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Abstract— This paper presents a new cooperative storage
system for sensor networks geared for disconnected opera-
tion (where sensor nodes do not have a connected path to a
basestation). The goal of the system is to maximize its data
storage capacity by appropriately distributing storage utilization
and opportunistically offloading data to external devices when
possible. The system is motivated by the observation that a large
category of sensor network applications, such as environmental
data logging, does not require real-time data access. Such
networks generally operate in a disconnected mode. Rather than
focusing on multihop routing to a basestation, an important
concern becomes (i) to maximize the effective storage capacity of
the disconnected sensor network such that it accommodates the
most data, and (ii) to take the best advantage of data upload
opportunities when they become available to relieve network
storage. The storage system described in this paper achieves the
above goals, leading to significant improvements in the amount
of data collected compared to non-cooperative storage. It is
implemented in nesC for TinyOS and evaluated in TOSSIM
through various application scenarios.

I. INTRODUCTION

Data collection has been addressed at length in sensor
network literature. The assumption has traditionally been
that a sensor network is connected to a basestation that
collects the data. This assumption is suitable when near-
real-time information availability is desirable. Tracking and
event notification applications, for example, fall under this
category. A significant number of applications, however, do not
require real-time information [17][26][10]. For example, an
environmental scientist interested in studying light variations
on the forest floor due to canopy closure in the Spring might
deploy a sensor net and collect the data only months later when
the experiment is over1. This “fisherman’s net” model of the
application allows for significant architectural simplifications
of the monitoring infrastructure. Most importantly, there is no
longer a need to maintain a basestation in the field, which
is very convenient. A user no longer has to worry about
powering up the basestation in the wilderness (without power
outlets), protecting it from harsh weather and animals, and
enduring the risk of losing data because of a centralized point
of failure. Indeed, all that is needed is in-network storage
(already available on sensor nodes as flash memory) and a

1This is an actual study that has been performed in Trelease Woods near
UIUC campus in Spring 2006

capability for opportunistic data upload. We call the above, a
disconnected network model.

The disconnected model does not preclude sporadic contact
with a basestation during network lifetime. For example, a
user may choose to visit the field periodically for maintenance
purposes (e.g., to remove dirt and debris that may occlude
light sensor inputs over time). Such visits may be used for
opportunistic data upload. The user could carry a data mule
device [21] that collects data wirelessly from encountered
nodes and dumps these data later to the basestation (e.g., a
computer in the user’s office).

A primary concern of the sensor network in this model
becomes that of maximizing effective storage capacity (i.e.,
minimizing data loss due to flash memory overflow while
the network is not connected). Observe that some nodes will
record more data than others. This may be due to asymmetry
in environmental inputs (e.g., acoustic nodes near sound
sources will fill up before those in quiet areas), or due to
data-dependent variations in compression ratio of algorithms
such as run-length encoding. Data loss can be minimized by
migrating data from nodes that are full to those that are not,
as well as by exploiting upload opportunities when available.

In this paper, we present EnviroStore, a cooperative stor-
age system for sensor network applications geared for dis-
connected operation. EnviroStore employs data redistribution
schemes to optimize sharing of network storage. The amount
of data that can be stored in the network is also affected by the
power consumption of nodes. Naturally, nodes will be unable
to record data after energy is depleted. EnviroStore takes into
account the rate of energy consumption to avoid depletion-
related data loss. Evaluation shows that in networks with a
large input data imbalance, EnviroStore can delay the onset of
data loss by nearly an order of magnitude.

EnviroStore reflects a change in paradigm for sensor net-
work operation from communication-centric to storage-centric.
Indeed, the growing size of low-power flash memory suggests
that future nodes will have a much larger storage compared to
their communication bandwidth. With the increase in storage
capacity, new higher-bandwidth sensing modalities (such as
multimedia) will undoubtedly be deployed that take advantage
of the extra storage space. This will further exacerbate the
communication bottleneck as low-power radio bandwidth does
not grow at the same rate as low-power storage capacity.
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Multihop communication will need to be minimized. Physical
data collection via data mules will become more common,
motivating data services such as those described in this paper.

A storage-centric paradigm for sensor networks differs
significantly from that of traditional distributed file systems.
First, it has to be simple and lightweight considering the
limited CPU bandwidth and memory of sensor nodes. For
example, MicaZ [23], one of the most current platforms, has
only an 8MHz 8-bit processor and a 4KB RAM. Second,
directories and file names need not be maintained in the
sensor network itself. These abstractions are needed only on
the collection station. Sensor nodes simply write data to the
collection station (via a delay tolerant network). They never
read the data they write. The system essentially abstracts away
the delay-tolerant network between the data sources and the
sink. Third, data redistribution is an essential component of
the system to avoid inefficiencies of partitioned storage. A
good data redistribution scheme is needed to migrate data
from highly utilized to less utilized storage spaces in order
to improve overall storage utilization. Finally, sensor nodes
may not necessarily be connected, forming multiple network
islands. Opportunistic data redistribution is needed not only
within, but across such islands. These concerns are addressed
in EnviroStore design.

We implemented EnviroStore in nesC under TinyOS [12]
and evaluated system performance experimentally on
TOSSIM [14]. Our evaluation results demonstrate the
effectiveness of this service in improving storage utilization
in various application scenarios. Up to an order of magnitude
improvement was observed in postponing the onset of data
loss.

The rest of the paper is organized as follows. Section II
presents system design. Section III presents the details of
EnviroStore implementation. Section IV illustrates evaluation
results. Section V reviews related work. Section VI concludes
the paper.

II. DESIGN

A. System Model
We consider a sensor network that is normally disconnected

from the outside world. The function of this network is to
collect sensory data. These data must eventually be moved to
a data sink. In our architecture, the sink is a process that runs
on a user’s PC, identified by a regular IP address and a (well-
known) TCP port. This process implements a file service that
receives sensor network data and organizes them in a local file

system on the PC in accordance with some configuration set-
up. The sink typically has Internet access. Hence, data can
be uploaded to it via the Internet from a remote network.
Alternatively, the sink may have an 802.15.4 interface (or an
802.15.4 mote connected to the serial port). A process reading
that interface (or serial port) relays data to the well-known port
of the file service for storage.

Since the sink is normally disconnected from the sensor
network, data must be buffered in the sensor network until an
upload opportunity arises. Hence, a sensor network storage
system is needed. We call this storage system disruption-
tolerant since it should accommodate sensor network par-
titions. The disruption-tolerant storage system should, for
example, be able to take advantage of data mules to share
data across partitioned network islands or offload data to
the sink, as is shown in Figure 1. Data mules are any
(trusted) mobile devices that may come in contact with sensor
network islands. For example, they might be handhelds with an
802.15.4 interface and an 802.11 interface. Depending on the
application scenario, mules may be eventually able to contact
the sink via the Internet or via the 802.15.4 interface.

In the context of sensor network applications that motivate
this paper, only two types of data mules are relevant. The
first type represents data mules that intentionally relay data
between the sink and the sensor nodes. For example, network
maintenance operators who visit the network periodically may
also perform data mule functions. Barring unexpected failures,
this type of mule is guaranteed to return the data to the sink.
For example, it may have Internet access such that it will send
collected data to the sink via the Internet when it encounters
an access point upon return from the field.

The second type of mule is one whose mobility patterns
are independent of data upload needs. For example, consider a
library-monitoring study that measures noise levels in different
rooms and correlates them with library use2. Due to the size
of the rooms, not all noise sensors are connected. A librarian
performing their normal job functions (that are independent of
data collection) can carry a data mule device. Nodes that come
in contact with the mule will then opportunistically use it for
data upload or redistribution. Another example of independent
mobility patterns is inspired by a recent experience of the
authors, where sensor nodes deployed in a forested area were
repeatedly visited by raccoons. The recurrence of these visits
suggested the possibility of using members of the local wildlife
as data mules. A similar observation was made when an ex-
perimental farm was considered for two concurrent telemetry
experiments: one was to collect chemical measurements from
soil; the other was to track cattle in the same farm using GPS
collars. The natural opportunity to design the collar to perform
data mule functions for soil sensors suggested a deeper point;
as sensors proliferate, the role of opportunistic exploitation
of natural mobility in the environment may become more
important in network protocol design. Independent mobile data

2This is an actual study planned at the UIUC library to test the hypothesis
that optimal use does not require a noise-free environment



Application Sensor Nodes Data Data Sink
Static Mobile Mules Static Mobile

GDI [20][22]
√ √

ZebraNet [17]
√ √

NIMS [1]
√ √

Macroscope [24]
√ √

Underwater Sensornet [26]
√ √

Smart Attire [10]
√ √

TABLE I
APPLICATION EXAMPLES

mules are opportunistically exploited by EnviroStore.
The disconnected operation models described above are

observed in a large set of other sensor network applications
including environmental monitoring, animal tracking, and as-
sisted living. Table I lists some concrete examples from the
recent literature and their suitability for this system model.

B. System Design
In this section, we present a set of mechanisms that maxi-

mize the effective storage space of the sensor network.
1) In-network Data Redistribution: As mentioned earlier,

the distribution of the data inputs is not necessarily even
among sensor nodes, which calls for data redistribution to
improve total storage utilization. An ideal data redistribution
scheme should accommodate all data as long as the sum of
all node sensory inputs, accumulated over time, is less than
the sum of all node storage capacities. A simple solution is to
balance storage utilization by offloading data from nodes that
are highly loaded to nodes that are not. In a perfectly balanced
system, no storage overflow occurs until the total network
capacity is exceeded when all nodes reach their flash limit
simultaneously. This scenario represents optimal flash usage.
Unfortunately, the solution is not energy-efficient. A small
change in storage utilization of one node (due to new input)
may result in data dissemination to every node in the network
even if the source has plenty of storage to accommodate the
input. This excessive and unnecessary communication may
result in early energy depletion and consequent untimely loss
of data.

From an energy saving perspective, it is therefore ad-
vantageous not to start offloading data too early. In other
words, a lazy-offload scheme is preferred. By postponing data
balancing until the latest possible time (when flash overflow
is imminent), significant energy savings can be achieved. For
efficiency reasons, we are interested in algorithms that use
local information only. In such algorithms, plateaux must be
avoided in the neighborhood to ensure that pathways exist for
data flow. In accordance with the above two requirements, a
node i, in EnviroStore, decides to offload data only when its
remaining storage size (Ri) satisfies one of the following two
conditions:

Ri = Rmin and Ri < RTH (1)

Ri > Rmin and Ri − Rmin < Rgradient (2)

where Rmin is the minimum remaining storage size within
node i’s neighborhood (including i), RTH is a configurable
threshold to delay data transfer until the remaining free storage

is small enough, and Rgradient is a configurable parameter
introduced to allow for a certain level of local imbalance
whose gradient points in the direction of less utilized areas
in the network. The first condition indicates that the most-
loaded node does not start to transfer data until its remaining
storage falls below a threshold RTH . This is to prevent
unnecessary energy consumption. RTH should be set big
enough to accommodate temporary bursts of input data. The
second condition ensures that plateaux do not occur among
neighbors, so that data can always flow away from congested
nodes.

In our system, nodes exchange periodic advertisement mes-
sages sharing free storage information, Ri, within their neigh-
borhood. To conserve energy, such messages are sent at a low
frequency (e.g., once per minute). However, to ensure accurate
knowledge of neighborhood data to within specified error
bounds, extra advertisement messages are inserted when the
remaining storage size incurs big changes (of more than R∆,
the node advertisement threshold) since the last advertisement.

If one of the above offload conditions is satisfied, node i

should next decide who to send data to. Obviously, i should
select the destination from those underloaded neighbors whose
remaining storage size is above the average remaining storage
(R̄i) of the neighborhood (including node i itself). Always
selecting the neighbor with the largest remaining storage turns
out to be a bad choice, because a node with the largest R

within its neighborhood may be chosen simultaneously by
multiple other nodes as their distribution destination. After
redistribution, the node may become overloaded and must
transfer some of the recently received data back to its neigh-
bors, causing unnecessary consumption of both bandwidth and
energy. We call this phenomenon data ping-pong. To avoid it,
we apply a random function which assigns each underloaded
neighbor a non-zero probability (proportional to its remaining
storage) of being selected as the redistribution destination.

To further prevent data ping-pong, we should bound the
amount of data transfer. Assuming that node i selects node
j as the redistribution destination, the amount of data to be
transferred from i to j, denoted by Dij , has to satisfy the
following condition (not to “overdo” the transfer and reverse
the direction of imbalance):

Rj − R∆ − Dij ≥ R̄j (3)
Note that, R∆ is added to account for the inaccuracy in the
estimation of Rj on node i, which is caused by the low-
frequency of node advertisements. The inaccuracy is bounded
by R∆ (assuming no message loss) since, as previously
stated, extra advertisement messages are inserted for changes
exceeding R∆. Following the same reasoning, after the data
transfer, the resulting free storage size of node i should not
exceed the neighborhood average, since it may cause data
ping-pong as well. Thus, we have:

Ri + Dij ≤ R̄i (4)
Consequently:

Dij ≤ min(Rj − R̄j − R∆, R̄i − Ri) (5)
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Fig. 2. State transition of a sensor node in cross-partition data redistribution

which is used to calculate the maximum allowable size of data
transfer. The calculation is based on merely local information
obtained through the aforementioned advertisement messages.
EnviroStore then fetches a small chunk of data (i.e., a log item
as defined in Section III) from local storage, and, if its size
is below the maximum allowable size, reliably transfers it to
the redistribution target. Data chunks are transfered until the
conditions specified by Inequality (1) and Inequality (2) are
invalidated.

Besides flash overflow, an important factor that may cause
data loss is depletion of node energy. When a node runs out
of energy, the data stored at the node can still be recovered by
collecting the deployed node. However, the node obviously
ceases to observe the environment, losing all subsequent
measurements. To avoid such data loss, besides monitoring
remaining free storage, our algorithm also keeps track of the
remaining node energy (by reading the current voltage level
and converting it to energy based on battery characteristics).
A node i should not invoke or accept data redistribution
(which spends extra energy to send or receive data) unless its
estimated energy lifetime is longer than its estimated storage
lifetime. This leads to:

Ωi

Ei

>
Ri

Si

(6)

where Ωi is the remaining energy, Ei is the initial energy, and
Si is the initial storage size.

2) Cross-partition Data Redistribution: The in-network
data redistribution scheme works well when all sensor nodes
are connected into a single network. However, in some
application scenarios like the GDI deployment [22], sensor
nodes are naturally deployed into network islands that can not
communicate with each other. Even for an initially connected
sensor network, practical issues like the instability of wireless
channels, hardware or software failures, or depleted batteries
may separate the network into islands. In such circumstances,
it becomes critical to offload data from overloaded network
partitions (in terms of storage capacity) to either data sinks (if
present) or underloaded partitions. This is accomplished via
mobile data mules.

We consider two types of (authenticated) mules. The first
always carries the data back to the basestation. A node
encountering such a mule can upload all its data to it. The
second type is one whose mobility patterns are dictated by
factors external to the storage system. The library example
presented earlier is one such case. Such data mules can carry

data to the basestation if they happen to come in contact with
it. They can also be used for data redistribution across network
partitions.

To identify nodes as overloaded or underloaded for redistri-
bution purposes, a data mule must have a notion of a global
average storage use. Accurately calculating the global average
is virtually impossible, considering that the sensor nodes in
different partitions can not directly communicate. Instead, each
data mule m remembers the free storage advertised by each
visited node. It uses their average R̄ as an approximation of
the global average. It then computes its own advertised free
storage value R̄m as the weighted sum αR̄ + (1 − α)Rm,
where Rm is the storage available on the mule itself. The
parameter α of the mule is used to favor data redistribution
versus upload. If α is close to 1, the mule favors redistribution
to the neighborhood regardless of the storage available on
the mule itself. If α is close to zero, it emphasizes upload,
regardless of free storage available in the sensor network.

When mules have large storage or encounter the base
frequently, to relieve the network storage, they should ag-
gressively download data from the sensor nodes. To take this
factor into account, a node i uses a weighted value RiOm

(Om is the occupancy ratio of the data mule m defined as
the fraction of its local storage that is utilized) instead of its
original remaining storage Ri to compare with R̄m. Obviously,
the policy makes a mule download data more aggressively
from sensor nodes when its occupancy is low (either because
it has large unused storage or because it has offloaded most
data to data sinks). Therefore, the cross-partition redistribution
scheme can dynamically adapt itself to the differences in the
size of storage space at mules as well as adapt itself to the
visit frequency of data sinks if they exist.

Like sensor nodes, data mules also periodically advertise
themselves by messages, but with a much higher frequency
(e.g., once per second). Frequent mule advertisement is nec-
essary for overloaded nodes to detect nearby mules as soon as
possible in order to make the best use of data upload opportu-
nities, as is shown in Figure 2. Frequent mule advertisement
is feasible in terms of energy consumption since mules can be
recharged frequently to obtain sufficient power.

At the same time, a mule should be able to detect nearby
underloaded nodes to offload some of its data. The great
difference between node advertisement frequency and mule
advertisement frequency makes it much harder and slower for
mules to detect nodes. To solve this problem, underloaded
nodes, after receiving a mule advertisement, respond with a
node advertisement to shorten the delay. These nodes use back-
off timers (proportional to their current occupancy ratios) to
suppress each other’s node advertisement messages, as shown
in Figure 2.

III. IMPLEMENTATION

We implemented EnviroStore using nesC in TinyOS. The
implementation consists of three versions of code, encoding
separately the subsystems run at sensor nodes, at data mules,
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Fig. 3. System architecture for sensor nodes

and at data sinks. The overall system architecture for sensor
nodes is depicted in Figure 3.

Application programmers use the service interface on the
motes to submit data to be logged. Before data are written into
local flash, such data are structured into the standard format of
a log item, the minimum accessible data unit in EnviroStore
whose data structure is depicted in Figure 4. Both writing
and reading log items are functionalities supported by the
local log access module. The neighborhood monitor module
is responsible for sending advertisement messages within local
neighborhoods. It also maintains a neighbor table to keep
track of the storage status of each neighbor. At the same
time, it is responsible for detecting mules via the reception
of mule advertisement messages. Based on the conditions
described in Section II-B.1 and II-B.2, the data redistribution
model determines whether the current node should offload
data to it neighboring nodes or the detected mule, and, if
so, it calculates the maximum amount of data transfer and
signals the data transfer module to start data transfer towards
a selected neighbor or the nearby mule. The reliable one-
hop unicast module, as its name suggests, provides reliable
unicast for nodes to transfer log items. To avoid data loss
during transfer, the data transfer module never deletes a log
item until the reliable one-hop unicast module acknowledges
its reception.

The implementation for data mules has a similar set of
modules except that the neighborhood monitor module records
all the nodes a mule has met (in other works, dynamic
neighbors of the mule) rather than a static set of neighboring
nodes.

A. Local Storage Structure
The local storage space of nodes is organized into a circular

buffer containing continuous log items (Figure 4). The head
points to the next log item to be read or deleted, and tail
pointer points to the next position to write a new log item.
This simple data structure proves to be very suitable for current
sensor network platforms. First, it meets all the requirements
of EnviroStore since the system model suggests that random
access to the logs is not required since we are not targeted for
runtime data acquisition. Second, it consumes minimum code
and data memory as this data structure organizes occupied
space into a continuous data chunk, eliminating the need
for any complex space management mechanisms like free
space management or defragmentation. Third, it may prolong
flash lifetime by balancing write access to different locations.
Note that the endurance of the 512 KB serial flash on most
current TinyOS platforms is only 10,000 erase/write cycles.
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Fig. 4. Local storage structure

The sequential write access to flash of the circular buffer
structure guarantees that the number of writes to different flash
blocks is almost perfectly balanced with a maximum difference
of one.

B. User Interface
EnviroStore supports two types of log files as Figure 5

depicts, and provides two nesC commands for them, respec-
tively. The first type of log file is simultaneously written by
different nodes, with each node generating a sequence of log
items with continuous serial numbers. All the log items from
multiple nodes form an array of log sequences. Therefore, we
call this type of log file log-array files. Log-array files are
useful for logging attributes of an environmental event that is
independently monitored by multiple nodes, for example, to
obtain the temporal and spacial distribution of the temperature
in Room 303 as shown in Figure 5(a).

The other type, named log-sequence files, expects one writer
at a time. Multiple nodes should coordinate with each other so
that the next writer does not start before the previous one stops.
Unique and continuous serial numbers must be used. This
mode is developed for compatibility with EnviroSuite [18], a
middleware service that tracks mobile environmental entities
(such as vehicles). The service elects a unique leader node
in the vicinity of the tracked entity and hands off leadership
from node to node as the entity moves. The leader maintains a
unique ID. This ID can be used as the log name to produce a
distributed log-sequence file that stores the history of a target
along its trajectory. An example is shown in Figure 5(b), where
EnviroSuite associated an ID (vehicle3) to a vehicle, and
elected nodes 7, 3 and 1 sequentially to log the vehicle’s cur-
rent state. The resulting log-sequence file, using vehicle3
as its name, contains the trajectory of the vehicle.

IV. EVALUATION

This section presents a performance evaluation of EnviroS-
tore. EnviroStore is implemented in nesC on TinyOS. We use
TOSSIM that provides a high fidelity simulation of TinyOS
applications, precisely modeling the 40Kb network at the bit
level and the CPU clock at a 4MHz granularity.

Figure 6 depicts the basic deployment configuration used
throughout the evaluation. On a 80×80 ft2 field, we deploy
36 nodes (circles labeled with node IDs) into four network
partitions. Nodes in black (node 4 and 31) are data generators.
They run an application that periodically creates input for
EnviroStore. An unbalanced deployment configuration is used
to stress EnviroStore. In the top-left and the bottom-right
network partitions, only one node generates all the input, the
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Fig. 5. Examples of different types of log files
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Fig. 7. Data storing rate at different time

others being silent. The other two partitions do not have input
to further stress the redistribution algorithm.

When present, a basestation is placed at the position marked
by ×, which is also the starting point of data mules. The
movements of the mules follow a constraint random walk
model, moving 5ft every second and turning a random angle
between −π

6
and π

6
. The random walk serves our purpose

well because EnviroStore has no knowledge about mobility of
mules.

The final simulations of our experiments are very heavy-
weight, especially when mules are used, mainly because of
frequent channel update in TOSSIM caused by the mobility.
For a network of 36 nodes, it takes 6-10 hours of wall-
clock time on a Pentium4 1.7GHz machine with 1GM RAM
to simulate 3600 seconds of virtual time. To accelerate the
evaluation, we set storage capacity of the devices to be smaller
than that of current hardware platforms. The storage of the
node (S) is set to 16KB. The mules have a relatively larger
storage of 64KB. Consequently, while the absolute time when
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the system encounters data loss will not match real platforms,
relative performance of different algorithm will remain the
same. Hence, inferences can be made about multiplicative
improvement factors over a baseline.

Unless otherwise indicated, RTH , Rgradient, and R∆ are
set to be 0.95S, 0.05S, and 0.01S (S is the total storage of
a node), respectively. Recall that RTH has to be big enough
to accommodate bursts of input. We use a large percentage
of the storage as RTH since the total storage size is small.
Next, we investigate a disconnected sensor network with and
without partitions.

A. Scenario 1: Single Disconnected Sensor Network
In a single disconnected sensor network, the network is not

partitioned. Also, neither mules nor a basestation is present.
For this scenario, we use only the top-left partition shown in
Figure 6.

To illustrate how EnviroStore maximizes storage capacity
via in-network data redistribution, Figure 7 compares the data
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storage rates (i.e., the amount of data stored by EnviroStore per
second) for different input rates with and without EnviroStore.
If storage is infinite on each node, the data storage rate always
equals the input data rate. However, data loss caused by
insufficient local storage makes the data storage rate drop
below the input data rate. As can be seen in Figure 7, for
all the input rates, applying EnviroStore significantly delays
data loss. For example, with an input rate of 64B/s, the first
appearance of data loss is delayed from time 256s to 1900s
(i.e., more than 6 times).

Notice that for input rates lower than 96B/s, the corre-
sponding data storage rates stay close to the input rates until
they sharply drop to zero. In contrast, for input rates higher
than 96B/s, the data storage rates decline gradually. The
underlying reason is that when the input rate exceeds a node’s
communication bandwidth, new data arrives before the data
redistribution algorithm converges to a balanced state. When
the data generator (node 4) completely consumes its local
storage, EnviroStore redistributes at the communication rate,
which is below the input rate, yet above zero.

To investigate the effects of RTH on the data storage rate
and energy consumption, we fix the input rate to be 64B/s and
use different values of RTH (0.9S, 0.5S, and 0.1S). Using
a smaller RTH does not have an appreciable impact on the
data storing rate. However, as expected, it does affect energy
consumption, as shown in Figure 8 which plots the number of
data messages sent per second for different values of RTH .
As can be seen, setting RTH to 0.5S postpones extensive data
transfer from 180s (0.9S) to 540s. Using 0.1S as RTH further
postpones it to 1200s. If the application input happens to stop
at 1200s, setting RTH to 0.1S, comparing to 0.9S, yields
significant energy savings due to lazy offload.

B. Scenario 2: Partitioned Sensor Network with Data Mules

In order to analyze the effects of cross-partition redistribu-
tion, we deploy four network partitions consisting of 36 nodes
as shown in Figure 6, as well as one mobile data mule. The
input rates at node 4 and node 31 are set to be 64B/s and
32B/s, respectively. This setting provides the four partitions
with three levels of input rates: 64B/s for the top-left one,
32B/s for the bottom-right one and 0B/s for the others. Great
differences in input rates stress the distribution algorithm.
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Figure 9 presents the data storing rate of different config-
urations. Ideally, the data storage rate should always equal
to the input rate (96B/s). For the current configuration, with-
out EnviroStore, the data storage rate drops from 96B/s to
32B/s after 256s when node 4’s storage is exhausted, and
to 0 after 512s when node 31’s storage is exhausted. After
applying in-network redistribution (without mules), data loss
does not occur until after about 1900s. If we further invoke
cross-partition redistribution by introducing a mule, the data
storage rate stays at 96B/s until after 2400s. Overall, applying
EnviroStore delays data loss by a factor larger than 8.

By carrying data from overloaded network partitions to
underloaded partitions, the data mule delays the time that the
storage of the most-loaded partition (the top-left one) gets
exhausted. Figure 10 demonstrates this effect by showing the
total stored data at node 4 over time. Obviously, in-network
redistribution (without mules) reduces the storage consumption
speed at node 4. Cross-partition redistribution (with a mule)
further slows down the storage depletion.
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Figure 11 illustrates the distribution of total stored data
among different nodes after 3600s of virtual time for deploy-
ment configurations without and with the mule. Obviously, the
mule successfully moves data from overloaded network parti-
tions to underloaded partitions and achieves a more balanced
storage occupancy.

We also explore the energy overhead (in terms of messages)
of redistributing data to maximize effective storage. The
number of advertisement messages and data messages sent
per unit time by the sensor nodes for both configurations with
and without the mule are plotted in Figure 12. As shown,
the total number of messages sent per second for the whole
network is always below 36, in other words, below 1 per node,
which is acceptable for sensor networks. For the configuration
without a mule, after around 1900s, the number of data
messages per second drops to 5 abruptly and the number of
advertisement messages decreases as well. This is when the
top-left network partition gets exhausted and stops accepting
input as well as data redistribution, which is consistent with
what we observe in Figure 9. We do not see such a sudden
drop in the configuration with the mule because (i) prior to
time 2400s the top-left partition is not full, and (ii) after time
2400s the mule is still actively communicating with the nodes
to do cross-network redistribution.

Finally, we add a basestation, marked by ×, and two extra
nodes, marked by 4, in Figure 6). They ensure connectivity
between the sensor nodes and the basestation. Figure 13 shows
the data storage rate of the basestation over time. Recall that
we allow certain storage imbalance between nodes by using
Rgradient of 0.05S. Therefore, the data storage rate of the
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basestation stays zero for a certain duration, then increases
gradually.

In the next experiment, we remove the two nodes marked
by 4 in Figure 6 to disconnect the network partitions from
the basestation and add one or two data mules to see how
they help with data upload. Figure 14 depicts the amount of
accumulated data at the basestation over time. Having more
mules increases the rate of uploading data to the basestation,
as shown in Figure 14.

In summary, the evaluation results demonstrate that Envi-
roStore is applicable to a wide set of application scenarios.
It effectively maximizes the network storage capacity through
in-network and cross-partition data redistribution.

V. RELATED WORK

The problem of data storage on individual nodes has been
addressed adequately in previous work such as ELF [5], a
log-structured and flash-based file system, and Matchbox [25],
a simple file system distributed with TinyOS. More recently,
several distributed storage services have also been proposed.
One example is [7], a two-tier data-centric storage and re-
trieval service using distributed hash table and double-ruling.
TSAR [6] and PRESTO [15] also feature a two-tier data
storage architecture comprising sensor nodes and proxies for
data acquisition and query processing. DIMENSIONS [9] is
another system that is designed to store long-term information
by constructing summaries at different spatial resolutions using
various compression techniques. TinyDB [19] and related
projects [2][29] organize sensor networks and their collected
data as a distributed database and focus on query processing
techniques to acquire data from such databases. All these
services assume connected operation and real-time data acqui-
sition. Geared for disconnected operation, EnviroStore has a
completely different focus. Namely, it investigates cooperation
between different tiers (sensor nodes, data mules, and base
stations) to maximize storage capacity.

One key challenge in EnviroStore is data redistribution.
The sensor network community has applied the balancing
techniques for other purposes, including maximizing sys-
tem lifetime by balancing energy consumption of different
nodes [16], and improving fairness by balancing MAC layer
accesses [28]. Data redistribution in EnviroStore bears some
similarity with the former. However, we have the additional



control knob of exchanging data between nodes, while it is
not possible for nodes to charge each other using their own
batteries.

More broadly, load-balancing comprises many algo-
rithms that are studied in different application contexts.
Representative applications include load-balancing in web
servers [3][27][30], P2P networks [11][13], wireless LANs [8],
and distributed operations systems [4]. These applications
commonly involve many nodes, which can range from web
servers to P2P clients, each with a finite resource capacity.
The particular resource may be bandwidth, computing power,
or storage space. When more resources than desired are
consumed, a node tries to reduce its resource consumption by
transferring some load to its peers. While this general descrip-
tion also applies to EnviroStore, EnviroStore is considerably
different. First, EnviroStore has the extra constraint of limited
energy, which leads to new insights such as lazy offload. Sec-
ond, because of the resource limitations of individual nodes,
no single node is able to coordinate with all the other nodes.
Load balancing in EnviroStore must be completely distributed,
dependent only on local information. Third, EnviroSuite has
the additional challenge of redistributing data between entities
that are disconnected.

VI. CONCLUSION

In this paper, we presented EnviroStore, a cooperative
storage system that maximizes network storage capacity in
the presence of disconnected operation in wireless sensor
networks using in-network and cross-partition data redis-
tribution mechanisms. Our evaluation study validates that
EnviroStore can (i) effectively utilize the network storage
capacity of disconnected sensor networks to accommodate
the most sensory data, and (ii) opportunistically offload data
from overloaded network partitions to underloaded partitions
via mules. Moreover, the system model based upon which
we design EnviroStore is flexible enough to allow a wide
set of applications to take the best advantage of EnviroStore.
This paper serves as our initial attempt to design a storage
system for disconnected operation. We plan to further extend
the work in several directions. These directions include (i)
use of controllable data mules to optimize data redistribution
and upload, (ii) investigation of data replacement policies to
maximize the total amount of valuable information instead of
just the amount of stored data, and (iii) performance evaluation
of EnviroStore on real hardware platforms.
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