
of the EKF due to the bias in range ¹t,3D,r (34)
being reduced. ¯3 < 0:26 and ¯4 < 0:27 both result
in ¢< 7%. ¯3,4 < 0:2 lead to ¢< 3% and ¢< 4%,
respectively. For ¯3,4 < 0:1, the difference is again
almost negligible.
Finally, as a result of Figs. 5, 6, 9, and 10, it

is difficult to verify the predicted difference in the
critical bias significances ¯crit,1,2,3 in (19), (39),
and (40) although some evidence for it is present.
Furthermore, restricting all bias significances ¯ to
values below 0:2 seems to be a good choice as this
restricts the relative difference ¢ to values below 4%
in all simulated scenarios.

VIII. CONCLUSIONS

It has been shown that the second limit for the
applicability of the classical linearized conversion in
the 2D case, as postulated in [2], is very likely not to
exist. Furthermore, the corresponding limits for the
3D case have been derived.
As explained, these limits are rather theoretical in

nature. No conclusions can be drawn on the actual
performance degradation of the EKF in real tracking
applications. To this end, the performance of the EKF
and the optimal BLUE filter has been compared in
typical tracking scenarios for the 2D and 3D case. For
a bias significance ¯ smaller than 0:1, the performance
degradation was found to be less than 1% in all
simulated scenarios. For ¯ < 0:2, it increased to up
to 4%.
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Robust and Adaptive Actuator Failure
Compensation Designs for a Rocket Fairing
Structural-Acoustic Model

The actuator failure compensation problem is formulated for

active vibration control of a rocket fairing structural-acoustic

model with unknown actuator failures. Performance of a nominal

optimal control scheme in the presence of actuator failures is

studied to show the need of effective failure compensation. A

robust control scheme and two adaptive control schemes are

developed, which are able to ensure the closed-loop system

signal boundedness in the presence of actuator failures whose

failure pattern and values are unknown. The adaptive scheme

for parameterizable failures ensures asymptotic stability despite

failure uncertainties. Simulation results verified their failure

compensation effectiveness.

I. INTRODUCTION

Microelectromechanical system (MEMS)
technology makes it possible to use networks of
effective and efficient actuators and sensors for
many applications such as safe and low-cost rocket
payload fairings with active vibration control.
However, actuators (and sensors) may fail during
system operation, and actuator failures may lead to
performance deterioration or even instability of the
rocket launch system. Actuator failures are often
uncertain in failure patterns, failure time instants,
and failure values, which introduce not only signal
uncertainties but also structure uncertainties into the
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controlled system. For certain safety-critical systems
such as the payload launch system, actuator failures,
if not handled properly, may result in disasters. An
accident which may be caused by actuator failures
can be avoided if a control scheme can effectively
make use of the remaining working actuators
which have enough actuation capacity for ensuring
stability. It is important to develop effective control
systems, that is, to work robustly or take actions
automatically whenever actuator failures occur, to
generate control signals for the remaining actuators
to ensure desired stability and tracking performance.
Different approaches for dealing with actuator failures
have been proposed [6, 2, 15, 3, 14].
This paper addresses the issues in developing

stabilizing control designs for a rocket payload
fairing structural-acoustic model with unknown
actuator failures. In Section II we formulate the
control problem, by presenting the system model,
and an example to show the system performance
with a nominal optimal controller in the presence
of actuator failures. In Section III we develop a
robust actuator failure compensation control design
based on simultaneous stabilization of multi-model
systems. In Section IV we develop two adaptive
actuator failure compensation control designs: one
for adaptive stabilization and one for both adaptive
stabilization and regulation. Simulation results are
presented to illustrate their effectiveness for actuator
failure compensation.

II. PROBLEM STATEMENT

Active vibration control is an effective method
for handling structural-acoustic vibration which may
occur in a fairing system [7]. In the presence of
actuator failures, a vibration control system, however,
may lose its effectiveness.

A. Fairing System Model

A launch vehicle payload fairing is a
protection-cover to protect a payload from wind
pressure, high-heat and structure vibration, and to
attenuate the fairing vibration, there are 300 MEMS
sensor/actuator pairs mounted on its wall [4]. Our
control objective is to suppress the launch vehicle
fairing vibration even in the presence of dysfunctional
actuators by constructing an effective reconfiguration
strategy to compensate the detrimental effects caused
by the failed actuators so as to guarantee the desired
overall system performance.
The active vibration control approach is

to use embedded, distributed, closed-loop
sensor-controller-actuator systems to minimize the
vibration. The structure typically has embedded or
bonded transducers that continually transmit sensor

measurements to an information processing system (a
feedback controller). The processing system in turn
determines appropriate action by sending signals back
to the piezoelectric (PZT) actuators embedded in the
structure, to control the fairing structural motion [13].
A variety of active vibration control approaches have
been proposed to deal with the vibration damping
problems such as direct model reference adaptive
control [1], fuzzy logic [5].

For our work, we use the model-interaction
approach for the fairing modeling [8, 11], which
includes structural modeling and rigid-wall acoustic
cavity modeling. The structural model for the fairing
is formulated as

_w(t) = Asw(t) +Bsu(t)+Hsd(t)

ys(t) = Csw(t)
(1)

where w(t) = [zT(t), _zT(t)]T R2n1 is the structural
state vector with z Rn1 and _z Rn1 being structural
displacement and velocity vectors for n1 modes,
respectively, u(t) Rm is a vector of m control inputs
at the structural nodes, that is, the structural actuator
outputs whose components may fail during system
operation, ys(t) Rn1 is a vector of structural outputs
(displacements), d(t) Rq is a disturbance vector, As
R2n1 2n1 , Bs R2n1 m, Cs Rn1 2n1 , and Hs R2n1 q

are structure-related matrices associated with each
corresponding mode.

The model for the air cavity enclosed by the
fairing structure can be expressed as

_r(t) = Aar(t) +Baw(t)

ya(t) = Car(t)
(2)

where r(t) R2n2 , ya(t) Rl is the vector of pressures
within the cavity, Aa R2n2 2n2 , Ba R2n2 2n1 , and
Ca Rl 2n2 are acoustic-related matrices for n2
acoustic modes.

The overall structural-acoustic fairing model
combines the structural and acoustic models as

_x(t) =
As Bsa

Ba Aa
x(t) +

Bs

0
u(t) +

Hs

0
d(t)

ys(t) = [Cs 0]x(t)

(3)

where x(t) = [wT(t),rT(t)]T Rn, n = 2n1 + 2n2,
is the state vector of the fully coupled fairing
system, and Bsa R2n1 2n2 is the matrix associated
with vibroacoustical-related pressure acting at the
fairing structure. We assume here that the system
disturbance d(t) is zero, to address the actuator failure
compensation problem only.

B. A Control System without Actuator Failures

To implement vibration suppression using a
coupled dynamic model, a linear quadratic

1360 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 4 OCTOBER 2004



regulator (LQR) optimal control method was used in
[8].
In the optimal control design [12] for a system

_x= Ax+Bu, x Rn, u Rm (4)

the feedback control law is

u(t) = Kx(t) (5)

where K Rm n is a feedback gain matrix, which,
based on the LQR theory, is chosen to minimize a
quadratic performance index

J =
0
(xTQx+ uTRu)dt (6)

where Q =QT 0 and R = RT > 0 are the weighting
matrices that serve as design parameters selected to
provide suitable performance. Since x(t) includes
both the transmitted pressure states and the structure
states, the control and system response energy can
be directed at any combination of these quantities by
different choices of Q and R. The feedback gain K is
given as

K = R 1BTP (7)

where P = PT > 0 is the matrix satisfying the Riccati
equation

ATP+PA PBR 1BTP+Q = 0: (8)

This LQR design ensures asymptotic stability of the
closed-loop system _x(t) = (A BR 1BTP)x(t), while
the performance index J in (6) is minimized.

C. Control System with Actuator Failures

In the above standard optimal control design,
actuator failures was not considered. In this
subsection, the performance of the optimal controller
in the presence of actuator failures is studied.
One type of actuator failures that may occur in

launch vehicle fairings is the jammed actuator fault,
which can be modeled as [14]

ui(t) = ūi(t), t ti, i 1,2, : : : ,m (9)

where ti is the unknown failure time instant and ūi(t)
is the unknown failure signal. Supposing that at time t,
there are p < m actuator failures in the system, that is,

ui(t) = ūi(t), i = i1, i2, : : : , ip

i1, i2, : : : , ip 1,2, : : : ,m (10)

we can rewrite the system (4) as

_x= Ax+Bu = Ax+
i=i1,:::,ip

biui+
i=i1,:::,ip

biūi(t):

(11)
In the presence of actuator failures, u(t) can be
expressed as

u= v(t)+ ¾(ū v(t)) (12)

where v(t) Rm is the applied control input vector,
ū= [ū1(t), ū2(t), : : : , ūm(t)]

T is the failure vector, and ¾
represents the failure pattern defined as

¾ = diag ¾1,¾2, : : : ,¾m (13)

¾i =
1 if the ith actuator has failed, i.e.,

ui = ūi, since ti < t

0 otherwise.
(14)

It can be seen that when actuator failures take place,
not only will the corresponding applied control inputs
not be influenced, but also structural uncertainties will
be brought into the system.

We first study the stability robustness of the
optimal controller (5) in the presence of actuator
failures. In this case, the applied control is v(t) =
Kx(t), and the actual input can be written as

u(t) = (I ¾)Kx(t) +¾ū (15)

so that the resulting closed-loop system with the
control law (5) becomes

_x(t) = (A+B(I ¾)K)x(t) +B¾ū: (16)

To check the closed-loop system stability, the
eigenvalues of (A+B(I ¾)K) are examined.

For our study, we consider a single-mode fairing
model (3) with

A=

0 1 0:0802 1:0415

0:1980 0:1150 0:0318 0:3

3:0500 1:1880 0:4650 0:9

0 0:0805 1 0

B =

1 1:55 0:75

0:975 0:8 0:85

0 0 0

0 0 0

(17)

and u= [u1,u2,u3]
T, that is, with three actuators

u1,u2,u3. We assume that one of these three actuators
may fail during operation, so that there are four failure
patterns: 1) ¾ = 0 (no failure), 2) ¾1 = 1, ¾2 = 0, ¾3 =
0 (u1 = ū1 fails), 3) ¾1 = 0, ¾2 = 1, ¾3 = 0 (u2 = ū2
fails), and 4) ¾1 = 0, ¾2 = 0, ¾3 = 1 (u3 = ū3 fails).

We calculate the feedback control gain K of (7)
in the case of no failure, for Q = I4 R4 4, R = I3
R3 3. We then get the eigenvalues of A+B(I ¾)K
for different failure patterns of up to one failure.
For the case when u2 fails, the system (16) becomes
unstable. Hence, a nominal optimal control design
may not ensure stability in the presence of actuator
failures. Effective control designs are needed to
stabilize the system for all possible actuator failures.

Next, we develop such desirable control schemes
to handle uncertain actuator failures.
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III. ROBUST CONTROL DESIGN

In this section we treat the actuator failure
compensation problem as a simultaneous stabilization
problem for a set of systems resulted from different
failure patterns. For the above system example, there
are four systems, associated with four actuator failure
patterns: 1) no failure, 2) actuator 1 fails, 3) actuator 2
fails, or 4) actuator 3 fails. Recent advances in linear
matrix inequality based design techniques provide
potential tools for simultaneous stabilization of more
than two systems, which is applied to our actuator
failure compensation problem.

A. Failure Compensation Scheme

A robust control design based on simultaneous
stabilization of multi-model systems is applicable
to our failure compensation problem with unknown
actuator failures. Its goal is to design a single
controller capable of simultaneously stabilizing a finite
collection of systems corresponding to all possible
failure patterns.
For a set of systems (Ai Rn n, Bi Rn m), i=

1,2, : : : ,N , a simultaneous stabilizing gain K exists
if there is a common K Rm n and Pi = P

T
i > 0 for

i= 1,2, : : : ,N , satisfying

Pi(Ai+BiK) + (A
T
i +K

TBTi )Pi+K
TRK = Q < 0,

R = RT > 0: (18)

This is an LQR based design which has certain
optimality [10], in addition to the desired stabilization
property which is employed for our failure
compensation solution.
For actuator failure compensation, such a

simultaneous stabilizing design v(t) = Kx(t) exists if
there is a common K Rm n and a set of P¾ = P

T
¾ > 0

for ¾ §, satisfying

P¾(A+B(I ¾)K) + (AT+KT(I ¾)BT)P¾+Q+K
TRK = 0

(19)

for all ¾ §, where § is the set of all failure patterns
corresponding to all possible values of ¾i defined in
(15), for up to certain number of actuator failures
(for example, up to m q failures, 1 < q m). For the
above example, m = 3 and q = 2, and

§ = diag 0,0,0 ,diag 1,0,0 ,diag 0,1,0 ,diag 0,0,1

(20)

that is, one K satisfies four Lyapunov equations in the
form of (19) with four different P¾ corresponding to
four failure cases in order to stabilize the system with
four possible actuator failures.
A sufficient condition for the solvability of (19) is

proposed in [10], that is, for any X¾ > 0, the following

matrix inequality

P¾A+A
TP¾ +Q £(P¾ ,X¾)

+ (R 1=2(I ¾)BTP¾ +R
1=2K)T

(R 1=2(I ¾)BTP¾ +R
1=2K) < 0 (21)

is feasible, where

£(P¾ ,X¾) = X¾B(I ¾)R 1(I ¾)BTP¾

+P¾B(I ¾)R 1(I ¾)BTX¾

X¾B(I ¾)R 1(I ¾)BTX¾: (22)

Using the Schur complement, the inequality (21) is
equivalent to the matrix inequality

P¾A+A
TP¾ +Q £(P¾ ,X¾) (R 1=2(I ¾)BTP¾ +R

1=2K)T

(R 1=2(I ¾)BTP¾ +R
1=2K) I

< 0:

(23)

An iterative algorithm is given in [10] to check the
solvability of (23) and to obtain a desired solution K
if it is solvable. The algorithm is initialized with an
X¾ = X

T
¾ > 0 satisfying (8) with P and B replaced by

X¾ and B(I ¾) for each ¾ §. The inequality (23) is
then solved for a common K = K0 and all P¾ = P¾0 =
PT¾0 > 0 for each ¾ §, by a linear matrix inequality
(LMI) method. If such a set of solutions exist, then
a set of solutions, K and P¾ = P

T
¾ > 0, ¾ §, exist

for (19). The iterative algorithm of [10] can then be
continued with X¾ = P¾0 to solve the inequality (23)
for a common K = K1 and all P¾ = P¾1 = P

T
¾1 > 0 for

each ¾ §. This process can be carried out iteratively
to calculate a sequence of Ki and P¾i = P

T
¾i > 0, ¾ §.

As i , Ki and P¾i converge to the desired constant
matrices K and P¾ . The iteration is stopped at step
i = if with K = Kif when the P¾if P¾if 1 is small
enough.

In summary, the actuator failure compensation
problem is solvable with a robust control-based
design, if the set of equations (19) are solvable, for
which the sufficient condition is (23).

B. An Illustrative Example

For the system example (17), there are four
different failure patterns given in (20) so that there
are four matrix inequalities in the form of (23). We
applied the algorithm of [10] to find out that those
LMIs have feasible solutions and obtain the feedback
gain matrix

K =

2:5956 0:2730 1:0617 0:8154

2:4081 0:4127 1:2002 0:9280

2:0027 0:0839 0:7777 0:5500

(24)

for which all four sets of eigenvalues of (A+B(I ¾)K)
are stable, that is, the four systems in (17)
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corresponding to four different actuator failure
patterns are stabilized by a common feedback gain
K. Our simulation results (not shown due to space
limit) for the closed-loop system in the presence of
the second actuator failure also indicated the desired
stability (signal boundedness) property and small
transient responses of the state and control input
signals.

IV. ADAPTIVE CONTROL DESIGNS

Adaptive control of systems with actuator failures,
aimed at compensating for actuator uncertainties with
adaptive tuning of controller parameters based on
system response errors, is studied in this section. Such
a design is to adaptively stabilize the system whenever
a new actuator failure pattern occurs. We first develop
an adaptive scheme to stabilize the system by ensuring
the closed-loop signal boundedness in the presence
of actuator failures with bounded failure values. We
then present a modified adaptive actuator failure
compensation control scheme, for parameterizable
actuator failures, to ensure asymptotic regulation
of the system state variables to zero, in addition to
signal boundedness, despite uncertain actuator failures.
Desired system performance is proved analytically
and illustrated by simulation results. In this study, we
consider the system (11) with input expression (12)
for an actuator failure pattern (10):

_x= Ax+Bu= Ax+
i=i1,:::,ip

bivi+
i=i1,:::,ip

biūi(t)

(25)

u = v(t) +¾(ū v(t)) Rm (26)

supposing that at time t there are p actuator failures in
the system, that is,

ui = ūi(t), i= i1, i2, : : : , ip

i1, i2, : : : , ip 1,2, : : : ,m (27)

where ū and ¾ defined in (9) and (13), and v(t) Rm

is an applied control input.

A. Adaptive Design for Signal Boundedness

To design an adaptive control scheme capable
of stabilizing the system (25) in the presence of
unknown actuator failures, a basic requirement is that
the system (A,B(I ¾)) is stabilizable for any actuator
failure pattern ¾ under consideration, so that there is
a gain matrix K¾ which depends on (A,B(I ¾)) for
each failure pattern ¾ such that v(t) = K¾x(t) stabilizes
the system (25). This requirement is necessary in the
sense that if for a failure pattern ¾ there is no such a
K¾ to stabilize the system (25) with the knowledge
of actuator failures, then an adaptive solution also
does not exit when actuator failures are unknown.

For uncertain actuator failures, an adaptive scheme is
desired to stabilize the system with the presence of
failures in any failure pattern ¾ §, where § is the
set of all possible failure patterns. For the example
(17), we have § given in (20).

For our adaptive control design, the following
assumption is needed.

Assumption 1 (A,B) is stabilizable, and
rank[B(I ¾)] = rank[B], ¾ §.

This assumption is a sufficient condition for the
existence of a K¾ for each possible failure pattern ¾
to stabilize the system by the remaining actuators.
Furthermore, the assumption also indicates that there
is a common solution P = PT > 0 to the Lyapunov
equation P[A+B(I ¾)K¾] + [A

T +K¾
T(I ¾)BT]P =

Q all K¾ which correspond to all possible ¾ §.
This assumption is satisfied by the example system
(17) with § defined in (20).

In order to develop a stable adaptive scheme
which is robust with respect to uncertainties caused
by unknown actuator failures, we employ a robust
adaptive design [9], which uses the knowledge of
the upper bounds of the norm of the row vectors in
K¾ = [K1,K2, : : : ,Km]

T, that is, Ki 2 Mi where Mi is
the known upper bound for i = 1,2, : : : ,m.

We now present our first adaptive actuator failure
compensation design and its properties.

THEOREM 1 Under Assumption 1, the control law

v(t) = K̂x(t) (28)

with K̂ = [K̂1,K̂2, : : : ,K̂m]
T Rm n updated by the

adaptive laws

_̂
Ki = ¡ixx

TPbi ¡i±iK̂i, i = 1,2, : : : ,m (29)

where ¡i = ¡
T
i > 0, bi is the ith column of B, and

±i =

0 if K̂i 2 <Mi

±0i
K̂i 2
Mi

1 if Mi K̂i 2 < 2Mi

±0i if K̂i 2 2Mi
(30)

ensure that all signals in the closed-loop system are
bounded for any ¾ §.

PROOF Since (A,B) is stabilizable, there exists
constant K Rm n and P Rn n such that

P(A+BK) + (A+BK)TP = Q < 0

P = PT > 0, Q =QT > 0: (31)

The condition rank[B(I ¾)] = rank[B] implies that a
linear combination of columns in B can be expressed
by a linear combination of those in B(I ¾), that is,
there exists a K¾ Rm n such that

B(I ¾)K¾ = BK (32)
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for each ¾ §. Therefore, for each ¾ §, there is a
K¾ satisfying

P[A+B(I ¾)K¾] + [A
T +K¾

T(I ¾)BT]P = Q < 0

(33)
with the same P = PT > 0 as that in (31).
Suppose that actuator failures happen at time

instants tk, with tk < tk+1, k = 1,2, : : : ,N. For the
closed-loop system (27)–(30), we consider the
Lyapunov function candidate

V = 1
2x
TPx+ 1

2
i=i1,i2,:::,ip

(K̂i Ki)
T¡ 1

i (K̂i Ki)

(34)

for each time interval (tk, tk+1), k = 0,1, : : : ,N , with
t0 = 0 and tN+1 = . The time-derivative of V in each
time interval (tk, tk+1) associated with a certain failure
pattern ¾ § is

_V = 1
2 (x Q 1P¾Bū)TQ(x Q 1P¾Bū)

+¹
i=i1,i2,:::,ip

±i(K̂i Ki)K̂i (35)

where ¹= 1
2 ū

TBT¾PQ 1P¾Bū is a nonnegative
constant, and

i=i1,i2,:::,ip

±i(K̂i Ki)K̂i 0: (36)

Hence, the signals x(t) and K̂i(t), i = i1, i2, : : : , ip, are
bounded in each time interval if the initial value of
V(t+k ) with the corresponding time interval (tk, tk+1) is
finite.
Note that the Lyapunov function V is not

continuous at the time instants tk , k = 0,1, : : : ,N .
Each time when actuator fails, V has a jump with
a finite value at that time instant. Here we consider
the case that the actuator cannot work again once
it fails. As a result, V is piecewise continuous with
a finite number of discontinuous points. It can be
obtained from (35) that V(tk+1) is bounded if V(t

+
k )

is finite, for the interval (tk, tk+1), which implies that
V(t+k+1) is bounded for the next interval (tk+1, tk+2),
k = 0,1, : : : ,N 1, so that V L , t 0 with several
jumps of finite values. Consequently, it is concluded
that x, K̂i L .
For K̂i(t), i= i1, i2, : : : , ip, considering the Lyapunov

function candidate

Vi =
1
2 K̂

T
i (t)¡

1
i K̂i(t), i = i1, i2, : : : , ip (37)

we can show that there is a constant ∙i > 0 such
that _Vi < 0 for Ki 2 > ∙i, that is, K̂i(t) is bounded,
i i1, i2, : : : , ip . Hence, all closed-loop signals are
bounded.

Simulation results also indicated that the
closed-loop system remains stable in the presence of
the second actuator actuator failure, while the transient

responses of the system state and input signals are
small at the initial several seconds and then converge
to constants.

B. Adaptive Design for Asymptotic State Regulation

When the actuator failure signals are parameterized
by a set of unknown parameters and a set of known
signals, a modified adaptive scheme can be derived,
which is able to achieve asymptotic regulation of the
closed-loop system states to zero in the presence of
actuator failures.

A parameterizable failure is expressed as

ui(t) = ūi(t) =
si

j=1

®ijfij(t) = ®
T
i fi(t), t ti,

i 1,2, : : : ,m (38)

where ®i = [®i1,®i2, : : : ,®isi]
T is a vector of

some unknown failure parameters, and fi(t) =
[fi1(t),fi2(t), : : : ,fisi(t)]

T is a vector of known signals.
We present the following adaptive failure

compensation design and its properties for the system
(25) with the unknown actuator failures given in (38).

THEOREM 2 Under Assumption 1, the control law

v(t) = K̂x(t) +
m

j=1

£̂jfj(t) (39)

with K̂ = [K̂1,K̂2, : : : ,K̂m]
T Rm n and £̂j =

[£̂j1,£̂j2, : : : ,£̂jm]
T Rm sj updated by

_̂
Ki = ¡ixx

TPbi, i = 1,2, : : : ,m (40)

_̂
£ji = ¤jifj(t)x

TPbi, j = 1,2, : : : ,sq, i= 1,2, : : : ,m

(41)

where ¡i = ¡
T
i > 0, ¤ji = ¤

T
ji > 0, and bi is the ith

column of B, ensures that all closed-loop system signals
are bounded and limt x(t) = 0, for any ¾ §.

PROOF In the proof of Theorem 1, we have shown
that with Assumption 1, there exists a K¾ for each
¾ § satisfying (33) with a common P = PT > 0.

Suppose that at time t, there are p < m actuator
failures in the system, that is, ui(t) = ūi(t), i=
i1, i2, : : : , ip, i1, i2, : : : , ip 1,2, : : : ,m , and that
actuator failures happen at time instants tk, with
tk < tk+1, k = 1,2, : : : ,N . For the system (25) with
the adaptive controller (39)–(41), we consider the
Lyapunov function candidate

V = 1
2x
TPx+ 1

2
i=i1,i2,:::,ip

(K̂i Ki)
T¡ 1

i (K̂i Ki)

+ 1
2
i=i1,i2,:::,ip

m

j=1

(£̂ji £ji)
T¤ 1

ji (£̂ji £ji)

(42)
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Fig. 1. System response of adaptive control design for asymptotic regulation.

for each time interval (tk, tk+1), k = 0,1, : : : ,N , with
t0 = 0 and tN+1 = , where Ki is the ith row of K¾,
and £ji is a solution of the following equation

i=i1,i2,:::,ip

bi£
T
ji = bj®

T
j , for j = i1, i2, : : : , ip

(43)

and £ji = 0 otherwise. Notice that (46) is solvable
because the equation (46) is equivalent to

B(I ¾)£j = bj®
T
j , £j = [£j1,£j2, : : : ,£jm]

T Rm sj

(44)

which always has solutions due to the condition
rank[B(I ¾)] = rank[B].
The time-derivative of V in each (tk, tk+1)

associated with a certain failure pattern ¾ § is

_V = 1
2x
TQx 0: (45)

Hence, x L2 L , and K̂i L and £̂ji L for
i= i1, i2, : : : , ip and j = 1,2, : : : ,m, in each time interval
(tk, tk+1) if the initial value V(t

+
k ) is finite. From (40), it

follows that

[¡ 1
1
_̂
K1,¡

1
2
_̂
K2, : : : ,¡

1
m

_̂
Km] = xxTPB: (46)

With Assumption 1, we see that B can be represented
by a linear combination bi, i= i1, i2, : : : , ip, which

implies that ¡ 1
i

_̂
Ki, i i1, i2, : : : , ip , is a linear

combination of ¡ 1
i

_̂
Ki, i = i1, i2, : : : , ip. Therefore we

also conclude that K̂i L for i= i1, i2, : : : , ip; and
similarly, we have £̂ji L for i = i1, i2, : : : , ip and
j = 1,2, : : : ,m, under the condition that V(t+k ) is finite.
The function V is not continuous at tk, k =

0,1, : : : ,N , but only has finite value jumps at those

time instants, that is, V(t+k ) is indeed finite. Thus,
we conclude that x L2 L , K̂ L , and £̂j L ,
j = 1,2, : : : ,m, t 0. In addition, since v(t) L from
(39) and _x L from (25), given that x(t) L2, we
also have that limt x(t) = 0.

In summary, we have constructed, under
Assumption 1, an adaptive actuator failure
compensation control scheme which stabilizes the
system _x= Ax+Bu in the presence of uncertain
actuator failures (38), and achieve asymptotic state
regulation.

Simulation Results: We used the actuator failure
u2(t) = ū2 = (0:1 u2(20))(1 e 0:1(t 20))+ ui(20), t
20 s, and the matrices Q = I4 and R = I3. The initial
conditions were chosen as x(0) = [0,1,0:1,0:25]T,
K̂1(0) = [ 2, 1,0:5,0]T, K̂2(0) = [ 3, 0:5,3,0:5]T,
K̂3(0) = [ 1:5, 1,0,0:5]T, and µ̂(0) = [0,0,0,0,0,0]T.
Adaptive gains are ¡i = I and ¤i = diag 0:1,1 for
i = 1,2,3. The simulation results for the system in
the presence of the second actuator failing at 20th
second are shown in Fig. 1, which indicate that the
closed-loop system remains stable and the asymptotic
state regulation is achieved in the presence of the
actuator failure.

V. CONCLUSIONS

Actuator failures may cause performance
deterioration or even instability in many safety-critical
control systems. It is often unknown when an
actuator fails and how much the failure is, while
the remaining actuation can still be enough to
accomplish a desired control task. The challenge
is to develop a desirable feedback control scheme
which is capable of utilizing the remaining actuation
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capacity in the presence of failure uncertainties. In this
paper, we have demonstrated the undesirable effect
of actuator failures and the desirable effectiveness
of failure compensation, by developing three
failure compensation control schemes. This work is
illustrated in a framework of application to vibration
control (stabilization and regulation) of a rocket
payload fairing structural-acoustic model with
unknown actuator failures. The robust control failure
compensation scheme is based on an LMI method,
under an LMI design condition. The two adaptive
control failure compensation schemes are based on
robust adaptive control and failure parameterization
methods, under a matrix rank condition. While
all three schemes ensure signal boundedness, the
failure parameterization based design is able to
achieve asymptotic state regulation, in spite of the
failure uncertainties. Simulation results verified the
effectiveness of the developed failure compensation
schemes.
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Tracking with Distributed Sets of Proximity Sensors
using Geometric Invariants

We propose a new approach to forming an estimate of a target

track in a distributed sensor system using very limited sensor

information. This approach uses a central fusion system that

collects only the peak energy information from each sensor and

assumes that the energy attenuates as a power law in range from

the source. A geometrical invariance property of the proximity

of the distributed sensors relative to a target track is used to

generate potential target track paths. Numerical simulation

examples are presented to illustrate the practicality of the

technique.
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