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ABSTRACT
Previous localization solutions in wireless sensor networks
mainly focus on using various techniques to estimate node
positions. In this paper, we argue that quantifying the un-
certainty of these estimates is equally important in practice.
By using the quantitative uncertainty of measurements and
estimates, we can derive more accurate estimates by better
fusing the measurements, provide confidence information for
confidence-based applications, and know how to select the
best anchor nodes so as to minimize the total mean square
errors of the whole network. This paper quantifies the esti-
mation uncertainty as an error covariance matrix, and pres-
ents an efficient incremental centralized algorithm—INOVA
and a decentralized algorithm—OSE-COV for calculating
the error covariance matrix. Furthermore, we present how
to use the error covariance matrix to infer the confidence
region of each node’s estimate, and provide an optimal stra-
tegy for the anchor selection problem. Extensive simulation
results show that INOVA significantly improves the com-
putation efficiency when the network changes dynamically;
the confidence region inference is accurate when the measu-
rement number to node number ratio is more than 2; and
the optimal anchor selection strategy reduces the total mean
square error by four times as much as the variation-based
algorithm in best case.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: SIMULATION AND
MODELING—Model Validation and Analysis

General Terms
Algorithms
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Figure 1: Confidence-based Localization (at 90% confidence level)

Localizing nodes in a wireless sensor network is an import-
ant problem that has produced many solutions. Typically,
each solution makes various assumptions and provides dif-
ferent levels of accuracy. However, most of these solutions
suffer from two common drawbacks: they do not quantify
the uncertainty of measurements, and they do not provide
quantitative uncertainty for their location estimates. The
former problem causes the estimation to be non-optimal,
while the latter results in the impossibility for inferring the
confidence information at the node level. A preferred locali-
zation scheme is shown in Figure 1, where not only the lo-
cation estimates (the red “*”), which fuse measurements ac-
cording to their quantitative uncertainty, are provided, but
also the confidence region (the red ellipses) for each node is
rendered.

In this paper, we emphasize the importance of quantitati-
ve uncertainty for three reasons. First, by taking the quan-
titative uncertainty of the measurements into account, we
can achieve better localization results. For example, in Fi-
gure 2(a), Nodes 1, 2 and 3 are the anchor nodes, Node R is
to be localized and its real location is at the blue point. The
arrow lines are the measurements, and the dashed circles
represent the uncertainty of these measurements. If we do
not take the uncertainty into account and just average these
three measurements (trilateration and triangulation fall into
this category), the estimate of Node R would be E1; but if
we weight the accurate measurements more and the inac-
curate ones less (by using the relative measurement graph
model as this paper does), the estimate would be E2, which
is more accurate than E1.

Second, the quantitative uncertainty can provide confi-
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Figure 2: (a) Uncertainty Based Localization; (b) Anchor Node
Selection

dence regions for confidence-based applications, which would
take different actions based on different confidence-levels.
Take a firefighter retreat selection application for example
[?]. If a WSN is dynamically deployed in a building on fire to
help select a safe retreat route (by sensing the surrounding
environment), the system would only choose a safe route if
it is within a 95% confidence-level region.

A third usage of quantitative uncertainty is to guide the
selection of anchor nodes. Anchor nodes are those whose
global locations are precisely known, e.g. either by GPS or
manual input. Many WSN localization solutions (including
our method) rely on a few anchor nodes to deduce other
non-anchor node positions. However, in a large scale WSN,
which nodes should be set as anchors so that the entire net-
work’s localization accuracy can be significantly improved?
If the quantitative correlated uncertainty (e.g. the covarian-
ce matrix) for all nodes’ location estimation is provided, the
nodes with both large estimation variation and high correla-
tions with other nodes should be selected. Take Figure 2(b)
for example. Given the quantitative uncertainty, we would
choose Node 3 as an anchor because it has both large va-
riation (although not largest) and high correlation to other
nodes, otherwise we may intuitively choose Node 4 since it
is farthest away from the anchor nodes 1 and 2.

This paper models the quantitative uncertainty as the er-
ror covariance matrix for both measurements and estimates,
and uses the Relative Measurement Graph (RMG) [2, 3] to
calculate the location estimates and the covariance matrix.
This model assumes that a set of relative position measu-
rements (both the relative distances and angles) and their
corresponding error covariance matrices are known. A RMG
can be built, where the vertex set is all the sensor nodes,
the directed edge set is all the node pairs which have relati-
ve measurements, and the edge function is to map each edge
to its corresponding measurement and the error covariance
matrix. Then, the location estimates and the corresponding
covariance matrix for all these estimates can be derived by
the Best Linear Unbiased Estimator (BLUE) [13].

Although the BLUE method mathematically solves the
localization with quantitative uncertainty, its high compu-
tational complexity (O(mn2d3), m is the measurement num-
ber, n is the node number and d is the variable dimension)
and one-time localization scheme prevents it from being used
in a large network, where measurements are incrementally
generated and the number of nodes dynamically changes.
Additionally, it does not provide any distributed algorithm
to calculate the error covariance matrix, which is required
by a peer-to-peer architecture.

This paper not only solves the above calculation problems,
but also shows how to make use of a covariance matrix to
infer the confidence region and help anchor selection. In

summary, the contributions of this paper are: first, a mo-
re efficient incremental centralized algorithm–INOVA is de-
veloped, which reduces the computational complexity from
O(mn2d3) to O(n3d3), and keeps a fixed computational time
as measurements are incrementally generated. Second, by
extending the location estimation distributed algorithm—
OSE [2], a decentralized algorithm for calculating the error
covariance matrix, named OSE-COV, is provided. The ad-
vantage of OSE-COV is that it reuses the scheme of the
OSE algorithm, so that the location estimates and the cor-
responding error covariance matrix can be simultaneously
obtained by using the same protocol. Third, we show that
the location estimates derived by BLUE follow the multi-
variate normal distribution, and thus the confidence region
can be derived based on the estimate and the corresponding
covariance matrix. Finally, an optimal anchor selection algo-
rithm is derived. It decides which node should be selected as
an anchor so that the total mean square error of the whole
network is minimized. Note that all above work is generic,
and can be used for other problems, such as time synchro-
nization [12](1D) or motion consensus [2] (3D) problems.

2. OPERATIONAL SCENARIO
Since the details of our solution are quite mathematical,

we begin by presenting an operational scenario. Consider an
expedition team that moves through a large forest or other
wild area dropping sensor nodes. Once deployed, each of
these nodes communicates with neighbors and using a tech-
nique such as TDOA [22, 20] and AOA [18, 20] to create a
set of measurements and the corresponding error covarian-
ce matrices (each node can infer the error covariance matrix
based on its device’s accuracy property which is pre-studied,
e.g. the error variation could be constant or proportional to
the measured distance, and x-axis’s variation could be in-
dependent with y-axis’s) for the relative position between
them. All these measurements and the corresponding error
covariance matrices are wirelessly transmitted to the base
station. Then using the RMG model and the INOVA algo-
rithm, the location estimates and the corresponding error
covariance matrix for all these nodes are obtained. If the
above centralized architecture is not available in some place,
the distributed algorithms OSE and OSE-COV can be used
to estimate the location and the covariance matrix, respec-
tively.

After deployment, nodes may continuously generate more
relative measurements, and some may move, leave or join
the network at run time, then INOVA can quickly respond
to these dynamic behaviors, and update the estimates in re-
al time. If some confidence-based application needs to know
nodes’ real location region at some specific confidence level,
a confidence region picture like Figure 1 (the red part) can
be rendered based on the inference theory in Section 6. Fur-
thermore, based on each node’s estimation error covariance
matrix, we can judge whether the current estimation accu-
racy is good or not. If it is not good enough, we can set one
or more nodes to be anchor nodes by using the optimal an-
chor selection strategy in Section 7, so that the total mean
square error of the network is guaranteed to be minimized
after each selection.

After the basic RMG model described in Section 3, we
provide our centralized algorithm INOVA and the distribu-
ted algorithm OSE-COV in Sections 4 and 5, respectively.
The confidence region inference and the anchor selection pro-



blem are presented in Sections 6 and 7. The evaluations of
all above conclusions are shown in Section 8, followed by the
related work and the conclusion in Sections 9 and 10.

3. RELATIVE MEASUREMENT GRAPH
Estimating each node’s vector-valued variable based on

a set of noisy linear relative measurements, such as pro-
blems of time synchronization [12], 2D or 3D WSN locali-
zation [2], or motion consensus [2], can be solved by the re-
lative measurement graph model. Assume the vector-valued
variable for each node is xi ∈ R

d, i = 1, 2, · · · , n, and a
set of independent relative measurements about these va-
riables are obtained, denoted as ζuv = xu − xv + εuv ∈
R

d, u, v ∈ {1, 2, · · · , n}, where εuv ∈ R
d is the random er-

ror vector with zero mean and a covariance matrix Puv =
E[εuvεT

uv] ∈ R
d×d, representing the measurement uncertain-

ty. By stacking all the node variables into one vector x =
[xT

1 , xT
2 , · · · , xT

n ]T ∈ R
nd, all the measurements into one vec-

tor z = [ζT
1 , ζT

2 , · · · , ζT
m]T ∈ R

md and all the measurement
errors into a vector ε = [εT

1 , εT
2 , · · · , εT

m]T ∈ R
md, the mea-

surement equations can be expressed as

z = AT x + ε (1)

where A = A⊗ Id, A is the incidence matrix of the relative
measurement graph G, Id is d × d identity matrix, and ⊗
denotes the Kronecker product. The relative measurement
graph G = (V, E, F ) is a directed graph, constructed by in-
cluding all the nodes as its vertex set V , all the node pairs
which have measurements as its directed edge set E (the di-
rection is from u to v if the node pair has the measurement
of ζuv), and a function F : E → (Z, P ) which maps an edge
euv ∈ E to the corresponding measurement ζuv ∈ Z (Z is
the set of all measurements) and the error covariance ma-
trix Puv ∈ P (P is the set of all error covariance matrices).
The incidence matrix A is a n×m matrix, where each row
corresponds to each node, each column corresponds to each
edge. The element aue of A is 1 if Edge e leaves from Node
u, -1 if e is directed toward u, and 0 if Node u is not involved
in Edge e. For example, the left figure in Figure 3 can be
expressed as
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By partitioning x into an anchor node variable vector xr,
which includes all anchor nodes’ constant positions, and a
non-anchor node variable vector xb, which includes all non-
anchor nodes’ position variables, and partitioning A into
an anchor node incidence matrix and a non-anchor node
incidence matrix, Equation 1 can be rewritten as

z = AT
b xb + ε (2)

where z = z − AT
r xr. For the example in Figure 3, since

Nodes 1 and 4 are anchors, the equation can be written as⎡
⎢⎢⎢⎣
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Obtaining an estimate of xb becomes a classical estimation
problem, which can be solved by BLUE. If G is a weakly
connected graph (where there always exist undirected paths
between any node pair), the best estimate for xb in the li-
near combination space of all the measurements is uniquely
determined by x̂b, the solution of the following linear system

Lx̂b = b (3)

where L = AbP−1AT
b (called G’s Kirchhoff Matrix), b =

AbP−1z, and P is a block diagonal matrix consisting of all
the covariance matrices Pi of εi, i = 1, 2, · · · , m. The cova-
riance matrix of the estimation errors is given by

Σ = L−1 (4)

Although the above centralized solution is elegant, it has
several drawbacks. First, the time complexity is high. As-
suming there are n nodes and m measurements, the anchor
number is constant, and the dimension of the variable vec-
tor is d, the time complexity for calculating the covariance
matrix Σ is T (Σ) = O(n2md3), since T (L) = T (P−1) +
T (AbP−1) + T ((AbP−1)AT

b ) = md3 + nmd3 + n2md3 =
O(mn2d3), and T (L−1) = n3d3 (n <= m). The time com-
plexity for calculating nodes’ location estimates is T (x̂b) =
O(n2md3), since T (x̂b) = T (L−1) + T (b) + T (L−1b) =
(md3 +nmd3 +n2md3 +n3d3)+nmd3 +n2d3 = O(n2md3).
So the time complexity for calculating both x̂ and Σ simul-
taneously is T (x̂b,Σ) = T (x̂b) = md3 + 2nmd3 + 2n2d3 +
n3d3 = O(mn2d3). The computational complexity depen-
ding on the measurement number m makes this solution not
scale well, since m would be a very large number as the no-
de number increases (the possible different edge number of
a graph is of the order of O(n2), and the same edge may be
measured multiple times in practice).

Second, this method follows a one-time calculation sche-
me, which means it calculates x̂b and Σ for a fixed RMG,
if the RMG is changed, all the calculations must be re-
executed. However, in practice, it is very likely that new
measurements are continuously generated, and sensor no-
des may leave or join the network dynamically. Therefore,
if the network size is large, the high one-time calculation
time complexity would prevent it from providing the latest
estimation in real time.

4. THE INCREMENTAL NODE-VOLTAGE
ANALYSIS METHOD

To overcome the drawbacks of high computational com-
plexity and one-time calculation scheme of the above me-
thod, we propose a new calculation scheme, called the incre-
mental node-voltage analysis (INOVA) method, which deri-
ves the same results as BLUE, but reduces the time com-
plexity from O(mn2d3) to O(n3d3), and can incrementally
calculate x̂b and Σ as new measurements are generated, or
nodes join or leave the network dynamically. Although this



Figure 3: The Analogy Between RMG and The Generalized Elec-
trical Network. The red nodes are anchor nodes.

method can be derived by analyzing the structure of matri-
ces in Equation 3, we choose to deduce it based on the elec-
trical network analogy for the following two reasons: 1) it
can provide more insights of the decomposition operations;
and 2) our subsequent distributed algorithm in Section 5
will also use this analogy.

It has been shown in [3] that a RMG G = (V, E, F ) is
analogous to a generalized electrical network G = (V, E ,F),
where V is the node set the same as in G, E is the edge set
the same as E, but with no directions, and F : E → R is
an edge function that assigns each edge ei a matrix valued
resistance Ri which is numerically equal to the measurement
error covariance matrix Pi in RMG. The generalized current
J is defined as a d× d matrix associated with an edge with
certain direction, and satisfies the Kirchhoff’s Current Law,
i.e. for each node in a generalized electrical network, the net
generalized current flowing out or into that node is 0. The
generalized voltage potential difference Uuv between two no-
des u and v is defined as a d × d matrix Uuv = Ruv × Juv.
Similarly, it satisfies Kirchhoff’s Voltage Law, i.e. for any
loop in a generalized electrical network, the sum of the ge-
neralized voltage potential difference in the clockwise or the
counterclockwise direction is 0. Like the traditional electri-
cal network, each node is associated with a voltage potential
if there are currents or voltages imposed to the generalized
electrical network. For the anchor nodes in G, they are consi-
dered being connected to the ground, and thus their voltage
potentials are always 0.

One important conclusion from [3] is that each node’s
estimation covariance matrix Σii (the ith diagonal block
element of network’s covariance matrix Σ) is numerically

equal to the effective resistance Reff
i between that node and

the ground in G. Hence, to calculate Σii, we can impose an
identity generalized current I to that node, then Node i’s
voltage potential Uii is numerically equal to Reff

i , i.e. Uii =

Reff
i ×I = Reff

i = Σii. We call the generalized electrical net-
work imposed by a current I on Node i as Node i’s Current
Graph, denoted as Gi. Therefore, to calculate Σii, we can
use node-voltage analysis method from electrical theory, i.e.
set nb voltage potential variables Ui = [UT

i1, U
T
i2, · · · , UT

inb
]T

for every non-anchor node in Gi, and then build the balance
equations based on Kirchhoff’s Current Law for each node.

L
dnb×dnb

Ui
dnb×d

= Hi
dnb×d

(5)

where L = [Luv] ∈ R
dnb×dnb , u, v ∈ {1, 2, · · · , nb},

Luv
d×d

=

⎧⎪⎪⎨
⎪⎪⎩

∑
{u,q}∈E

P−1
uq (or P−1

qu ) if u = v

−∑
P−1

uv (or P−1
vu ) if u �= v ∧ {u, v} ∈ E

0 if {u, v} /∈ E
(6)

Hi
dnb×d

= [ 01
d×d

, 02
d×d

, · · · , Ii
d×d

, · · · ,0nb
d×d

]T

The subscript of Hi’s element denotes the index of that
element. Actually, it is not hard to show that L in Equation
5 is equal to L in Equation 3. In addition, if we consider all
nodes’ Σii, i = 1, 2, · · · , nb together, we can get the following
equations:

L
dnb×dnb

U
dnb×dnb

= H
dnb×dnb

(7)

where U = [U1,U2, · · · ,Unb ] and H = [H1,H2, · · · ,Hnb ] =
I (size dnb × dnb). Obviously, the solution is U = L−1 = Σ.
Another observation is that the covariance matrix Σij of
Nodes i and j is numerically equal to the voltage potential
Uij of Node i in Node j’s Current Graph Gj, or the voltage
potential Uji of Node j in Node i’s Current Graph Gi (since
Σ is a symmetric matrix).

Moreover, we can also directly build b = [bi] in Equation
3 as follows.

bi =
∑

(u,v)∈E
u=i∨v=i

P−1
uv [(−1)suv ζuv + cu + cv] (8)

where suv = 0 if u = i, and suv = 1 if v = i; cu = xu if Node
u is an anchor node, otherwise cu = 0 (size d× 1); similarly,
cv = xv if Node v is an anchor node, otherwise cv = 0.

We can directly build L and b, and thus Σ and x̂b can
be calculated. If the network is fixed, everything is fine. But
what if the network changes? Do we need to redo all these
calculations? There are two types of dynamic changes for a
WSN: new measurements being generated and nodes quit-
ting or joining the network. For the former problem, when
a new measurement ζuv is generated, only two Nodes u and
v are involved. So we only need to modify the balance equa-
tions for these two nodes if they are not anchor nodes, i.e.
modifying four elements in L and two elements in b as fol-
lows (if any of them is an anchor, nothing needs to be done
for that node).

Operation 1. When a new measurement ζuv is genera-
ted, do Luv− = P−1

uv , Lvu− = P−1
uv , Luu+ = P−1

uv , Lvv+ =
P−1

uv , bu+ = P−1
uv ζuv + cv, bu− = P−1

uv ζuv − cu

For the event of a node leaving or joining the network,
it only impacts that node and its neighbors. Especially for
node joining, the new node should have measurements with
the existing nodes in order to keep the graph weakly connec-
ted, otherwise, our system would not include this node. The
corresponding operations are:

Operation 2. If a node joins the network (with some
measurements to some already existing nodes), a new co-
lumn and a new row with all 0’s are appended to L, and one
element 0 is appended to b. Then Operation 1 is taken for
this node’s new measurements.

Operation 3. If Node u leaves the network, for each of
Node u’s neighbors q, if the measurement is ζqu, then do
Lqq− = P−1

uq , bq+ = ζqu − cu; if the measurement is ζuq,
then do Lqq− = P−1

qu and bq− = ζuq + cu. After that, delete
Row u and Column u in L, and the uth element of b.

In summary, the initial inputs of INOVA are the measure-
ment set Z, the corresponding error covariance matrix set P
and the anchor nodes’ locations xr. The outputs are nodes’
location estimates x̂b and the covariance matrix Σ. After
the initial localization, if there are some dynamic changes at



Figure 4: Node 1’s Two-hop RMG

run time, the inputs are the set of new measurements, the
set of nodes which leave, or the set of newly joining nodes
with the corresponding measurements, and the outputs are
the updated x̂b and Σ. The whole algorithm is described as
follows:

1. Calculate P−1
i , i = 1, 2, · · · , m. (T (P−1

i ) = md3).

2. Scan all measurements once, build up L and b by using
Equations 6 and 8, respectively. (T (L) = 4md, T (b) =
2md2)

3. Calculate Σ = L−1. (T (Σ) = n3
bd

3).

4. Calculate x̂b = L−1b. (T (x̂b) = n2
bd

3).

5. If a new measurement is generated, do Operation 1
(T (opt1) = O(d3)); if a new node joins the network
with constant measurements, do Operation 2 (T (opt2) =
O(d3)); if a node having constant number of neighbors
leaves the network, do Operation 3 (T (opt3) = O(d3)).
Then repeat Steps 3 and 4 (T (Σ) + T (x̂b) = n3

bd
3).

The time complexity for INOVA to localize a fixed net-
work is T (INOV A) = O(n3d3), and the time complexity
for one dynamic change is also O(n3d3) (recall that n is the
node number, m is the measurement number and d is the
variable dimension). However, for the BLUE method, either
for a fixed network or responding to a dynamic change, it
all needs O(mn2d3). The improvement of INOVA is signi-
ficant for two reasons: first, in a large dense network, m is
much larger than n, because the possible edge number is n2,
and multiple measurements may be taken for the same node
pair. Second, if we look into the details of these two proces-
ses, we find the key difference is how to build L. In BLUE,
it always needs O(mn2d3) time; while in INOVA, initially,
it needs O(n3d3) time, but after that, when the network dy-
namically changes, the time is constant. Therefore, INOVA
has much better performance when the topology changes
(see Section 8.1).

5. A DISTRIBUTED ALGORITHM
In some scenarios (e.g. in wild areas), the centralized ar-

chitecture may not be available, and thus a distributed sche-
me is required. Prabir Barooah et al. proposed a distribu-
ted algorithm OSE to estimate each node’s location [2]. In
OSE, each node assumes its two-hop neighbor’s estimati-
ons are correct, iteratively estimate its own location based
on its two-hop RMG, and exchanges the estimates among
neighbors. After a number of iterations, each node’s esti-
mate converges to the estimate calculated by BLUE. The
essence of OSE is to use a method, called Asynchronous
Filtered Weighted Additive Schwarz (AFWAS) [2], to solve
linear Equation 3 for the whole network in a distributed way.

However, OSE can only estimate node positions but not
the covariance matrix. Therefore, we propose a similar dis-
tributed scheme called OSE-COV to estimate the covariance

matrix Σ of the whole network. The differences of OSE-COV
are: first, OSE-COV uses INOVA for its local calculation in-
stead of BLUE; second, OSE-COV is to solve nb linear sy-
stems of Equation 5 (while OSE only solves one), and each
node initially does not know how many linear systems there
are.

In OSE-COV, the tasks of each node u are to discover the
existence of all the other nodes, and estimate its voltage po-
tential Σuk in Node k’s current graph Gk, ∀k = 1, 2, · · · , n.
Each node u maintains its two-hop RMG Gu(2) (it could
be also extended to more than 2 hops, but the communica-
tion cost would be large). In each iteration, Node u (u =

1, 2, · · · , n) updates its known node list S
(i)
u by merging its

two-hop neighbors’ S
(i)
w (w ∈ Vu(2)), solves Σ̂

(i)
uk, ∀k ∈ S

(i)
u

locally based on Gu(2) by using node-voltage analysis and

assuming their two-hop neighbors’ Σ̂
(i−2)
wk are correct, and

broadcasts S
(i)
u , Σ̂

(i)
u and its neighbor’s estimates to its one-

hop neighbors. Let Gu(1) = (Vu(1), Eu(1), Fu(1)) be No-
de u’s one-hop RMG, where Vu(1) consists of u and all its
one-hop neighbors, Eu(1) consists of all the edges (from
the set E) between these nodes, and Fu(1) is the corre-
sponding mapping from edges to measurements; Gu(2) =
(Vu(2), Eu(2), Fu(2)) is Node u’s two-hop RMG; Au(1) =
Vu(1)−{u} is the set of Node u’s one-hop neighbors; Au(2) =
Vu(2) − Vu(1) is the set of Node u’s two-hop neighbors;

S
(i)
u = {k|Node u knows the existence of Node k at ith

iteration} is Node u’s known node list; Σ̂
(i)
u (d× d|S(i)

u |) de-

notes Nodes u’s estimates for Σuk, ∀k ∈ S
(i)
u ; X[i] denotes

the ith element of set X; and we define a node as a voltage
anchor node in Gk if its voltage potential is known in No-
de k’s current graph. The whole algorithm is described as
follows.

1. Initially, by broadcasting twice, each node u ∈ V gets
its two-hop RMG Gu(2). Node u assumes its neighbors
Au(1) ∪ Au(2) know the existence of Vu(2), thus sets

their known node lists as S
(0)
v = Vu(2) and S

(−1)
w =

Vu(2), where v ∈ Au(1) and w ∈ Au(2), and picks

up arbitrary estimates Σ̂
(0)
v , v ∈ Au(1) and Σ̂

(−1)
w , w ∈

Au(2) for them.

2. At the ith iteration, if Node u is an anchor, it upda-

tes its known nodes list S
(i)
u = S

(i−1)

Au(1) ∪ S
(i−2)

Au(2), where

S
(i−1)

Au(1) =
⋃

v∈Au(1)

S(i−1)
v and S

(i−2)

Au(2) =
⋃

w∈Au(2)

S(i−2)
w ,

and updates its estimate Σ̂
(i)
u = 0 (d×d|S(i)

u |). If Node
u is not an anchor, it updates its known nodes list

S
(i)
u = S

(i−2)

Au(2). Then Node u considers all its two-

hop neighbors as voltage anchors (i.e. assumes their

estimates Σ̂
(i−2)
w , ∀w ∈ Au(2) are correct), and combi-

nes all their estimates Σ̂w, w ∈ Au(2) into one matrix

Cov
(i)
u = [(Cov

(i)
u )jk] as follows:

(Cov(i)
u )jk =

{
Σ

(Au(2)[j])(S
(i)
u [k])

if S
(i)
u [k] ∈ S

(i−2)

Au(2)[j]

arbitrary value otherwise
(9)

Then, Node u builds up |S(i)
u | groups of current balance

equations as Equation 5 for Gk, ∀k ∈ S
(i)
u , which can

be written together as

Lu(2)U(i)
u = C(i)

u −Aub(2)Pu(2)−1Aur(2)T Cov(i)
u (10)



where Lu(2) (d|Vu(1)| × d|Vu(1)|), Aub(2) (d|Vu(1)| ×
d|Eu(2)|), Aur(2) (d|Au(2)| × d|Eu(2)|), and Pu(2)
(d|Eu(2)| × d|Eu(2)|) are the Kirchhoff Matrix, non-
anchor node incidence matrix, anchor node incidence
matrix and the measurement error diagonal matrix of

Gu(2), respectively. U
(i)
u (d|Vu(1)| × d|S(i)

u |) is the va-
riable matrix, where the block element of ith row and
jth column represents the estimate of Node Vu(1)[i]’s

voltage potential in Node S
(i)
u [j]’s Current Graph, i.e.

Σ̂
(Vu(1)[i])(S

(i)
u [j])

. C
(i)
u (d|Vu(1)|×d|S(i)

u |) is defined as:

(C(i)
u )jk =

{
I if Vu(1)[j] = S

(i)
u [k]

0 otherwise
(11)

After solving U
(i)
u , Node u only keeps the row corre-

sponding to itself, denoted as Yu (d×d|S(i)
u |), and then

updates its estimates as Σ̂
(i)
u = λYu +(1−λ)Σ̂

(i−1)
u (if

the size of Σ̂
(i−1)
u is less than Yu, append Σ̂

(i−1)
u with

the missing elements in Yu), where 0 < λ ≤ 1 is a
pre-defined parameter (we use λ = 0.9 in this paper).

Then, the new estimates Σ̂
(i)
u plus the known node list

S
(i)
u , and the estimates Σ̂

(i−1)
v plus their known no-

de lists S
(i−1)
v , v ∈ Au(1), previously received from its

one-hop neighbors are broadcasted to all its one-hop
neighbors.

3. When each node u receives broadcasts from its one-
hop neighbors, it updates corresponding S

(i)
v , S

(i−1)
w ,

Σ̂
(i)
v and Σ̂

(i−1)
w , where v ∈ Au(1) and w ∈ Au(2).

Node u waits for a timeout or a predefined number of
messages, and then it begins the (i + 1)th iteration.

The above distributed algorithm can be stopped after a
timeout or a predefined number of iterations. Take Figure
4 for example. Figure 4 shows the two-hop RMG G1(2) of
Node 1. Nodes 4 and 5 are Node 1’s two-hop neighbors, and
considered as the voltage anchors in G1(2). Assume at the
ith iteration, Node 1 receives the known node lists of Nodes

2, 3, 4 and 5 as S
(i−1)
2 , S

(i−1)
3 , S

(i−2)
4 and S

(i−2)
5 , respec-

tively, and their corresponding covariance matrix estimates

as Σ̂
(i−1)
2 , Σ̂

(i−1)
3 , Σ̂

(i−2)
4 and Σ̂

(i−2)
5 , respectively. Assume

S
(i−2)
4 = (1, 2, 3, 4, 5), S

(i−2)
5 = (1, 2, 3, 4, 5, 6), Σ̂

(i−2)
4 =

[Σ̂
(i−2)
41 , Σ̂

(i−2)
42 , Σ̂

(i−2)
43 , Σ̂

(i−2)
44 , Σ̂

(i−2)
45 ] and Σ̂

(i−2)
5 = [Σ̂

(i−2)
51 ,

Σ̂
(i−2)
52 , Σ̂

(i−2)
53 , Σ̂

(i−2)
54 , Σ̂

(i−2)
55 , Σ̂

(i−2)
56 ]. This means by the i−

2th iteration, Node 4 knows the existences of Nodes 1, 2, 3,
4 and 5, and estimates its voltage potentials in Current Gra-

phs G1, G2, G3, G4 and G5 as Σ̂
(i−2)
41 , Σ̂

(i−2)
42 , Σ̂

(i−2)
43 , Σ̂

(i−2)
44

and Σ̂
(i−2)
45 , respectively. It is similar for Node 5, although

Node 5 knows one more node (Node 6) than Node 4. Then

Node 1 updates its known node list as S
(i)
1 = (1, 2, 3, 4, 5, 6),

builds C
(i)
1 and Cov

(i)
1 as:

C
(i)
1 =

⎡
⎣ I 0 0 0 0 0

0 I 0 0 0 0
0 0 I 0 0 0

⎤
⎦

Cov
(i)
1 =

[
Σ̂

(i−2)
41 Σ̂

(i−2)
42 Σ̂

(i−2)
43 Σ̂

(i−2)
44 Σ̂

(i−2)
45 0

Σ̂
(i−2)
51 Σ̂

(i−2)
52 Σ̂

(i−2)
53 Σ̂

(i−2)
54 Σ̂

(i−2)
55 Σ̂

(i−2)
56

]

After that, Node 1 solves U
(i)
1 for Nodes 1, 2 and 3 based

on Equation 10, abandons all other nodes’ solutions except

for itself (the 1st row of U
(i)
1 , denoted as Y1), and upda-

tes Σ̂
(i)
1 = λY1 + (1 − λ)Σ̂

(i−1)
1 . Then Node 1 broadcasts

S
(i)
1 , S

(i−1)
2 , S

(i−1)
3 , Σ̂

(i)
1 , Σ̂

(i−1)
2 and Σ̂

(i−1)
3 to all its one-

hop neighbors.
Since OSE-COV does not require synchronization between

nodes, it works under unreliable links. The convergence of
OSE-COV can be proved by using the AWAS framework [9].
Another benefit of OSE-COV is that it has the same com-
munication scheme as OSE. Hence at each iteration, all the
exchange information of OSE and OSE-COV can be broad-
casted together, and the location estimates and the cova-
riance matrix estimates can be calculated simultaneously.
To calculate the communication costs of OSE-COV, we as-
sume 4 bytes are needed to represent a real number, 4 bytes
for a node’s address, and one node has v one-hop neighbors
and w two-hop neighbors. Then for each iteration, Node u
needs to broadcast 4(v + 1) bytes for its own address and
its neighbors’ addresses, maximum 4(v + 1)n bytes for the
known node list of itself and its one-hop neighbors, maxi-
mum 4(v + 1)nd2 bytes for itself and its one-hop neighbors
covariance matrix estimates, 3v bytes for time stamps of
these estimates. Therefore, the number of packets for one
broadcast is

NCOV
tx (u) =

(4nd2 + 4n + 7)v + 4nd2 + 4n + 4

max payload
(12)

If we combine OSE and OSE-COV together, we only need
to add 4d(v + 1) bytes for the location estimates of Node u
and its one-hop neighbors.

6. CONFIDENCE REGION INFERENCE
As described in Section 1, some confidence-based applica-

tions require not only the position estimates, but also the
corresponding confidence regions. Since a node’s position
estimate from BLUE is a linear combination of all measure-
ments, based on the large number theorem from probability
theory, it is likely that it follows a multivariate normal dis-
tribution. If this conclusion is correct, then we can deduce
its confidence region at some confidence level by using the
properties of the multivariate normal distribution.

One version of central limit theorem, named Lindeberg’s
condition [1], says that for a sequence of independent ran-
dom variables Xk, k = 1, 2, · · · , n, with E(Xk) = μk and

V ar(Xk) = σ2
k, denoting s2

n =

n∑
k=1

σ2
k, if max

k=1,2,··· ,n

σ2
k

s2
n

→

0, as n → ∞, i.e. none of σ2
k dominates s2

n, then Zn =∑n
k=1(Xk − μk)/sn converges to a standard normal distri-

bution N (0, 1) when n →∞.
In BLUE, each node’s position estimate is x̂u =

∑m
k=1 W u

k ζk,
where W u

k is the weight matrix of the measurement ζk Node
u (or the generalized current of edge ek in Gu). Its corre-
sponding covariance matrix is Σuu =

∑m
k=1 W u

k Pk(W u
k )T .

Let yu
k = W u

k ζk, and then Σuu =
∑m

k=1 COV (yu
k ). Define

Zu = Σ
− 1

2
uu

m∑
k=1

(yu
k − E(yu

k )) (13)

If Pk is a diagonal matrix and ∀k = 1, 2, · · · , m, COV (yu
k )

does not dominate Σuu, then Zu tends to be a standard
multivariate normal random vector, i.e. Zu � Nd(0, I), sin-
ce each element zu

i , i = 1, 2, · · · , d of Zu tends to be a stan-
dard normal random variable under Lindeberg’s condition.



In BLUE, the latter condition (COV (yu
k ) does not domina-

te) is satisfied, because in practice usually the uncertainty
of measurements generated by one device is similar. For the
first condition, based on our simulation, even if Pk is not a
diagonal matrix, Zu still tends to be Nd(0, I). Consequently,
we can derive that

Zu = Σ
− 1

2
uu (

m∑
k=1

(yu
k )−

m∑
k=1

E(yu
k )) = Σ

− 1
2

uu (x̂u − xu)

=⇒ x̂u � Nd(xu, Σuu) (14)

This means each node estimate from BLUE follows the mul-
tivariate normal distribution which is centered at the real
position with the covariance matrix Σuu. Then we can fur-
ther infer (see [1]) that

(x̂u − xu)T Σ−1
uu (x̂u − xu) � χ2

d(with d d.f.) (15)

Therefore, the solid ellipsoid {xu : (x̂u−xu)T Σ−1
uu (x̂u−xu) ≤

χ2
d(α)} is the 100(1 − α)% confidence region of xu, whe-

re χ2
d(α) denotes the upper (100α)th percentile of the χ2

d

distribution. For instance, after estimating node positions
based on BLUE, Node u’s estimate is x̂u = [1, 2]T and

the covariance matrix is Σuu =

[
1.6 0.25
0.25 1.2

]
. Then its

90% confidence region for xu is the solid ellipsoid {xu :([
1
2

]
− xu

)T [
1.6 0.25
0.25 1.2

]−1 ([
1
2

]
− xu

)
≤ 9.21}, sin-

ce χ2
2(0.01) = 9.21.

7. OPTIMAL ANCHOR SELECTION
Anchor nodes are defined as the nodes which have accura-

te position information under a global coordinate frame. Any
relative measurement based localization scheme must rely on
one or more anchor nodes. Not only the anchor number, but
also which nodes are selected to be anchors would impact
the localization accuracy of the whole network. Taking Fi-
gure 2(b) for example, if Nodes 1 and 2 are already anchor
nodes, obviously setting Node 4 as an anchor node is better
than setting Node 9, since the node further away from the
anchor nodes usually has large uncertainty, and thus more
uncertainty is eliminated by setting Node 4 as an anchor.
Additionally, selecting Node 3 is better than selecting Node
4, since it highly correlates to a large number of other nodes.
Although the uncertainty of Node 3 is not as much as Node
4, the total uncertainty eliminated by setting Node 3 as an
anchor is more (since the uncertainty of Nodes 5, 6, 7 and 8
is also reduced). Although this example provides some intui-
tive sense on how to select a good anchor, in large networks,
anchor selection becomes much more complicated.

Without giving any quantitative uncertainty, the most
straight forward strategy is to choose the node which has
the max-min distance from all the anchor nodes, i.e. the
node which has the maximum distance of the set of nodes’
minimum distances to all the anchors is selected to be an
anchor. This strategy assumes that the measurement un-
certainty monotonically increases as the measured distance
increases (e.g. the ToA method in [14]). For example, in Fi-
gure 2(b), assume the measured distances of node pairs are
Z = {ζ13 = 4.1, ζ23 = 4, ζ14 = 5.1, ζ24 = 5, ζ19 = 1, ζ35 =
1, ζ36 = 1, ζ37 = 1, ζ38 = 1}. Then the set of nodes’ mini-
mum distances to all anchors is Dmin = {D1 = 0, D2 =
0, D3 = 4, D4 = 5, D5 = D6 = D7 = D8 = D9 = 1}. Hence
Node 4 should be selected.

When the quantitative uncertainty—the covariance ma-
trix of all estimates—is given, the metric for selecting the
best anchor node becomes selecting the node as an anchor
so that the resultant trace of the covariance matrix is the
smallest, that is

K = arg min
i=1,2,··· ,n

trace(ΣNew
i ) (16)

Where ΣNew
i denotes the new covariance matrix after se-

lecting Node i as an anchor node. The trace of the cova-
riance matrix represents the sum of mean square errors of
all the node estimates. Hence the above metric satisfies the
minimum mean square error(MMSE) requirement. To redu-
ce trace(Σ) as much as possible, one naive method is to
select the node which has the maximum variation, i.e. se-
lecting Node k = arg max

i=1,2,··· ,n
trace(Σii). By using this method,

the trace(Σ) is reduced by at least as much as trace(Σkk).
Although this method is very simple, it does not take the
correlation between nodes into account. Actually, some no-
de which is highly correlated to many other nodes should
have the priority to be the anchor node, as Node 3 in Figure
2(b). Following we give the optimal anchor selection strategy
which satisfies Equation 16 and its proof. To select multiple
anchors, we can just repeat this strategy.

Theorem 1. If only one node can be set as an anchor,
trace(ΣNew) is minimized only when Node K = arg max

i=1,2,··· ,n

trace

(
nb∑
i=1

(ΣikΣ−1
kk Σki)

)
is selected.

Proof. To set Node k as an anchor is equivalent to get a new
measurement between Node k and the global origin, and the
measurement error covariance matrix Pk = 0. Assume Σ(t)
and Σ(t+1) are the covariance matrices before and after se-
lecting Node k as an anchor node, respectively. Then, Σ(t+
1) = L−1(t + 1) = (Ab(t + 1)P−1(t + 1)AT

b (t + 1))−1, where
Ab(t + 1) =

[ Ab(t) Hk

]
, Hk = [01,02, · · · , Ik, · · · ,0nb ]

T

and P(t + 1) =

[ P(t) 0
0 Pk

]
. Note Pk should be equal to

0, however, we first assume Pk → 0, but Pk �= 0, and P−1
k

exist. Then

L(t + 1) =
[ Ab(t) Hk

] [ P(t) 0
0 Pk

]−1 [ AT
b (t)
HT

k

]
= Ab(t)P−1(t)AT

b (t) + HkP−1
k HT

k = Σ−1(t) + HkP−1
k HT

k

By using the formula

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1

we obtain

Σ(t + 1) = L−1(t + 1)

= Σ(t)−Σ(t)Hk(Pk + HT
k Σ(t)Hk)−1HT

k Σ(t)

Pk=0
= Σ(t)−Σ(t)Hk(HT

k Σ(t)Hk)−1HT
k Σ(t)

= Σ(t)−Δk

Therefore, trace(Σ(t + 1)) = trace(Σ(t)) − trace(Δk). To
minimize trace(Σ(t + 1)) is equivalent to maximize

trace(Δk) = trace

(
nb∑
i=1

(ΣikΣ−1
kk Σki)

)
. Q.E.D.

To calculate trace(Σ(t + 1)) for all k’s, the time comple-
xity is O(d3n2), and to select the maximum trace(Σ(t+1)),



Figure 5: Error Density of INOVA and Average-Based Methods

it takes O(n) time. Therefore, the total time complexity
is O(d3n2). One benefit of this method is that it is com-
patible with the distributed algorithm in Section 5. Since
each node maintains one row of the covariance matrix, i.e.
Σki, i = 1, 2, · · · , n, and Σki = Σik. Hence nodes can calcu-
late trace(Δk) locally, and then the whole network selects
the node with maximum trace(Δk) as the anchor node.

8. EVALUATION
In this section, we evaluate the localization accuracy and

time complexity of INOVA, the convergence of the distribu-
ted algorithm–OSE-COV, the correctness of the confidence
region inference, and the performance of the optimal anchor
selection strategy. All the evaluations are based on Matlab
simulation on a PC with dual Intel(R) Core(TM)2 CPU 6600
@2.40GHz, 2G memory and the Windows XP SP3 operating
system.

As the default configuration in Figure 1, 200 nodes are
randomly deployed in a square area with 30 by 30 grids
(each grid is a 1 × 1 square), and 1000 relative measure-
ments (the blue lines) are randomly generated among them.
The relative measurement ζij between Nodes i and j is de-
termined by an angel measurement θij and a distance mea-
surement rij , where θij and rij are random variables, and
θij = θ∗

ij + εθ
ij and rij = r∗ij + εr

ij . θ∗
ij and r∗ij are the true

angle and distance between Nodes i and j. εθ
ij � N (0, σ2

θ)

and εr
ij � N (0, σ2

r), where σθ = 10◦ and σr = 0.15r∗ij .
Therefore, the measurement between a node pair i and j
is ζij = [rij cos θij , rij sin θij ]

T , and the error covariance ma-
trix is

Pij =

[
y2σ2

θij
+ σ2

r cos2 θ∗
ij −xyσ2

θij
+ σ2

r sin(2θ∗
ij)/2

−xyσ2
θij

+ σ2
r sin(2θ∗

ij)/2 x2σ2
θij

+ σ2
r sin2 θ∗

ij

]
where x = r∗ij cos θ∗

ij and y = r∗ij sin θ∗
ij . The parameters of

node number, measurement number and the area size can
be changed during the simulation process.

8.1 Localization Accuracy and Efficiency
We first compare the localization accuracy of INOVA with

the traditional average-based methods, and then evaluate
the execution time of INOVA and BLUE for calculating both
position estimates and the covariance matrix. As described
in Section 1, INOVA and BLUE should have better localiza-
tion accuracy than the traditional average-based localizati-
on schemes, such as triangulation or multilateration. This is
because INOVA better fuses the measurements by quantita-

tively differentiating the measurement uncertainty. Figure 5
shows the error density of INOVA versus average-based me-
thods (AVG). The error is defined as the Euclidean distance
of the estimated location and the real location. From the
plot, we can see that the peak of INOVA error is at the left
side of AVG, and the average error of AVG is 0.325, while
that of INOVA is 0.267, which is 18% better.

Figure 6 shows the execution time for INOVA and BLUE
as new measurements are incrementally generated. The re-
sult shows that initially, to localize a network with 500 nodes
and 2000 measurements, BLUE takes 13.5 seconds, while IN-
OVA only needs 8.8 seconds. After that, 200 measurements
are incrementally generated in each iteration. The execution
time for BLUE increases very quickly, while INOVA almost
keeps a constant time. When there are 4000 measurements
in the network, the computational time of INOVA is only
0.5 second, which is 70 times as fast as BLUE. Similarly, in
Figure 7, which fixes the measurement number at 2000, but
incrementally adds 50 nodes each time, the execution time
of BLUE shows a large rate of rise, while INOVA only in-
creases slightly. When there are 1100 nodes in the network,
the computational time of INOVA is 5 seconds, which is 12
times as fast as BLUE.

This experiment shows that in a large network where mea-
surements are continuously generated or nodes dynamical-
ly join or leave the network, INOVA can provide real-time
estimates, while BLUE fails. Based on this result, we can
even apply INOVA to a mobile network. When a node mo-
ves, this node is considered to leave the network, and a new
node joins the new position with new measurements. Since
INOVA has very low execution time, it can respond to these
mobile behaviors very quickly.

8.2 Convergence Speed of OSE-COV
In this section, we evaluate the convergence speed for the

OSE-COV distributed algorithm. The network in Figure 1
is used, which has 200 nodes and 1000 measurements, and
Node 1 at the position [0, 0]T is set to be the anchor node.
Figure 8 shows the convergence degree during 100 iterati-
ons. The y-axis is the difference ratio, which is defined as
dnb∑
i=1

dnb∑
j=1

(σij−σ̂ij)
2/

dnb∑
i=1

dnb∑
j=1

σ2
ij , where σij denote the element

of the ith row and jth column of Σ obtained by BLUE or IN-
OVA, while σ̂ij denotes the corresponding element estimated
by OSE-COV. The result shows that OSE-COV converges as
the iteration number increases. Actually, to further improve
the convergence speed, we can initialize each node’s estima-
te with a better value, i.e. nodes start to execute OSE-COV
only when its neighbors have the estimates.

8.3 Confidence Region Inference Accuracy
Based on the analysis in Section 6, each node’s estima-

te x̂u is a multivariate normal random variable, and (x̂u −
xu)T Σ−1

uu (x̂u − xu) � χ2
d(with d d.f.). To test the correct-

ness, we first examine the normality of the estimates. Figure
9 shows the chi-square plot for all node’s estimates in Figure
1. Chi-square plot shows the relationship between the stati-
stic distance (x̂u − xu)T Σ−1

uu (x̂u − xu) and the quantiles of
chi-square distribution. The closer the result is to the line
y = x, the more likely the sample xi’s are from a multiva-
riate normal distribution. The plot in Figure 9 is very closed
to y = x, and thus our inference is correct.



Figure 6: Execution Time for Incremental
Measurements

Figure 7: Execution Time for Incremental
New Nodes

Figure 8: Convergence Speed for COV-OSE
Distributed Algorithm

Figure 9: Chi-square Plot for All Node’s
Estimates

Figure 10: Confidence Region Accuracy Figure 11: Anchor Selection Strategies Com-
parison

To show the correctness of our second inference (about
the confidence region), we use three confidence levels–90%,
95% and 99%, and the corresponding chi-square quantiles
are χ2

2(0.1) = 4.61, χ2
2(0.05) = 5.99, χ2

2(0.01) = 9.21. Based
on the theorem in Section 6, 90% of node’s real positions
should fall in the ellipse (x̂u − xu)T Σ−1

uu (x̂u − xu) ≤ 4.61,
95% of nodes’ real positions should be within the ellipse
(x̂u − xu)T Σ−1

uu (x̂u − xu) ≤ 5.99, and 99% of them should
be in (x̂u − xu)T Σ−1

uu (x̂u − xu) ≤ 9.21. Figure 10 shows the
statistical results for 5 different networks, which all have 500
nodes, but with 1000, 2000, 3000, 5000 and 10000 measure-
ments, respectively. Except the first network (the ratio of
measurement number to node number is low), all others ha-
ve the consistent results with our inference. We also studied
other networks of different sizes. It seems when the ratio of
measurement number to node number is bigger than 2, the
results are quite consistent and stable. Therefore, in practi-
ce, if the network is dense, we can use the covariance matrix
to infer the confidence region accurately. Note that all the
measurements are not from a multivariate normal distribu-
tion (as described at the beginning of Section 8). Therefore,
there is no requirement on the population where the measu-
rements are from.

8.4 Anchor Selection Strategies Comparison
In this section, we evaluate the performance of the three

anchor selection strategies described in Section 7—the distance-
based strategy (Dist), the variation-based strategy (Var)
and the optimal strategy (Opt). The experiment shows how
much percentage of total error variation is reduced as the
anchor nodes are set one after another by using one specific
strategy. In Figure 11, the x-axis is the current anchor num-
ber, and the y-axis is the percentage of the current total
error variation to that at the beginning. The results show
that Dist performs worst, while Opt is the best. We also
observe that the first few selections reduce the total error

variation a lot, where the reduced error percentage of Opt is
four times as much as Var. But as more and more anchors
are selected, the reduction rate decreases. This is because
the nodes with largest uncertainty are selected at the be-
ginning, leaving the nodes with little uncertainty. Another
observation is that as more and more nodes are set to be an-
chors, method Var trends to have the similar performance
as Opt. This is because when multiple anchors are selected,
the anchors Var selected are very likely to be similar as Opt,
although the selection order may differ.

9. RELATED WORK
In the wireless sensor networks field, localization approa-

ches can be divided into two classes: range-based and range-
free solutions. Range-based approaches use special devices,
such as ultrasound [22, 24] or radio[6, 15], and various techni-
ques, such as Time of Arrival (ToA) [15, 16], Time Difference
of Arrival (TDoA) [6, 5, 22, 24], Angle of Arrival (AOA) [4,
18], or Phase Difference of Arrival (PDoA) [17] to estimate
the distances or bearing among nodes, and then apply a tri-
angulation, lateration or multilateration algorithm for final
location estimations.

On the other hand, range-free localization solutions do
not directly measure the distances or angles among nodes,
instead, they make use of proximity information or events
to infer node positions. When the density of sensor nodes
is high, a number of solutions [19, 21] make the assumption
of the shortest path (hop counted) between two nodes ap-
proximating the Euclidean distance of them, and thus can
localize nodes with a few anchors. Other solutions make use
of events to localize nodes, since these events are associated
with the coordinate information [25, 26], distance informati-
on [23], or node sequence information [29]. Other works [11,
30] use relative RSSI difference to iteratively shrink node
possible positions and finally localize the nodes.

However, no matter which technique is used, these me-



thods suffer from several drawbacks: first, they do not dif-
ferentiate the uncertainty of measurements, or at least do
not well quantify the uncertainty [29, 28, 10, 27]. Therefore,
their deduction is not theoretically optimal. Second, they do
not provide the confidence of the estimates, so their estima-
tes cannot be used for confidence-based applications. Third,
there is no way for them to guide the anchor selection.

Prabir Barooah et al. present a quantitative uncertainty-
based localization scheme, the Relative Measurement Graph
model, which takes the quantitative uncertainty of measu-
rements into account, and provides the covariance matrix
for the estimates [2, 3]. However, their work is not adaptive
to the incremental measurements generation or dynamic no-
de number changes. Hence, their approach cannot provide
real time estimation for these dynamic behaviors. Additio-
nally, they only focus on the location estimation, but not the
covariance matrix. So they do not provide any distributed
algorithm for covariance matrix calculation, and do not ma-
ke use of covariance matrix for confidence region inference
and anchor selection.

In robotics field, there is a quantitative uncertainty-based
localization solution called SLAM [7, 8], which can optimally
(or approximate optimally) localize both a robot and land-
marks simultaneously, make use of incremental measure-
ments, and provide confidence of the estimates. SLAM uses
the state space model, and periodically makes predictions
and updates on the robot’s location estimate as well as the
landmark location estimates as the robot moves on. Different
from SLAM, our work does not assume a state space model
and also does not require a mobile agent. Additionally, we
provide a distributed way for estimating both node locati-
ons and the corresponding covariance matrix. Therefore, our
work is more suitable for general WSN scheme.

10. CONCLUSION
This paper emphasizes the importance of the quantitati-

ve uncertainty in WSN localization. The quantitative un-
certainty is modeled as the error covariance matrix of the
estimates, and can be used to infer the confidence region for
location estimates and assist anchor selection so as to redu-
ce the total mean square estimation error. To calculate the
covariance matrix, we present a centralized algorithm, cal-
led INOVA, which has low time complexity and is adaptive
to the dynamic changes of a network. In addition, a distri-
buted algorithm—OSE-COV is presented for peer-to-peer
architectures.
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