicyWe briey talk

xed speeds until they reach the other end of the street. Onabout the scenario under which multiple vehicles are within
phone serves as the hotspot and the other client. The clieedbmmunication range of each other. In our smartphone-based
continuously sends data packets to the hotspot after connectiaghicular sensing system, let's assume they form a star-
to it upon entering communication range. Packet sequendepology network, the hotspot acts as the center and other
numbers are used to simulate sensory data for transmissiomtients connect to it. The number of clients is limited by the
TCP and UDP communications are measured separately. tapacity of the hotspot (e.g., the maximum number of connec-
addition, we optimize the TCP real-time responses to improvéons for iPhone 5 is ve, as con rmed by AT&T and Verizon).
system ef ciency by turning off the Nagle's Delay option [35], The hotspot communicates to its clients simultaneously via
which is used to purposefully delay transmission, increasingultiple threads, and data from one client ows to others
bandwidth at the expense of latency. The packet reception ratibrough the hotspot.
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Fig. 6: Results under varying vehicle-AP/vehicle-vehicle meeting time durations and ratios

One choice in the multi-vehicle scenario is to switch theiraveraging 2 weeks each, and collectively drove for around
roles dynamically for better global communication opportunity4,000 miles. While we expect a mobile sensing application to
For instance, a clienA connects to a hotsp&, and they start run on participants' own phones, in our study we gave people
transmitting data. Thei notices that another three hotspots,phones pre-loaded with our test application. A mixture of both
C, D, andE, appear in its wi list. Hence, the best way for Galaxy Nexus and Nexus S phones were given to participants
this local area network is to switcA as a hotspot, and the to be installed in their own vehicles. No speci ¢ driving routes
other four phones as clients, so as to get everyone involvegere pre-selected; all participants were asked to drive normally
in communication. However, this approach suffers from twaand carry out their daily routines as usual. Comprehensive
main drawbacks. First, it requires an extra switch time fotogging information was displayed on the phone during the
the client (e.g.,A) to notify each hotspot to switch to client running of the system, as illustrated in Figure 4(c), to notify the
and then switch itself into a hotspot. Second, the mobilityparticipants of the status of the system if they were interested.

of these vghiclgs are undeterministic, th.us it is hard to judge TCp communication is used with Nagle's Delay disabled,

whether this switching process is worthy in general. Thereforeys we learn from our prior tests that having this option enabled

we decide not to support multi-vehicle communication in outhgs negative impact on communication throughput. The switch-

system, as also reasoned about in Section IIl. ing overhead is estimated to be at about 3.5 seconds for Galaxy
5) WiFi AP Maps: We also recognize that having prior Nexus and 6.9 seconds for Nexus S phones. During the data

knowledge about WiFi AP maps could help optimize ourtransfer process, two separate threads are spawn concurrently,

system. Several such maps exist, being managed by the goveame for sending and the other receiving. Fifty consecutive data

ment [36] and wireless operators [37]. However, the availabilitysamples are combined into one larger packet before sending in

of these maps is a big challenge since they are typically nairder to improve throughput.

made pubic. What's more, WiFi APs are generally designed to

cover indoor environments (e.g., Cafe, of ce, etc) and thus arg. Experiment Results

not Iargely accessible in vehicular settings. _One .possibili.ty is We estimate the values 6§, M1, M,, and from data

to let participants’ phones record local WiFi AP information o, iected in our deployment, and investigate the relationship

and share to the central server. The server can then de”lﬂ%tween optimal parameters and various system coef cients,

a global map and broadcast it back to all participants. Thiﬁnder varying average meeting time duratiods; (M) and
approach, however, is problematic as different participants may,icje-AP to vehicle-vehicle meeting ratios)(
have different accesses to different APs. This may lead to~ | ) ]

inaccurate estimations. In addition, the highly mobile vehicular Figure 6(a) shows how optimal time frame lengtlt, (+
environment can lead to unstable communication patterrfs* S) are affected by meeting times and ratios. We see

and subsequent con icting results on the central server. wihat, when the average meeting time is below 40s, meeting
thus decide not to assume the availability of WiFi AP mapfatios have little effect on optimal time frame lengths. When

information in this paper. the average mgeting tim_e increases beyond. 40s, 'the o_ptimal
frame lengths differ considerably as the meeting ratio varies—
VI. EVALUATION the more dominant vehicle-AP meetings are (as opposed to

ehicle-vehicle meetings), the shorter the optimal frame lengths

tem design details, we, in this section, evaluate the performan@gcOme. We also notice that as the average meeting time
of our automatic phone-to-phone communication scheme fdpcréases beyond 40s, the growth of the optimal frame length
vehicular networking applications. We report ndings from SIOWs down.

our campus-wide deployment, and present optimization results Figure 6(b) illustrates how optimal client mode proportion
through simulation experiments using a larger-scale real-worlth+r+5) changes with different meeting times and ratios. We

Having presented our analytical model and discussed sy

taxicab dataset. observe that, as the vehicle-vehicle meeting ratio decreases,
the optimal client proportion increases. In particular, when
A. Experiment Setup vehicle-vehicle meetings are about 10 times that of vehicle-AP

We conducted a human subject stddg5 people partici- ©nes, the hotspot and client proportions are roughly the same
pated (university faculty, staff, and students of both genderdVith each other; On the other hand, the optimal client mode

ranging from early 20s into late 40s, from various departmentd)roportion increases beyor&D% when vehicle-AP meetings
become dominant. These results suggest the following, i) In

2The study was conducted under IRB protocol #10092. a dense vehicular network, in order to achieve the highest
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Fig. 7: Experimental results of system ef ciency.

system ef ciency, phones should spend approximately the sanietervals by recording all vehicle-vehicle and vehicle-AP pairs
amount of time in hotspot and client modes; and ii) In athat are in communication range at each time point, then
sparse vehicular network, phones should stay in client modmsmpute the optimal parameters based on the analytical model
as much as possible in order to maximize the probability ofliscussed in Section IV. Finally we apply these parameters to
communicating with WiFi APs. We can also easily see fronthe meeting intervals and calculate the overall system ef ciency
the gure that the optimal client mode proportion increasesinder three different candidate approach&daptive Statig
when the average meeting time lengthens. and Baseline Adaptiveupdates system parameters every hour
(Tis) 4 "Telts) note thatT, and T, are functions the network.Static only uses the data from the rst hour to

h calculate the optimal parameters, and then remains the same

that take the optimzal parameters; s as inputs) varies witl ; . ) ;
meeting times and ratios. We see that the ef ciency increaséi!ling the whole proces8aselineconsiders the baseline case
In which phone-to-phone communication is not enabled.

monotonically with both the average meeting time and vehicle-
AP meeting ratio.It is quite promising that data communication We rst investigate how system ef ciency changes as the
takes up ove5% of meeting times in almost all cases, andswitching overheadt§) varies. Figure 7(a) shows the results
even reaching abov@0% in certain cases (higher vehicle-AP with the mode switching overhead ranging from 1s to 10s,

meeting ratio and long meeting time). where phones' communication range is set to be 30m. We see
that the system ef ciency foAdaptiveperforms slightly better
C. Larger-Scale Simulation Results than that ofStaticand is over80% for all cases, speci cally,

Our deployment and human subject study help us geQO% and 90% for Nexus 4 {o = 2:1 seconds)88% and 86%
initial ideas of how our proposed system behaves. To analyZ8" Galaxy Nexus = 3:5 seconds), an@4% and 79% for
the system performance in a much larger scale, we turn tJ€XUs S (o = 6:9 seconds). This indicates that our proposed
simulation experiments using the T-drive real-world taxicap>0lution can achieve high system efciency using off-the-
dataset [29], [30], which contains the GPS trajectories ophelf smartphones and thus is highly practical. Also, since the
10,357 taxicabs during the period of Feb. 2nd through Fet@selineapproach does not allow phone-phone communication
8th, 2008 in Beijing. To better represent our mobile sensingnctionality at all, the system efciency remains 88%
application scenario, we select the central part of city an hich is just the ratio of overall phone-AP to all meeting time.
Iter out the suburb area where vehicles are sparse. Thus Figure 7(b) shows the system efciency under varying
our experiments contain 9,211 taxicabs, covering the centr@hone communication ranges when the mode switching over-
Beijing area. We focus on evaluating the system ef ciency ohead is 3.5 and 6.9 seconds, to emulate the use of Galaxy
our proposed optimization approach in this set of larger-scaldexus (G.N) and Nexus S (N.S) phones. We see that the
simulation experiments. ef ciency of both Adaptiveand Static does not change much

We assume that 10% of this area is covered by WiFi AP&S the transmission range increases. The ef ciendgadfeline
to measure the performance of of oading events. This numbe{€Creases as transmission range goes up. We also notice
is motivated by results from other large cities such as Saf!at again, the system ef ciency fokdaptiveperforms only

Francisco and Seattle [38]. These WiFi APs are spread ogfightly better tharStatic for both phones. This suggests that
equally in the central part of the area. In a relatively dense vehicular network setting, our proposed

L . . solution quickly converges to optimal system parameters and
The communication range of WiFi APs and taxicabs argoes notqneedyextensivge training phasey P

set to 250 and 30 meters, respectively. Both are based on our . . .

actual measurements. We also experiment with the situations Ve néxt study the time-of-day system ef ciency in an hour-

where the taxicabs' communication range varies from 30m tgY-hour fashion. As Figure 7(c) shows, the system ef ciency

50m, 100m, and 200m, in order to investigate the cases whefgéasurements for bofdaptiveandStaticdo not change much

the next generation phones are more powerful and capable Goughout the day, implying that both approaches work quite

achieving larger communication ranges. Other system setting€!l consistently. On the other hand, we see thatBaseline

and parameters, including data generation and of oad procesaPProach leads to large oscillations, mainly due to the shift of

follow that of our small-scale deployment study. traf ¢ patterns throughout the day, with a higher vehicle-AP
meeting ratio in the evening. Therefore, our proposed approach,

We carry out the simulation using the T-drive dataset aBe it Adaptive or Static delivers a much more stable and

follows. For the rst 24-hour's data, we rst extract meeting



predictable system performance than the baseline. [4]
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Fig. 8: Improvement of delay time with phone-to-phone
communication.

Finally, Figure 8 shows the application-level benet that 11]
direct phone-to-phone communication brings about. We record
the delay time of delivery for data generated in the rst
hour by all 9,211 taxicabs, with and without our solution,
and under varying transmission ranges. The throughput of
phone-to-phone communication bandwidth is set to 746.5 kbp 3
obtained from measurements in our deployment. As we ¢ ]
see, enabling phone-to-phone communication largely decreases
the delay time of data delivery, by more thd@% and up to  [14l
about50% on average for all communication ranges tested.
More concretely, our solution helps reduce the average deldys]
time from 5.0 to 2.7 hours, and the median from 1.3 to O. 16]
hour. In addition, as the transmission range increases, the
improvement by our solution also increases because it leads
to more occurrences of data transfers among taxicabs. Theldél
results indicate that direct phone-to-phone communication sig-
ni cantly improves data collection and sharing in vehicular[18]
networking applications.

(10]

[19]
VIlI. CONCLUSIONS

In this paper, we present the design, implementation, anéo]
evaluation of a novel optimized vehicular mobile system that
leverages both phone-to-phone and phone-to-AP communicgy)
tions from vehicle-resident smartphones. Our proposed so-
lution optimizes vehicle meeting communication ef ciency,[ 2]
does not require any change to existing infrastructure, anczi
is completely transparent to end users. Results from our 3%23]
vehicle 2-month campus-wide deployment and a Iarge-sca[ 4]
real-world dataset simulation demonstrate that our approac
signi cantly reduces data transfer delay time and maintains
over 80% (90% in certain cases) system ef ciency. Givert?®
the popularity of smartphones and importance of vehiculape)
networks, we believe that this work will motivate further
research on leveraging human encounters in mobile sensirL?d]
and networking applications. [28]

[29]
ACKNOWLEDGEMENT

This work was supported by NSF grants CNS 1059294[,30]

CNS 1040380, and CNS 1239483, and NSFC grant U130125631]

REFERENCES 32

[1] R. Yanggratoke, A. Azfar, M. J. P. Marval, and S. Ahmed, “Delay toler- [33
ant network on android phones: Implementation issues and performan¢a4
measurements,JOC, vol. 6, no. 6, pp. 477-484, 2011.

[2] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M[35]
Belding, “Cool-tether: energy ef cient on-the-y wi hot-spots using
mobile phones,” inCoNext 2009. 36

[3] N. Thompson, S. C. Nelson, M. Bakht, T. Abdelzaher, and R. Kravets[37
“Retiring replicants: congestion control for intermittently-connected[38
networks,” inlnfoCom 2010.

S. C. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in
dtns,” in InfoCom 2009.

N. Banerjee, M. D. Corner, and B. N. Levine, “Design and eld
experimentation of an energy-ef cient architecture for dtn throwboxes,”
TON, vol. 18, no. 2, pp. 554-567, 2010.

K. W. Chen, “Cafnet: A carry-and-forward delay-tolerant network,”
Ph.D. dissertation, MIT, 2007.

R. Crepaldi, R. Beavers, B. Ehrat, M. Jaeger, S. Biersteker, and
R. Kravets, “Loadingzones: leveraging street parking to enable vehicular
internet access,” iICHANTS 2012.

R. Crepaldi, M. Bakht, and R. Kravets, “Quicksilver: application-driven
inter-and intra-cluster communication in vanets,"NtobiOpp 2012.

J. Zhao and G. Cao, “Vadd: Vehicle-assisted data delivery in vehicular
ad hoc networks Yehicular Technology, IEEE Transactions, aol. 57,

no. 3, pp. 1910-1922, 2008.

IDC. Worldwide smartphone market expected to grow 55% in 2011 and
approach shipments of one billion in 2015, according to IDC, “http:
/Iwww.idc.com/getdoc.jsp?containerld=pruS22871611,” 2013.

E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile
social networks: the design, implementation and evaluation of the
cenceme application,” i®enSys2008.

J. Yang, S. Sidhom, G. Chandrasekharan, T. Vu, H. Liu, Y. C. abd
M. Gruteser, and R. Martin, “Detecting driver phone use levering car
speakers,” inMobiCom 2011.

R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. Abdelzaher,
“Greengps: A participatory sensing fuel-ef cient maps application,” in
Mobisys 2010.

S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “Parknet: drive-by sensing of road-side
parking statistics,” irMobiSys 2010.

R. K. Balan, K. X. Nguyen, and L. Jiang, “Real-time trip information
service for a large taxi eet,” inMobiSys 2011.

P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitor-
ing of road and traf ¢ conditions using mobile smartphones,SgnSys
2008.

A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware road
traf ¢ delay estimation using mobile phones,” BenSys2009.

B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: a distributed mobile
sensor computing system,” BenSys2006.

D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensingMobiCom
2012.

H. Ahmadi, N. Pham, R. Ganti, T. Abdelzaher, S. Nath, and J. Han,
“Privacy-aware regression modeling of participatory sensing data,” in
SenSys2010.

H. Ahmadi, T. Abdelzaher, J. Han, R. Ganti, and N. Pham, “On reliable
modeling of open cyber-physical systems and its application to green
transportation,” inNCCPS 2011.

Customers Angered as iPhones Overload AT&T. NY Times, September
2009, “http://goo.gl/KtulnV,” 2013.

iPhone overload: Dutch T-Mobile issues refund after 3G issues. Ars
Technica, July 2010, “http://goo.gl/6DCNYh,” 2013.

H. Liu, S. Hu, W. Zheng, Z. Xie, S. Wang, P. Hui, and T. Abdelzaher,
“Ef cient 3g budget utilization in mobile participatory sensing applica-
tions,” in InfoCom 2013.

The Code for the New wpaupplicant, “https://github.com/kelvie/
android-wpasupplicant,” 2013.

C. Foresman, “Wi- direct protocol to ease peer-to-peer wi connec-
tions,” 2009.

Android issue 82: Support ad hoc networking, “http://code.google.com/
p/android/issues/detail?id=82," 2013.

S. Trifunovic, B. Distl, D. Schatzmann, and F. Legendre, “Wi -opp:
ad-hoc-less opportunistic networking,” @HANTS 2011.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” inKDD, 2011.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: driving directions based on taxi trajectories,” 1S 2010.

S. Nirjon, A. Nicoara, C.-H. Hsu, J. Singh, and J. Stankovic, “Multinets:
Policy oriented real-time switching of wireless interfaces on mobile
devices,” iINRTAS 2012.

Galaxy Nexus, “http://goo.gl/zdd9f,” 2013.

Nexus S, “http://www.google.com/phone/detail/nexus-s,” 2013.

R. Birnbaum and J. TruglisGetting to know OBD Il R. Birnbaum,
2001.

L. L. Peterson and B. S. Davi€omputer networks: a systems approach
Elsevier, 2007.

Washington, DC Wi-Fi Hot Spot Map, “http://goo.gl/cqR8KA,” 2013.
AT&T Wi-Fi Hot Spot locations, “http://goo.gl/Da0Of99,” 2013.

A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wi,” in MobiSys 2010.



