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Abstract. This paper presents the Real-Time Event Detection Service
using Data Service Middleware (DSWare). DSWare provides data-centric
and group-based services for sensor networks. The real-time event ser-
vice handles unreliability of individual sensor reports, correlation among
different sensor observations, and inherent real-time characteristics of
events. The event service supports confidence functions which are de-
signed based on data semantics, including relative importance of sub-
events and historical patterns. When the failure rate is high, the event
service enables partial detection of critical events to be reported in a
timely manner. It can also be applied to differentiate between the occur-
rences of events and false alarms.

1 Introduction

Sensor networks are large-scale wireless networks that consist of numerous sen-
sor and actuator nodes used to monitor and interact with physical environ-
ments [11][14]. From one perspective sensor networks are similar to distributed
database systems. They store environmental data on distributed nodes and re-
spond to aperiodic and long-lived periodic queries [7][15][20]. Data interest can
be pre-registered to the sensor network so that the corresponding data is col-
lected and transmitted only when needed. These specified interests are similar
to views in traditional databases because they filter the data according to the
application’s data semantics and shield the overwhelming volume of raw data
from applications [8][26].

Sensor networks also have inherent real-time properties. The environment
that sensor networks interact with is usually dynamic and volatile. The sensor
data usually has an absolute validity interval of time after which the data values
may not be consistent with the real environment. Transmitting and processing
“stale” data wastes communication resources and can result in wrong decisions
based on the reported out-of-date data. Besides data freshness, often the data
must also be sent to the destination by a deadline. To date, not much research
has been performed on real-time data services in sensor networks.

Despite their similarity to conventional distributed real-time databases, sen-
sor networks differ in the following important ways. First, individual sensors are
small in size and have limited computing resources, while they also must operate



for long periods of time in an unattended fashion. This makes power conservation
an important concern in prolonging the lifetime of the system. In current sensor
networks, the major source of power consumption is communication. To reduce
unnecessary data transmission from each node, data collection and transmission
in sensor networks are always initiated by subscriptions or queries. Second, any
individual sensor is not reliable. Sensors can be damaged or die after consum-
ing the battery. The wireless communication medium is also unreliable. Packets
can collide or be lost. Because of these issues we must build trust on a group
of sensor nodes instead of any single node. Previous research emphasizes reli-
able transmission of important data or control packets at the lower levels, but
less emphasis is on the reliability on data semantics at the higher level [23].
Third, the large amount of sensed data produced in sensor networks necessitates
in-network processing. If all raw data is sent to base stations for further pro-
cessing, the volume and burstiness of the traffic may cause many collisions and
contribute to significant power loss. To minimize unnecessary data transmission,
intermediate nodes or nearby nodes work together to filter and aggregate data
before the data arrives at the destination. Fourth, sensor networks can interact
with the environment by both sensing and actuating. When certain conditions
are met, actuators can initiate an action on the environment. Since such actions
are difficult to undo, reducing false alarms is crucial in certain applications.

The remainder of this paper is organized as follows: In section 2, we present
related work. In section 3, we present the design of Data Service Middleware
(DSWare) and some major components of DSWare. DSWare is a specialized
layer that integrates various real-time data services for sensor networks and
provides a database-like abstraction to applications. In section 4 we present a
detailed description of the event detection mechanism. Event detection is one
of the most important data services in sensor networks because it is a way
to “dig” meaningful information out of the huge volume of data produced. It
aims to find the “right data” at the “right place” and ensure the data is sent
at the “right time”. Event Detection Services in DSWare associate a confidence
value with each decision it makes based on a pre-specified confidence function. It
incorporates the unreliability of sensor behavior, the correlation among different
factors, and reduces false alarms by utilizing data semantics. Section 5 presents
the performance evaluation of the event detection mechanism. We conclude the
paper in Section 6.

2 Related Work

There are many ongoing middleware research projects in the area of sensor
networks, such as Cougar, Rutgers Dataman, SINA, SCADDS, Smart-msgs, and
some virtual-machine-like designs [1][2][3][4][8][12][17][26]. COUGER and SINA
are two typical data-centric middleware designs which have goals that are similar
to our design goal of providing data services. In COUGER, sensor data is viewed
as tables and query execution plans are developed and possibly optimized in this
middleware. Our work on DSWare is more tailored to sensor networks, including



supporting group-based decision, reliable data-centric storage, and implementing
other approaches to improve the performance of real-time execution, reliability
of aggregated results and reduction of communication. SINA is a cluster-based
middleware design which focuses on the cooperation among sensors to conduct
a task. Its extensive SQL-like primitives can be used to issue queries in sensor
networks. However, it does not provide schemes to hide the faulty nature of both
sensor operations and wireless communication. In SINA it is the application layer
that must provide robustness and reliability for data services. In DSWare, the
real-time scheduling component and built-in real-time features of other service
components make DSWare more suitable than SINA for real-time applications
in ad hoc wireless sensor networks.

Multisensor data fusion research focuses on solutions that fuse data from
multiple sensors to provide more accurate estimation of the environment [16][22].
In mobile-agent-based data fusion approaches, software that aggregates sensor
information are packed and dispatched as mobile agents to “hot” areas (e.g.,
the area where an event occurred) and work independently there. The software
migrates among sensors in a cluster, collects observations, then infers the real
situation [22]. This approach and our group-based approach both make use of
consensus among a number of nearby sensors of the same type to increase the
reliability of a single observation. The mobile-agent-based approach, however,
leverages on the migration traffic of mobile agents and their appropriate pro-
cessing at each sensor node in its routes. For instance, if a node in the route
inserts wrong data or refuses to forward the mobile agents, the aggregation and
subsequent analysis are untrustful. Our approach does not have such limitations:
malfunctioning of individual nodes does not infect the entire group.

A fuzzy modelling approach is sometimes used for data fusion in sensor net-
works. It is used to model the uncertainty in sensor failures and faulty obser-
vations [25]. This approach is useful in modelling the sensor error rates due to
equipment wear and aggregating local decisions from multiple sensors that mea-
sure the same type of data. Some optimal decision schemes focus on the fusion of
asynchronously arriving decisions [10][24]. E. Bosse et. al. presented a modelling
and simulation approach for a real-time algorithm in multi-source data fusion
systems [9]. These data fusion schemes are suitable for increasing the accuracy
of decisions, but require extensive computing resources. In our approach to event
detection, the computation in fusion nodes is small.

Dempster-Shafer evidential theory is also applied to incorporate uncertainty
into decisions in some sensor fusion research [21]. This scheme uses Belief and
Plausibility functions to describe the reliability feature of each source and uses
a normalized Dempster’s combination rule to integrate decisions from different
sources. Our confidence function is similar to Dempster-Shafer method except
that we place the evidence in both temporal and spatial spectrums to take data
real-time validity intervals and possible contexts into consideration.



3 Data Service Middleware (DSWare)

A data services middleware can avoid re-implementing the common data service
part of various applications. We develop a Data Service Middleware (DSWare)
Layer that exists between the application layer and the network layer. This mid-
dleware provides data service abstraction to applications, as depicted in Fig. 1.
In this architecture, routing is separated from both DSWare and the network
layer since the group management and scheduling components in DSWare can
be used to enhance the power-awareness and real-time-awareness of routing pro-
tocols. Fig. 2 demonstrates the architecture of DSWare.
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3.1 Data Storage

Data-centric storage is an implementation of a data storage service [23]. Data
that describes different occurrences of some type of activity can be mapped to
certain locations so that future queries for this type of data do not require being
flooded to the whole network. The Data Storage Component in DSWare provides
similar mechanisms to store information according to its semantics with efficient
data lookup and supports robustness during node failures. Correlated data can
be stored in geographically adjacent regions to enable possible aggregation and
in-network processing.

– Data Lookup
We use two levels of hashing functions to map data to physical storage nodes.
Each type of data has its unique identifier (e.g, the activity name string and
the object’s privilege profile) and it is used as key for the first level hashing
function. The first level hash function maps the key to a logical storage node
in the overlay network. At this level, storage nodes establish a hierarchy.
In DSWare, we have one more hashing procedure to map a single logical
node to multiple physical nodes. When a base station sends queries for this
data, the information is fetched from one of these physical locations. Future
designs need to consider how to map related data to geographically adjacent
locations to promote data aggregation and in-network processing.

– Robustness
Data stored in an individual node can be lost due to disaster, node damages,
energy shortage, and other reasons. If we map a certain type of data to an
individual node, when this activity occurs, lots of event data is sent to this
node during a short period. The burst of traffic will lead to high collision
and power consumption in the storage vicinity and indirectly decrease the
reliability and availability of the storage node. In DSWare, data is replicated
in multiple physical nodes that can be mapped to a single logical node.
Queries are directed to any of these nodes to avoid high traffic collision and
heavy load pushed on a single storage node. Load is balanced among the set
of physical nodes and the lifetime of an individual node is prolonged. The
consistency among these nodes is a key issue for a data storage component.
To avoid peak time traffic, we choose “weak consistency” among the nodes.
Most of the data on these nodes are identical except a small portion of
the newest data. This new data is eventually propagated to the other peer
nodes. The size of the portion of data that is inconsistent is bounded and
nodes perform the replication when their own work load is low.

3.2 Data caching

The Data Caching Service provides multiple copies of the data most requested.
This data is spread out over the routing path to reduce communication, increase
availability and accelerate query execution [5]. It uses a simplified feedback con-
trol scheme to dynamically decide whether to place copies of the data around
the frequently queried nodes.



There is a tradeoff between the query response time and maintenance over-
head of data copies. A node can use the total number of queries routed through
itself, the proportion of periodic queries, average response time from the data
source, the number of copies that already exist in the neighborhood and other
observations as inputs to the controller at a node and the controller determines
whether to keep a copy. The data caching service in DSWare monitors current
usages of the copies and determines whether to increase or reduce the number
of copies and whether to move some copies to another location by exchanging
information in the neighborhood.

3.3 Group Management

The Group Management component provides localized cooperation among sen-
sor nodes to accomplish a more global objective. There are several reasons why
group management is important. First, normally functioning sensors within a
geographic area provide similar sensor values. A value that most nodes in a
group agree on should have higher confidence, than a value that is in dispute
or varies widely. Second, based on the similar observations by nearby sensors in
a sufficiently dense area, we can recognize the nodes that keep reporting erro-
neous results. We may discard the suspicious nodes in later coordination and
computations to provide more reliable measurements. Third, some tasks require
cooperation of multiple sensors. Movement and speed approximations require
more than one sensor to combine their observations to calculate the direction
and velocity. Finally, when a region has adequate density of sensors, a portion
of them can be put into sleep mode to save energy.

Based on the different reasons discussed above, there are different ways to
formulate a group. For most tasks, groups are formed as the query is sent out
and dissolved when the query is expired or the task is accomplished. In this
case, the group formulation criterion is sent to the queried area first. Nodes
decide whether to join this group by checking whether they match the criterion.
Some groups are relatively stable after formulation, such as those measuring
temperature. Some groups are more dynamic, such as the groups tracking the
movement of a vehicle [6]. For a dynamic group, changed criterion is broadcast
persistently in a small area whose center is the current group. Hence, nodes
can join and leave the group when the target moves. There are other groups
designed for geographically stable goals. These groups are not sensitive to tasks,
so they can be formulated during system deployment or when explicitly specified
by the applications. These groups are not necessary for the accomplishment of
a task, but they have significant effects in reliability and reduction of energy
consumption and communication.

3.4 Event Detection

In the event detection service, events are pre-registered according to the spe-
cific application. Event detection is a common and important service in sensor
networks. We present a detailed protocol for event detection in section 4.



3.5 Data Subscription

As a type of data dissemination service, Data Subscription queries are very com-
mon in sensor networks. These queries have their own characteristics, including
relatively fixed data feeding paths, stable traffic loads for nodes on the paths,
and possible merges of multiple data feeding paths. For example, a base station
embedded in a policeman’s PDA sends a subscription request to the sensor net-
work : “Show me the traffic status at the crossing of Ivy Road and Alderman
Road and keep providing the traffic information every 3 minutes for the next two
hours (query duration).” In this case, the base station subscribes to the data of
node A for duration D (two hours) and rate R (1 per 3 minutes). When several
base stations subscribe for the data from the same node at different rates, the
Data Subscription Service places copies of the data at some intermediate nodes
to minimize the total amount of communication. It changes the data feeding
paths when necessary, as shown in Fig. 3. The protocol for data subscription
and its performance results are presented in [30].
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Fig. 3. When there are multiple subscribers (node 1 and node 2) for the data at node
0, the Data Subscription Service detects the proximity of the two paths and merges
these two paths by placing a copy of the data at node 5 and lets node 5 send data to
the two subscribers during each requesting interval.

3.6 Scheduling

The Scheduling component is a special component because it provides the schedul-
ing service for all components in DSWare. Two most important scheduling op-
tions are energy-aware and real-time scheduling. By default, we apply a real-time
scheduling mechanism (EDF, EDDF, with or without admission control) as the
main scheduling scheme because most queries in sensor networks are inherently
real-time tasks. We can also apply the energy-aware mechanism when we have al-
ready met the requirements of real-time scheduling. Applications can specify the
actual scheduling schema in the sensor networks based on the most important
concerns.



4 Event Detection Services

In this section, we present the event detection services of DSWare. We first
discuss some of the key concepts of the event detection services, including event
hierarchy, confidence, and time semantics, followed by implementation issues.

4.1 Event Hierarchy

An observation is the low-level output of a sensing device during a sensing inter-
val. It is a measurement of the environment. An event is an activity that can be
monitored or detected in the environment and is of interest to the application.

We group events into two different types: atomic events and compound events.
An atomic event refers to an event that can be determined merely based on an
observation of a sensor. Suppose we have registered the following events:

High temperature event represents the observation that the temperature is
higher than a specified threshold.

Light event represents an occurrence of a sharp change in the light intensity.
Acoustic event represents the occurrence of an unusual sound matching a cer-

tain signature.
Explosion event might be defined as the three events above are reported in

the same region within a specified time interval.

In this example, whether a high temperature event occurs or not can be
determined from an observation of a single temperature sensor. Such event is an
atomic event.

A compound event can not be detected directly from observations; instead,
it must be inferred from detections of other atomic or compound events(i.e. sub-
events of this compound event). In the example above, the explosion event is a
compound event. High temperature, light and acoustic events are sub-events of
the explosion event.

4.2 Confidence, Confidence Function and Phase

When a compound event occurs, it is possible that not all sub-events are de-
tected. For example, when an explosion actually occurs, only two atomic sub-
events – the high temperature and the light sub-events – could be detected, if
the sensors that detect the acoustic signals are damaged in the explosion. We
use the notion of confidence to address this problem.

A confidence function takes whether the sub-events have been reported or
not as boolean parameters and produces a numeric value of output based on the
event’s semantics. The confidence is the return value of the confidence function
specified in event registration. An event with a confidence higher than 1.0 is
regarded as “confirmed”, i.e., the sensor network is highly confident that the
event actually occurred.



A confidence function specifies the relationships among sub-events of a com-
pound event with other factors that affect the decision such as relative im-
portance, sensing reliability, historic data, statistical model, fitness of a known
pattern and proximity of detections. The information is derived from event se-
mantics in real life. A confidence function can be a simple linear equation or
a complex statistical model. For example, if the temperature has been continu-
ously going up for a period of time, combined with light sub-event, then a report
of fire event carries a higher confidence compared to the report that is based on
the observations only on temperatures going up and down rapidly in a short
period of time.

In reality, an event always has its meaningful contexts, which can be modelled
using a Finite State Machine (FSM). For example, in a residential monitoring
system, morning, afternoon, and evening can be the states of this system. We
call these states phases. In each phase, there is a set of events that are likely
to occur with meaningful context, while other events are less likely to occur
[27]. Consider a chemical factory. Dissemination of a chemical might not happen
except during a specific production phase. If all sub-events of this chemical event
are detected during a phase in which the event is very unlikely to happen, the
system could either give this event detection a low confidence or report the
possible malfunction of the sensors. Using phases in this manner not only saves
power in monitoring and event detection, but also increases the reliability of
event detection.

4.3 Real-Time Semantics

Each sub-event has an absolute validity interval (avi) associated with it. The
avi depicts the temporal consistency between the environment and its observed
measurement. Continuing the explosion example, the temperature sub-event can
have a longer avi because high temperature usually will last for a while, while
the light sub-event may not last long because in an explosion, a sharp increase
in the intensity of light would happen only for a short period of time. It is
the responsibility of the application developer to determine the appropriate avi
values.

When an event consists of more than one sub-event, the time an aggregating
node should wait for the arrivals of all these sub-events becomes an important
issue. The delay of a sub-event’s detection varies according to sensors’ sampling
period and communication delay. We should preserve a time window to allow all
possible reports of sub-events to arrive to the aggregating node. Wireless media
and unpredictable environment in which a sensor network exists make both the
loss of messages and failures of nodes common. For this reason, we can’t risk
reporting an urgent event late. If before the timer expires the confidence value
has reached 1, the event is reported to registrants without waiting any more. If
the confidence value exceeds the min confidence value specified in sub-event list
when the timer expires, the event is reported to registrants with this confidence
value. If the confidence value hasn’t reached the min confidence value when the
timer expires, the event is not reported.



After an event is detected, it should be sent to the registrants before the
reporting deadline. For example, we can use the Velocity Monotonic Scheduling
or SPEED protocol [13][18].

4.4 Registration and Cancellation

To register an event of interest, an application submits a request in the following
SQL-like statement:

INSERT INTO EVENT_LIST
(EVENT_ID, RANGE_TYPE, DETECTING_RANGE,

SUBEVENT_SET, REGISTRANT_SET, REPORT_DEADLINE,
DETECTION_DURATION [, SPATIAL_RESOLUTION ]
[, ACTIONS])

VALUES ()

Range Type and Detecting Range together specify a set of sensor nodes that
should be responsible for detecting this event. The Range Type can be GROUP
or AREA. The Detecting Range is the group’s description (e.g., Group ID) or the
area’s coordinates’ range. If an application specifies an area in its registration
request, one or more groups will be established in this area. Because of the
limited space, we cannot describe different options of group formulations and
their contexts in this paper. It will be covered in a separate paper. When an
event is detected, it will be reported before the Report Deadline to every node
in the Registrant Set. If an application receives an event detection report with
a expired Report Deadline, it can decide whether to ignore this “stale” report,
or take it and reduce its associated confidence. Detection Duration denotes the
ending time for this event detection task. After the duration time, the event’s
information is void and nodes stop detecting this event. Event information will
be deleted from this group or area. Temporary groups built for this event are
dissolved. The Spatial Resolution defines the geographical granularity for the
event’s detection. The Subevent Set defines a set of sub-events and their timing
constraints. Here we give its definition:

Subevent_Set { Time_window,
Phase_set,
Confidence_function,
Min_confidence,
(sub-event_1, avi1),
[(sub-event_2, avi2),...]}

The Time window specifies the time interval during which the sub-events
reports are collected. The Phase set identifies the phase to which the event be-
longs. The Confidence function and Min confidence represent the function to
be used for computing the confidence and the minimum confidence required to
report the occurrence of the sub-event, respectively.



Let P denote the current Phase in the group or area and S denote the set of
sub-events for event E, i.e., S = (sub− event1, sub− event2...).

E is detected when the following are true:
1) P belongs to Phase set of E.
2) For every s in S, calculate B(s): B(s) = 1 when s has been detected and

(current time - detected time) ≤ avi of s; B(s) = 0 otherwise.
3) Calculate confidence = f(B(s1), B(s2), ..., ), where f is the confidence

function.
4) When Time window expires: if (confidence ≥ min confidence) report the

event with confidence value.
Registered events can be cancelled even before the Detection duration is

terminated by submitting a cancellation request. Event cancellation is similar
to event detection. The difference is that it only needs to specify the event’s id
instead of describing an event’s criteria.

DELETE FROM EVENT_LIST
WHERE EVENT_ID = event_id

After an event is cancelled, the event’s information is void and nodes stop
detecting the event. Event information is deleted from the group or area. Any
groups assembled for this event are dissolved.

4.5 Discussion

In the current implementation of the event detection service, we made some
simplifications to demonstrate the main ideas on data semantics, real-time con-
straints, and reliability of decisions. We understand the complexity and various
choices on issues including the formats for registration and cancellation, group
formations, confidence function, and spatial/temporal resolutions. In this part,
we provide some discussion on important issues in event detection services.

SQL-like Language in Event Detection: As presented in Section 4.4, we
use SQL-like statements for the registration and cancellation of an event. This
approach provides a simple interface for applications [8][19]. The syntax of the
statements is the same as standard SQL statements. So the application can insert
events to a traditional database or a sensor network without any changes in the
code. This is effective for applications that need event detection services, without
paying any special attention to the actual type of the database and data service
middleware that is providing the service.

In some cases, this approach is unsuitable because of its parsing overhead.
After an SQL-like statement is issued, DSWare parses it, generates an execution
plan, and calls the corresponding methods to execute the registration, execution,
and cancellation. Parsing consumes memory and processing power. For sensor
networks in which sensors are very limited in processing and memory capacities,
it might be better to provide method signatures to applications instead of stan-
dard SQL. However, we believe that the SQL-like approach is the right one, since



it provides the flexibility and expressiveness of SQL to cover a large number of
possible event specifications. This is the main reason why we include an optional
SQL-parser module in our DSWare.

Spatial and Temporal Resolutions: Spatial resolution indicates the possible
detection radius of an event. If the size of a detection group is too small compared
to this event, there might be several groups in this event’s coverage that report
this event. The Event Detection component should be able to tell whether these
are different occurrences or just repeated reports of a same event.

Temporal resolution has a similar property to spatial resolution, except that
it specifies the detection granularity in the time dimension. Some events last
much longer than the sensing interval of a sensor. It is unnecessary for some ap-
plications to report a single occurrence repetitively. For example, an application
sets the temporal resolution of a fire event as 10 minutes. At the beginning of
the fire, the group that detects the fire reports the fire event to the registrants.
Assume that there is some mechanism to guarantee that the registrants have
received the report, this group can ignore any subsequent occurrence of this
event’s sub-events within 10 minutes, because that is possibly the same event.
The temporal resolution is not required for every application because some ap-
plications require the sensors to report an event’s existence no matter whether
it is a new one or not.

5 Evaluation of Real-time Event Detection Services

For the evaluation, we have implemented the real-time event detection services
in GloMoSim[29]. Within a terrain of 2000 ∗ 2000m2, which is uniformly di-
vided into 16 groups, we placed 100 sensor nodes to sense temperature, light or
acoustics. The simulator simulates the detection of an Explosion(E) event that
consists of a high temperature atomic event(T), a light atomic event(L) and an
acoustic atomic event(A). T and A are modelled as circles whose coverage radius
expands over time, denoting the actual energy expansion in a real system [28].
L is modelled as spatially distributed events that occur repetitively during ex-
plosions with a very short lifetime. To simulate the error distribution around a
hazard event as an explosion, the failure rate of sensors decreases quadratically
with the distance between a sensor and the center of explosion.

In our experiments, explosions are randomly placed in the terrain, with re-
spect to their locations, happening times and durations. Their radius is 200m.
The explosion event is registered by node 1 (at upper-left corner of the terrain)
to the entire network. In our simulation, we assume high temperature is a more
consistent indicator of an explosion among the three sub-events and tempera-
ture sensing devices are more robust in the physical environment. Accordingly,
we specify a simplistic confidence function as follows:

Confidence = 0.6×B(T ) + 0.5×B(L) + 0.4×B(A) (1)



B(x) =1 if x is detected within time window of 15 seconds; 0 otherwise.
The weights of sub-events are consistent with our application and experimen-

tal settings. The min confidence is set as 0.8, which means an explosion event
will be reported if the confidence is not less than 0.8. In addition, temporal res-
olution is set to 18 seconds, which means that when group leader finds out that
the confidence value for a compound event has reached the threshold, it will
first check whether it has sent the same kind of compound event report to the
registrant within the last 18 seconds. If so, the leader will consider this report as
the same one and will not report it to the registrant. In reality, the parameters
for confidence function, including weights for different atomic events, min confi-
dence and the size of the time window come from a specific application domain.
Also, the setting of temporal resolution depends on the application requirement.

To evaluate our event service, we use communication cost, reaction time and
total number of missing reports as the performance metrics. For comparison, we
choose a baseline which works as follows: Once a sensor detects an atomic event,
it will directly send the atomic event report to the registrant. The registrant will
use the same mechanism of event service to decide whether there is a compound
event happening.

For all the performance data, we have taken the average of 10 simulation runs
and derived 95% confidence interval, denoted as vertical lines in the figures.

5.1 Performance in Reduction of Communication
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Fig. 4. Comparison of Communication Cost

Fig 4 is the comparison between real-time event services (denoted by the
DSWARE curve in the figure) and the Baseline on the number of messages
transmitted in the network. From the figure, we can see that the number of



transmitted messages for the baseline dramatically increases from 121 to 2439
with the number of explosions increasing. The figure demonstrates that event
detection scheme which is established upon data and application semantics can
further process and aggregate data and thus reducing unnecessary communica-
tion without sacrificing real-time constraints. As a result, our event detection
can save a lot of energy since the communication cost dominates the energy
consumption in sensor networks.

5.2 Performance in Reaction Time
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Fig. 5. Comparison of Reaction Time

One of the key features of our event services is that it is suitable for real-
time applications. Events detected in sensor networks will be reported to the
registrant within a short time. In this experiment, we measured the average
reaction time for both baseline and our event service scheme, which is defined as
the interval between the time that the registrant gets the explosion event report
and the actual occurrence of the event. As shown in Fig 5, our event service can
report the explosion quickly(around 15.5 seconds). The reaction time increases
very slowly from 15.1 seconds to 16.1 seconds with the increase of the number of
explosions in the network. However, the reaction time of the baseline increases
rapidly from 15.1 seconds to 21.6 seconds. The reason is that all sensors will
directly send atomic event reports to the registrant, which causes severe traffic
congestion in the network. As a result, the registrant has to wait for longer time
to get the atomic event reports to do analysis. Obviously, the baseline is not
suitable for real-time applications.
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Fig. 6. Comparison of Missing Reports

5.3 Performance in Completeness

The purpose of event service is to detect user-specified events in the environment.
It is very important that all occurrences of the specific events should be reported
to the registrant. In this experiment, we measured the number of missing reports,
which is defined as the difference between the number of different explosion
reports the registrant received and the actual number of occurrences. As shown
in Fig 6, the number of missing reports for our event service is very low, around
1 or 2, while the number using the baseline reaches 4. Because there are only 100
nodes in the experiment, which are uniformly divided into 16 groups, there may
not be enough sensors to cover the range of explosions. That’s why our event
service misses some explosion reports. If the nodes’ density is high enough, our
event service should detect all the user-specified events in the sensor network.

5.4 Impact of Node Density

To study the impact of node density on the performance of event services, includ-
ing communication cost, reaction time and completeness, we placed 400 nodes
in the network and kept all the parameters the same as above experiments. As
shown in Fig 7, the number of missing reports is reduced to 0 for both event ser-
vice of DSWare and that of the baseline. However, the communication cost and
reaction time increase at the same time. Using the event service of DSWare, the
communication cost increases 432.92% and the reaction time increases 0.79%,
when there are 15 explosions in the network composed of 400 nodes. In compar-
ison, the performance of the baseline, with respect to communication cost and
reaction time, becomes much worse. For instance, when there are 15 explosions
in the network, the communication cost increases 403.25% and the reaction time
increases 76.65%. According to the results of this experiment, we can see that if
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the node density is very low, there will be missing reports. However, if the node
density is high, there will be a lot of energy consumed by communication and
the registrant may not be able to get the detected report in time. It is clear that
there is a tradeoff between communication cost, reaction time and the number
of missing reports for our event service. We leave it as a future work to study the
relationship and tradeoffs. Using sensor networks of appropriate node density,
our event service can report all the user-specified events in the network to the
registrant in time without consuming a lot of energy.

6 Conclusions

A sensor network should be able to provide the abstraction of data services to
applications. However, because of the lack of basic data-centric services in sensor
networks, current applications need to implement the entire stack of application-
specific data services including group management, query optimization, local
data processing, and event detection. Such a tight coupling of data services and
application logic has several disadvantages and increases the complexity of apply-
ing sensor networks as databases in a large software system. We have developed
a data-centric service middleware in sensor networks called DSWare. DSWare
is a flexible middleware designed to hide unattractive characteristics of sensor
networks including the unreliability of individual sensing and communication,
complexity and necessity of group coordination, and large volume of dynamic
data distributed all over the networks, to present a more general data service
interface to applications. Applications are freed from complicated low level op-
erations of sensor networks and are able to retrieve data from sensor networks
using similar interfaces as conventional databases.

Event detection is one of the services that is most widely used in sensor net-
work applications. Instead of providing only simple detection of atomic events, we
have developed a middleware architecture that accommodates the data seman-
tics of real-life compound events and tolerates the uncertainty and unreliability
in sensor networks.

The current version of DSWare including the event detection services is the
first step to deliver a flexible and efficient data service middleware for sensor
networks. Our future work includes extending the event detection services to
support applications for mobile event tracking and implementing other services
in DSWare.

References

1. Cougar Project. www.cs.cornell.edu/database/cougar.

2. Rutgers Dataman Project. www.cs.rutgers.edu/dataman.

3. SCADDS: Scalable Coordination Architectures for Deeply Distributed Systems.
www.isi.edu/scadds.

4. Smart Messages Project. discolab.rutgers.edu/sm.



5. S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher. Energy-Conserving Data
Placement and Asynchronous Multicast in Wireless Sensor Networks. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applications, and
Services, San Francisco, CA, 2003.

6. B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. H. Son, and J. A. Stankovic.
An Entity Maintenance and Connection Service for Sensor Networks. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applications, and
Services, San Francisco, CA, 2003.

7. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the Physical World. IEEE
Personal Communication Magazine, (7):10–15, Oct 2000.

8. P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor Database Systems. In Pro-
ceedings of the 2nd International Conference on Mobile Data Management, Hong
Kong, 2001.

9. E. Bosse, J. Roy, and S. Paradis. Modelling and Simulation in Support of Design
of a Data Fusion System. Information Fusion, (1):77–87, Dec 2000.

10. W. Chang and M. Kam. Asynchronous Distributed Detection. IEEE Transactions
on Aerospace Electronic Systems, pages 818–826, 1994.

11. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proceedings of the 5th Annual In-
ternational Conference on Mobile Computing and Networks, Seattle, WA, 1999.

12. J. Feng, F. Koushanfar, and M. Potkonjak. System-Architectures for Sensor Net-
works: Issues, Alternatives, and Directions. In Proceedings of the 20th International
Conference on Computer Design, Freiburg, Germany, 2002.

13. T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A Stateless Protocol
for Real-Time Communication in Ad Hoc Sensor Networks. In Proceedings of the
23rd International Conference on Distributed Computing Systems, Providence, RI,
2003.

14. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System
Architecture Directions for Networked Sensors. Architectural Support for Program-
ming Languages and Operating Systems, pages 93–104, 2000.

15. C. Jaikaeo, C. Srisathapornphat, and C-C Shen. Querying and Tasking in Sen-
sor Networks. In Proceedings of SPIE’s 14th Annual International Symposium
on Aerospace/Defense Sensing, Simulation, and Control (Digitization of the Bat-
tlespace V), Orlando, FL, 2000.

16. D. Jayasimha, S. Ivengar, and R. Kashyap Information Integration and Synchro-
nization in Distributed Sensor Networks. IEEE Transactions on Systems, Man
and Cybernetics, 21(5):1032–1043, Sep/Oct 1991.
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