
Physicalnet: A Generic Framework for Managing and Programming Across
Pervasive Computing Networks

Pascal A. Vicaire, Zhiheng Xie, Enamul Hoque and John A. Stankovic
Department of Computer Science, University of Virginia

{zx3n, eh6p, stankovic}@cs.virginia.edu

Abstract

This paper describes the design and implementation
of a pervasive computing framework, named Physicalnet.
Essentially, Physicalnet is a generic paradigm for man-
aging and programming world-wide distributed heteroge-
neous sensor and actuator resources in a multi-user and
multi-network environment. Using a four-tier light-weight
service oriented architecture, Physicalnet enables global
uniform access to heterogeneous resources and decouples
applications from particular resources, locations and net-
works. Through a negotiator module, it allows a large num-
ber of applications to concurrently execute on the same re-
sources and to span multiple physical networks and logical
administrative domains. By providing a fine-grained use-
based access rights control and conflict resolution mech-
anism, Physicalnet not only ensures owners having total
control of sharing and protecting their resources, but also
dramatically increases the number of applications that can
concurrently execute on the devices. Furthermore, Physi-
calnet supports resource dynamic location-aware mobility,
application run-time reconfigurability and on-the-fly access
rights specification. To quantify the performance, we eval-
uate Physicalnet based on memory usage, the number of
concurrent applications, and dynamic responsiveness. The
results show Physicalnet has excellent performance, but low
overheads.

1. Introduction

We are already seeing a widespread deployment of em-
bedded devices with sensors and actuators, thereby creating
pervasive computing environments. These environments
consist of a wide spectrum of devices from very minimal
capacity sensor nodes (motes, smart toasters, smart ther-
mostats) to powerful machines (PDAs, PCs). In the fu-
ture, we can expect that synergistically combining capa-
bilities from previously independently deployed pervasive
computing networks in a world-wide scale will create many
opportunities. For example a security protection system
placed independently in several homes can collaborate so
that a theft occurring in one house would result in the alarms

raised in another nearby house.
To achieve this potential requires new solutions that can

handle a wide spectrum of device capabilities and hetero-
geneity, enable across network programming, support dy-
namic reconfiguration and mobility of devices, allow multi-
user sharing and protection of their resources, and be easy
to program. To date, many middleware and service ori-
ented architecture approaches exist that solve various as-
pects of these problems. However, many of these solutions
are heavyweight in memory and execution time and do not
adequately address minimal capacity devices. Many other
available solutions do address minimal pervasive system de-
vices, but these do not address resource sharing and protec-
tion in a multi-user environment.

To address the complete set of requirements for fu-
ture world-wide pervasive computing, we designed, imple-
mented and evaluated Physicalnet. The main contributions
of Physicalnet described in this paper are: 1) a fully im-
plemented, generic and scalable framework for world-wide
pervasive computing resource management and program-
ming. Applications can easily involve resources from dif-
ferent owners and networks. 2) Using a four-tier lightweight
SOA architecture, applications can concurrently run on the
same resource and span multiple physical networks and log-
ical administrative domains. 3) Interoperability and global
accessibility of a wide range of heterogeneous resources are
enabled. 4) User-based fine-grained access rights and con-
flicts resolution mechanisms are utilized, which not only
improves resources sharing and protection, but also dramat-
ically increases the number of concurrent applications that
can use the devices. 5) Run-time resource reconfiguration
and location-aware mobility are supported. 6) Both simula-
tion and real platform performance evaluations show low
memory requirements for constrained devices, excellent
performance of the Physicalnet fine-grained access rights
mechanism, and suitable responsiveness of the architecture
design.

Note that for ease of programming we have also devel-
oped an associated programming abstraction for dynamic
groups called a Bundle. While Bundles operate closely with
the Physicalnet, they are not the subject of this paper. Thus,
we only briefly introduce Bundles in this paper. For more
details, please see [19].



Figure 1. The High Level Network Architec-
ture of Physicalnet

2. Overview of Physicalnet Architecture

To simplify the description of the Physicalnet frame-
work, several terms need to be defined. 1) Service: an inde-
pendent function provided by either hardware or software,
e.g. the temperature sensor in a MicaZ mote, the display
screen of a PC, or the Mediaplayer tool in a PDA. 2) Service
state: a mode the service is currently in, e.g. the switch of
a light actuator is on. 3) Service event: an output stream of
a service which only occurs under some condition, e.g. the
photo samples at a rate of 5 seconds. 4) Service Provider:
a hardware or software entity which provides services, also
called “resource” throughout this paper, e.g. a MicaZ mote
or a PDA. 5) Resource owner: the person who owns the re-
source. 6) Resource user: the person who uses the resource.

The four-tier service oriented architecture of Physicalnet
is shown in Figure 1. Each tier could be distributed and have
multiple instances. The first tier contains service providers
and localization anchor nodes (the nodes with surrounding
flash symbols in Figure 1). The anchor nodes provide the lo-
calization service. A provider registers its services with one
and only one negotiator (the third tier). It receives config-
uration messages (commands) from and periodically sends
control messages (sample values or state reports) to its ne-
gotiator through the gateway (the second tier).

The second tier contains gateways that provide the con-
nection and translation between service providers and ne-
gotiators. A gateway collects control messages from ser-
vice providers, and then forwards them to the correspond-
ing negotiators. Similarly, it also receives configuration
messages from negotiators and forwards them to service
providers. The gateway integrates different types of net-
work interfaces in order to communicate with heteroge-
neous service providers. Thus service providers even with-
out common network interfaces can communicate with each
other through the gateway. Note that some devices like

PDAs may contain both a service provider tier and a gate-
way tier.

The third tier contains negotiators. A negotiator is a
registry for services, a database of service states and ap-
plication requirements, and an authority center to resolve
the requirement conflicts for multiple concurrent applica-
tions. Applications could discover and operate on services
through the negotiator if they have enough rights. They also
periodically calculate and send their requirements (e.g. the
photo sensor service in provider 3002 should be turned on)
to the negotiator. A negotiator allows multiple applications
to access the same service concurrently and resolves pos-
sible conflicts by using a fine-grained access rights control
and resolver mechanism. It sends configuration messages to
and receives control messages from resources through gate-
ways. All the states and recent event streams of registered
services are stored in a database.

The fourth tier is the application tier, which contains
applications that periodically generate and cancel require-
ments for remote services. Multiple applications can si-
multaneously access the same negotiator and a single ap-
plication can involve multiple negotiators so as to access
resources from different administrative domains.

3. Design Decision & Implementation

3.1. Resource Heterogeneity

In pervasive computing, a key concern is resource het-
erogeneity. Heterogeneity has three meanings: the different
capabilities, the different programming platforms and the
different network interfaces of different types of resources.
To unify access, the typical way is to add a middleware layer
into a resource. On the one hand, this middleware can pro-
vide uniform APIs for external applications; on the other
hand, it can smartly manage and schedule internal services
of the device. Additionally, this middleware can adaptively
select the right networking protocols to communicate with
other resources. Such middleware includes [5] [4] and [6].
However, the drawbacks of this approach are that the mid-
dleware is still too large and too complex for some tiny de-
vices (e.g. Rene node, only 512 bytes RAM and 8K Flash);
some of these common solutions even assume that a JVM
is available on the resources; in addition, resources having
no common network interfaces still cannot communicate.

Here, we argue that it is necessary to introduce a coordi-
nator to bridge the heterogeneity. Physicalnet uses a gate-
way integrated with different network interfaces to translate
the communication from one resource to another. It also
adds a very lightweight Physicalnet protocol module into a
resource. Thus, resources do not directly communicate with
each other, but through the gateway. In addition, the Physi-



calnet protocol module is used to decode incoming config-
uration messages and encode outgoing control messages.

The format of the message is shown in Figure 2. For
a configuration message, it includes a service provider’s
global ID, a timestamp value for synchronization purposes,
and the data portion which includes the configuration in-
formation for each service’s states and events in a service
provider. For a control message, besides the global ID and
timestamp fields, it has an 8 byte location field. The data
portion includes services’ current states or event stream val-
ues. When a service provider receives a configuration mes-
sage, all its services read configuration commands from the
data portion and make corresponding changes (e.g. turn
on the LED, start sensing temperature). Periodically, a ser-
vice provider sends out its control message which includes
its current location information, services’ states (e.g. LED
state) and event stream values (e.g. current temperature),
so that the negotiator can dynamically track its states and
event streams. Therefore, Physicalnet is very suitable for
remotely controlling actuators (e.g. change states) and re-
trieving sensory data from sensors (e.g. start event streams).
But two-way synchronized request & reply communication
style can also be supported by combining these two types of
commands.

The benefits of this approach are: 1) that by keeping the
service provider simple and generic, and placing complex-
ity into high-level powerful PCs, more types of resources
with minimal capabilities can be supported. 2) Under this
scheme, resources without common network interfaces are
able to communicate. 3) Integrating this scheme into the
whole Physicalnet architecture, it gains even more bene-
fits, like access rights control, across network programming
ability, and mobility support which is difficult to obtain
through typical middleware approaches.

3.2. Architecture Design

For the architecture design of a pervasive computing sys-
tem, typically, there are three possible ways: one-tier ar-
chitecture, which binds an application to a group of dis-
tributed resources forming an ad-hoc network; two-tier ar-
chitecture, which separates the application tier from the ser-
vice provider tier; three-tier architecture, which comprises
the service provider tier, the gateway tier and the applica-
tion tier. However, these three designs all have their in-
trinsic drawbacks for global pervasive systems. a) For one-
tier architectures, the application is tied to resources. The
drawbacks are: applications are hard to change, new appli-
cations cannot share the resources which are already occu-
pied, and one application is usually limited to one location
and one network. b) For two-tier architectures, by sepa-
rating the application tier and the service provider tier, an
application is easy to change. Additionally, if there is a

Figure 2. Physicalnet Protocol

general access rights control and conflict resolution mod-
ule in the resources, it is possible to allow multiple appli-
cations share the same resources. However, the drawbacks
are: the access rights control and conflict resolution module
maybe too large and too complex for resource-constrained
service providers, the application is still limited to one net-
work, and as the resource numbers increase, the application
tier may become a bottleneck. c) Three-tier architectures
add a gateway tier between the application tier and the ser-
vice provider tier. Now any complex functional modules
can be integrated into the gateway tier. Therefore, applica-
tions are easy to change, multiple applications can share the
same resources, and scalability is not a problem because
one application can involve several networks through sev-
eral gateways. However, mobility is a problem: when a
service provider used by an application moves to another
network whose gateway is not included by this application,
how can this device be reconfigured and continuously ser-
vice the original application?

By adding a negotiator tier, Physicalnet forms a four-tier
lightweight SOA architecture as Figure 1 shows. This ar-
chitecture not only has all benefits of the three-tier architec-
ture, but also solves the mobility problem. In Physicalnet,
each service provider is only registered to one and only one
negotiator, and its global ID is [negotiator IP]+[negotiator
Port]+[service provider local ID]. Thereby, wherever the
service provider moves, the Physicalnet gateway can always
infer the correct negotiator address from its global ID and
help forward control messages to its registered negotiator.

More importantly, this four-tier architecture introduces
the administrative domain concept into pervasive comput-
ing. An administrative domain is a logical independent sys-
tem which comprises a negotiator, all registered resources
and all the user accounts in the database. There is only one
root administrator in one administrative domain, who has
the total control power of the whole domain–he can cre-
ate user accounts, specify their rights and modify service
states. Other users can use legal user accounts to regis-
ter their own resources to the negotiator, specify the access
rights control and conflict resolvers for their resources, and
use resources of others if they have enough rights. Although
a negotiator is a center place to control all the resources,



multiple negotiators could be used to relieve the bottleneck
problem. Under this scheme, each negotiator maintains a
reasonable number of resources, and these resources could
spread across networks mixing with resources from other
negotiators. Then the whole Physicalnet framework could
be considered consisting of many independent logical ad-
ministrative domains. An application can involve multiple
administrative domains to use the resources it is interested
in. Therefore, Physicalnet’s centralized architecture is scal-
able. By using this four-tier architecture, Physicalnet essen-
tially creates a paradigm to clearly and effectively organize
the resources in a complex multi-user environment.

3.3. Programming Abstraction

Programming Abstraction is important for hiding low
level details and easing programming. Physicalnet provides
a very generic programming abstraction called Bundle. A
bundle is a Java interface. It includes two core abstract
methods: the definition of a group of services (boolean rule
(T t)) and the specification of what these services should do
(void foreach (T t)). There are two key features of a bundle.
First, statically, the definition of a bundle can be arbitrar-
ily complex, which could involve any number of operations
and variables, and the members are not necessarily neigh-
bors, but could be a collection of across-network services;
dynamically, the membership in the bundle is updated peri-
odically so as to respect the definition. For one application,
it can involve several negotiators, and each negotiator main-
tains a list of services and their states and events data. Peri-
odically, the application downloads the current differences
of these states & event data comparing to the previous val-
ues from all involved negotiators. After downloading, the
bundle in the application recomputes its membership based
on its rule, and generates the new requirements for its new
membership based on its operations. Then the application
uploads its newly computed requirements to all the involved
negotiators. These negotiators apply the requirements based
on the application’s access rights and send commands to the
real services to execute.

3.4. Fine-Grained Access Rights Control
And Conflicts Resolution Mechanism

Pervasive computing assumes an open multi-user envi-
ronment, in which owners are willing to share their re-
sources, but also expect them to be protected. Therefore, an
access rights and conflict resolution mechanism is needed.
User-based access rights is not a novel concept, however,
in pervasive computing, the key points are what is the cor-
rect granularity for access rights and can the access rights
mechanism support dynamic specification.

For the first question, intuitively, it seems the granularity

at service level may be appropriate. However, it still has
problems. For example, a group of scientists is deploying a
large set of sensor nodes in a forest to measure the amount
of CO2 in the air. For energy conservation consideration,
they are willing to let other research groups turn the sensing
functionality on or off (event), but not willing to let them
change the sampling rate (state) of the sensors. The only
solution is to implement a number of services with differ-
ent sensing rates, and allow others to use the particular one
required.

Physicalnet supports the access rights granularity at the
level of individual states and events. Resource owners are
allowed to specify the rights of WRITING, READING and
PRIORITY for each state and each event of a service. Fur-
thermore, when multiple users simultaneously specify con-
tradictory requirements on the same resource, Physicalnet
uses resolvers to resolve the conflicts. A resolver is a Java
method in which its input is a list of requirements from
different users and the output is one desired requirement.
Physicalnet provides a small library of resolvers. Owners
could select from it, or they can implement the resolver in-
terface to define their own resolvers for each state & event.
For example, Figure 3 shows the access rights of different
users on different states and events of services. 1RW means
the user has WRITING and READING rights with PRI-
ORITY 1 (lower value means higher priority) on the even-
t/state. Assume Firefighter A specifies 4 second on Temp
Period state, Firefighter B (using the same user account of
Firefighter A) specifies 2 seconds on the same state, an ad-
ministrator specifies 500 ms, and a faculty member specifies
200 ms. When a negotiator receives these requirements at
the same time, it first applies access rights to them. Thus the
faculty’s requirement is denied. Then the negotiator orders
the remaining requirements according to the priority before
applying the resolver. If the resolver policy is to choose the
smallest period of the highest priority requirements, then
the desired requirement is 2 seconds; if the resolver policy
is to choose the smallest period (the administrator’s require-
ment), but the period should be at least 1 second, then the
desired requirement is 1 second.

For the second question, Physicalnet does support dy-
namic access rights control specification, which means the
access rights and the conflict resolvers can be dynamically
changed according to the behavior of other services, the
environmental phenomena, or application logic. For in-
stance, a resource owner can specify that no application
can open air conditioned vents in rooms where the window
is opened. Physicalnet allows such dynamic specification
of access rights by using the bundle programming abstrac-
tion. Figure 4 shows the code of the above application. The
two this.add() in third and fourth lines involve two nego-
tiators to retrieve the services from. this.execute() specifies
the requirement update rate of the application. In the for



loop, there are two bundles–one is windows, which includes
all the open windows in one room; another is new Vent-
bundle(), which includes all the vents in the room which
has windows open, and specifies no one can turn the vents
on (v.open.override(false);). The types WindowBundle and
Ventbundle are two user defined Java classes which imple-
ment the Bundle interface. The meaning of the whole ap-
plication is that in two specific administrative domains, no
one can turn on the vents in the rooms which has windows
open.

3.5. Negotiator

In Physicalnet, the negotiator plays several important
roles. First, it manages application concurrency. When a
negotiator receives requirement lists from multiple applica-
tions simultaneously, it merges them into one desired re-
quirement list by taking into consideration the access rights
and resolvers, and sends configuration messages only if the
current states are different from the desired states. The ben-
efit is that it minimizes the number of configuration mes-
sages sent so that for one service, its servicing frequency is
not correlated to the number of applications using it. Ad-
ditionally, in one period, one resource only sends out one
control message which can serve many applications. There-
fore, it dramatically improves information reusability in a
world-wide pervasive computing scheme. Furthermore, by
keeping the resource side the same and using access rights
control, applications do not interfere with each other even
when they are sharing the same resources. Consequently,
in Physicalnet it is easy to add new applications into pre-
viously deployed networks without disturbing the original
systems.

Second, the negotiator helps applications react to unde-
sirable conditions. For instance, if the application specifies
that“all the lights should be on”, perhaps only half of them
are on because applications with higher priority want some
lights off, the lights are currently not reachable (broken or
dysfunctional radios), or the application has insufficient ac-
cess rights. How can the application react to such events?
The negotiator keeps track of three important variables: the
requirements of the application, the desired states that result
from applying access rights and conflict resolution mecha-
nism to the requirements of all applications, and the actual
states of the remote service provider. Then, the application
can, at any time or periodically, check whether its require-
ments are satisfied (requirements = actual states), whether
its requirements are not satisfied because of other applica-
tions or insufficient access rights (requirements 6= desired
states), or whether because the remote providers have not
been reached (requirements = desired states && desired
states 6= actual states). Based on the above knowledge, the
programmer is able to investigate the state of the network

Figure 3. An Example of Access Rights Spec-
ification

Figure 4. OnlyWhenWindowClosed

and modify application requirements appropriately.
Third, the negotiator plays a central role in reliably con-

figuring service providers. Because it keeps track of the
aforementioned three variables, it can retry to set the actual
states of the remote services to their desired states until suc-
cessful, which is a major difference from the standard RPC
approach.

3.6. Synchronization Among Four Tiers

This section describes the detail synchronization that
takes place among the four tiers. First is the synchronization
between location anchors and service providers. A localiza-
tion anchor (the nodes with flashing symbols in Figure 1) is
used to localize resource constrained service providers. It is
(manually, or automatically if possible) configured with its
current latitude and longitude, and broadcasts this value at
the owner specified rate. When a service provider receives
a localization message, it assumes that it is in the same lo-
cation as this anchor.

For the synchronization between service providers and
negotiators, by default, a service provider sends one con-



trol message every pmax seconds to the gateway. How-
ever, when it is generating an event stream, the period is
decreased so as to forward these messages as fast as pos-
sible. Nevertheless, the period should not be smaller than
pmin. When the gateway receives a control message, it in-
fers the negotiator address from the global ID and stores it
in a buffer dedicated to the inferred negotiator. Periodically
(configurable), the gateway forwards all the messages in the
buffers to the appropriate negotiators using TCP/IP.

When the negotiator receives a batch of messages, for
each one, it checks whether the service provider is regis-
tered. If it is, it updates the gateway address and the loca-
tion of the service provider in the database. To extract the
service data (e.g. the temperature sensor samples) from the
message, the negotiator uses a provider specific decoder. By
using Java reflection, the negotiator can infer the name of
the decoder methods based on the name of the provider ser-
vices. After that, the negotiator stores them in the database
for a configurable maximum amount of time, waiting for ap-
plications to download. The timestamp in the message is for
configuration consistency. If the timestamp in the received
control message is not the latest, the negotiator resends the
configuration message with the latest timestamp to the re-
mote service providers.

In the other direction, when a negotiator needs to send
configuration messages, it encodes the data portion (e.g. the
LED on Service Provider 3001 should be on) of the configu-
ration message by using a provider specific encoder similar
to the aforementioned decoder. The message also includes
the latest timestamp for synchronization purposes. Upon
reception of the configuration messages, the gateway stores
the configuration messages in a queue and forwards them
one by one to the corresponding service providers. After
receiving the configuration messages, the service provider
stores the new timestamp, modifies the states of services
according to the message, and initiates tasks as required by
the modification of its states.

For the communication between applications and nego-
tiators, by using the bundle programming abstraction, appli-
cations recompute and upload their requirements (a list of
[provider ID, service or event name, required value])) at a
specified rate (the number in execute() method in Figure 4).
At some point, a negotiator may get requirement lists from
multiple applications. By looking up the access rights table
and the resolvers for target states and events, the negotiator
merges all these requirement lists into one desired require-
ment list, and then sends a batch of configuration messages
to corresponding service providers. In the other direction,
a negotiator always stores the latest states and event stream
values of all resources in its database, and waits a config-
urable amount of time for applications to download.

3.7. Other Issues

3.7.1 Location-Aware Mobility

Localization anchors are used to localize the service
providers. Usually, there is only one fixed anchor per room,
and its radio range is adjusted to just cover the whole room.
Under this scheme, one localization anchor can be mapped
to one room so that an application can make use of this ge-
ographical information. For instance, the application could
turn on all the temperature sensors in Room 230, 666 Fifth
Avenue. Furthermore, Physicalnet allows applications to
visualize the locations and states of service providers with
which they are involved via Google Earth. All the infor-
mation in Google Earth is dynamically updated so that we
can see resources move from one room to room in Google
Earth when they do so. By using this approach, whenever
a service provider moves from one location to another loca-
tion, or from one network to another network, Physicalnet
is aware of this at run-time, and thus can take use of it (e.g.
dynamic access rights specification).

3.7.2 Current Implementation State

Physicalnet fully implements all four tiers. For the service
provider tier, it currently supports two types of resources,
TinyOS nodes (e.g. MicaZ, TelosB) and Java nodes (e.g.
PDA, Java applications on a PC). However, it could be ex-
tended to a wide range of other embedded or powerful re-
sources. For network protocols and interfaces, the top three
tiers are using the RMI method for communication. For the
lowest two tiers, Physicalnet supports 802.15.4, Wifi and
Ethernet network interfaces. For 802.15.4 network type,
Physicalnet uses the Collection Tree Protocol (CTP) for col-
lecting data from service providers to a gateway, and uses
Dissemination Protocol or a Physicalnet unicast protocol for
sending configuration messages from a gateway to service
providers. Therefore, the networking protocols in Physical-
net support multi-hop. However, Physicalnet is not tied to
a particular networking protocol. Any new protocols could
replace the old ones.

3.8. Physicalnet Paradigm

The main contribution of Physicalnet is not any one of
its parts, but the synergistic combination of them. The re-
sult is a very generic pervasive computing paradigm for
organizing and programming world-wide resources. From
one view point, the world-wide scale Physicalnet systems
could be considered as consisting of distributed physical
networks. In each network, heterogeneous resources may
belong to different owners and come from different ad-
ministrative domains. Multiple applications from differ-
ent users may concurrently execute on them. From another



view point, Physicalnet systems could also be considered as
consisting of independent logical administrative domains.
Any organization can set up its own domain, and there can
be many administrative domains coexisting in the world. In
one domain, there is a list of user accounts with different
powers. Any resource owners can register their resources to
the domain and specify the access rights and resolvers by
using these user accounts. All the resources in one domain
can be physically distributed in different networks.

For application developers, they can write an application
involving several negotiators (with several user accounts) so
as to retrieve distributed resources from multiple networks
and multiple administrative domains. Because the applica-
tion tier is decoupled from other tiers, a user can run an
application on his laptop in California to remotely control
the resources in Virginia and Pennsylvania. And all the re-
source states can be visualized in Google Earth. Further-
more, it is possible to add a negotiator registry and search
engine tier above the negotiator tier so that all the negotia-
tors can publish their information on the registry and all the
applications can search for available negotiators through it.

The types of applications Physicalnet can support in-
clude streaming, event-based, user-centric and control-
based (see section 4.3). Most importantly, by using Physi-
calnet, developers and users can write and execute new ap-
plications on already deployed systems. Furthermore, de-
velopers can write collaborative applications across previ-
ously independent systems (see our Bundle paper [19]).

4. Evaluation

Although it is difficult to evaluate an infrastructure, we
use the following metrics for evaluation: memory usage to
verify the Physicalnet protocol module is lightweight and
can be added to resource constrained devices; the number
of concurrent applications to demonstrate the effectiveness
of fine-grained access rights control and conflict resolution
mechanisms; and event responsiveness to evaluate the dy-
namic change awareness performance.

4.1. Memory Usage

The Physicalnet code is composed of 29,555 lines of
Java code for the application APIs, the negotiator, the gate-
way, and the various tools. A MicaZ provider, equipped
with a MTS310 sensor board, and implementing a tem-
perature sensor service, a light sensor service, an acceler-
ator service, a microphone service, a LED service, and a
sounder service is programmed using 2807 lines of TinyOS
code. The memory footprint of the compiled code on the
MicaZ is 32182 bytes of ROM, and 2217 bytes of RAM.
There are also 310 lines of TinyOS code of the Physical-
net base station, which is connected to the serial port of

a gateway, thereby allowing the gateway to communicate
with MicaZ motes. Note the TinyOS code here includes
the implementation of all the six services. The Physicalnet
protocol module (for encoding and decoding) only contains
56 lines. Comparing BASE[5] middleware’s 132 KB and
PCOM’s [4] 120-160KB (both of them do not include the
device’s services code), Physicalnet can support more re-
source constrained embedded devices.

4.2. The Number of Concurrent Applica-
tions

With fine-grained access rights control and conflict reso-
lution support, Physicalnet dramatically increases the num-
ber of applications concurrently running on the same re-
sources. By using simulation we compared the applica-
tion concurrency possible as a function of different design
choices in the granularity level of access rights control. We
consider the following levels of access control: the network
level (e.g. EnviroTrack [3]), node level (e.g. TinyCubus
[14]), service level (e.g. Melete [20], Agilla [9]), state &
event level (SE), and the state & event level with conflict
resolution support (RSE) all compared to the ideal situa-
tion. The term concurrency is defined as follow: assuming
there are M applications attempting to run in the same net-
work and each of them may have different requirements,
we say L (L ≤ M ) applications can concurrently run only
if each application’s requirements are satisfied above some
threshold.

The definition of satisfaction for one application is based
on a parameter satisfaction ratio SAT . For example, as-
suming SAT = 0.6, then for the granularity level of access
rights control at the network level, applications cannot share
the same network, so only one application can execute. For
node level, applications can share the same network, but
cannot share the same node. If an application tries to use
500 nodes, then as long as it acquires more than 300 nodes,
we consider that this application is satisfied. For service
level, applications can further share the same node. If one
application has requirements on 10 services on one node,
and it can get at least 6 of them, then we consider the ap-
plication acquires this node. And only if the application ac-
quires at least 300 nodes, then this application is considered
to be satisfied. Similarly for the SE and RSE levels, they
can further share the same service, but not the same state
or event of a service. The difference between SE and RSE
is that when two applications have conflicting requirements
on the same state, SE can only satisfy one application, but
RSE can satisfy both by using resolvers. For example, if
one application requires the sensing period of a temperature
service to be 3 seconds, but another application requires 1
second, the resolver adopts 1 second so that both of them
are satisfied.



(a) Concurrency Degree on Used Nodes Number (b) Concurrency Degree on Satisfaction Ratio (c) 1 to 99 Applications Concurrency with Max-
imum 100 Nodes Used

Figure 5. Concurrency Degree for 99 Applications Based On Different Access Rights Granularity

The baseline configuration of the simulation is: 99 appli-
cations attempt to concurrently run on one network; the net-
work consists of 1000 nodes; each node has a maximum of 5
services; each service has either one configurable state (the
sensing period), or one configurable event (the switch of
the service), or both; the state has 4 possible values–default
(which means the application just wants to read the sample
regardless of the sampling rate), low rate, medium rate and
high rate; the event has 3 possible values– default, on and
off; each application uses a maximum of 500 nodes of the
network. The satisfaction ratio is 0.6. The required nodes
for one application, the required services of each required
node for one application, the services number of one node,
and whether having state or event or both parameters for one
service are all randomly generated. For the priority of ap-
plications, first-in-first-served policy is used. All the points
of Figure 5 are the average results of 10 experiments. The
error bars in the figure represent one standard deviation.

Figure 5(a) shows the number of concurrently running
applications (total 99 applications) according to different
values of the maximum number of nodes one application
can use. As the number of maximum nodes one application
can use increases from 100 to 1000, the conflicts also in-
crease. The concurrently running application number of SE
level granularity decreases from 65.8 to 6.7, service level
from 56.8 to 5.1, and node level from 10.9 to 1.2. How-
ever, for RSE, the result is nearly constant 99. Figure 5(b)
shows the the number of concurrently running applications
according to satisfaction ratio. RSE has very good perfor-
mance when the ratio is below 80%, while the number of
concurrent applications for the other levels of granularity
decreases dramatically after 50%. Figure 5(c) shows the
actual number of concurrently running applications for 1 to
99 attempting to run when using a maximum of 100 nodes.
We see that RSE is almost the same as the Ideal line, while
for SE and Service level granularity, the number of concur-
rent applications begins to decrease after running 40 appli-
cations. For the node level, the number of concurrent ap-
plications falls after running 8 applications. Therefore, we
conclude that our resolver supporting access rights control

on state & event level granularity dramatically increases the
number of concurrent applications in various scales of net-
works and under various requirements of applications.

4.3. Responsiveness

In this experiment, we study the responsiveness of Phys-
icalnet applications to environmental stimuli (and the ex-
periment also includes the mobility responsiveness evalu-
ations). A responsiveness measurement is the time elapsed
from the time at which an environmental stimulus is applied
to the network to the time at which the predictable conse-
quences of the environmental stimuli are observed. We use
five applications and define four events for each. The five
applications are:
• PhotoAlarm: compute the average light intensity for each
room in the negotiators it connects to. If the value is above
some threshold, all the sounders of that room are turned on.
• RoomOccupancy: turns on all the acoustic sensors of the
negotiators it connects to, and infers that a room is occupied
if two or more acoustic sensors are triggered in that room.
• NeighborhoodWatch: a collaborative surveillance appli-
cation that alerts a set of neighbors if an intruder is detected
in one of their houses. If the occupant (represented by a
MicaZ tag node) leaves the house, all the accelerators and
light sensors in that house are turned on. Any differences
detected by these sensors indicate an intruder, and result in
raising the alarm in another house.
• Tracker: a user has two MicaZ nodes. One is called the
mediaTag, the other the lightTag. If the mediaTag is on,
Tracker turns on the televisions that are in the same room as
the user. If there is no television in a room, Tracker turns on
all the music players that are within a specified distance of
the user. If the lightTag is on, Tracker turns on all the lights
that are in the same room as the user.
• FireAlarm: identical to PhotoAlarm except that it uses
temperature sensors instead of photometric sensors.

The configuration is as follows: two PCs are used. The
first PC runs only applications, while the second PC, lo-
cated 1 mile away from the first PC, runs the negotiator, the



Figure 6. Responsiveness To Environmental
Stimuli (CTP-UP)

gateway, and is connected to the service provider tier. We
use 18 MicaZ nodes with MTS310 boards distributed over
6 rooms (3 per room) at the same site as the second PC, and
6 localization anchors (1 per room). Collection Tree Proto-
col (CTP) and Physicalnet unicast protocol are used in this
experiment.

The results are shown in Figure 6. We observe that re-
sponsiveness is less than 4 seconds for 13 out of 20 stim-
uli. For FireAlarm, the responsiveness is slow because the
sensor needs to adapt to changing temperatures. For Stop-
Shake, the responsiveness is about one minute because we
specified in the NeighborhoodWatch application code that
the sounders should ring if the accelerator sensors have been
triggered during the last minute. For NoiseEnd, the respon-
siveness is of about one minute because we specified in
the RoomOccupancy code that a room should be marked as
busy if two or more acoustic sensors have been triggered in
the last minute. For LeaveHouse, the responsiveness is 4.4s
because all the accelerator sensors and photometric sensors
must be turned on (by contrast, most other stimuli change
the state of three or less sensors). Note that the responsive-
ness for the ChangeRoom stimulus of RoomOccupancy is
0 seconds because there is no requirement for changing the
state of an acoustic sensor when it changes room during the
execution of the RoomOccupancy application (the sensor
must just keep generating acoustic samples). Note also that
the responsiveness to the MoveTV and RadioTracker stim-
uli are particularly fast because these stimuli change only
the state of Java service providers.

From the results, we can conclude that from responsive-
ness viewpoint, Physicalnet is not suitable for short deadline
applications (which requires the responsiveness of less than
1 second), but is suitable for daily use applications, such
as environmental surveillance, health care, and building au-
tomation.

5. Related Work

To enable uniform access to heterogeneous devices, var-
ious pervasive computing middleware is proposed. BASE

[5] and PCOM [4] use a micro-broker-based middleware
to solve the uniform access problem. They also decou-
ple the application communication and underlying interop-
erability protocols by using an invocation broker module.
Other pervasive computing systems including Aura [17] and
Gaia [16] propose user-centric context-aware middleware
to support applications dynamically adapting their tasks to
surrounding available heterogeneous resources. However,
the biggest problem with above solutions is that they do
not have a clearly defined resource management mechanism
which is a vital issue when a system targets an open envi-
ronment with multiple users. Without access rights control,
conflicts resolution mechanisms and administrative domain
concepts, these systems are limited to only a small physi-
cal region and a small group of users. There also are WSN
middlewares such as TinyDB [13], TinyLIME [7], Mires
[18] and MiLAN [12]. However, they all suffer from one
or more of the following shortcomings: they only offer rel-
atively simple query abstractions; they do not have good
support for dynamics, mobility and fault tolerance; they as-
sume homogeneous platforms; most of them only allow a
single application execution on a single node, or do not sup-
ply flexible resolution to deal with the resource conflicts.

Work is addressing the problem of making general soft-
ware services accessible through the Internet. This body of
work includes service oriented architectures and the tech-
nologies that enable it: RPC, RMI, CORBA, Jini [2], and
Web Service (which include standards such as XMLRPC,
WSDL, UDDI). Most of these architectures are too resource
hungry to be used with wireless sensor and actuator net-
works. Tiny Web Service [15] implements web services di-
rectly in the sensor nodes in an efficient way. However, the
drawbacks of this system are: the communication overhead
and memory usage are still too heavyweight; as the number
of concurrent applications increases, the node maybe too
busy to serve all the applications; when multiple applica-
tions have conflict requirements, there is no way to resolve
it; furthermore, when device failures become common in a
large scale pervasive computing, programmers have to han-
dle the exceptions one by one.

Other work focuses specifically on making resource
constrained sensors available through the Internet: Agi-
mone [11], IrisNet [10], ArchRock Primer Pack [1] and
SOCRADES [8]. IrisNet and ArchRock Primer Pack do not
address actuation, but only sensing. Agimone deals with
both actuation and sensing, but programmers must use an
assembly like language and are responsible for propagating
code using one of two operators (move and clone), which
have limited applicability. SOCRADES aims to integrate
DPWS enabled devices into existing business systems. The
idea is similar as Physicalnet’s SOA architecture, but it still
has the same problems as the above systems–it does not
handle the problems of user access rights, node mobility,



and concurrent applications.
For resource sharing, TinyCubus [14] allows the shar-

ing of sensor network resources by partitioning the network.
However, users can only access these partitions exclusively.
Melete [20] enables the execution of concurrent applica-
tions on a single sensor node. However, Melete applica-
tions are very restricted in size (of the order of 50 bytes)
because they run on a virtual machine located on the sensor
nodes. Moreover Melete ignores the problem of conflicting
application requirements. By contrast, Physicalnet not only
allows users and applications to share resources at state &
event level, but also has user-specific access rights control
and conflict resolution mechanisms.

6. Conclusion

This paper describes the design and implementation of
a very generic framework, Physicalnet, for managing and
programming across pervasive computing networks. Phys-
icalnet is based on an SOA four-tier network architec-
ture, supports a wide range of heterogeneous devices, per-
mits multiple applications concurrent execution in the same
network, allows the programming of applications involv-
ing multiple physical networks and logical administrative
domains, and provides a fine-grained access rights con-
trol and conflict resolution mechanism. Additionally, all
the programming is based on a very generic programming
abstraction–Bundle. Our experimental results show Phys-
icalnet supports a large number of applications concurrent
execution. The memory usage is low, and the dynamic re-
sponsiveness is adequate for practical use.

Acknowledgements

This work was supported, in part, by NSF CNS-
0626616, CNS-0626632, and CSR-0720640.

References

[1] Arch rock, http:// www.archrock.com/.
[2] Jini network technology, http:// java.sun.com/ developer/

products/ jini/ index.jsp.
[3] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans,

J. George, S. George, L. Gu, T. He, S. Krishnamurthy,
L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood. Envi-
rotrack: towards an environmental computing paradigm for
distributed sensor networks. In ICDCS’04, pages 582–589,
2004.

[4] C. Becker, M. Handte, G. Schiele, and K. Rothermel. Pcom
- a component system for pervasive computing. In PerCom
2004, pages 67–76, March 2004.

[5] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. Base -
a micro-broker-based middleware for pervasive computing.
In PerCom 2003, pages 443–451, March 2003.

[6] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo,
L. Mottola, G. P. Picco, T. Sivaharan, N. Weerasinghe, and
S. Zachariadis. The runes middleware for networked em-
bedded systems and its application in a disaster management
scenario. In PERCOM ’07, pages 69–78, 2007.

[7] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy,
and G. P. Picco. Tinylime: Bridging mobile and sensor net-
works through middleware. In PERCOM ’05, pages 61–72,
2005.

[8] L. M. S. de Souza, P. Spiess, D. Guinard, M. Kőhler,
S. Karnouskos, and D. Savio. Socrades: A web service
based shop floor integration infrastructure. In IOT, volume
4952 of Lecture Notes in Computer Science, pages 50–67.
Springer, 2008.

[9] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development
and flexible deployment of adaptive wireless sensor network
applications. In ICDCS’05, pages 653–662, June 2005.

[10] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Iris-
net: an architecture for a worldwide sensor web. Pervasive
Computing, IEEE, 2:22–33, 2003.

[11] Hackmann, Fok, Roman, and Lu. Agimone: Middleware
support for seamless integration of sensor and ip networks.
In DCOSS 2006, volume 4026, pages 101–118, 2006.

[12] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A.
Perillo. Middleware to support sensor network applications.
IEEE Network, 18:2004, 2004.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing system
for sensor networks. ACM Trans. Database Syst, 30:122–
173, 2005.

[14] P. Marron, A. Lachenmann, D. Minder, J. Hahner, R. Sauter,
and K. Rothermel. Tinycubus: a flexible and adaptive frame-
work sensor networks. In EWSN’05, pages 278–289, 2005.

[15] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny
web services: design and implementation of interoperable
and evolvable sensor networks. In SenSys ’08, pages 253–
266. ACM, 2008.

[16] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: a middleware platform
for active spaces. SIGMOBILE Mob. Comput. Commun.
Rev., 6(4):65–67, 2002.

[17] J. P. Sousa and D. Garlan. Aura: An architectural framework
for user mobility in ubiquitous computing environments. In
In Proceedings of the 3rd Working IEEE/IFIP Conference
on Software Architecture, pages 29–43, 2002.

[18] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira,
N. Rosa, C. Ferraz, and J. Kelner. Mires: a publish/sub-
scribe middleware for sensor networks. Personal Ubiquitous
Comput., 10(1):37–44, 2005.

[19] P. A. Vicaire, E. Hoque, Z. Xie, and J. A. Stankovic. Bundle:
A group based programming abstraction for cyber physical
systems. Under submission, 2009.

[20] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Support-
ing concurrent applications in wireless sensor networks. In
Conference On Embedded Networked Sensor Systems, pages
139–152. ACM Press, 2006.


